
* common.opt (ftree-fre): New flag. * flags.h (flag_tree_fre): Declare. * opts.c (decode_options): Set. * timevar.def (TV_TREE_FRE): Define. * tree-flow-inline.h (may_propagate_copy): Re-arrange for readability. Handle destinations that are not SSA_NAMEs. * tree-flow.h (struct ptr_info_def): Move from tree.h (cprop_into_stmt, cprop_into_successor_phis): Remove. (vn_compute, vn_lookup_or_add, vn_add, vn_lookup): Add vuse_optype parameter. * tree-pass.h (pass_fre): Declare. * tree-ssa-copy.c (cprop_operand): Move to tree-ssa-dom.c (cprop_into_stmt): Likewise. (cprop_into_successor_phis): Likewise. * tree-ssa-dom.c (eliminate_redundant_computations): Fix argument ordering in call to may_propagate_copy. * tree-ssa-pre.c (is_undefined_value): Assume hard registers to be always defined. (add_to_sets): New local function. (create_value_expr_from): New local function. (compute_avail): Call them. (eliminate): Don't ignore statements with virtual operands. (init_pre): New local function. (fini_pre): New local function. (execute_pre): Call them. Add argument DO_FRE. Don't do insertion if DO_FRE is true. (do_pre): New function. (do_fre): New function. (gate_fre): New function. (pass_fre): Declare. * tree-ssa.c (init_tree_ssa): Don't call vn_init. (delete_tree_ssa): Don't call vn_delete. * tree-vn.c (val_expr_pair_d): Add documentation. (vn_compute): Add VUSES argument to incorporate in computing hash values. Update all callers. (expressions_equal_p): Call operand_equal_p with OEP_PURE_SAME. (vn_add): Add VUSES argument. Update all callers. (vn_lookup): Likewise. (vn_lookup_or_add): Likewise. * doc/invoke.texi: Document -ftree-fre and -fdump-tree-fre. From-SVN: r83837
1163 lines
30 KiB
C
1163 lines
30 KiB
C
/* Miscellaneous SSA utility functions.
|
||
Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "ggc.h"
|
||
#include "langhooks.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "output.h"
|
||
#include "errors.h"
|
||
#include "expr.h"
|
||
#include "function.h"
|
||
#include "diagnostic.h"
|
||
#include "bitmap.h"
|
||
#include "tree-flow.h"
|
||
#include "tree-gimple.h"
|
||
#include "tree-inline.h"
|
||
#include "varray.h"
|
||
#include "timevar.h"
|
||
#include "tree-alias-common.h"
|
||
#include "hashtab.h"
|
||
#include "tree-dump.h"
|
||
#include "tree-pass.h"
|
||
|
||
|
||
/* Remove edge E and remove the corresponding arguments from the PHI nodes
|
||
in E's destination block. */
|
||
|
||
void
|
||
ssa_remove_edge (edge e)
|
||
{
|
||
tree phi, next;
|
||
|
||
/* Remove the appropriate PHI arguments in E's destination block. */
|
||
for (phi = phi_nodes (e->dest); phi; phi = next)
|
||
{
|
||
next = PHI_CHAIN (phi);
|
||
remove_phi_arg (phi, e->src);
|
||
}
|
||
|
||
remove_edge (e);
|
||
}
|
||
|
||
/* Remove the corresponding arguments from the PHI nodes in E's
|
||
destination block and redirect it to DEST. Return redirected edge.
|
||
The list of removed arguments is stored in PENDING_STMT (e). */
|
||
|
||
edge
|
||
ssa_redirect_edge (edge e, basic_block dest)
|
||
{
|
||
tree phi, next;
|
||
tree list = NULL, *last = &list;
|
||
tree src, dst, node;
|
||
int i;
|
||
|
||
/* Remove the appropriate PHI arguments in E's destination block. */
|
||
for (phi = phi_nodes (e->dest); phi; phi = next)
|
||
{
|
||
next = PHI_CHAIN (phi);
|
||
|
||
i = phi_arg_from_edge (phi, e);
|
||
if (i < 0)
|
||
continue;
|
||
|
||
src = PHI_ARG_DEF (phi, i);
|
||
dst = PHI_RESULT (phi);
|
||
node = build_tree_list (dst, src);
|
||
*last = node;
|
||
last = &TREE_CHAIN (node);
|
||
|
||
remove_phi_arg_num (phi, i);
|
||
}
|
||
|
||
e = redirect_edge_succ_nodup (e, dest);
|
||
PENDING_STMT (e) = list;
|
||
|
||
return e;
|
||
}
|
||
|
||
|
||
/* Return true if the definition of SSA_NAME at block BB is malformed.
