
2010-07-01 Richard Guenther <rguenther@suse.de> PR middle-end/42834 PR middle-end/44468 * doc/gimple.texi (is_gimple_mem_ref_addr): Document. * doc/generic.texi (References to storage): Document MEM_REF. * tree-pretty-print.c (dump_generic_node): Handle MEM_REF. (print_call_name): Likewise. * tree.c (recompute_tree_invariant_for_addr_expr): Handle MEM_REF. (build_simple_mem_ref_loc): New function. (mem_ref_offset): Likewise. * tree.h (build_simple_mem_ref_loc): Declare. (build_simple_mem_ref): Define. (mem_ref_offset): Declare. * fold-const.c: Include tree-flow.h. (operand_equal_p): Handle MEM_REF. (build_fold_addr_expr_with_type_loc): Likewise. (fold_comparison): Likewise. (fold_unary_loc): Fold VIEW_CONVERT_EXPR <T1, MEM_REF <T2, ...>> to MEM_REF <T1, ...>. (fold_binary_loc): Fold MEM[&MEM[p, CST1], CST2] to MEM[p, CST1 + CST2], fold MEM[&a.b, CST2] to MEM[&a, offsetof (a, b) + CST2]. * tree-ssa-alias.c (ptr_deref_may_alias_decl_p): Handle MEM_REF. (ptr_deref_may_alias_ref_p_1): Likewise. (ao_ref_base_alias_set): Properly differentiate base object for offset and TBAA. (ao_ref_init_from_ptr_and_size): Use MEM_REF. (indirect_ref_may_alias_decl_p): Handle MEM_REFs properly. (indirect_refs_may_alias_p): Likewise. (refs_may_alias_p_1): Likewise. Remove pointer SSA name def chasing code. (ref_maybe_used_by_call_p_1): Handle MEM_REF. (call_may_clobber_ref_p_1): Likewise. * dwarf2out.c (loc_list_from_tree): Handle MEM_REF. * expr.c (expand_assignment): Handle MEM_REF. (store_expr): Handle MEM_REFs from STRING_CSTs. (store_field): If expanding a MEM_REF of a non-addressable decl use bitfield operations. (get_inner_reference): Handle MEM_REF. (expand_expr_addr_expr_1): Likewise. (expand_expr_real_1): Likewise. * tree-eh.c (tree_could_trap_p): Handle MEM_REF. * alias.c (ao_ref_from_mem): Handle MEM_REF. (get_alias_set): Likewise. Properly handle VIEW_CONVERT_EXPRs. * tree-data-ref.c (dr_analyze_innermost): Handle MEM_REF. (dr_analyze_indices): Likewise. (dr_analyze_alias): Likewise. (object_address_invariant_in_loop_p): Likewise. * gimplify.c (mark_addressable): Handle MEM_REF. (gimplify_cond_expr): Build MEM_REFs. (gimplify_modify_expr_to_memcpy): Likewise. (gimplify_init_ctor_preeval_1): Handle MEM_REF. (gimple_fold_indirect_ref): Adjust. (gimplify_expr): Handle MEM_REF. Gimplify INDIRECT_REF to MEM_REF. * tree.def (MEM_REF): New tree code. * tree-dfa.c: Include toplev.h. (get_ref_base_and_extent): Handle MEM_REF. (get_addr_base_and_unit_offset): New function. * emit-rtl.c (set_mem_attributes_minus_bitpos): Handle MEM_REF. * gimple-fold.c (may_propagate_address_into_dereference): Handle MEM_REF. (maybe_fold_offset_to_array_ref): Allow possibly out-of bounds accesses if the array has just one dimension. Remove always true parameter. Do not require type compatibility here. (maybe_fold_offset_to_component_ref): Remove. (maybe_fold_stmt_indirect): Remove. (maybe_fold_reference): Remove INDIRECT_REF handling. Fold back to non-MEM_REF. (maybe_fold_offset_to_address): Simplify. Deal with type mismatches here. (maybe_fold_reference): Likewise. (maybe_fold_stmt_addition): Likewise. Also handle &ARRAY + I in addition to &ARRAY[0] + I. (fold_gimple_assign): Handle ADDR_EXPR of MEM_REFs. (gimple_get_relevant_ref_binfo): Handle MEM_REF. * cfgexpand.c (expand_debug_expr): Handle MEM_REF. * tree-ssa.c (useless_type_conversion_p): Make most pointer conversions useless. (warn_uninitialized_var): Handle MEM_REF. (maybe_rewrite_mem_ref_base): New function. (execute_update_addresses_taken): Implement re-writing of MEM_REFs to SSA form. * tree-inline.c (remap_gimple_op_r): Handle MEM_REF, remove INDIRECT_REF handling. (copy_tree_body_r): Handle MEM_REF. * gimple.c (is_gimple_addressable): Adjust. (is_gimple_address): Likewise. (is_gimple_invariant_address): ADDR_EXPRs of MEM_REFs with invariant base are invariant. (is_gimple_min_lval): Adjust. (is_gimple_mem_ref_addr): New function. (get_base_address): Handle MEM_REF. (count_ptr_derefs): Likewise. (get_base_loadstore): Likewise. * gimple.h (is_gimple_mem_ref_addr): Declare. (gimple_call_fndecl): Handle invariant MEM_REF addresses. * tree-cfg.c (verify_address): New function, split out from ... (verify_expr): ... here. Use for verifying ADDR_EXPRs and the address operand of MEM_REFs. Verify MEM_REFs. Reject INDIRECT_REFs. (verify_types_in_gimple_min_lval): Handle MEM_REF. Disallow INDIRECT_REF. Allow conversions. (verify_types_in_gimple_reference): Verify VIEW_CONVERT_EXPR of a register does not change its size. (verify_types_in_gimple_reference): Verify MEM_REF. (verify_gimple_assign_single): Disallow INDIRECT_REF. Handle MEM_REF. * tree-ssa-operands.c (opf_non_addressable, opf_not_non_addressable): New. (mark_address_taken): Handle MEM_REF. (get_indirect_ref_operands): Pass through opf_not_non_addressable. (get_asm_expr_operands): Pass opf_not_non_addressable. (get_expr_operands): Handle opf_[not_]non_addressable. Handle MEM_REF. Remove INDIRECT_REF handling. * tree-vrp.c: (check_array_ref): Handle MEM_REF. (search_for_addr_array): Likewise. (check_array_bounds): Likewise. (vrp_stmt_computes_nonzero): Adjust for MEM_REF. * tree-ssa-loop-im.c (for_each_index): Handle MEM_REF. (ref_always_accessed_p): Likewise. (gen_lsm_tmp_name): Likewise. Handle ADDR_EXPR. * tree-complex.c (extract_component): Do not handle INDIRECT_REF. Handle MEM_REF. * cgraphbuild.c (mark_load): Properly check for NULL result from get_base_address. (mark_store): Likewise. * tree-ssa-loop-niter.c (array_at_struct_end_p): Handle MEM_REF. * tree-loop-distribution.c (generate_builtin): Exchange INDIRECT_REF handling for MEM_REF. * tree-scalar-evolution.c (follow_ssa_edge_expr): Handle &MEM[ptr + CST] similar to POINTER_PLUS_EXPR. * builtins.c (stabilize_va_list_loc): Use the function ABI valist type if we couldn't canonicalize the argument type. Always dereference with the canonical va-list type. (maybe_emit_free_warning): Handle MEM_REF. (fold_builtin_memory_op): Simplify and handle MEM_REFs in folding memmove to memcpy. * builtins.c (fold_builtin_memory_op): Use ref-all types for all memcpy foldings. * omp-low.c (build_receiver_ref): Adjust for MEM_REF. (build_outer_var_ref): Likewise. (scan_omp_1_op): Likewise. (lower_rec_input_clauses): Likewise. (lower_lastprivate_clauses): Likewise. (lower_reduction_clauses): Likewise. (lower_copyprivate_clauses): Likewise. (expand_omp_atomic_pipeline): Likewise. (expand_omp_atomic_mutex): Likewise. (create_task_copyfn): Likewise. * tree-ssa-sccvn.c (copy_reference_ops_from_ref): Handle MEM_REF. Remove old union trick. Initialize constant offsets. (ao_ref_init_from_vn_reference): Likewise. Do not handle INDIRECT_REF. Init base_alias_set properly. (vn_reference_lookup_3): Replace INDIRECT_REF handling with MEM_REF. (vn_reference_fold_indirect): Adjust for MEM_REFs. (valueize_refs): Fold MEM_REFs. Re-evaluate constant offset for ARRAY_REFs. (may_insert): Remove. (visit_reference_op_load): Do not test may_insert. (run_scc_vn): Remove parameter, do not fiddle with may_insert. * tree-ssa-sccvn.h (struct vn_reference_op_struct): Add a field to store the constant offset this op applies. (run_scc_vn): Adjust prototype. * cgraphunit.c (thunk_adjust): Adjust for MEM_REF. * tree-ssa-ccp.c (ccp_fold): Replace INDIRECT_REF folding with MEM_REF. Propagate &foo + CST as &MEM[&foo, CST]. Do not bother about volatile qualifiers on pointers. (fold_const_aggregate_ref): Handle MEM_REF, do not handle INDIRECT_REF. * tree-ssa-loop-ivopts.c * tree-ssa-loop-ivopts.c (determine_base_object): Adjust for MEM_REF. (strip_offset_1): Likewise. (find_interesting_uses_address): Replace INDIRECT_REF handling with MEM_REF handling. (get_computation_cost_at): Likewise. * ipa-pure-const.c (check_op): Handle MEM_REF. * tree-stdarg.c (check_all_va_list_escapes): Adjust for MEM_REF. * tree-ssa-sink.c (is_hidden_global_store): Handle MEM_REF and constants. * ipa-inline.c (likely_eliminated_by_inlining_p): Handle MEM_REF. * tree-parloops.c (take_address_of): Adjust for MEM_REF. (eliminate_local_variables_1): Likewise. (create_call_for_reduction_1): Likewise. (create_loads_for_reductions): Likewise. (create_loads_and_stores_for_name): Likewise. * matrix-reorg.c (may_flatten_matrices_1): Sanitize. (ssa_accessed_in_tree): Handle MEM_REF. (ssa_accessed_in_assign_rhs): Likewise. (update_type_size): Likewise. (analyze_accesses_for_call_stmt): Likewise. (analyze_accesses_for_assign_stmt): Likewise. (transform_access_sites): Likewise. (transform_allocation_sites): Likewise. * tree-affine.c (tree_to_aff_combination): Handle MEM_REF. * tree-vect-data-refs.c (vect_create_addr_base_for_vector_ref): Do not handle INDIRECT_REF. * tree-ssa-phiopt.c (add_or_mark_expr): Handle MEM_REF. (cond_store_replacement): Likewise. * tree-ssa-pre.c (create_component_ref_by_pieces_1): Handle MEM_REF, no not handle INDIRECT_REFs. (insert_into_preds_of_block): Properly initialize avail. (phi_translate_1): Fold MEM_REFs. Re-evaluate constant offset for ARRAY_REFs. Properly handle reference lookups that require a bit re-interpretation. (can_PRE_operation): Do not handle INDIRECT_REF. Handle MEM_REF. * tree-sra.c * tree-sra.c (build_access_from_expr_1): Handle MEM_REF. (build_ref_for_offset_1): Remove. (build_ref_for_offset): Build MEM_REFs. (gate_intra_sra): Disable for now. (sra_ipa_modify_expr): Handle MEM_REF. (ipa_early_sra_gate): Disable for now. * tree-sra.c (create_access): Swap INDIRECT_REF handling for MEM_REF handling. (disqualify_base_of_expr): Likewise. (ptr_parm_has_direct_uses): Swap INDIRECT_REF handling for MEM_REF handling. (sra_ipa_modify_expr): Remove INDIRECT_REF handling. Use mem_ref_offset. Remove bogus folding. (build_access_from_expr_1): Properly handle MEM_REF for non IPA-SRA. (make_fancy_name_1): Add support for MEM_REF. * tree-predcom.c (ref_at_iteration): Handle MEM_REFs. * tree-mudflap.c (mf_xform_derefs_1): Adjust for MEM_REF. * ipa-prop.c (compute_complex_assign_jump_func): Handle MEM_REF. (compute_complex_ancestor_jump_func): Likewise. (ipa_analyze_virtual_call_uses): Likewise. * tree-ssa-forwprop.c (forward_propagate_addr_expr_1): Replace INDIRECT_REF folding with more generalized MEM_REF folding. (tree_ssa_forward_propagate_single_use_vars): Adjust accordingly. (forward_propagate_addr_into_variable_array_index): Also handle &ARRAY + I in addition to &ARRAY[0] + I. * tree-ssa-dce.c (ref_may_be_aliased): Handle MEM_REF. * tree-ssa-ter.c (find_replaceable_in_bb): Avoid TER if that creates assignments with overlap. * tree-nested.c (get_static_chain): Adjust for MEM_REF. (get_frame_field): Likewise. (get_nonlocal_debug_decl): Likewise. (convert_nonlocal_reference_op): Likewise. (struct nesting_info): Add mem_refs pointer-set. (create_nesting_tree): Allocate it. (convert_local_reference_op): Insert to be folded mem-refs. (fold_mem_refs): New function. (finalize_nesting_tree_1): Perform