
2006-08-14 Mark Wielaard <mark@klomp.org> Imported GNU Classpath 0.92 * HACKING: Add more importing hints. Update automake version requirement. * configure.ac (gconf-peer): New enable AC argument. Add --disable-gconf-peer and --enable-default-preferences-peer to classpath configure when gconf is disabled. * scripts/makemake.tcl: Set gnu/java/util/prefs/gconf and gnu/java/awt/dnd/peer/gtk to bc. Classify gnu/java/security/Configuration.java as generated source file. * gnu/java/lang/management/VMGarbageCollectorMXBeanImpl.java, gnu/java/lang/management/VMMemoryPoolMXBeanImpl.java, gnu/java/lang/management/VMClassLoadingMXBeanImpl.java, gnu/java/lang/management/VMRuntimeMXBeanImpl.java, gnu/java/lang/management/VMMemoryManagerMXBeanImpl.java, gnu/java/lang/management/VMThreadMXBeanImpl.java, gnu/java/lang/management/VMMemoryMXBeanImpl.java, gnu/java/lang/management/VMCompilationMXBeanImpl.java: New VM stub classes. * java/lang/management/VMManagementFactory.java: Likewise. * java/net/VMURLConnection.java: Likewise. * gnu/java/nio/VMChannel.java: Likewise. * java/lang/Thread.java (getState): Add stub implementation. * java/lang/Class.java (isEnum): Likewise. * java/lang/Class.h (isEnum): Likewise. * gnu/awt/xlib/XToolkit.java (getClasspathTextLayoutPeer): Removed. * javax/naming/spi/NamingManager.java: New override for StackWalker functionality. * configure, sources.am, Makefile.in, gcj/Makefile.in, include/Makefile.in, testsuite/Makefile.in: Regenerated. From-SVN: r116139
371 lines
14 KiB
Java
371 lines
14 KiB
Java
/* EMSA_PSS.java --
|
|
Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
|
|
|
This file is a part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
|
your option) any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package gnu.java.security.sig.rsa;
|
|
|
|
import gnu.java.security.Configuration;
|
|
import gnu.java.security.hash.HashFactory;
|
|
import gnu.java.security.hash.IMessageDigest;
|
|
import gnu.java.security.util.Util;
|
|
|
|
import java.util.Arrays;
|
|
import java.util.logging.Logger;
|
|
|
|
/**
|
|
* An implementation of the EMSA-PSS encoding/decoding scheme.
|
|
* <p>
|
|
* EMSA-PSS coincides with EMSA4 in IEEE P1363a D5 except that EMSA-PSS acts on
|
|
* octet strings and not on bit strings. In particular, the bit lengths of the
|
|
* hash and the salt must be multiples of 8 in EMSA-PSS. Moreover, EMSA4 outputs
|
|
* an integer of a desired bit length rather than an octet string.
|
|
* <p>
|
|
* EMSA-PSS is parameterized by the choice of hash function Hash and mask
|
|
* generation function MGF. In this submission, MGF is based on a Hash
|
|
* definition that coincides with the corresponding definitions in IEEE Std
|
|
* 1363-2000, PKCS #1 v2.0, and the draft ANSI X9.44. In PKCS #1 v2.0 and the
|
|
* draft ANSI X9.44, the recommended hash function is SHA-1, while IEEE Std
|
|
* 1363-2000 recommends SHA-1 and RIPEMD-160.
|
|
* <p>
|
|
* References:
|
|
* <ol>
|
|
* <li><a
|
|
* href="http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/rsa-pss.zip">
|
|
* RSA-PSS Signature Scheme with Appendix, part B.</a><br>
|
|
* Primitive specification and supporting documentation.<br>
|
|
* Jakob Jonsson and Burt Kaliski.</li>
|
|
* </ol>
|
|
*/
|
|
public class EMSA_PSS
|
|
implements Cloneable
|
|
{
|
|
private static final Logger log = Logger.getLogger(EMSA_PSS.class.getName());
|
|
|
|
/** The underlying hash function to use with this instance. */
|
|
private IMessageDigest hash;
|
|
|
|
/** The output size of the hash function in octets. */
|
|
private int hLen;
|
|
|
|
/**
|
|
* Trivial private constructor to enforce use through Factory method.
|
|
*
|
|
* @param hash the message digest instance to use with this scheme instance.
|
|
*/
|
|
private EMSA_PSS(IMessageDigest hash)
|
|
{
|
|
super();
|
|
|
|
this.hash = hash;
|
|
hLen = hash.hashSize();
|
|
}
|
|
|
|
/**
|
|
* Returns an instance of this object given a designated name of a hash
|
|
* function.
