PR111754: Rework encoding of result for VEC_PERM_EXPR with constant input vectors.
gcc/ChangeLog: PR middle-end/111754 * fold-const.cc (fold_vec_perm_cst): Set result's encoding to sel's encoding, and set res_nelts_per_pattern to 2 if sel contains stepped sequence but input vectors do not. (test_nunits_min_2): New test Case 8. (test_nunits_min_4): New tests Case 8 and Case 9. gcc/testsuite/ChangeLog: PR middle-end/111754 * gcc.target/aarch64/sve/slp_3.c: Adjust code-gen. * gcc.target/aarch64/sve/slp_4.c: Likewise. * gcc.dg/vect/pr111754.c: New test. Co-authored-by: Richard Sandiford <richard.sandiford@arm.com>
This commit is contained in:
parent
c9d691a7da
commit
2065438db4
4 changed files with 112 additions and 45 deletions
|
@ -10803,27 +10803,38 @@ fold_vec_perm_cst (tree type, tree arg0, tree arg1, const vec_perm_indices &sel,
|
|||
unsigned res_npatterns, res_nelts_per_pattern;
|
||||
unsigned HOST_WIDE_INT res_nelts;
|
||||
|
||||
/* (1) If SEL is a suitable mask as determined by
|
||||
valid_mask_for_fold_vec_perm_cst_p, then:
|
||||
res_npatterns = max of npatterns between ARG0, ARG1, and SEL
|
||||
res_nelts_per_pattern = max of nelts_per_pattern between
|
||||
ARG0, ARG1 and SEL.
|
||||
(2) If SEL is not a suitable mask, and TYPE is VLS then:
|
||||
res_npatterns = nelts in result vector.
|
||||
res_nelts_per_pattern = 1.
|
||||
This exception is made so that VLS ARG0, ARG1 and SEL work as before. */
|
||||
/* First try to implement the fold in a VLA-friendly way.
|
||||
|
||||
(1) If the selector is simply a duplication of N elements, the
|
||||
result is likewise a duplication of N elements.
|
||||
|
||||
(2) If the selector is N elements followed by a duplication
|
||||
of N elements, the result is too.
|
||||
|
||||
(3) If the selector is N elements followed by an interleaving
|
||||
of N linear series, the situation is more complex.
|
||||
|
||||
valid_mask_for_fold_vec_perm_cst_p detects whether we
|
||||
can handle this case. If we can, then each of the N linear
|
||||
series either (a) selects the same element each time or
|
||||
(b) selects a linear series from one of the input patterns.
|
||||
|
||||
If (b) holds for one of the linear series, the result
|
||||
will contain a linear series, and so the result will have
|
||||
the same shape as the selector. If (a) holds for all of
|
||||
the linear series, the result will be the same as (2) above.
|
||||
|
||||
(b) can only hold if one of the input patterns has a
|
||||
stepped encoding. */
|
||||
|
||||
if (valid_mask_for_fold_vec_perm_cst_p (arg0, arg1, sel, reason))
|
||||
{
|
||||
res_npatterns
|
||||
= std::max (VECTOR_CST_NPATTERNS (arg0),
|
||||
std::max (VECTOR_CST_NPATTERNS (arg1),
|
||||
sel.encoding ().npatterns ()));
|
||||
|
||||
res_nelts_per_pattern
|
||||
= std::max (VECTOR_CST_NELTS_PER_PATTERN (arg0),
|
||||
std::max (VECTOR_CST_NELTS_PER_PATTERN (arg1),
|
||||
sel.encoding ().nelts_per_pattern ()));
|
||||
|
||||
res_npatterns = sel.encoding ().npatterns ();
|
||||
res_nelts_per_pattern = sel.encoding ().nelts_per_pattern ();
|
||||
if (res_nelts_per_pattern == 3
|
||||
&& VECTOR_CST_NELTS_PER_PATTERN (arg0) < 3
|
||||
&& VECTOR_CST_NELTS_PER_PATTERN (arg1) < 3)
|
||||
res_nelts_per_pattern = 2;
|
||||
res_nelts = res_npatterns * res_nelts_per_pattern;
|
||||
}
|
||||
else if (TYPE_VECTOR_SUBPARTS (type).is_constant (&res_nelts))
|
||||
|
@ -17622,6 +17633,29 @@ test_nunits_min_2 (machine_mode vmode)
|
|||
tree expected_res[] = { ARG0(0), ARG1(0), ARG1(1) };
|
||||
validate_res (1, 3, res, expected_res);
|
||||
}
|
||||
|
||||
/* Case 8: Same as aarch64/sve/slp_3.c:
|
||||
arg0, arg1 are dup vectors.