defered folding of mem-refs (free_nesting_tree): Free the pointer-set. * tree-vect-stmts.c (vectorizable_store): Adjust for MEM_REF. (vectorizable_load): Likewise. * tree-ssa-phiprop.c (phiprop_insert_phi): Adjust for MEM_REF. (propagate_with_phi): Likewise. * tree-object-size.c (addr_object_size): Handle MEM_REFs instead of INDIRECT_REFs. (compute_object_offset): Handle MEM_REF. (plus_stmt_object_size): Handle MEM_REF. (collect_object_sizes_for): Dispatch to plus_stmt_object_size for &MEM_REF. * tree-flow.h (get_addr_base_and_unit_offset): Declare. (symbol_marked_for_renaming): Likewise. * Makefile.in (tree-dfa.o): Add $(TOPLEV_H). (fold-const.o): Add $(TREE_FLOW_H). * tree-ssa-structalias.c (get_constraint_for_1): Handle MEM_REF. (find_func_clobbers): Likewise. * ipa-struct-reorg.c (decompose_indirect_ref_acc): Handle MEM_REF. (decompose_access): Likewise. (replace_field_acc): Likewise. (replace_field_access_stmt): Likewise. (insert_new_var_in_stmt): Likewise. (get_stmt_accesses): Likewise. (reorg_structs_drive): Disable. * config/i386/i386.c (ix86_va_start): Adjust for MEM_REF. (ix86_canonical_va_list_type): Likewise. cp/ * cp-gimplify.c (cp_gimplify_expr): Open-code the rhs predicate we are looking for, allow non-gimplified INDIRECT_REFs. testsuite/ * gcc.c-torture/execute/20100316-1.c: New testcase. * gcc.c-torture/execute/pr44468.c: Likewise. * gcc.c-torture/compile/20100609-1.c: Likewise. * gcc.dg/volatile2.c: Adjust. * gcc.dg/plugin/selfassign.c: Likewise. * gcc.dg/pr36902.c: Likewise. * gcc.dg/tree-ssa/foldaddr-2.c: Remove. * gcc.dg/tree-ssa/foldaddr-3.c: Likewise. * gcc.dg/tree-ssa/forwprop-8.c: Adjust. * gcc.dg/tree-ssa/pr17141-1.c: Likewise. * gcc.dg/tree-ssa/ssa-fre-13.c: Likewise. * gcc.dg/tree-ssa/ssa-fre-14.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-21.c: Likewise. * gcc.dg/tree-ssa/pta-ptrarith-1.c: Likewise. * gcc.dg/tree-ssa/20030807-7.c: Likewise. * gcc.dg/tree-ssa/forwprop-10.c: Likewise. * gcc.dg/tree-ssa/ssa-fre-1.c: Likewise. * gcc.dg/tree-ssa/pta-ptrarith-2.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-23.c: Likewise. * gcc.dg/tree-ssa/forwprop-1.c: Likewise. * gcc.dg/tree-ssa/forwprop-2.c: Likewise. * gcc.dg/tree-ssa/struct-aliasing-1.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-25.c: Likewise. * gcc.dg/tree-ssa/ssa-pre-26.c: Likewise. * gcc.dg/tree-ssa/struct-aliasing-2.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-26.c: Likewise. * gcc.dg/tree-ssa/ssa-sccvn-4.c: Likewise. * gcc.dg/tree-ssa/ssa-pre-7.c: Likewise. * gcc.dg/tree-ssa/forwprop-5.c: Likewise. * gcc.dg/struct/w_prof_two_strs.c: XFAIL. * gcc.dg/struct/wo_prof_escape_arg_to_local.c: Likewise. * gcc.dg/struct/wo_prof_global_var.c: Likewise. * gcc.dg/struct/wo_prof_malloc_size_var.c: Likewise. * gcc.dg/struct/w_prof_local_array.c: Likewise. * gcc.dg/struct/w_prof_single_str_global.c: Likewise. * gcc.dg/struct/wo_prof_escape_str_init.c: Likewise. * gcc.dg/struct/wo_prof_array_through_pointer.c: Likewise. * gcc.dg/struct/w_prof_global_array.c: Likewise. * gcc.dg/struct/wo_prof_array_field.c: Likewise. * gcc.dg/struct/wo_prof_single_str_local.c: Likewise. * gcc.dg/struct/w_prof_local_var.c: Likewise. * gcc.dg/struct/wo_prof_two_strs.c: Likewise. * gcc.dg/struct/wo_prof_empty_str.c: Likewise. * gcc.dg/struct/wo_prof_local_array.c: Likewise. * gcc.dg/struct/w_prof_global_var.c: Likewise. * gcc.dg/struct/wo_prof_single_str_global.c: Likewise. * gcc.dg/struct/wo_prof_escape_substr_value.c: Likewise. * gcc.dg/struct/wo_prof_global_array.c: Likewise. * gcc.dg/struct/wo_prof_escape_return.c: Likewise. * gcc.dg/struct/wo_prof_escape_substr_array.c: Likewise. * gcc.dg/struct/wo_prof_double_malloc.c: Likewise. * gcc.dg/struct/w_ratio_cold_str.c: Likewise. * gcc.dg/struct/wo_prof_escape_substr_pointer.c: Likewise. * gcc.dg/struct/wo_prof_local_var.c: Likewise. * gcc.dg/tree-prof/stringop-1.c: Adjust. * g++.dg/tree-ssa/pr31146.C: Likewise. * g++.dg/tree-ssa/copyprop-1.C: Likewise. * g++.dg/tree-ssa/pr33604.C: Likewise. * g++.dg/plugin/selfassign.c: Likewise. * gfortran.dg/array_memcpy_3.f90: Likewise. * gfortran.dg/array_memcpy_4.f90: Likewise. * c-c++-common/torture/pr42834.c: New testcase. From-SVN: r161655
2700 lines
76 KiB
C
2700 lines
76 KiB
C
/* Interprocedural analyses.
|
|
Copyright (C) 2005, 2007, 2008, 2009, 2010
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tree.h"
|
|
#include "langhooks.h"
|
|
#include "ggc.h"
|
|
#include "target.h"
|
|
#include "cgraph.h"
|
|
#include "ipa-prop.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-pass.h"
|
|
#include "tree-inline.h"
|
|
#include "gimple.h"
|
|
#include "flags.h"
|
|
#include "timevar.h"
|
|
#include "flags.h"
|
|
#include "diagnostic.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "lto-streamer.h"
|
|
|
|
|
|
/* Intermediate information about a parameter that is only useful during the
|
|
run of ipa_analyze_node and is not kept afterwards. */
|
|
|
|
struct param_analysis_info
|
|
{
|
|
bool modified;
|
|
bitmap visited_statements;
|
|
};
|
|
|
|
/* Vector where the parameter infos are actually stored. */
|
|
VEC (ipa_node_params_t, heap) *ipa_node_params_vector;
|
|
/* Vector where the parameter infos are actually stored. */
|
|
VEC (ipa_edge_args_t, gc) *ipa_edge_args_vector;
|
|
|
|
/* Bitmap with all UIDs of call graph edges that have been already processed
|
|
by indirect inlining. */
|
|
static bitmap iinlining_processed_edges;
|
|
|
|
/* Holders of ipa cgraph hooks: */
|
|
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
|
|
static struct cgraph_node_hook_list *node_removal_hook_holder;
|
|
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
|
|
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
|
|
|
|
/* Add cgraph NODE described by INFO to the worklist WL regardless of whether
|
|
it is in one or not. It should almost never be used directly, as opposed to
|
|
ipa_push_func_to_list. */
|
|
|
|
void
|
|
ipa_push_func_to_list_1 (struct ipa_func_list **wl,
|
|
struct cgraph_node *node,
|
|
struct ipa_node_params *info)
|
|
{
|
|
struct ipa_func_list *temp;
|
|
|
|
info->node_enqueued = 1;
|
|
temp = XCNEW (struct ipa_func_list);
|
|
temp->node = node;
|
|
temp->next = *wl;
|
|
*wl = temp;
|
|
}
|
|
|
|
/* Initialize worklist to contain all functions. */
|
|
|
|
struct ipa_func_list *
|
|
ipa_init_func_list (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct ipa_func_list * wl;
|
|
|
|
wl = NULL;
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
if (node->analyzed)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
/* Unreachable nodes should have been eliminated before ipcp and
|
|
inlining. */
|
|
gcc_assert (node->needed || node->reachable);
|
|
ipa_push_func_to_list_1 (&wl, node, info);
|
|
}
|
|
|
|
return wl;
|
|
}
|
|
|
|
/* Remove a function from the worklist WL and return it. */
|
|
|
|
struct cgraph_node *
|
|
ipa_pop_func_from_list (struct ipa_func_list **wl)
|
|
{
|
|
struct ipa_node_params *info;
|
|
struct ipa_func_list *first;
|
|
struct cgraph_node *node;
|
|
|
|
first = *wl;
|
|
*wl = (*wl)->next;
|
|
node = first->node;
|
|
free (first);
|
|
|
|
info = IPA_NODE_REF (node);
|
|
info->node_enqueued = 0;
|
|
return node;
|
|
}
|
|
|
|
/* Return index of the formal whose tree is PTREE in function which corresponds
|
|
to INFO. */
|
|
|
|
static int
|
|
ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
|
|
{
|
|
int i, count;
|
|
|
|
count = ipa_get_param_count (info);
|
|
for (i = 0; i < count; i++)
|
|
if (ipa_get_param(info, i) == ptree)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Populate the param_decl field in parameter descriptors of INFO that
|
|
corresponds to NODE. */
|
|
|
|
static void
|
|
ipa_populate_param_decls (struct cgraph_node *node,
|
|
struct ipa_node_params *info)
|
|
{
|
|
tree fndecl;
|
|
tree fnargs;
|
|
tree parm;
|
|
int param_num;
|
|
|
|
fndecl = node->decl;
|
|
fnargs = DECL_ARGUMENTS (fndecl);
|
|
param_num = 0;
|
|
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
|
|
{
|
|
info->params[param_num].decl = parm;
|
|
param_num++;
|
|
}
|
|
}
|
|
|
|
/* Return how many formal parameters FNDECL has. */
|
|
|
|
static inline int
|
|
count_formal_params_1 (tree fndecl)
|
|
{
|
|
tree parm;
|
|
int count = 0;
|
|
|
|
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = TREE_CHAIN (parm))
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Count number of formal parameters in NOTE. Store the result to the
|
|
appropriate field of INFO. */
|
|
|
|
static void
|
|
ipa_count_formal_params (struct cgraph_node *node,
|
|
struct ipa_node_params *info)
|
|
{
|
|
int param_num;
|
|
|
|
param_num = count_formal_params_1 (node->decl);
|
|
ipa_set_param_count (info, param_num);
|
|
}
|
|
|
|
/* Initialize the ipa_node_params structure associated with NODE by counting
|
|
the function parameters, creating the descriptors and populating their
|
|
param_decls. */
|
|
|
|
void
|
|
ipa_initialize_node_params (struct cgraph_node *node)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
|
|
if (!info->params)
|
|
{
|
|
ipa_count_formal_params (node, info);
|
|
info->params = XCNEWVEC (struct ipa_param_descriptor,
|
|
ipa_get_param_count (info));
|
|
ipa_populate_param_decls (node, info);
|
|
}
|
|
}
|
|
|
|
/* Count number of arguments callsite CS has and store it in
|
|
ipa_edge_args structure corresponding to this callsite. */
|
|
|
|
static void
|
|
ipa_count_arguments (struct cgraph_edge *cs)
|
|
{
|
|
gimple stmt;
|
|
int arg_num;
|
|
|
|
stmt = cs->call_stmt;
|
|
gcc_assert (is_gimple_call (stmt));
|
|
arg_num = gimple_call_num_args (stmt);
|
|
if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
|
|
<= (unsigned) cgraph_edge_max_uid)
|
|
VEC_safe_grow_cleared (ipa_edge_args_t, gc,
|
|
ipa_edge_args_vector, cgraph_edge_max_uid + 1);
|
|
ipa_set_cs_argument_count (IPA_EDGE_REF (cs), arg_num);
|
|
}
|
|
|
|
/* Print the jump functions associated with call graph edge CS to file F. */
|
|
|
|
static void
|
|
ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
|
|
{
|
|
int i, count;
|
|
|
|
count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *jump_func;
|
|
enum jump_func_type type;
|
|
|
|
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
|
|
type = jump_func->type;
|
|
|
|
fprintf (f, " param %d: ", i);
|
|
if (type == IPA_JF_UNKNOWN)
|
|
fprintf (f, "UNKNOWN\n");
|
|
else if (type == IPA_JF_KNOWN_TYPE)
|
|
{
|
|
tree binfo_type = TREE_TYPE (jump_func->value.base_binfo);
|
|
fprintf (f, "KNOWN TYPE, type in binfo is: ");
|
|
print_generic_expr (f, binfo_type, 0);
|
|
fprintf (f, " (%u)\n", TYPE_UID (binfo_type));
|
|
}
|
|
else if (type == IPA_JF_CONST)
|
|
{
|
|
tree val = jump_func->value.constant;
|
|
fprintf (f, "CONST: ");
|
|
print_generic_expr (f, val, 0);
|
|
if (TREE_CODE (val) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
|
|
{
|
|
fprintf (f, " -> ");