|
|
*
|
|
* @param mdName the canonical name of a hash function.
|
|
* @return an instance of this object configured for use with the designated
|
|
* options.
|
|
*/
|
|
public static EMSA_PSS getInstance(String mdName)
|
|
{
|
|
IMessageDigest hash = HashFactory.getInstance(mdName);
|
|
return new EMSA_PSS(hash);
|
|
}
|
|
|
|
public Object clone()
|
|
{
|
|
return getInstance(hash.name());
|
|
}
|
|
|
|
/**
|
|
* The encoding operation EMSA-PSS-Encode computes the hash of a message
|
|
* <code>M</code> using a hash function and maps the result to an encoded
|
|
* message <code>EM</code> of a specified length using a mask generation
|
|
* function.
|
|
*
|
|
* @param mHash the byte sequence resulting from applying the message digest
|
|
* algorithm Hash to the message <i>M</i>.
|
|
* @param emBits the maximal bit length of the integer OS2IP(EM), at least
|
|
* <code>8.hLen + 8.sLen + 9</code>.
|
|
* @param salt the salt to use when encoding the output.
|
|
* @return the encoded message <code>EM</code>, an octet string of length
|
|
* <code>emLen = CEILING(emBits / 8)</code>.
|
|
* @exception IllegalArgumentException if an exception occurs.
|
|
*/
|
|
public byte[] encode(byte[] mHash, int emBits, byte[] salt)
|
|
{
|
|
int sLen = salt.length;
|
|
// 1. If the length of M is greater than the input limitation for the hash
|
|
// function (2**61 - 1 octets for SHA-1) then output "message too long"
|
|
// and stop.
|
|
// 2. Let mHash = Hash(M), an octet string of length hLen.
|
|
if (hLen != mHash.length)
|
|
throw new IllegalArgumentException("wrong hash");
|
|
// 3. If emBits < 8.hLen + 8.sLen + 9, output 'encoding error' and stop.
|
|
if (emBits < (8 * hLen + 8 * sLen + 9))
|
|
throw new IllegalArgumentException("encoding error");
|
|
int emLen = (emBits + 7) / 8;
|
|
// 4. Generate a random octet string salt of length sLen; if sLen = 0,
|
|
// then salt is the empty string.
|
|
// ...passed as argument to accomodate JCE
|
|
// 5. Let M0 = 00 00 00 00 00 00 00 00 || mHash || salt;
|
|
// M0 is an octet string of length 8 + hLen + sLen with eight initial zero
|
|
// octets.
|
|
// 6. Let H = Hash(M0), an octet string of length hLen.
|
|
byte[] H;
|
|
int i;
|
|
synchronized (hash)
|
|
{
|
|
for (i = 0; i < 8; i++)
|
|
hash.update((byte) 0x00);
|
|
|
|
hash.update(mHash, 0, hLen);
|
|
hash.update(salt, 0, sLen);
|
|
H = hash.digest();
|
|
}
|
|
// 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2
|
|
// zero octets. The length of PS may be 0.
|
|
// 8. Let DB = PS || 01 || salt.
|
|
byte[] DB = new byte[emLen - sLen - hLen - 2 + 1 + sLen];
|
|
DB[emLen - sLen - hLen - 2] = 0x01;
|
|
System.arraycopy(salt, 0, DB, emLen - sLen - hLen - 1, sLen);
|
|
// 9. Let dbMask = MGF(H, emLen - hLen - 1).
|
|
byte[] dbMask = MGF(H, emLen - hLen - 1);
|
|
if (Configuration.DEBUG)
|
|
{
|
|
log.fine("dbMask (encode): " + Util.toString(dbMask));
|
|
log.fine("DB (encode): " + Util.toString(DB));
|
|
}
|
|
// 10. Let maskedDB = DB XOR dbMask.
|
|
for (i = 0; i < DB.length; i++)
|
|
DB[i] = (byte)(DB[i] ^ dbMask[i]);
|
|
// 11. Set the leftmost 8emLen - emBits bits of the leftmost octet in
|
|
// maskedDB to zero.
|
|
DB[0] &= (0xFF >>> (8 * emLen - emBits));
|
|
// 12. Let EM = maskedDB || H || bc, where bc is the single octet with
|
|
// hexadecimal value 0xBC.
|
|
byte[] result = new byte[emLen];
|
|
System.arraycopy(DB, 0, result, 0, emLen - hLen - 1);
|
|
System.arraycopy(H, 0, result, emLen - hLen - 1, hLen);
|
|
result[emLen - 1] = (byte) 0xBC;
|
|
// 13. Output EM.