|
||||
sel = { 0, len, 1, len+1, 2, len+2, ... } // (2, 3)
|
||||
So res = { arg0[0], arg1[0], ... } // (2, 1)
|
||||
|
||||
In this case, since the input vectors are dup, only the first two
|
||||
elements per pattern in sel are considered significant. */
|
||||
{
|
||||
tree arg0 = build_vec_cst_rand (vmode, 1, 1);
|
||||
tree arg1 = build_vec_cst_rand (vmode, 1, 1);
|
||||
poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
|
||||
|
||||
vec_perm_builder builder (len, 2, 3);
|
||||
poly_uint64 mask_elems[] = { 0, len, 1, len + 1, 2, len + 2 };
|
||||
builder_push_elems (builder, mask_elems);
|
||||
|
||||
vec_perm_indices sel (builder, 2, len);
|
||||
tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
|
||||
|
||||
tree expected_res[] = { ARG0(0), ARG1(0) };
|
||||
validate_res (2, 1, res, expected_res);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -17790,6 +17824,44 @@ test_nunits_min_4 (machine_mode vmode)
|
|||
ASSERT_TRUE (res == NULL_TREE);
|
||||
ASSERT_TRUE (!strcmp (reason, "step is not multiple of npatterns"));
|
||||
}
|
||||
|
||||
/* Case 8: PR111754: When input vector is not a stepped sequence,
|
||||
check that the result is not a stepped sequence either, even
|
||||
if sel has a stepped sequence. */
|
||||
{
|
||||
tree arg0 = build_vec_cst_rand (vmode, 1, 2);
|
||||
poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
|
||||
|
||||
vec_perm_builder builder (len, 1, 3);
|
||||
poly_uint64 mask_elems[] = { 0, 1, 2 };
|
||||
builder_push_elems (builder, mask_elems);
|
||||
|
||||
vec_perm_indices sel (builder, 1, len);
|
||||
tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg0, sel);
|
||||
|
||||
tree expected_res[] = { ARG0(0), ARG0(1) };
|
||||
validate_res (sel.encoding ().npatterns (), 2, res, expected_res);
|
||||
}
|
||||
|
||||
/* Case 9: If sel doesn't contain a stepped sequence,
|
||||
check that the result has same encoding as sel, irrespective
|
||||
of shape of input vectors. */
|
||||
{
|
||||
tree arg0 = build_vec_cst_rand (vmode, 1, 3, 1);
|
||||
tree arg1 = build_vec_cst_rand (vmode, 1, 3, 1);
|
||||
poly_uint64 len = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
|
||||
|
||||
vec_perm_builder builder (len, 1, 2);
|
||||
poly_uint64 mask_elems[] = { 0, len };
|
||||
builder_push_elems (builder, mask_elems);
|
||||
|
||||
vec_perm_indices sel (builder, 2, len);
|
||||
tree res = fold_vec_perm_cst (TREE_TYPE (arg0), arg0, arg1, sel);
|
||||
|
||||
tree expected_res[] = { ARG0(0), ARG1(0) };
|
||||
validate_res (sel.encoding ().npatterns (),
|
||||
sel.encoding ().nelts_per_pattern (), res, expected_res);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
13
gcc/testsuite/gcc.dg/vect/pr111754.c
Normal file
13
gcc/testsuite/gcc.dg/vect/pr111754.c
Normal file
|
@ -0,0 +1,13 @@
|
|||
/* { dg-do compile } */
|
||||
/* { dg-options "-O2 -fdump-tree-optimized" } */
|
||||
|
||||
typedef float __attribute__((__vector_size__ (16))) F;
|
||||
|
||||
F foo (F a, F b)
|
||||
{
|
||||
F v = (F) { 9 };
|
||||
return __builtin_shufflevector (v, v, 1, 0, 1, 2);
|
||||
}
|
||||
|
||||
/* { dg-final { scan-tree-dump-not "VEC_PERM_EXPR" "optimized" } } */
|
||||
/* { dg-final { scan-tree-dump "return \{ 0.0, 9.0e\\+0, 0.0, 0.0 \}" "optimized" } } */
|
|