|
|
print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
|
|
0);
|
|
}
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_JF_CONST_MEMBER_PTR)
|
|
{
|
|
fprintf (f, "CONST MEMBER PTR: ");
|
|
print_generic_expr (f, jump_func->value.member_cst.pfn, 0);
|
|
fprintf (f, ", ");
|
|
print_generic_expr (f, jump_func->value.member_cst.delta, 0);
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_JF_PASS_THROUGH)
|
|
{
|
|
fprintf (f, "PASS THROUGH: ");
|
|
fprintf (f, "%d, op %s ",
|
|
jump_func->value.pass_through.formal_id,
|
|
tree_code_name[(int)
|
|
jump_func->value.pass_through.operation]);
|
|
if (jump_func->value.pass_through.operation != NOP_EXPR)
|
|
print_generic_expr (dump_file,
|
|
jump_func->value.pass_through.operand, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
else if (type == IPA_JF_ANCESTOR)
|
|
{
|
|
fprintf (f, "ANCESTOR: ");
|
|
fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
|
|
jump_func->value.ancestor.formal_id,
|
|
jump_func->value.ancestor.offset);
|
|
print_generic_expr (f, jump_func->value.ancestor.type, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Print the jump functions of all arguments on all call graph edges going from
|
|
NODE to file F. */
|
|
|
|
void
|
|
ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
int i;
|
|
|
|
fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node));
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
|
{
|
|
if (!ipa_edge_args_info_available_for_edge_p (cs))
|
|
continue;
|
|
|
|
fprintf (f, " callsite %s/%i -> %s/%i : \n",
|
|
cgraph_node_name (node), node->uid,
|
|
cgraph_node_name (cs->callee), cs->callee->uid);
|
|
ipa_print_node_jump_functions_for_edge (f, cs);
|
|
}
|
|
|
|
for (cs = node->indirect_calls, i = 0; cs; cs = cs->next_callee, i++)
|
|
{
|
|
if (!ipa_edge_args_info_available_for_edge_p (cs))
|
|
continue;
|
|
|
|
if (cs->call_stmt)
|
|
{
|
|
fprintf (f, " indirect callsite %d for stmt ", i);
|
|
print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
|
|
}
|
|
else
|
|
fprintf (f, " indirect callsite %d :\n", i);
|
|
ipa_print_node_jump_functions_for_edge (f, cs);
|
|
|
|
}
|
|
}
|
|
|
|
/* Print ipa_jump_func data structures of all nodes in the call graph to F. */
|
|
|
|
void
|
|
ipa_print_all_jump_functions (FILE *f)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
fprintf (f, "\nJump functions:\n");
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
{
|
|
ipa_print_node_jump_functions (f, node);
|
|
}
|
|
}
|
|
|
|
/* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
|
|
of an assignment statement STMT, try to find out whether NAME can be
|
|
described by a (possibly polynomial) pass-through jump-function or an
|
|
ancestor jump function and if so, write the appropriate function into
|
|
JFUNC */
|
|
|
|
static void
|
|
compute_complex_assign_jump_func (struct ipa_node_params *info,
|
|
struct ipa_jump_func *jfunc,
|
|
gimple stmt, tree name)
|
|
{
|
|
HOST_WIDE_INT offset, size, max_size;
|
|
tree op1, op2, type;
|
|
int index;
|
|
|
|
op1 = gimple_assign_rhs1 (stmt);
|
|
op2 = gimple_assign_rhs2 (stmt);
|
|
|
|
if (TREE_CODE (op1) == SSA_NAME
|
|
&& SSA_NAME_IS_DEFAULT_DEF (op1))
|
|
{
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
|
|
if (index < 0)
|
|
return;
|
|
|
|
if (op2)
|
|
{
|
|
if (!is_gimple_ip_invariant (op2)
|
|
|| (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
|
|
&& !useless_type_conversion_p (TREE_TYPE (name),
|
|
TREE_TYPE (op1))))
|
|
return;
|
|
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
|
jfunc->value.pass_through.formal_id = index;
|
|
jfunc->value.pass_through.operation = gimple_assign_rhs_code (stmt);
|
|
jfunc->value.pass_through.operand = op2;
|
|
}
|
|
else if (gimple_assign_unary_nop_p (stmt))
|
|
{
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
|
jfunc->value.pass_through.formal_id = index;
|
|
jfunc->value.pass_through.operation = NOP_EXPR;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (TREE_CODE (op1) != ADDR_EXPR)
|
|
return;
|
|
|
|
op1 = TREE_OPERAND (op1, 0);
|
|
type = TREE_TYPE (op1);
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
|
return;
|
|
op1 = get_ref_base_and_extent (op1, &offset, &size, &max_size);
|
|
if (TREE_CODE (op1) != MEM_REF
|
|
/* If this is a varying address, punt. */
|
|
|| max_size == -1
|
|
|| max_size != size)
|
|
return;
|
|
offset += mem_ref_offset (op1).low * BITS_PER_UNIT;
|
|
op1 = TREE_OPERAND (op1, 0);
|
|
if (TREE_CODE (op1) != SSA_NAME
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (op1))
|
|
return;
|
|
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
|
|
if (index >= 0)
|
|
{
|
|
jfunc->type = IPA_JF_ANCESTOR;
|
|
jfunc->value.ancestor.formal_id = index;
|
|
jfunc->value.ancestor.offset = offset;
|
|
jfunc->value.ancestor.type = type;
|
|
}
|
|
}
|
|
|
|
|
|
/* Given that an actual argument is an SSA_NAME that is a result of a phi
|
|
statement PHI, try to find out whether NAME is in fact a
|
|
multiple-inheritance typecast from a descendant into an ancestor of a formal
|
|
parameter and thus can be described by an ancestor jump function and if so,
|
|
write the appropriate function into JFUNC.
|
|
|
|
Essentially we want to match the following pattern:
|
|
|
|
if (obj_2(D) != 0B)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
|
|
<bb 3>:
|
|
iftmp.1_3 = &obj_2(D)->D.1762;
|
|
|
|
<bb 4>:
|
|
# iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
|
|
D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
|
|
return D.1879_6; */
|
|
|
|
static void
|
|
compute_complex_ancestor_jump_func (struct ipa_node_params *info,
|
|
struct ipa_jump_func *jfunc,
|
|
gimple phi)
|
|
{
|
|
HOST_WIDE_INT offset, size, max_size;
|
|
gimple assign, cond;
|
|
basic_block phi_bb, assign_bb, cond_bb;
|
|
tree tmp, parm, expr;
|
|
int index, i;
|
|
|
|
if (gimple_phi_num_args (phi) != 2
|
|
|| !integer_zerop (PHI_ARG_DEF (phi, 1)))
|
|
return;
|
|
|
|
tmp = PHI_ARG_DEF (phi, 0);
|
|
if (TREE_CODE (tmp) != SSA_NAME
|
|
|| SSA_NAME_IS_DEFAULT_DEF (tmp)
|
|
|| !POINTER_TYPE_P (TREE_TYPE (tmp))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
|
|
return;
|
|
|
|
assign = SSA_NAME_DEF_STMT (tmp);
|
|
assign_bb = gimple_bb (assign);
|
|
if (!single_pred_p (assign_bb)
|
|
|| !gimple_assign_single_p (assign))
|
|
return;
|
|
expr = gimple_assign_rhs1 (assign);
|
|
|
|
if (TREE_CODE (expr) != ADDR_EXPR)
|
|
return;
|
|
expr = TREE_OPERAND (expr, 0);
|
|
expr = get_ref_base_and_extent (expr, &offset, &size, &max_size);
|
|
|
|
if (TREE_CODE (expr) != MEM_REF
|
|
/* If this is a varying address, punt. */
|
|
|| max_size == -1
|
|
|| max_size != size)
|
|
return;
|
|
offset += mem_ref_offset (expr).low * BITS_PER_UNIT;
|
|
parm = TREE_OPERAND (expr, 0);
|
|
if (TREE_CODE (parm) != SSA_NAME
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (parm))
|
|
return;
|
|
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
|
|
if (index < 0)
|
|
return;
|
|
|
|
cond_bb = single_pred (assign_bb);
|
|
cond = last_stmt (cond_bb);
|
|
if (!cond
|
|
|| gimple_code (cond) != GIMPLE_COND
|
|
|| gimple_cond_code (cond) != NE_EXPR
|
|
|| gimple_cond_lhs (cond) != parm
|
|
|| !integer_zerop (gimple_cond_rhs (cond)))
|
|
return;
|
|
|
|
|
|
phi_bb = gimple_bb (phi);
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
basic_block pred = EDGE_PRED (phi_bb, i)->src;
|
|
if (pred != assign_bb && pred != cond_bb)
|
|
return;
|
|
}
|
|
|
|
jfunc->type = IPA_JF_ANCESTOR;
|
|
jfunc->value.ancestor.formal_id = index;
|
|
jfunc->value.ancestor.offset = offset;
|
|
jfunc->value.ancestor.type = TREE_TYPE (TREE_TYPE (tmp));
|
|
}
|
|
|
|
/* Given OP whch is passed as an actual argument to a called function,
|
|
determine if it is possible to construct a KNOWN_TYPE jump function for it
|
|
and if so, create one and store it to JFUNC. */
|
|
|
|
static void
|
|
compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc)
|
|
{
|
|
tree binfo;
|
|
|
|
if (TREE_CODE (op) != ADDR_EXPR)
|
|
return;
|
|
|
|
op = TREE_OPERAND (op, 0);
|
|
binfo = gimple_get_relevant_ref_binfo (op, NULL_TREE);
|
|
if (binfo)
|
|
{
|
|
jfunc->type = IPA_JF_KNOWN_TYPE;
|
|
jfunc->value.base_binfo = binfo;
|
|
}
|
|
}
|
|
|
|
|
|
/* Determine the jump functions of scalar arguments. Scalar means SSA names
|
|
and constants of a number of selected types. INFO is the ipa_node_params
|
|
structure associated with the caller, FUNCTIONS is a pointer to an array of
|
|
jump function structures associated with CALL which is the call statement
|
|
being examined.*/
|
|
|
|
static void
|
|
compute_scalar_jump_functions (struct ipa_node_params *info,
|
|
struct ipa_jump_func *functions,
|
|
gimple call)
|
|
{
|
|
tree arg;
|
|
unsigned num = 0;
|
|
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
|
{
|
|
arg = gimple_call_arg (call, num);
|
|
|
|
if (is_gimple_ip_invariant (arg))
|
|
{
|
|
functions[num].type = IPA_JF_CONST;
|
|
functions[num].value.constant = arg;
|
|
}
|
|
else if (TREE_CODE (arg) == SSA_NAME)
|
|
{
|
|
if (SSA_NAME_IS_DEFAULT_DEF (arg))
|
|
{
|
|
int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
|
|
|
|
if (index >= 0)
|
|
{
|
|
functions[num].type = IPA_JF_PASS_THROUGH;
|
|
functions[num].value.pass_through.formal_id = index;
|
|
functions[num].value.pass_through.operation = NOP_EXPR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gimple stmt = SSA_NAME_DEF_STMT (arg);
|
|
if (is_gimple_assign (stmt))
|
|
compute_complex_assign_jump_func (info, &functions[num],
|
|
stmt, arg);
|
|
else if (gimple_code (stmt) == GIMPLE_PHI)
|
|
compute_complex_ancestor_jump_func (info, &functions[num],
|
|
stmt);
|
|
}
|
|
}
|
|
else
|
|
compute_known_type_jump_func (arg, &functions[num]);
|
|
}
|
|
}
|
|
|
|
/* Inspect the given TYPE and return true iff it has the same structure (the
|
|
same number of fields of the same types) as a C++ member pointer. If
|
|
METHOD_PTR and DELTA are non-NULL, store the trees representing the
|
|
corresponding fields there. */
|
|
|
|
static bool
|
|
type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
|
|
{
|
|
tree fld;
|
|
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
|
return false;
|
|
|
|
fld = TYPE_FIELDS (type);
|
|
if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE)
|
|
return false;
|
|
|
|
if (method_ptr)
|
|
*method_ptr = fld;
|
|
|
|
fld = TREE_CHAIN (fld);
|
|
if (!fld || INTEGRAL_TYPE_P (fld))
|
|
return false;
|
|
if (delta)
|
|
*delta = fld;
|
|
|
|
if (TREE_CHAIN (fld))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
|
|
boolean variable pointed to by DATA. */
|
|
|
|
static bool
|
|
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
|
|
void *data)
|
|
{
|
|
bool *b = (bool *) data;
|
|
*b = true;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if the formal parameter PARM might have been modified in this
|
|
function before reaching the statement CALL. PARM_INFO is a pointer to a
