This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
Now that all ports have switched to target-newlib-* files, there's
no need for these files & generating things at build time. So punt
the logic and make target-newlib-syscall a hard requirement.
Like we just did for pulling out the errno map, pull out the syscall
maps into a dedicated common file. Most newlib ports are using the
same syscall map, but not all, which means we have to do a bit more
work to migrate.
This commit adds the maps and switches the ports using the common
default syscall table over to it. Ports using unique syscall tables
are still using the old targ-map.c logic.
Switching common ports over is easy by checking NL_TARGET, but the
ppc code needs a bit more cleanup here hence its larger diff.
The current system maintains a list of target errno constants in the
nltvals.def file, then runs a build-time tool to turn that into a C
file. This list of errno values is the same for all arches, so we
don't need the arch-specific flexibility. Further, these are only
for newlib/libgloss environments, which makes it confusing to support
other userland runtimes (like Linux). Let's simplify to make this
easier to understand & build. We don't namespace the variables yet,
but sets up the framework for it.
Create a new target-newlib-errno.c template file. The template file
is hand written, but the inline map is still automatically generated.
This allows us to move it to the common set of objects so it's only
built once in a multi-target build.
Now we can remove the output from the gentmap build-time tool since
it's checked into the tree.
Then we stop including the errno lists in nltvals.def since nothing
uses it.
We map target signals to host signals so we can propagate signals
between the host & simulated worlds. That means we need to know
the symbolic names & values of all signals that might be sent.
The tools that generate that list use signal.h and include all
symbols that start with "SIG" so as to automatically include any
new symbols that the C library might add. Unfortunately, this
also picks up "SIGSTKSZ" which is not actually a signal itself,
but a signal related setting -- it's the size of the stack when
a signal is handled.
By itself this doesn't super matter as we will never see a signal
with that same value (since the range of valid signals tend to be
way less than 1024, and the size of the default signal stack will
never be that small). But with recent glibc changes that make this
into a dynamic value instead of a compile-time constant, some users
see build failures when building the sim.
As suggested by Adam Sampson, update our scripts to ignore this
symbol to simplify everything and avoid the build failure.
Bug: https://sourceware.org/PR28302
In preparation for this script generating more files, change the output
argument to specify a directory. This drops the stdout behavior, but
since no one really runs this tool directly, it's not a big deal.
Since libgloss provides a default syscall table for arches, use that
to provide the default syscall table for ports. Only the exceptions
need to be enumerated now with the common logic as the default.
Rather than hand duplicate the syscall constants, switch to the
common nltvals framework. I made sure the constants have the
same values before & after too :).
Rather than hand duplicate the syscall table, switch to the common
nltvals framework. We have to tweak the constant names, but we get
everything else for free. I made sure the constants have the same
values before & after too :).
Rather than hand duplicate the syscall table, switch to the common
nltvals framework. We have to tweak the constant names, but we get
everything else for free. I made sure the constants have the same
values before & after too :).
Rather than hand duplicate the syscall table, switch to the common
nltvals framework. We have to tweak the constant names, but we get
everything else for free. I made sure the constants have the same
values before & after too :).
Rather than hand duplicate the syscall table, switch to the common
nltvals framework. We have to tweak the constant names, but we get
everything else for free. I made sure the constants have the same
values before & after too :).
This is a hand-written implementation that should have fairly complete
coverage for the base integer instruction set ("i"), and for the atomic
("a") and integer multiplication+division ("m") extensions. It also
covers 32-bit & 64-bit targets.
The unittest coverage is a bit weak atm, but should get better.