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* The decoding operation EMSA-PSS-Decode recovers the message hash from an
|
|
* encoded message <code>EM</code> and compares it to the hash of
|
|
* <code>M</code>.
|
|
*
|
|
* @param mHash the byte sequence resulting from applying the message digest
|
|
* algorithm Hash to the message <i>M</i>.
|
|
* @param EM the <i>encoded message</i>, an octet string of length
|
|
* <code>emLen = CEILING(emBits/8).
|
|
* @param emBits the maximal bit length of the integer OS2IP(EM), at least
|
|
* <code>8.hLen + 8.sLen + 9</code>.
|
|
* @param sLen the length, in octets, of the expected salt.
|
|
* @return <code>true</code> if the result of the verification was
|
|
* <i>consistent</i> with the expected reseult; and <code>false</code> if the
|
|
* result was <i>inconsistent</i>.
|
|
* @exception IllegalArgumentException if an exception occurs.
|
|
*/
|
|
public boolean decode(byte[] mHash, byte[] EM, int emBits, int sLen)
|
|
{
|
|
if (Configuration.DEBUG)
|
|
{
|
|
log.fine("mHash: " + Util.toString(mHash));
|
|
log.fine("EM: " + Util.toString(EM));
|
|
log.fine("emBits: " + String.valueOf(emBits));
|
|
log.fine("sLen: " + String.valueOf(sLen));
|
|
}
|
|
if (sLen < 0)
|
|
throw new IllegalArgumentException("sLen");
|
|
// 1. If the length of M is greater than the input limitation for the hash
|
|
// function (2**61 ? 1 octets for SHA-1) then output 'inconsistent' and
|
|
// stop.
|
|
// 2. Let mHash = Hash(M), an octet string of length hLen.
|
|
if (hLen != mHash.length)
|
|
{
|
|
if (Configuration.DEBUG)
|
|
log.fine("hLen != mHash.length; hLen: " + String.valueOf(hLen));
|
|
throw new IllegalArgumentException("wrong hash");
|
|
}
|
|
// 3. If emBits < 8.hLen + 8.sLen + 9, output 'decoding error' and stop.
|
|
if (emBits < (8 * hLen + 8 * sLen + 9))
|
|
{
|
|
if (Configuration.DEBUG)
|
|
log.fine("emBits < (8hLen + 8sLen + 9); sLen: "
|
|
+ String.valueOf(sLen));
|
|
throw new IllegalArgumentException("decoding error");
|
|
}
|
|
int emLen = (emBits + 7) / 8;
|
|
// 4. If the rightmost octet of EM does not have hexadecimal value bc,
|
|
// output 'inconsistent' and stop.
|
|
if ((EM[EM.length - 1] & 0xFF) != 0xBC)
|
|
{
|
|
if (Configuration.DEBUG)
|
|
log.fine("EM does not end with 0xBC");
|
|
return false;
|
|
}
|
|
// 5. Let maskedDB be the leftmost emLen ? hLen ? 1 octets of EM, and let
|
|
// H be the next hLen octets.
|
|
// 6. If the leftmost 8.emLen ? emBits bits of the leftmost octet in
|
|
// maskedDB are not all equal to zero, output 'inconsistent' and stop.
|
|
if ((EM[0] & (0xFF << (8 - (8 * emLen - emBits)))) != 0)
|
|
{
|
|
if (Configuration.DEBUG)
|
|
log.fine("Leftmost 8emLen - emBits bits of EM are not 0s");
|
|
return false;
|
|
}
|
|
byte[] DB = new byte[emLen - hLen - 1];
|
|
byte[] H = new byte[hLen];
|
|
System.arraycopy(EM, 0, DB, 0, emLen - hLen - 1);
|
|
System.arraycopy(EM, emLen - hLen - 1, H, 0, hLen);
|
|
// 7. Let dbMask = MGF(H, emLen ? hLen ? 1).
|
|
byte[] dbMask = MGF(H, emLen - hLen - 1);
|
|
// 8. Let DB = maskedDB XOR dbMask.
|
|
int i;
|
|
for (i = 0; i < DB.length; i++)
|
|
DB[i] = (byte)(DB[i] ^ dbMask[i]);
|
|
// 9. Set the leftmost 8.emLen ? emBits bits of DB to zero.
|
|
DB[0] &= (0xFF >>> (8 * emLen - emBits));
|
|
if (Configuration.DEBUG)
|
|
{
|
|
log.fine("dbMask (decode): " + Util.toString(dbMask));
|
|
log.fine("DB (decode): " + Util.toString(DB));
|
|
}
|
|
// 10. If the emLen -hLen -sLen -2 leftmost octets of DB are not zero or
|
|
// if the octet at position emLen -hLen -sLen -1 is not equal to 0x01,
|
|
// output 'inconsistent' and stop.