|
|
structure containing intermediate information about PARM. */
|
|
|
|
static bool
|
|
is_parm_modified_before_call (struct param_analysis_info *parm_info,
|
|
gimple call, tree parm)
|
|
{
|
|
bool modified = false;
|
|
ao_ref refd;
|
|
|
|
if (parm_info->modified)
|
|
return true;
|
|
|
|
ao_ref_init (&refd, parm);
|
|
walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
|
|
&modified, &parm_info->visited_statements);
|
|
if (modified)
|
|
{
|
|
parm_info->modified = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Go through arguments of the CALL and for every one that looks like a member
|
|
pointer, check whether it can be safely declared pass-through and if so,
|
|
mark that to the corresponding item of jump FUNCTIONS. Return true iff
|
|
there are non-pass-through member pointers within the arguments. INFO
|
|
describes formal parameters of the caller. PARMS_INFO is a pointer to a
|
|
vector containing intermediate information about each formal parameter. */
|
|
|
|
static bool
|
|
compute_pass_through_member_ptrs (struct ipa_node_params *info,
|
|
struct param_analysis_info *parms_info,
|
|
struct ipa_jump_func *functions,
|
|
gimple call)
|
|
{
|
|
bool undecided_members = false;
|
|
unsigned num;
|
|
tree arg;
|
|
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
|
{
|
|
arg = gimple_call_arg (call, num);
|
|
|
|
if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL))
|
|
{
|
|
if (TREE_CODE (arg) == PARM_DECL)
|
|
{
|
|
int index = ipa_get_param_decl_index (info, arg);
|
|
|
|
gcc_assert (index >=0);
|
|
if (!is_parm_modified_before_call (&parms_info[index], call, arg))
|
|
{
|
|
functions[num].type = IPA_JF_PASS_THROUGH;
|
|
functions[num].value.pass_through.formal_id = index;
|
|
functions[num].value.pass_through.operation = NOP_EXPR;
|
|
}
|
|
else
|
|
undecided_members = true;
|
|
}
|
|
else
|
|
undecided_members = true;
|
|
}
|
|
}
|
|
|
|
return undecided_members;
|
|
}
|
|
|
|
/* Simple function filling in a member pointer constant jump function (with PFN
|
|
and DELTA as the constant value) into JFUNC. */
|
|
|
|
static void
|
|
fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc,
|
|
tree pfn, tree delta)
|
|
{
|
|
jfunc->type = IPA_JF_CONST_MEMBER_PTR;
|
|
jfunc->value.member_cst.pfn = pfn;
|
|
jfunc->value.member_cst.delta = delta;
|
|
}
|
|
|
|
/* If RHS is an SSA_NAMe and it is defined by a simple copy assign statement,
|
|
return the rhs of its defining statement. */
|
|
|
|
static inline tree
|
|
get_ssa_def_if_simple_copy (tree rhs)
|
|
{
|
|
while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
|
|
{
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
|
|
|
|
if (gimple_assign_single_p (def_stmt))
|
|
rhs = gimple_assign_rhs1 (def_stmt);
|
|
else
|
|
break;
|
|
}
|
|
return rhs;
|
|
}
|
|
|
|
/* Traverse statements from CALL backwards, scanning whether the argument ARG
|
|
which is a member pointer is filled in with constant values. If it is, fill
|
|
the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are
|
|
fields of the record type of the member pointer. To give an example, we
|
|
look for a pattern looking like the following:
|
|
|
|
D.2515.__pfn ={v} printStuff;
|
|
D.2515.__delta ={v} 0;
|
|
i_1 = doprinting (D.2515); */
|
|
|
|
static void
|
|
determine_cst_member_ptr (gimple call, tree arg, tree method_field,
|
|
tree delta_field, struct ipa_jump_func *jfunc)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
tree method = NULL_TREE;
|
|
tree delta = NULL_TREE;
|
|
|
|
gsi = gsi_for_stmt (call);
|
|
|
|
gsi_prev (&gsi);
|
|
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
tree lhs, rhs, fld;
|
|
|
|
if (!stmt_may_clobber_ref_p (stmt, arg))
|
|
continue;
|
|
if (!gimple_assign_single_p (stmt))
|
|
return;
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
|
|
if (TREE_CODE (lhs) != COMPONENT_REF
|
|
|| TREE_OPERAND (lhs, 0) != arg)
|
|
return;
|
|
|
|
fld = TREE_OPERAND (lhs, 1);
|
|
if (!method && fld == method_field)
|
|
{
|
|
rhs = get_ssa_def_if_simple_copy (rhs);
|
|
if (TREE_CODE (rhs) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL
|
|
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE)
|
|
{
|
|
method = TREE_OPERAND (rhs, 0);
|
|
if (delta)
|
|
{
|
|
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
|
|
if (!delta && fld == delta_field)
|
|
{
|
|
rhs = get_ssa_def_if_simple_copy (rhs);
|
|
if (TREE_CODE (rhs) == INTEGER_CST)
|
|
{
|
|
delta = rhs;
|
|
if (method)
|
|
{
|
|
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Go through the arguments of the CALL and for every member pointer within
|
|
tries determine whether it is a constant. If it is, create a corresponding
|
|
constant jump function in FUNCTIONS which is an array of jump functions
|
|
associated with the call. */
|
|
|
|
static void
|
|
compute_cst_member_ptr_arguments (struct ipa_jump_func *functions,
|
|
gimple call)
|
|
{
|
|
unsigned num;
|
|
tree arg, method_field, delta_field;
|
|
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
|
{
|
|
arg = gimple_call_arg (call, num);
|
|
|
|
if (functions[num].type == IPA_JF_UNKNOWN
|
|
&& type_like_member_ptr_p (TREE_TYPE (arg), &method_field,
|
|
&delta_field))
|
|
determine_cst_member_ptr (call, arg, method_field, delta_field,
|
|
&functions[num]);
|
|
}
|
|
}
|
|
|
|
/* Compute jump function for all arguments of callsite CS and insert the
|
|
information in the jump_functions array in the ipa_edge_args corresponding
|
|
to this callsite. */
|
|
|
|
static void
|
|
ipa_compute_jump_functions_for_edge (struct param_analysis_info *parms_info,
|
|
struct cgraph_edge *cs)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
|
|
struct ipa_edge_args *arguments = IPA_EDGE_REF (cs);
|
|
gimple call;
|
|
|
|
if (ipa_get_cs_argument_count (arguments) == 0 || arguments->jump_functions)
|
|
return;
|
|
arguments->jump_functions = ggc_alloc_cleared_vec_ipa_jump_func
|
|
(ipa_get_cs_argument_count (arguments));
|
|
|
|
call = cs->call_stmt;
|
|
gcc_assert (is_gimple_call (call));
|
|
|
|
/* We will deal with constants and SSA scalars first: */
|
|
compute_scalar_jump_functions (info, arguments->jump_functions, call);
|
|
|
|
/* Let's check whether there are any potential member pointers and if so,
|
|
whether we can determine their functions as pass_through. */
|
|
if (!compute_pass_through_member_ptrs (info, parms_info,
|
|
arguments->jump_functions, call))
|
|
return;
|
|
|
|
/* Finally, let's check whether we actually pass a new constant member
|
|
pointer here... */
|
|
compute_cst_member_ptr_arguments (arguments->jump_functions, call);
|
|
}
|
|
|
|
/* Compute jump functions for all edges - both direct and indirect - outgoing
|
|
from NODE. Also count the actual arguments in the process. */
|
|
|
|
static void
|
|
ipa_compute_jump_functions (struct cgraph_node *node,
|
|
struct param_analysis_info *parms_info)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
|
{
|
|
/* We do not need to bother analyzing calls to unknown
|
|
functions unless they may become known during lto/whopr. */
|
|
if (!cs->callee->analyzed && !flag_lto && !flag_whopr)
|
|
continue;
|
|
ipa_count_arguments (cs);
|
|
/* If the descriptor of the callee is not initialized yet, we have to do
|
|
it now. */
|
|
if (cs->callee->analyzed)
|
|
ipa_initialize_node_params (cs->callee);
|
|
if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
|
|
!= ipa_get_param_count (IPA_NODE_REF (cs->callee)))
|
|
ipa_set_called_with_variable_arg (IPA_NODE_REF (cs->callee));
|
|
ipa_compute_jump_functions_for_edge (parms_info, cs);
|
|
}
|
|
|
|
for (cs = node->indirect_calls; cs; cs = cs->next_callee)
|
|
{
|
|
ipa_count_arguments (cs);
|
|
ipa_compute_jump_functions_for_edge (parms_info, cs);
|
|
}
|
|
}
|
|
|
|
/* If RHS looks like a rhs of a statement loading pfn from a member
|
|
pointer formal parameter, return the parameter, otherwise return
|
|
NULL. If USE_DELTA, then we look for a use of the delta field
|
|
rather than the pfn. */
|
|
|
|
static tree
|
|
ipa_get_member_ptr_load_param (tree rhs, bool use_delta)
|
|
{
|
|
tree rec, fld;
|
|
tree ptr_field;
|
|
tree delta_field;
|
|
|
|
if (TREE_CODE (rhs) != COMPONENT_REF)
|
|
return NULL_TREE;
|
|
|
|
rec = TREE_OPERAND (rhs, 0);
|
|
if (TREE_CODE (rec) != PARM_DECL
|
|
|| !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
|
|
return NULL_TREE;
|
|
|
|
fld = TREE_OPERAND (rhs, 1);
|
|
if (use_delta ? (fld == delta_field) : (fld == ptr_field))
|
|
return rec;
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* If STMT looks like a statement loading a value from a member pointer formal
|
|
parameter, this function returns that parameter. */
|
|
|
|
static tree
|
|
ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta)
|
|
{
|
|
tree rhs;
|
|
|
|
if (!gimple_assign_single_p (stmt))
|
|
return NULL_TREE;
|
|
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
return ipa_get_member_ptr_load_param (rhs, use_delta);
|
|
}
|
|
|
|
/* Returns true iff T is an SSA_NAME defined by a statement. */
|
|
|
|
static bool
|
|
ipa_is_ssa_with_stmt_def (tree t)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (t))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Find the indirect call graph edge corresponding to STMT and add to it all
|
|
information necessary to describe a call to a parameter number PARAM_INDEX.
|
|
NODE is the caller. POLYMORPHIC should be set to true iff the call is a
|
|
virtual one. */
|
|
|
|
static void
|
|
ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt,
|
|
bool polymorphic)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
|
|
cs = cgraph_edge (node, stmt);
|
|
cs->indirect_info->param_index = param_index;
|
|
cs->indirect_info->anc_offset = 0;
|
|
cs->indirect_info->polymorphic = polymorphic;
|
|
if (polymorphic)
|
|
{
|
|
tree otr = gimple_call_fn (stmt);
|
|
tree type, token = OBJ_TYPE_REF_TOKEN (otr);
|
|
cs->indirect_info->otr_token = tree_low_cst (token, 1);
|
|
type = TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (otr)));
|
|
cs->indirect_info->otr_type = type;
|
|
}
|
|
}
|
|
|
|
/* Analyze the CALL and examine uses of formal parameters of the caller NODE
|
|
(described by INFO). PARMS_INFO is a pointer to a vector containing
|
|
intermediate information about each formal parameter. Currently it checks
|
|
whether the call calls a pointer that is a formal parameter and if so, the
|
|
parameter is marked with the called flag and an indirect call graph edge
|
|
describing the call is created. This is very simple for ordinary pointers
|
|
represented in SSA but not-so-nice when it comes to member pointers. The
|
|
ugly part of this function does nothing more than trying to match the
|
|
pattern of such a call. An example of such a pattern is the gimple dump
|
|
below, the call is on the last line:
|
|
|
|
<bb 2>:
|
|
f$__delta_5 = f.__delta;
|
|
f$__pfn_24 = f.__pfn;
|
|
|
|
...
