gcc/libstdc++-v3/include/tr1/array
Benjamin Kosnik 3febde356c tr1: New.
2004-10-07  Benjamin Kosnik  <bkoz@redhat.com>

	* include/tr1: New.
	* include/tr1/array: New.
	* include/Makefile.am (tr1_headers): New.
	(stamp-tr1): New.
	(install-headers): New.
	(allstamped): Add stamp-tr1.

	* include/ext/array_allocator.h: New.
	* include/Makefile.am: Add.
	* include/Makefile.in: Regenerate.
	* testsuite/ext/array_allocator/1.cc: New.
	* testsuite/ext/array_allocator/2.cc: New.

From-SVN: r88711
2004-10-07 22:06:23 +00:00

200 lines
5.5 KiB
C++

// class template array -*- C++ -*-
// Copyright (C) 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
#ifndef _ARRAY
#define _ARRAY 1
#include <new>
#include <iterator>
//namespace std::tr1
namespace std
{
namespace tr1
{
// [6.2.2] Class template array template
// Requires complete type _Tp.
// Use of char array allows _Tp to skirt default constructable requirement.
template<typename _Tp, size_t _Nm = 1>
struct array
{
enum { _S_index = _Nm };
typedef _Tp value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* iterator;
typedef const value_type* const_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef char layout_type[sizeof(_Tp)] __attribute__ ((aligned(__alignof__(_Tp))));
layout_type _M_instance[_Nm];
// No explicit construct/copy/destroy for aggregate type.
void
assign(const value_type& u);
void
swap(array&);
// Iterators.
iterator
begin()
{ return reinterpret_cast<iterator>(&_M_instance[0]); }
const_iterator
begin() const
{ return reinterpret_cast<const_iterator>(&_M_instance[0]); }
iterator
end()
{ return reinterpret_cast<iterator>(&_M_instance[_S_index - 1]); }
const_iterator
end() const
{ return reinterpret_cast<iterator>(&_M_instance[_S_index - 1]); }
reverse_iterator
rbegin()
{ return reverse_iterator(this->end()); }
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(this->end()); }
reverse_iterator
rend()
{ return reverse_iterator(this->begin()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(this->begin()); }
// Capacity.
size_type
size() const { return _S_index; }
size_type
max_size() const
{
// XXX Not specified. Unnecessary, this is fixed-size.
return _S_index;
}
bool
empty() const;
// Element access.
reference
operator[](size_type __n)
{ return reinterpret_cast<reference>(_M_instance[__n]); }
const_reference
operator[](size_type __n) const
{ return reinterpret_cast<const_reference>(_M_instance[__n]); }
const_reference
at(size_type __n) const
{
if (__builtin_expect(__n > _S_index, false))
throw std::bad_alloc();
return reinterpret_cast<const_reference>(_M_instance[__n]);
}
reference
at(size_type __n)
{
if (__builtin_expect(__n > _S_index, false))
throw std::bad_alloc();
return reinterpret_cast<reference>(_M_instance[__n]);
}
reference
front();
const_reference
front() const;
reference
back();
const_reference
back() const;
_Tp*
data();
const _Tp*
data() const;
};
// Array comparisons.
template<typename _Tp, size_t _Nm>
bool
operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return false; }
template<typename _Tp, size_t _Nm>
bool
operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one == __two); }
template<typename _Tp, size_t _Nm>
bool
operator<(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return false; }
template<typename _Tp, size_t _Nm>
bool
operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return false; }
template<typename _Tp, size_t _Nm>
bool
operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return false; }
template<typename _Tp, size_t _Nm>
bool
operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return false; }
// [6.2.2.2] Specialized algorithms.
template<typename _Tp, size_t _Nm>
void
swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two)
{ swap_ranges(__one.begin(), __one.end(), __two.begin()); }
} // namespace std::tr1
}
#endif