|
|
// IMPORTANT (rsn): this is an error in the specs, the index of the 0x01
|
|
// byte should be emLen -hLen -sLen -2 and not -1! authors have been advised
|
|
for (i = 0; i < (emLen - hLen - sLen - 2); i++)
|
|
{
|
|
if (DB[i] != 0)
|
|
{
|
|
if (Configuration.DEBUG)
|
|
log.fine("DB[" + String.valueOf(i) + "] != 0x00");
|
|
return false;
|
|
}
|
|
}
|
|
if (DB[i] != 0x01)
|
|
{ // i == emLen -hLen -sLen -2
|
|
if (Configuration.DEBUG)
|
|
log.fine("DB's byte at position (emLen -hLen -sLen -2); i.e. "
|
|
+ String.valueOf(i) + " is not 0x01");
|
|
return false;
|
|
}
|
|
// 11. Let salt be the last sLen octets of DB.
|
|
byte[] salt = new byte[sLen];
|
|
System.arraycopy(DB, DB.length - sLen, salt, 0, sLen);
|
|
// 12. Let M0 = 00 00 00 00 00 00 00 00 || mHash || salt;
|
|
// M0 is an octet string of length 8 + hLen + sLen with eight initial
|
|
// zero octets.
|
|
// 13. Let H0 = Hash(M0), an octet string of length hLen.
|
|
byte[] H0;
|
|
synchronized (hash)
|
|
{
|
|
for (i = 0; i < 8; i++)
|
|
hash.update((byte) 0x00);
|
|
|
|
hash.update(mHash, 0, hLen);
|
|
hash.update(salt, 0, sLen);
|
|
H0 = hash.digest();
|
|
}
|
|
// 14. If H = H0, output 'consistent.' Otherwise, output 'inconsistent.'
|
|
return Arrays.equals(H, H0);
|
|
}
|
|
|
|
/**
|
|
* A mask generation function takes an octet string of variable length and a
|
|
* desired output length as input, and outputs an octet string of the desired
|
|
* length. There may be restrictions on the length of the input and output
|
|
* octet strings, but such bounds are generally very large. Mask generation
|
|
* functions are deterministic; the octet string output is completely
|
|
* determined by the input octet string. The output of a mask generation
|
|
* function should be pseudorandom, that is, it should be infeasible to
|
|
* predict, given one part of the output but not the input, another part of
|
|
* the output. The provable security of RSA-PSS relies on the random nature of
|
|
* the output of the mask generation function, which in turn relies on the
|
|
* random nature of the underlying hash function.
|
|
*
|
|
* @param Z a seed.
|
|
* @param l the desired output length in octets.
|
|
* @return the mask.
|
|
* @exception IllegalArgumentException if the desired output length is too
|
|
* long.
|
|
*/
|
|
private byte[] MGF(byte[] Z, int l)
|
|
{
|
|
// 1. If l > (2**32).hLen, output 'mask too long' and stop.
|
|
if (l < 1 || (l & 0xFFFFFFFFL) > ((hLen & 0xFFFFFFFFL) << 32L))
|
|
throw new IllegalArgumentException("mask too long");
|
|
// 2. Let T be the empty octet string.
|
|
byte[] result = new byte[l];
|
|
// 3. For i = 0 to CEILING(l/hLen) ? 1, do
|
|
int limit = ((l + hLen - 1) / hLen) - 1;
|
|
IMessageDigest hashZ = null;
|
|
hashZ = (IMessageDigest) hash.clone();
|
|
hashZ.digest();
|
|
hashZ.update(Z, 0, Z.length);
|
|
IMessageDigest hashZC = null;
|
|
byte[] t;
|
|
int sofar = 0;
|
|
int length;
|
|
for (int i = 0; i < limit; i++)
|
|
{
|
|
// 3.1 Convert i to an octet string C of length 4 with the primitive
|
|
// I2OSP: C = I2OSP(i, 4).
|
|
// 3.2 Concatenate the hash of the seed Z and C to the octet string T:
|
|
// T = T || Hash(Z || C)
|
|
hashZC = (IMessageDigest) hashZ.clone();
|
|
hashZC.update((byte)(i >>> 24));
|
|
hashZC.update((byte)(i >>> 16));
|
|
hashZC.update((byte)(i >>> 8));
|
|
hashZC.update((byte) i);
|
|
t = hashZC.digest();
|
|
length = l - sofar;
|
|
length = (length > hLen ? hLen : length);
|
|
System.arraycopy(t, 0, result, sofar, length);
|
|
sofar += length;
|
|
}
|
|
// 4. Output the leading l octets of T as the octet string mask.
|
|
return result;
|
|
}
|
|
}
|