|
|
|
|
<bb 5>
|
|
D.2496_3 = (int) f$__pfn_24;
|
|
D.2497_4 = D.2496_3 & 1;
|
|
if (D.2497_4 != 0)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
|
|
<bb 6>:
|
|
D.2500_7 = (unsigned int) f$__delta_5;
|
|
D.2501_8 = &S + D.2500_7;
|
|
D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
|
|
D.2503_10 = *D.2502_9;
|
|
D.2504_12 = f$__pfn_24 + -1;
|
|
D.2505_13 = (unsigned int) D.2504_12;
|
|
D.2506_14 = D.2503_10 + D.2505_13;
|
|
D.2507_15 = *D.2506_14;
|
|
iftmp.11_16 = (String:: *) D.2507_15;
|
|
|
|
<bb 7>:
|
|
# iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
|
|
D.2500_19 = (unsigned int) f$__delta_5;
|
|
D.2508_20 = &S + D.2500_19;
|
|
D.2493_21 = iftmp.11_1 (D.2508_20, 4);
|
|
|
|
Such patterns are results of simple calls to a member pointer:
|
|
|
|
int doprinting (int (MyString::* f)(int) const)
|
|
{
|
|
MyString S ("somestring");
|
|
|
|
return (S.*f)(4);
|
|
}
|
|
*/
|
|
|
|
static void
|
|
ipa_analyze_indirect_call_uses (struct cgraph_node *node,
|
|
struct ipa_node_params *info,
|
|
struct param_analysis_info *parms_info,
|
|
gimple call, tree target)
|
|
{
|
|
gimple def;
|
|
tree n1, n2;
|
|
gimple d1, d2;
|
|
tree rec, rec2, cond;
|
|
gimple branch;
|
|
int index;
|
|
basic_block bb, virt_bb, join;
|
|
|
|
if (SSA_NAME_IS_DEFAULT_DEF (target))
|
|
{
|
|
tree var = SSA_NAME_VAR (target);
|
|
index = ipa_get_param_decl_index (info, var);
|
|
if (index >= 0)
|
|
ipa_note_param_call (node, index, call, false);
|
|
return;
|
|
}
|
|
|
|
/* Now we need to try to match the complex pattern of calling a member
|
|
pointer. */
|
|
|
|
if (!POINTER_TYPE_P (TREE_TYPE (target))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (target);
|
|
if (gimple_code (def) != GIMPLE_PHI)
|
|
return;
|
|
|
|
if (gimple_phi_num_args (def) != 2)
|
|
return;
|
|
|
|
/* First, we need to check whether one of these is a load from a member
|
|
pointer that is a parameter to this function. */
|
|
n1 = PHI_ARG_DEF (def, 0);
|
|
n2 = PHI_ARG_DEF (def, 1);
|
|
if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
|
|
return;
|
|
d1 = SSA_NAME_DEF_STMT (n1);
|
|
d2 = SSA_NAME_DEF_STMT (n2);
|
|
|
|
join = gimple_bb (def);
|
|
if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false)))
|
|
{
|
|
if (ipa_get_stmt_member_ptr_load_param (d2, false))
|
|
return;
|
|
|
|
bb = EDGE_PRED (join, 0)->src;
|
|
virt_bb = gimple_bb (d2);
|
|
}
|
|
else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false)))
|
|
{
|
|
bb = EDGE_PRED (join, 1)->src;
|
|
virt_bb = gimple_bb (d1);
|
|
}
|
|
else
|
|
return;
|
|
|
|
/* Second, we need to check that the basic blocks are laid out in the way
|
|
corresponding to the pattern. */
|
|
|
|
if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
|
|
|| single_pred (virt_bb) != bb
|
|
|| single_succ (virt_bb) != join)
|
|
return;
|
|
|
|
/* Third, let's see that the branching is done depending on the least
|
|
significant bit of the pfn. */
|
|
|
|
branch = last_stmt (bb);
|
|
if (!branch || gimple_code (branch) != GIMPLE_COND)
|
|
return;
|
|
|
|
if (gimple_cond_code (branch) != NE_EXPR
|
|
|| !integer_zerop (gimple_cond_rhs (branch)))
|
|
return;
|
|
|
|
cond = gimple_cond_lhs (branch);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
if (!is_gimple_assign (def)
|
|
|| gimple_assign_rhs_code (def) != BIT_AND_EXPR
|
|
|| !integer_onep (gimple_assign_rhs2 (def)))
|
|
return;
|
|
|
|
cond = gimple_assign_rhs1 (def);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
|
|
if (is_gimple_assign (def)
|
|
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
|
|
{
|
|
cond = gimple_assign_rhs1 (def);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
}
|
|
|
|
rec2 = ipa_get_stmt_member_ptr_load_param (def,
|
|
(TARGET_PTRMEMFUNC_VBIT_LOCATION
|
|
== ptrmemfunc_vbit_in_delta));
|
|
|
|
if (rec != rec2)
|
|
return;
|
|
|
|
index = ipa_get_param_decl_index (info, rec);
|
|
if (index >= 0 && !is_parm_modified_before_call (&parms_info[index],
|
|
call, rec))
|
|
ipa_note_param_call (node, index, call, false);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
|
|
object referenced in the expression is a formal parameter of the caller
|
|
(described by INFO), create a call note for the statement. */
|
|
|
|
static void
|
|
ipa_analyze_virtual_call_uses (struct cgraph_node *node,
|
|
struct ipa_node_params *info, gimple call,
|
|
tree target)
|
|
{
|
|
tree obj = OBJ_TYPE_REF_OBJECT (target);
|
|
tree var;
|
|
int index;
|
|
|
|
if (TREE_CODE (obj) == ADDR_EXPR)
|
|
{
|
|
do
|
|
{
|
|
obj = TREE_OPERAND (obj, 0);
|
|
}
|
|
while (TREE_CODE (obj) == COMPONENT_REF);
|
|
if (TREE_CODE (obj) != MEM_REF)
|
|
return;
|
|
obj = TREE_OPERAND (obj, 0);
|
|
}
|
|
|
|
if (TREE_CODE (obj) != SSA_NAME
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (obj))
|
|
return;
|
|
|
|
var = SSA_NAME_VAR (obj);
|
|
index = ipa_get_param_decl_index (info, var);
|
|
|
|
if (index >= 0)
|
|
ipa_note_param_call (node, index, call, true);
|
|
}
|
|
|
|
/* Analyze a call statement CALL whether and how it utilizes formal parameters
|
|
of the caller (described by INFO). PARMS_INFO is a pointer to a vector
|
|
containing intermediate information about each formal parameter. */
|
|
|
|
static void
|
|
ipa_analyze_call_uses (struct cgraph_node *node,
|
|
struct ipa_node_params *info,
|
|
struct param_analysis_info *parms_info, gimple call)
|
|
{
|
|
tree target = gimple_call_fn (call);
|
|
|
|
if (TREE_CODE (target) == SSA_NAME)
|
|
ipa_analyze_indirect_call_uses (node, info, parms_info, call, target);
|
|
else if (TREE_CODE (target) == OBJ_TYPE_REF)
|
|
ipa_analyze_virtual_call_uses (node, info, call, target);
|
|
}
|
|
|
|
|
|
/* Analyze the call statement STMT with respect to formal parameters (described
|
|
in INFO) of caller given by NODE. Currently it only checks whether formal
|
|
parameters are called. PARMS_INFO is a pointer to a vector containing
|
|
intermediate information about each formal parameter. */
|
|
|
|
static void
|
|
ipa_analyze_stmt_uses (struct cgraph_node *node, struct ipa_node_params *info,
|
|
struct param_analysis_info *parms_info, gimple stmt)
|
|
{
|
|
if (is_gimple_call (stmt))
|
|
ipa_analyze_call_uses (node, info, parms_info, stmt);
|
|
}
|
|
|
|
/* Callback of walk_stmt_load_store_addr_ops for the visit_load.
|
|
If OP is a parameter declaration, mark it as used in the info structure
|
|
passed in DATA. */
|
|
|
|
static bool
|
|
visit_ref_for_mod_analysis (gimple stmt ATTRIBUTE_UNUSED,
|
|
tree op, void *data)
|
|
{
|
|
struct ipa_node_params *info = (struct ipa_node_params *) data;
|
|
|
|
op = get_base_address (op);
|
|
if (op
|
|
&& TREE_CODE (op) == PARM_DECL)
|
|
{
|
|
int index = ipa_get_param_decl_index (info, op);
|
|
gcc_assert (index >= 0);
|
|
info->params[index].used = true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Scan the function body of NODE and inspect the uses of formal parameters.
|
|
Store the findings in various structures of the associated ipa_node_params
|
|
structure, such as parameter flags, notes etc. PARMS_INFO is a pointer to a
|
|
vector containing intermediate information about each formal parameter. */
|
|
|
|
static void
|
|
ipa_analyze_params_uses (struct cgraph_node *node,
|
|
struct param_analysis_info *parms_info)
|
|
{
|
|
tree decl = node->decl;
|
|
basic_block bb;
|
|
struct function *func;
|
|
gimple_stmt_iterator gsi;
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
int i;
|
|
|
|
if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
|
|
return;
|
|
|
|
for (i = 0; i < ipa_get_param_count (info); i++)
|
|
{
|
|
tree parm = ipa_get_param (info, i);
|
|
/* For SSA regs see if parameter is used. For non-SSA we compute
|
|
the flag during modification analysis. */
|
|
if (is_gimple_reg (parm)
|
|
&& gimple_default_def (DECL_STRUCT_FUNCTION (node->decl), parm))
|
|
info->params[i].used = true;
|
|
}
|
|
|
|
func = DECL_STRUCT_FUNCTION (decl);
|
|
FOR_EACH_BB_FN (bb, func)
|
|
{
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
ipa_analyze_stmt_uses (node, info, parms_info, stmt);
|
|
walk_stmt_load_store_addr_ops (stmt, info,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis);
|
|
}
|
|
for (gsi = gsi_start (phi_nodes (bb)); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
walk_stmt_load_store_addr_ops (gsi_stmt (gsi), info,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis);
|
|
}
|
|
|
|
info->uses_analysis_done = 1;
|
|
}
|
|
|
|
/* Initialize the array describing properties of of formal parameters of NODE,
|
|
analyze their uses and and compute jump functions associated witu actual
|
|
arguments of calls from within NODE. */
|
|
|
|
void
|
|
ipa_analyze_node (struct cgraph_node *node)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
struct param_analysis_info *parms_info;
|
|
int i, param_count;
|
|
|
|
ipa_initialize_node_params (node);
|
|
|
|
param_count = ipa_get_param_count (info);
|
|
parms_info = XALLOCAVEC (struct param_analysis_info, param_count);
|
|
memset (parms_info, 0, sizeof (struct param_analysis_info) * param_count);
|
|
|
|
ipa_analyze_params_uses (node, parms_info);
|
|
ipa_compute_jump_functions (node, parms_info);
|
|
|
|
for (i = 0; i < param_count; i++)
|
|
if (parms_info[i].visited_statements)
|
|
BITMAP_FREE (parms_info[i].visited_statements);
|
|
}
|
|
|
|
|
|
/* Update the jump function DST when the call graph edge correspondng to SRC is
|
|
is being inlined, knowing that DST is of type ancestor and src of known
|
|
type. */
|
|
|
|
static void
|
|
combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
|
|
struct ipa_jump_func *dst)
|
|
{
|
|
tree new_binfo;
|
|
|
|
new_binfo = get_binfo_at_offset (src->value.base_binfo,
|
|
dst->value.ancestor.offset,
|
|
dst->value.ancestor.type);
|
|
if (new_binfo)
|
|
{
|
|
dst->type = IPA_JF_KNOWN_TYPE;
|
|
dst->value.base_binfo = new_binfo;
|
|
}
|
|
else
|
|
dst->type = IPA_JF_UNKNOWN;
|
|
}
|
|
|
|
/* Update the jump functions associated with call graph edge E when the call
|
|
graph edge CS is being inlined, assuming that E->caller is already (possibly
|
|
indirectly) inlined into CS->callee and that E has not been inlined. */
|
|
|
|
static void
|
|
update_jump_functions_after_inlining (struct cgraph_edge *cs,
|
|
struct cgraph_edge *e)
|
|
{
|
|
struct ipa_edge_args *top = IPA_EDGE_REF (cs);
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
int count = ipa_get_cs_argument_count (args);
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
|
|
|
|
if (dst->type == IPA_JF_ANCESTOR)
|
|
{
|
|
struct ipa_jump_func *src;
|
|
|
|
/* Variable number of arguments can cause havoc if we try to access
|
|
one that does not exist in the inlined edge. So make sure we
|
|
don't. */
|
|
if (dst->value.ancestor.formal_id >= ipa_get_cs_argument_count (top))
|
|
{
|
|
dst->type = IPA_JF_UNKNOWN;
|
|
continue;
|
|
}
|
|
|
|
src = ipa_get_ith_jump_func (top, dst->value.ancestor.formal_id);
|
|
if (src->type == IPA_JF_KNOWN_TYPE)
|
|
combine_known_type_and_ancestor_jfs (src, dst);
|
|
else if (src->type == IPA_JF_CONST)
|
|
{
|
|
struct ipa_jump_func kt_func;
|
|
|
|
kt_func.type = IPA_JF_UNKNOWN;
|
|
compute_known_type_jump_func (src->value.constant, &kt_func);
|
|
if (kt_func.type == IPA_JF_KNOWN_TYPE)
|
|
combine_known_type_and_ancestor_jfs (&kt_func, dst);
|
|
else
|
|
dst->type = IPA_JF_UNKNOWN;
|
|
}
|
|
else if (src->type == IPA_JF_PASS_THROUGH
|
|
&& src->value.pass_through.operation == NOP_EXPR)
|
|
dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
|
|
else if (src->type == IPA_JF_ANCESTOR)
|
|
{
|
|
dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
|
|
dst->value.ancestor.offset += src->value.ancestor.offset;
|
|
}
|
|
else
|
|
dst->type = IPA_JF_UNKNOWN;
|
|
}
|
|
else if (dst->type == IPA_JF_PASS_THROUGH)
|
|
{
|
|
struct ipa_jump_func *src;
|
|
/* We must check range due to calls with variable number of arguments
|
|
and we cannot combine jump functions with operations. */
|
|
if (dst->value.pass_through.operation == NOP_EXPR
|
|
&& (dst->value.pass_through.formal_id
|
|
< ipa_get_cs_argument_count (top)))
|
|
{
|
|
src = ipa_get_ith_jump_func (top,
|
|
dst->value.pass_through.formal_id);
|
|
*dst = *src;
|
|
}
|
|
else
|
|
dst->type = IPA_JF_UNKNOWN;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If TARGET is an addr_expr of a function declaration, make it the destination
|
|
of an indirect edge IE and return the edge. Otherwise, return NULL. */
|
|
|
|
static struct cgraph_edge *
|
|
make_edge_direct_to_target (struct cgraph_edge *ie, tree target)
|
|
{
|
|
struct cgraph_node *callee;
|
|
|
|
if (TREE_CODE (target) != ADDR_EXPR)
|
|
return NULL;
|
|
target = TREE_OPERAND (target, 0);
|
|
if (TREE_CODE (target) != FUNCTION_DECL)
|
|
return NULL;
|
|
callee = cgraph_node (target);
|
|
if (!callee)
|
|
return NULL;
|
|
|
|
cgraph_make_edge_direct (ie, callee);
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
|
|
"(%s/%i -> %s/%i) for stmt ",
|
|
ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
|
|
cgraph_node_name (ie->caller), ie->caller->uid,
|
|
cgraph_node_name (ie->callee), ie->callee->uid);
|
|
|
|
if (ie->call_stmt)
|
|
print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
|
|
else
|
|
fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
|
|
}
|
|
|
|
if (ipa_get_cs_argument_count (IPA_EDGE_REF (ie))
|
|
!= ipa_get_param_count (IPA_NODE_REF (callee)))
|
|
ipa_set_called_with_variable_arg (IPA_NODE_REF (callee));
|
|
|
|
return ie;
|
|
}
|
|
|
|
/* Try to find a destination for indirect edge IE that corresponds to a simple
|
|
call or a call of a member function pointer and where the destination is a
|
|
pointer formal parameter described by jump function JFUNC. If it can be
|
|
determined, return the newly direct edge, otherwise return NULL. */
|
|
|
|
static struct cgraph_edge *
|
|
try_make_edge_direct_simple_call (struct cgraph_edge *ie,
|
|
struct ipa_jump_func *jfunc)
|
|
{
|
|
tree target;
|
|
|
|
if (jfunc->type == IPA_JF_CONST)
|
|
target = jfunc->value.constant;
|
|
else if (jfunc->type == IPA_JF_CONST_MEMBER_PTR)
|
|
target = jfunc->value.member_cst.pfn;
|
|
else
|
|
return NULL;
|
|
|
|
return make_edge_direct_to_target (ie, target);
|
|
}
|
|
|
|
/* Try to find a destination for indirect edge IE that corresponds to a
|
|
virtuall call based on a formal parameter which is described by jump
|
|
function JFUNC and if it can be determined, make it direct and return the
|
|
direct edge. Otherwise, return NULL. */
|
|
|
|
static struct cgraph_edge *
|
|
try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
|
|
struct ipa_jump_func *jfunc)
|
|
{
|
|
tree binfo, type, target;
|
|
HOST_WIDE_INT token;
|
|
|
|
if (jfunc->type == IPA_JF_KNOWN_TYPE)
|
|
binfo = jfunc->value.base_binfo;
|
|
else if (jfunc->type == IPA_JF_CONST)
|
|
{
|
|
tree cst = jfunc->value.constant;
|
|
if (TREE_CODE (cst) == ADDR_EXPR)
|
|
binfo = gimple_get_relevant_ref_binfo (TREE_OPERAND (cst, 0),
|
|
NULL_TREE);
|
|
else
|
|
return NULL;
|
|
}
|
|
else
|
|
return NULL;
|
|
|
|
if (!binfo)
|
|
return NULL;
|
|
|
|
token = ie->indirect_info->otr_token;
|
|
type = ie->indirect_info->otr_type;
|
|
binfo = get_binfo_at_offset (binfo, ie->indirect_info->anc_offset, type);
|
|
if (binfo)
|
|
target = gimple_fold_obj_type_ref_known_binfo (token, binfo);
|
|
else
|
|
return NULL;
|
|
|
|
if (target)
|
|
return make_edge_direct_to_target (ie, target);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* Update the param called notes associated with NODE when CS is being inlined,
|
|
assuming NODE is (potentially indirectly) inlined into CS->callee.