@ -33,21 +33,14 @@ TEST_ALL (VEC_PERM)
|
|||
|
||||
/* 1 for each 8-bit type. */
|
||||
/* { dg-final { scan-assembler-times {\tld1rw\tz[0-9]+\.s, } 2 } } */
|
||||
/* 1 for each 16-bit type plus 1 for double. */
|
||||
/* { dg-final { scan-assembler-times {\tld1rd\tz[0-9]+\.d, } 4 } } */
|
||||
/* 1 for each 16-bit type */
|
||||
/* { dg-final { scan-assembler-times {\tld1rd\tz[0-9]+\.d, } 3 } } */
|
||||
/* 1 for each 32-bit type. */
|
||||
/* { dg-final { scan-assembler-times {\tld1rqw\tz[0-9]+\.s, } 3 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #41\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #25\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #31\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #62\n} 2 } } */
|
||||
/* 3 for double. */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, x[0-9]+\n} 3 } } */
|
||||
/* { dg-final { scan-assembler-times {\tld1rqd\tz[0-9]+\.d, } 6 } } */
|
||||
/* The 64-bit types need:
|
||||
|
||||
ZIP1 ZIP1 (2 ZIP2s optimized away)
|
||||
ZIP1 ZIP2. */
|
||||
/* { dg-final { scan-assembler-times {\tzip1\tz[0-9]+\.d, z[0-9]+\.d, z[0-9]+\.d\n} 9 } } */
|
||||
/* { dg-final { scan-assembler-times {\tzip1\tz[0-9]+\.d, z[0-9]+\.d, z[0-9]+\.d\n} 3 } } */
|
||||
/* { dg-final { scan-assembler-times {\tzip2\tz[0-9]+\.d, z[0-9]+\.d, z[0-9]+\.d\n} 3 } } */
|
||||
|
||||
/* The loop should be fully-masked. The 64-bit types need two loads
|
||||
|
|
|
@ -35,31 +35,20 @@ vec_slp_##TYPE (TYPE *restrict a, int n) \
|
|||
|
||||
TEST_ALL (VEC_PERM)
|
||||
|
||||
/* 1 for each 8-bit type, 4 for each 32-bit type and 4 for double. */
|
||||
/* { dg-final { scan-assembler-times {\tld1rd\tz[0-9]+\.d, } 18 } } */
|
||||
/* 1 for each 8-bit type */
|
||||
/* { dg-final { scan-assembler-times {\tld1rd\tz[0-9]+\.d, } 2 } } */
|
||||
/* 1 for each 16-bit type. */
|
||||
/* { dg-final { scan-assembler-times {\tld1rqh\tz[0-9]+\.h, } 3 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #99\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #11\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #17\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #80\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #63\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #37\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #24\n} 2 } } */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, #81\n} 2 } } */
|
||||
/* 4 for double. */
|
||||
/* { dg-final { scan-assembler-times {\tmov\tz[0-9]+\.d, x[0-9]+\n} 4 } } */
|
||||
/* { dg-final { scan-assembler-times {\tld1rqd\tz[0-9]+\.d, } 18 } } */
|
||||
/* The 32-bit types need:
|
||||
|
||||
ZIP1 ZIP1 (2 ZIP2s optimized away)
|
||||
ZIP1 ZIP2
|
||||
|
||||
and the 64-bit types need:
|
||||
|
||||
ZIP1 ZIP1 ZIP1 ZIP1 (4 ZIP2s optimized away)
|
||||
ZIP1 ZIP2 ZIP1 ZIP2
|
||||
ZIP1 ZIP2 ZIP1 ZIP2. */
|
||||
/* { dg-final { scan-assembler-times {\tzip1\tz[0-9]+\.d, z[0-9]+\.d, z[0-9]+\.d\n} 33 } } */
|
||||
/* { dg-final { scan-assembler-times {\tzip1\tz[0-9]+\.d, z[0-9]+\.d, z[0-9]+\.d\n} 15 } } */
|
||||
/* { dg-final { scan-assembler-times {\tzip2\tz[0-9]+\.d, z[0-9]+\.d, z[0-9]+\.d\n} 15 } } */
|
||||
|
||||
/* The loop should be fully-masked. The 32-bit types need two loads
|
||||
|
|
Loading…
Add table
Reference in a new issue