|
|
Moreover, if the callee is discovered to be constant, create a new cgraph
|
|
edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
|
|
unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
|
|
|
|
static bool
|
|
update_indirect_edges_after_inlining (struct cgraph_edge *cs,
|
|
struct cgraph_node *node,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
struct ipa_edge_args *top = IPA_EDGE_REF (cs);
|
|
struct cgraph_edge *ie, *next_ie, *new_direct_edge;
|
|
bool res = false;
|
|
|
|
ipa_check_create_edge_args ();
|
|
|
|
for (ie = node->indirect_calls; ie; ie = next_ie)
|
|
{
|
|
struct cgraph_indirect_call_info *ici = ie->indirect_info;
|
|
struct ipa_jump_func *jfunc;
|
|
|
|
next_ie = ie->next_callee;
|
|
if (bitmap_bit_p (iinlining_processed_edges, ie->uid))
|
|
continue;
|
|
|
|
/* If we ever use indirect edges for anything other than indirect
|
|
inlining, we will need to skip those with negative param_indices. */
|
|
if (ici->param_index == -1)
|
|
continue;
|
|
|
|
/* We must check range due to calls with variable number of arguments: */
|
|
if (ici->param_index >= ipa_get_cs_argument_count (top))
|
|
{
|
|
bitmap_set_bit (iinlining_processed_edges, ie->uid);
|
|
continue;
|
|
}
|
|
|
|
jfunc = ipa_get_ith_jump_func (top, ici->param_index);
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH
|
|
&& jfunc->value.pass_through.operation == NOP_EXPR)
|
|
ici->param_index = jfunc->value.pass_through.formal_id;
|
|
else if (jfunc->type == IPA_JF_ANCESTOR)
|
|
{
|
|
ici->param_index = jfunc->value.ancestor.formal_id;
|
|
ici->anc_offset += jfunc->value.ancestor.offset;
|
|
}
|
|
else
|
|
/* Either we can find a destination for this edge now or never. */
|
|
bitmap_set_bit (iinlining_processed_edges, ie->uid);
|
|
|
|
if (ici->polymorphic)
|
|
new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc);
|
|
else
|
|
new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc);
|
|
|
|
if (new_direct_edge)
|
|
{
|
|
new_direct_edge->indirect_inlining_edge = 1;
|
|
if (new_edges)
|
|
{
|
|
VEC_safe_push (cgraph_edge_p, heap, *new_edges,
|
|
new_direct_edge);
|
|
top = IPA_EDGE_REF (cs);
|
|
res = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Recursively traverse subtree of NODE (including node) made of inlined
|
|
cgraph_edges when CS has been inlined and invoke
|
|
update_indirect_edges_after_inlining on all nodes and
|
|
update_jump_functions_after_inlining on all non-inlined edges that lead out
|
|
of this subtree. Newly discovered indirect edges will be added to
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
|
|
created. */
|
|
|
|
static bool
|
|
propagate_info_to_inlined_callees (struct cgraph_edge *cs,
|
|
struct cgraph_node *node,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
struct cgraph_edge *e;
|
|
bool res;
|
|
|
|
res = update_indirect_edges_after_inlining (cs, node, new_edges);
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
|
|
else
|
|
update_jump_functions_after_inlining (cs, e);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Update jump functions and call note functions on inlining the call site CS.
|
|
CS is expected to lead to a node already cloned by
|
|
cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
|
|
created. */
|
|
|
|
bool
|
|
ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
/* FIXME lto: We do not stream out indirect call information. */
|
|
if (flag_wpa)
|
|
return false;
|
|
|
|
/* Do nothing if the preparation phase has not been carried out yet
|
|
(i.e. during early inlining). */
|
|
if (!ipa_node_params_vector)
|
|
return false;
|
|
gcc_assert (ipa_edge_args_vector);
|
|
|
|
return propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
|
|
}
|
|
|
|
/* Frees all dynamically allocated structures that the argument info points
|
|
to. */
|
|
|
|
void
|
|
ipa_free_edge_args_substructures (struct ipa_edge_args *args)
|
|
{
|
|
if (args->jump_functions)
|
|
ggc_free (args->jump_functions);
|
|
|
|
memset (args, 0, sizeof (*args));
|
|
}
|
|
|
|
/* Free all ipa_edge structures. */
|
|
|
|
void
|
|
ipa_free_all_edge_args (void)
|
|
{
|
|
int i;
|
|
struct ipa_edge_args *args;
|
|
|
|
for (i = 0;
|
|
VEC_iterate (ipa_edge_args_t, ipa_edge_args_vector, i, args);
|
|
i++)
|
|
ipa_free_edge_args_substructures (args);
|
|
|
|
VEC_free (ipa_edge_args_t, gc, ipa_edge_args_vector);
|
|
ipa_edge_args_vector = NULL;
|
|
}
|
|
|
|
/* Frees all dynamically allocated structures that the param info points
|
|
to. */
|
|
|
|
void
|
|
ipa_free_node_params_substructures (struct ipa_node_params *info)
|
|
{
|
|
if (info->params)
|
|
free (info->params);
|
|
|
|
memset (info, 0, sizeof (*info));
|
|
}
|
|
|
|
/* Free all ipa_node_params structures. */
|
|
|
|
void
|
|
ipa_free_all_node_params (void)
|
|
{
|
|
int i;
|
|
struct ipa_node_params *info;
|
|
|
|
for (i = 0;
|
|
VEC_iterate (ipa_node_params_t, ipa_node_params_vector, i, info);
|
|
i++)
|
|
ipa_free_node_params_substructures (info);
|
|
|
|
VEC_free (ipa_node_params_t, heap, ipa_node_params_vector);
|
|
ipa_node_params_vector = NULL;
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when an edge is removed. */
|
|
|
|
static void
|
|
ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
/* During IPA-CP updating we can be called on not-yet analyze clones. */
|
|
if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
|
|
<= (unsigned)cs->uid)
|
|
return;
|
|
ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is removed. */
|
|
|
|
static void
|
|
ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
/* During IPA-CP updating we can be called on not-yet analyze clones. */
|
|
if (VEC_length (ipa_node_params_t, ipa_node_params_vector)
|
|
<= (unsigned)node->uid)
|
|
return;
|
|
ipa_free_node_params_substructures (IPA_NODE_REF (node));
|
|
}
|
|
|
|
/* Helper function to duplicate an array of size N that is at SRC and store a
|
|
pointer to it to DST. Nothing is done if SRC is NULL. */
|
|
|
|
static void *
|
|
duplicate_array (void *src, size_t n)
|
|
{
|
|
void *p;
|
|
|
|
if (!src)
|
|
return NULL;
|
|
|
|
p = xmalloc (n);
|
|
memcpy (p, src, n);
|
|
return p;
|
|
}
|
|
|
|
static struct ipa_jump_func *
|
|
duplicate_ipa_jump_func_array (const struct ipa_jump_func * src, size_t n)
|
|
{
|
|
struct ipa_jump_func *p;
|
|
|
|
if (!src)
|
|
return NULL;
|
|
|
|
p = ggc_alloc_vec_ipa_jump_func (n);
|
|
memcpy (p, src, n * sizeof (struct ipa_jump_func));
|
|
return p;
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
|
|
|
static void
|
|
ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
|
|
__attribute__((unused)) void *data)
|
|
{
|
|
struct ipa_edge_args *old_args, *new_args;
|
|
int arg_count;
|
|
|
|
ipa_check_create_edge_args ();
|
|
|
|
old_args = IPA_EDGE_REF (src);
|
|
new_args = IPA_EDGE_REF (dst);
|
|
|
|
arg_count = ipa_get_cs_argument_count (old_args);
|
|
ipa_set_cs_argument_count (new_args, arg_count);
|
|
new_args->jump_functions =
|
|
duplicate_ipa_jump_func_array (old_args->jump_functions, arg_count);
|
|
|
|
if (iinlining_processed_edges
|
|
&& bitmap_bit_p (iinlining_processed_edges, src->uid))
|
|
bitmap_set_bit (iinlining_processed_edges, dst->uid);
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
|
|
|
static void
|
|
ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
|
|
__attribute__((unused)) void *data)
|
|
{
|
|
struct ipa_node_params *old_info, *new_info;
|
|
int param_count;
|
|
|
|
ipa_check_create_node_params ();
|
|
old_info = IPA_NODE_REF (src);
|
|
new_info = IPA_NODE_REF (dst);
|
|
param_count = ipa_get_param_count (old_info);
|
|
|
|
ipa_set_param_count (new_info, param_count);
|
|
new_info->params = (struct ipa_param_descriptor *)
|
|
duplicate_array (old_info->params,
|
|
sizeof (struct ipa_param_descriptor) * param_count);
|
|
new_info->ipcp_orig_node = old_info->ipcp_orig_node;
|
|
new_info->count_scale = old_info->count_scale;
|
|
}
|
|
|
|
/* Register our cgraph hooks if they are not already there. */
|
|
|
|
void
|
|
ipa_register_cgraph_hooks (void)
|
|
{
|
|
if (!edge_removal_hook_holder)
|
|
edge_removal_hook_holder =
|
|
cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
|
|
if (!node_removal_hook_holder)
|
|
node_removal_hook_holder =
|
|
cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
|
|
if (!edge_duplication_hook_holder)
|
|
edge_duplication_hook_holder =
|
|
cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
|
|
if (!node_duplication_hook_holder)
|
|
node_duplication_hook_holder =
|
|
cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
|
|
}
|
|
|
|
/* Unregister our cgraph hooks if they are not already there. */
|
|
|
|
static void
|
|
ipa_unregister_cgraph_hooks (void)
|
|
{
|
|
cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
|
|
edge_removal_hook_holder = NULL;
|
|
cgraph_remove_node_removal_hook (node_removal_hook_holder);
|
|
node_removal_hook_holder = NULL;
|
|
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
|
|
edge_duplication_hook_holder = NULL;
|
|
cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
|
|
node_duplication_hook_holder = NULL;
|
|
}
|
|
|
|
/* Allocate all necessary data strucutures necessary for indirect inlining. */
|
|
|
|
void
|
|
ipa_create_all_structures_for_iinln (void)
|
|
{
|
|
iinlining_processed_edges = BITMAP_ALLOC (NULL);
|
|
}
|
|
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
|
longer needed after ipa-cp. */
|
|
|
|
void
|
|
ipa_free_all_structures_after_ipa_cp (void)
|
|
{
|
|
if (!flag_indirect_inlining)
|
|
{
|
|
ipa_free_all_edge_args ();
|
|
ipa_free_all_node_params ();
|
|
ipa_unregister_cgraph_hooks ();
|
|
}
|
|
}
|
|
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
|
longer needed after indirect inlining. */
|
|
|
|
void
|
|
ipa_free_all_structures_after_iinln (void)
|
|
{
|
|
BITMAP_FREE (iinlining_processed_edges);
|
|
|
|
ipa_free_all_edge_args ();
|
|
ipa_free_all_node_params ();
|
|
ipa_unregister_cgraph_hooks ();
|
|
}
|
|
|
|
/* Print ipa_tree_map data structures of all functions in the
|
|
callgraph to F. */
|
|
|
|
void
|
|
ipa_print_node_params (FILE * f, struct cgraph_node *node)
|
|
{
|
|
int i, count;
|
|
tree temp;
|
|
struct ipa_node_params *info;
|
|
|
|
if (!node->analyzed)
|
|
return;
|
|
info = IPA_NODE_REF (node);
|
|
fprintf (f, " function %s parameter descriptors:\n",
|
|
cgraph_node_name (node));
|
|
count = ipa_get_param_count (info);
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
temp = ipa_get_param (info, i);
|
|
if (TREE_CODE (temp) == PARM_DECL)
|
|
fprintf (f, " param %d : %s", i,
|
|
(DECL_NAME (temp)
|
|
? (*lang_hooks.decl_printable_name) (temp, 2)
|
|
: "(unnamed)"));
|
|
if (ipa_is_param_used (info, i))
|
|
fprintf (f, " used");
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
/* Print ipa_tree_map data structures of all functions in the
|
|
callgraph to F. */
|
|
|
|
void
|
|
ipa_print_all_params (FILE * f)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
fprintf (f, "\nFunction parameters:\n");
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
ipa_print_node_params (f, node);
|
|
}
|
|
|
|
/* Return a heap allocated vector containing formal parameters of FNDECL. */
|
|
|
|
VEC(tree, heap) *
|
|
ipa_get_vector_of_formal_parms (tree fndecl)
|
|
{
|
|
VEC(tree, heap) *args;
|
|
int count;
|
|
tree parm;
|
|
|
|
count = count_formal_params_1 (fndecl);
|
|
args = VEC_alloc (tree, heap, count);
|
|
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = TREE_CHAIN (parm))
|
|
VEC_quick_push (tree, args, parm);
|
|
|
|
return args;
|
|
}
|
|
|
|
/* Return a heap allocated vector containing types of formal parameters of
|
|
function type FNTYPE. */
|
|
|
|
static inline VEC(tree, heap) *
|
|
get_vector_of_formal_parm_types (tree fntype)
|
|
{
|
|
VEC(tree, heap) *types;
|
|
int count = 0;
|
|
tree t;
|
|
|
|
for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
|
|
count++;
|
|
|
|
types = VEC_alloc (tree, heap, count);
|
|
for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
|
|
VEC_quick_push (tree, types, TREE_VALUE (t));
|
|
|
|
return types;
|
|
}
|
|
|
|
/* Modify the function declaration FNDECL and its type according to the plan in
|
|
ADJUSTMENTS. It also sets base fields of individual adjustments structures
|
|
to reflect the actual parameters being modified which are determined by the
|
|
base_index field. */
|
|
|
|
void
|
|
ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments,
|
|
const char *synth_parm_prefix)
|
|
{
|
|
VEC(tree, heap) *oparms, *otypes;
|
|
tree orig_type, new_type = NULL;
|
|
tree old_arg_types, t, new_arg_types = NULL;
|
|
tree parm, *link = &DECL_ARGUMENTS (fndecl);
|
|
int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
|
tree new_reversed = NULL;
|
|
bool care_for_types, last_parm_void;
|
|
|
|
if (!synth_parm_prefix)
|
|
synth_parm_prefix = "SYNTH";
|
|
|
|
oparms = ipa_get_vector_of_formal_parms (fndecl);
|
|
orig_type = TREE_TYPE (fndecl);
|
|
old_arg_types = TYPE_ARG_TYPES (orig_type);
|
|
|
|
/* The following test is an ugly hack, some functions simply don't have any
|
|
arguments in their type. This is probably a bug but well... */
|
|
care_for_types = (old_arg_types != NULL_TREE);
|
|
if (care_for_types)
|
|
{
|
|
last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
|
|
== void_type_node);
|
|
otypes = get_vector_of_formal_parm_types (orig_type);
|
|
if (last_parm_void)
|
|
gcc_assert (VEC_length (tree, oparms) + 1 == VEC_length (tree, otypes));
|
|
else
|
|
gcc_assert (VEC_length (tree, oparms) == VEC_length (tree, otypes));
|
|
}
|
|
else
|
|
{
|
|
last_parm_void = false;
|
|
otypes = NULL;
|
|
}
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
struct ipa_parm_adjustment *adj;
|
|
gcc_assert (link);
|
|
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
|
parm = VEC_index (tree, oparms, adj->base_index);
|
|
adj->base = parm;
|
|
|
|
if (adj->copy_param)
|
|
{
|
|
if (care_for_types)
|
|
new_arg_types = tree_cons (NULL_TREE, VEC_index (tree, otypes,
|
|
adj->base_index),
|
|
new_arg_types);
|
|
*link = parm;
|
|
link = &TREE_CHAIN (parm);
|
|
}
|
|
else if (!adj->remove_param)
|
|
{
|
|
tree new_parm;
|
|
tree ptype;
|
|
|
|
if (adj->by_ref)
|
|
ptype = build_pointer_type (adj->type);
|
|
else
|
|
ptype = adj->type;
|
|
|
|
if (care_for_types)
|
|
new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
|
|
|
|
new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
|
|
ptype);
|
|
DECL_NAME (new_parm) = create_tmp_var_name (synth_parm_prefix);
|
|
|
|
DECL_ARTIFICIAL (new_parm) = 1;
|
|
DECL_ARG_TYPE (new_parm) = ptype;
|
|
DECL_CONTEXT (new_parm) = fndecl;
|
|
TREE_USED (new_parm) = 1;
|
|
DECL_IGNORED_P (new_parm) = 1;
|
|
layout_decl (new_parm, 0);
|
|
|
|
add_referenced_var (new_parm);
|
|
mark_sym_for_renaming (new_parm);
|
|
adj->base = parm;
|
|
adj->reduction = new_parm;
|
|
|
|
*link = new_parm;
|
|
|
|
link = &TREE_CHAIN (new_parm);
|
|
}
|
|
}
|
|
|
|
*link = NULL_TREE;
|
|
|
|
if (care_for_types)
|
|
{
|
|
new_reversed = nreverse (new_arg_types);
|
|
if (last_parm_void)
|
|
{
|
|
if (new_reversed)
|
|
TREE_CHAIN (new_arg_types) = void_list_node;
|
|
else
|
|
new_reversed = void_list_node;
|
|
}
|
|
}
|
|
|
|
/* Use copy_node to preserve as much as possible from original type
|
|
(debug info, attribute lists etc.)
|
|
Exception is METHOD_TYPEs must have THIS argument.
|
|
When we are asked to remove it, we need to build new FUNCTION_TYPE
|
|
instead. */
|
|
if (TREE_CODE (orig_type) != METHOD_TYPE
|
|
|| (VEC_index (ipa_parm_adjustment_t, adjustments, 0)->copy_param
|
|
&& VEC_index (ipa_parm_adjustment_t, adjustments, 0)->base_index == 0))
|
|
{
|
|
new_type = copy_node (orig_type);
|
|
TYPE_ARG_TYPES (new_type) = new_reversed;
|
|
}
|
|
else
|
|
{
|
|
new_type
|
|
= build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
|
|
new_reversed));
|
|
TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
|
|
DECL_VINDEX (fndecl) = NULL_TREE;
|
|
}
|
|
|
|
/* When signature changes, we need to clear builtin info. */
|
|
if (DECL_BUILT_IN (fndecl))
|
|
{
|
|
DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
|
|
DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
|
|
}
|
|
|
|
/* This is a new type, not a copy of an old type. Need to reassociate
|
|
variants. We can handle everything except the main variant lazily. */
|
|
t = TYPE_MAIN_VARIANT (orig_type);
|
|
if (orig_type != t)
|
|
{
|
|
TYPE_MAIN_VARIANT (new_type) = t;
|
|
TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
|
|
TYPE_NEXT_VARIANT (t) = new_type;
|
|
}
|
|
else
|
|
{
|
|
TYPE_MAIN_VARIANT (new_type) = new_type;
|
|
TYPE_NEXT_VARIANT (new_type) = NULL;
|
|
}
|
|
|
|
TREE_TYPE (fndecl) = new_type;
|
|
if (otypes)
|
|
VEC_free (tree, heap, otypes);
|
|
VEC_free (tree, heap, oparms);
|
|
}
|
|
|
|
/* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
|
|
If this is a directly recursive call, CS must be NULL. Otherwise it must
|
|
contain the corresponding call graph edge. */
|
|
|
|
void
|
|
ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
|
|
ipa_parm_adjustment_vec adjustments)
|
|
{
|
|
VEC(tree, heap) *vargs;
|
|
gimple new_stmt;
|
|
gimple_stmt_iterator gsi;
|
|
tree callee_decl;
|
|
int i, len;
|
|
|
|
len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
|
vargs = VEC_alloc (tree, heap, len);
|
|
|
|
gsi = gsi_for_stmt (stmt);
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
struct ipa_parm_adjustment *adj;
|
|
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
|
|
|
if (adj->copy_param)
|
|
{
|
|
tree arg = gimple_call_arg (stmt, adj->base_index);
|
|
|
|
VEC_quick_push (tree, vargs, arg);
|
|
}
|
|
else if (!adj->remove_param)
|
|
{
|
|
tree expr, orig_expr;
|
|
bool allow_ptr, repl_found;
|
|
|
|
orig_expr = expr = gimple_call_arg (stmt, adj->base_index);
|
|
if (TREE_CODE (expr) == ADDR_EXPR)
|
|
{
|
|
allow_ptr = false;
|
|
expr = TREE_OPERAND (expr, 0);
|
|
}
|
|
else
|
|
allow_ptr = true;
|
|
|
|
repl_found = build_ref_for_offset (&expr, TREE_TYPE (expr),
|
|
adj->offset, adj->type,
|
|
allow_ptr);
|
|
if (repl_found)
|
|
{
|
|
if (adj->by_ref)
|
|
expr = build_fold_addr_expr (expr);
|
|
}
|
|
else
|
|
{
|
|
tree ptrtype = build_pointer_type (adj->type);
|
|
expr = orig_expr;
|
|
if (!POINTER_TYPE_P (TREE_TYPE (expr)))
|
|
expr = build_fold_addr_expr (expr);
|
|
if (!useless_type_conversion_p (ptrtype, TREE_TYPE (expr)))
|
|
expr = fold_convert (ptrtype, expr);
|
|
expr = fold_build2 (POINTER_PLUS_EXPR, ptrtype, expr,
|
|
build_int_cst (sizetype,
|
|
adj->offset / BITS_PER_UNIT));
|
|
if (!adj->by_ref)
|
|
expr = fold_build1 (INDIRECT_REF, adj->type, expr);
|
|
}
|
|
expr = force_gimple_operand_gsi (&gsi, expr,
|
|
adj->by_ref
|
|
|| is_gimple_reg_type (adj->type),
|
|
NULL, true, GSI_SAME_STMT);
|
|
VEC_quick_push (tree, vargs, expr);
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "replacing stmt:");
|
|
print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
|
|
}
|
|
|
|
callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
|
|
new_stmt = gimple_build_call_vec (callee_decl, vargs);
|
|
VEC_free (tree, heap, vargs);
|
|
if (gimple_call_lhs (stmt))
|
|
gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
|
|
|
|
gimple_set_block (new_stmt, gimple_block (stmt));
|
|
if (gimple_has_location (stmt))
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
|
gimple_call_copy_flags (new_stmt, stmt);
|
|
gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "with stmt:");
|
|
print_gimple_stmt (dump_file, new_stmt, 0, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
gsi_replace (&gsi, new_stmt, true);
|
|
if (cs)
|
|
cgraph_set_call_stmt (cs, new_stmt);
|
|
update_ssa (TODO_update_ssa);
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
}
|
|
|
|
/* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
|
|
|
|
static bool
|
|
index_in_adjustments_multiple_times_p (int base_index,
|
|
ipa_parm_adjustment_vec adjustments)
|
|
{
|
|
int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
|
bool one = false;
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
struct ipa_parm_adjustment *adj;
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
|
|
|
if (adj->base_index == base_index)
|
|
{
|
|
if (one)
|
|
return true;
|
|
else
|
|
one = true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return adjustments that should have the same effect on function parameters
|
|
and call arguments as if they were first changed according to adjustments in
|
|
INNER and then by adjustments in OUTER. */
|
|
|
|
ipa_parm_adjustment_vec
|
|
ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
|
|
ipa_parm_adjustment_vec outer)
|
|
{
|
|
int i, outlen = VEC_length (ipa_parm_adjustment_t, outer);
|
|
int inlen = VEC_length (ipa_parm_adjustment_t, inner);
|
|
int removals = 0;
|
|
ipa_parm_adjustment_vec adjustments, tmp;
|
|
|
|
tmp = VEC_alloc (ipa_parm_adjustment_t, heap, inlen);
|
|
for (i = 0; i < inlen; i++)
|
|
{
|
|
struct ipa_parm_adjustment *n;
|
|
n = VEC_index (ipa_parm_adjustment_t, inner, i);
|
|
|
|
if (n->remove_param)
|
|
removals++;
|
|
else
|
|
VEC_quick_push (ipa_parm_adjustment_t, tmp, n);
|
|
}
|
|
|
|
adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, outlen + removals);
|
|
for (i = 0; i < outlen; i++)
|
|
{
|
|
struct ipa_parm_adjustment *r;
|
|
struct ipa_parm_adjustment *out = VEC_index (ipa_parm_adjustment_t,
|
|
outer, i);
|
|
struct ipa_parm_adjustment *in = VEC_index (ipa_parm_adjustment_t, tmp,
|
|
out->base_index);
|
|
|
|
gcc_assert (!in->remove_param);
|
|
if (out->remove_param)
|
|
{
|
|
if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
|
|
{
|
|
r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
|
|
memset (r, 0, sizeof (*r));
|
|
r->remove_param = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
|
|
memset (r, 0, sizeof (*r));
|
|
r->base_index = in->base_index;
|
|
r->type = out->type;
|
|
|
|
/* FIXME: Create nonlocal value too. */
|
|
|
|
if (in->copy_param && out->copy_param)
|
|
r->copy_param = true;
|
|
else if (in->copy_param)
|
|
r->offset = out->offset;
|
|
else if (out->copy_param)
|
|
r->offset = in->offset;
|
|
else
|
|
r->offset = in->offset + out->offset;
|
|
}
|
|
|
|
for (i = 0; i < inlen; i++)
|
|
{
|
|
struct ipa_parm_adjustment *n = VEC_index (ipa_parm_adjustment_t,
|
|
inner, i);
|
|
|
|
if (n->remove_param)
|
|
VEC_quick_push (ipa_parm_adjustment_t, adjustments, n);
|
|
}
|
|
|
|
VEC_free (ipa_parm_adjustment_t, heap, tmp);
|
|
return adjustments;
|
|
}
|
|
|
|
/* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
|
|
friendly way, assuming they are meant to be applied to FNDECL. */
|
|
|
|
void
|
|
ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
|
|
tree fndecl)
|
|
{
|
|
int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
|
bool first = true;
|
|
VEC(tree, heap) *parms = ipa_get_vector_of_formal_parms (fndecl);
|
|
|
|
fprintf (file, "IPA param adjustments: ");
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
struct ipa_parm_adjustment *adj;
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
|
|
|
if (!first)
|
|
fprintf (file, " ");
|
|
else
|
|
first = false;
|
|
|
|
fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
|
|
print_generic_expr (file, VEC_index (tree, parms, adj->base_index), 0);
|
|
if (adj->base)
|
|
{
|
|
fprintf (file, ", base: ");
|
|
print_generic_expr (file, adj->base, 0);
|
|
}
|
|
if (adj->reduction)
|
|
{
|
|
fprintf (file, ", reduction: ");
|
|
print_generic_expr (file, adj->reduction, 0);
|
|
}
|
|
if (adj->new_ssa_base)
|
|
{
|
|
fprintf (file, ", new_ssa_base: ");
|
|
print_generic_expr (file, adj->new_ssa_base, 0);
|
|
}
|
|
|
|
if (adj->copy_param)
|
|
fprintf (file, ", copy_param");
|
|
else if (adj->remove_param)
|
|
fprintf (file, ", remove_param");
|
|
else
|
|
fprintf (file, ", offset %li", (long) adj->offset);
|
|
if (adj->by_ref)
|
|
fprintf (file, ", by_ref");
|
|
print_node_brief (file, ", type: ", adj->type, 0);
|
|
fprintf (file, "\n");
|
|
}
|
|
VEC_free (tree, heap, parms);
|
|
}
|
|
|
|
/* Stream out jump function JUMP_FUNC to OB. */
|
|
|
|
static void
|
|
ipa_write_jump_function (struct output_block *ob,
|
|
struct ipa_jump_func *jump_func)
|
|
{
|
|
lto_output_uleb128_stream (ob->main_stream,
|
|
jump_func->type);
|
|
|
|
switch (jump_func->type)
|
|
{
|
|
case IPA_JF_UNKNOWN:
|
|
break;
|
|
case IPA_JF_KNOWN_TYPE:
|
|
lto_output_tree (ob, jump_func->value.base_binfo, true);
|
|
break;
|
|
case IPA_JF_CONST:
|
|
lto_output_tree (ob, jump_func->value.constant, true);
|
|
break;
|
|
case IPA_JF_PASS_THROUGH:
|
|
lto_output_tree (ob, jump_func->value.pass_through.operand, true);
|
|
lto_output_uleb128_stream (ob->main_stream,
|
|
jump_func->value.pass_through.formal_id);
|
|
lto_output_uleb128_stream (ob->main_stream,
|
|
jump_func->value.pass_through.operation);
|
|
break;
|
|
case IPA_JF_ANCESTOR:
|
|
lto_output_uleb128_stream (ob->main_stream,
|
|
jump_func->value.ancestor.offset);
|
|
lto_output_tree (ob, jump_func->value.ancestor.type, true);
|
|
lto_output_uleb128_stream (ob->main_stream,
|
|
jump_func->value.ancestor.formal_id);
|
|
break;
|
|
case IPA_JF_CONST_MEMBER_PTR:
|
|
lto_output_tree (ob, jump_func->value.member_cst.pfn, true);
|
|
lto_output_tree (ob, jump_func->value.member_cst.delta, false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Read in jump function JUMP_FUNC from IB. */
|
|
|
|
static void
|
|
ipa_read_jump_function (struct lto_input_block *ib,
|
|
struct ipa_jump_func *jump_func,
|
|
struct data_in *data_in)
|
|
{
|
|
jump_func->type = (enum jump_func_type) lto_input_uleb128 (ib);
|
|
|
|
switch (jump_func->type)
|
|
{
|
|
case IPA_JF_UNKNOWN:
|
|
break;
|
|
case IPA_JF_KNOWN_TYPE:
|
|
jump_func->value.base_binfo = lto_input_tree (ib, data_in);
|
|
break;
|
|
case IPA_JF_CONST:
|
|
jump_func->value.constant = lto_input_tree (ib, data_in);
|
|
break;
|
|
case IPA_JF_PASS_THROUGH:
|
|
jump_func->value.pass_through.operand = lto_input_tree (ib, data_in);
|
|
jump_func->value.pass_through.formal_id = lto_input_uleb128 (ib);
|
|
jump_func->value.pass_through.operation = (enum tree_code) lto_input_uleb128 (ib);
|
|
break;
|
|
case IPA_JF_ANCESTOR:
|
|
jump_func->value.ancestor.offset = lto_input_uleb128 (ib);
|
|
jump_func->value.ancestor.type = lto_input_tree (ib, data_in);
|
|
jump_func->value.ancestor.formal_id = lto_input_uleb128 (ib);
|
|
break;
|
|
case IPA_JF_CONST_MEMBER_PTR:
|
|
jump_func->value.member_cst.pfn = lto_input_tree (ib, data_in);
|
|
jump_func->value.member_cst.delta = lto_input_tree (ib, data_in);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
|
|
relevant to indirect inlining to OB. */
|
|
|
|
static void
|
|
ipa_write_indirect_edge_info (struct output_block *ob,
|
|
struct cgraph_edge *cs)
|
|
{
|
|
struct cgraph_indirect_call_info *ii = cs->indirect_info;
|
|
struct bitpack_d bp;
|
|
|
|
lto_output_sleb128_stream (ob->main_stream, ii->param_index);
|
|
lto_output_sleb128_stream (ob->main_stream, ii->anc_offset);
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, ii->polymorphic, 1);
|
|
lto_output_bitpack (&bp);
|
|
|
|
if (ii->polymorphic)
|
|
{
|
|
lto_output_sleb128_stream (ob->main_stream, ii->otr_token);
|
|
lto_output_tree (ob, ii->otr_type, true);
|
|
}
|
|
}
|
|
|
|
/* Read in parts of cgraph_indirect_call_info corresponding to CS that are
|
|
relevant to indirect inlining from IB. */
|
|
|
|
static void
|
|
ipa_read_indirect_edge_info (struct lto_input_block *ib,
|
|
struct data_in *data_in ATTRIBUTE_UNUSED,
|
|
struct cgraph_edge *cs)
|
|
{
|
|
struct cgraph_indirect_call_info *ii = cs->indirect_info;
|
|
struct bitpack_d bp;
|
|
|
|
ii->param_index = (int) lto_input_sleb128 (ib);
|
|
ii->anc_offset = (HOST_WIDE_INT) lto_input_sleb128 (ib);
|
|
bp = lto_input_bitpack (ib);
|
|
ii->polymorphic = bp_unpack_value (&bp, 1);
|
|
if (ii->polymorphic)
|
|
{
|
|
ii->otr_token = (HOST_WIDE_INT) lto_input_sleb128 (ib);
|
|
ii->otr_type = lto_input_tree (ib, data_in);
|
|
}
|
|
}
|
|
|
|
/* Stream out NODE info to OB. */
|
|
|
|
static void
|
|
ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
|
|
{
|
|
int node_ref;
|
|
lto_cgraph_encoder_t encoder;
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
int j;
|
|
struct cgraph_edge *e;
|
|
struct bitpack_d bp;
|
|
|
|
encoder = ob->decl_state->cgraph_node_encoder;
|
|
node_ref = lto_cgraph_encoder_encode (encoder, node);
|
|
lto_output_uleb128_stream (ob->main_stream, node_ref);
|
|
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, info->called_with_var_arguments, 1);
|
|
gcc_assert (info->uses_analysis_done
|
|
|| ipa_get_param_count (info) == 0);
|
|
gcc_assert (!info->node_enqueued);
|
|
gcc_assert (!info->ipcp_orig_node);
|
|
for (j = 0; j < ipa_get_param_count (info); j++)
|
|
bp_pack_value (&bp, info->params[j].used, 1);
|
|
lto_output_bitpack (&bp);
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
|
|
lto_output_uleb128_stream (ob->main_stream,
|
|
ipa_get_cs_argument_count (args));
|
|
for (j = 0; j < ipa_get_cs_argument_count (args); j++)
|
|
ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
ipa_write_indirect_edge_info (ob, e);
|
|
}
|
|
|
|
/* Srtream in NODE info from IB. */
|
|
|
|
static void
|
|
ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
|
|
struct data_in *data_in)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
int k;
|
|
struct cgraph_edge *e;
|
|
struct bitpack_d bp;
|
|
|
|
ipa_initialize_node_params (node);
|
|
|
|
bp = lto_input_bitpack (ib);
|
|
info->called_with_var_arguments = bp_unpack_value (&bp, 1);
|
|
if (ipa_get_param_count (info) != 0)
|
|
info->uses_analysis_done = true;
|
|
info->node_enqueued = false;
|
|
for (k = 0; k < ipa_get_param_count (info); k++)
|
|
info->params[k].used = bp_unpack_value (&bp, 1);
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
int count = lto_input_uleb128 (ib);
|
|
|
|
ipa_set_cs_argument_count (args, count);
|
|
if (!count)
|
|
continue;
|
|
|
|
args->jump_functions = ggc_alloc_cleared_vec_ipa_jump_func
|
|
(ipa_get_cs_argument_count (args));
|
|
for (k = 0; k < ipa_get_cs_argument_count (args); k++)
|
|
ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), data_in);
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
ipa_read_indirect_edge_info (ib, data_in, e);
|
|
}
|
|
|
|
/* Write jump functions for nodes in SET. */
|
|
|
|
void
|
|
ipa_prop_write_jump_functions (cgraph_node_set set)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct output_block *ob = create_output_block (LTO_section_jump_functions);
|
|
unsigned int count = 0;
|
|
cgraph_node_set_iterator csi;
|
|
|
|
ob->cgraph_node = NULL;
|
|
|
|
for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
|
|
{
|
|
node = csi_node (csi);
|
|
if (node->analyzed && IPA_NODE_REF (node) != NULL)
|
|
count++;
|
|
}
|
|
|
|
lto_output_uleb128_stream (ob->main_stream, count);
|
|
|
|
/* Process all of the functions. */
|
|
for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
|
|
{
|
|
node = csi_node (csi);
|
|
if (node->analyzed && IPA_NODE_REF (node) != NULL)
|
|
ipa_write_node_info (ob, node);
|
|
}
|
|
lto_output_1_stream (ob->main_stream, 0);
|
|
produce_asm (ob, NULL);
|
|
destroy_output_block (ob);
|
|
}
|
|
|
|
/* Read section in file FILE_DATA of length LEN with data DATA. */
|
|
|
|
static void
|
|
ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
|
|
size_t len)
|
|
{
|
|
const struct lto_function_header *header =
|
|
(const struct lto_function_header *) data;
|
|
const int32_t cfg_offset = sizeof (struct lto_function_header);
|
|
const int32_t main_offset = cfg_offset + header->cfg_size;
|
|
const int32_t string_offset = main_offset + header->main_size;
|
|
struct data_in *data_in;
|
|
struct lto_input_block ib_main;
|
|
unsigned int i;
|
|
unsigned int count;
|
|
|
|
LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
|
|
header->main_size);
|
|
|
|
data_in =
|
|
lto_data_in_create (file_data, (const char *) data + string_offset,
|
|
header->string_size, NULL);
|
|
count = lto_input_uleb128 (&ib_main);
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
unsigned int index;
|
|
struct cgraph_node *node;
|
|
lto_cgraph_encoder_t encoder;
|
|
|
|
index = lto_input_uleb128 (&ib_main);
|
|
encoder = file_data->cgraph_node_encoder;
|
|
node = lto_cgraph_encoder_deref (encoder, index);
|
|
gcc_assert (node->analyzed);
|
|
ipa_read_node_info (&ib_main, node, data_in);
|
|
}
|
|
lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
|
|
len);
|
|
lto_data_in_delete (data_in);
|
|
}
|
|
|
|
/* Read ipcp jump functions. */
|
|
|
|
void
|
|
ipa_prop_read_jump_functions (void)
|
|
{
|
|
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
|
|
struct lto_file_decl_data *file_data;
|
|
unsigned int j = 0;
|
|
|
|
ipa_check_create_node_params ();
|
|
ipa_check_create_edge_args ();
|
|
ipa_register_cgraph_hooks ();
|
|
|
|
while ((file_data = file_data_vec[j++]))
|
|
{
|
|
size_t len;
|
|
const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
|
|
|
|
if (data)
|
|
ipa_prop_read_section (file_data, data, len);
|
|
}
|
|
}
|
|
|
|
/* After merging units, we can get mismatch in argument counts.
|
|
Also decl merging might've rendered parameter lists obsolette.
|
|
Also compute called_with_variable_arg info. */
|
|
|
|
void
|
|
ipa_update_after_lto_read (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct cgraph_edge *cs;
|
|
|
|
ipa_check_create_node_params ();
|
|
ipa_check_create_edge_args ();
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
if (node->analyzed)
|
|
ipa_initialize_node_params (node);
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
if (node->analyzed)
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
|
{
|
|
if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
|
|
!= ipa_get_param_count (IPA_NODE_REF (cs->callee)))
|
|
ipa_set_called_with_variable_arg (IPA_NODE_REF (cs->callee));
|
|
}
|
|
}
|