|
||
|
||
STMT is the statement where SSA_NAME is created.
|
||
|
||
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME version
|
||
numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set, it means that the
|
||
block in that array slot contains the definition of SSA_NAME. */
|
||
|
||
static bool
|
||
verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
|
||
tree stmt)
|
||
{
|
||
bool err = false;
|
||
|
||
if (TREE_CODE (ssa_name) != SSA_NAME)
|
||
{
|
||
error ("Expected an SSA_NAME object");
|
||
debug_generic_stmt (ssa_name);
|
||
debug_generic_stmt (stmt);
|
||
}
|
||
|
||
if (definition_block[SSA_NAME_VERSION (ssa_name)])
|
||
{
|
||
error ("SSA_NAME created in two different blocks %i and %i",
|
||
definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
|
||
fprintf (stderr, "SSA_NAME: ");
|
||
debug_generic_stmt (ssa_name);
|
||
debug_generic_stmt (stmt);
|
||
err = true;
|
||
}
|
||
|
||
definition_block[SSA_NAME_VERSION (ssa_name)] = bb;
|
||
|
||
if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
|
||
{
|
||
error ("SSA_NAME_DEF_STMT is wrong");
|
||
fprintf (stderr, "SSA_NAME: ");
|
||
debug_generic_stmt (ssa_name);
|
||
fprintf (stderr, "Expected definition statement:\n");
|
||
debug_generic_stmt (SSA_NAME_DEF_STMT (ssa_name));
|
||
fprintf (stderr, "\nActual definition statement:\n");
|
||
debug_generic_stmt (stmt);
|
||
err = true;
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Return true if the use of SSA_NAME at statement STMT in block BB is
|
||
malformed.
|
||
|
||
DEF_BB is the block where SSA_NAME was found to be created.
|
||
|
||
IDOM contains immediate dominator information for the flowgraph.
|
||
|
||
CHECK_ABNORMAL is true if the caller wants to check whether this use
|
||
is flowing through an abnormal edge (only used when checking PHI
|
||
arguments). */
|
||
|
||
static bool
|
||
verify_use (basic_block bb, basic_block def_bb, tree ssa_name,
|
||
tree stmt, bool check_abnormal)
|
||
{
|
||
bool err = false;
|
||
|
||
if (IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name)))
|
||
; /* Nothing to do. */
|
||
else if (!def_bb)
|
||
{
|
||
error ("Missing definition");
|
||
err = true;
|
||
}
|
||
else if (bb != def_bb
|
||
&& !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
|
||
{
|
||
error ("Definition in block %i does not dominate use in block %i",
|
||
def_bb->index, bb->index);
|
||
err = true;
|
||
}
|
||
|
||
if (check_abnormal
|
||
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
|
||
{
|
||
error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
|
||
err = true;
|
||
}
|
||
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "for SSA_NAME: ");
|
||
debug_generic_stmt (ssa_name);
|
||
fprintf (stderr, "in statement:\n");
|
||
debug_generic_stmt (stmt);
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Return true if any of the arguments for PHI node PHI at block BB is
|
||
malformed.
|
||
|
||
IDOM contains immediate dominator information for the flowgraph.
|
||
|
||
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME version
|
||
numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set, it means that the
|
||
block in that array slot contains the definition of SSA_NAME. */
|
||
|
||
static bool
|
||
verify_phi_args (tree phi, basic_block bb, basic_block *definition_block)
|
||
{
|
||
edge e;
|
||
bool err = false;
|
||
int i, phi_num_args = PHI_NUM_ARGS (phi);
|
||
|
||
/* Mark all the incoming edges. */
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
e->aux = (void *) 1;
|
||
|
||
for (i = 0; i < phi_num_args; i++)
|
||
{
|
||
tree op = PHI_ARG_DEF (phi, i);
|
||
|
||
e = PHI_ARG_EDGE (phi, i);
|
||
|
||
if (TREE_CODE (op) == SSA_NAME)
|
||
err |= verify_use (e->src, definition_block[SSA_NAME_VERSION (op)], op,
|
||
phi, e->flags & EDGE_ABNORMAL);
|
||
|
||
if (e->dest != bb)
|
||
{
|
||
error ("Wrong edge %d->%d for PHI argument\n",
|
||
e->src->index, e->dest->index, bb->index);
|
||
err = true;
|
||
}
|
||
|
||
if (e->aux == (void *) 0)
|
||
{
|
||
error ("PHI argument flowing through dead edge %d->%d\n",
|
||
e->src->index, e->dest->index);
|
||
err = true;
|
||
}
|
||
|
||
if (e->aux == (void *) 2)
|
||
{
|
||
error ("PHI argument duplicated for edge %d->%d\n", e->src->index,
|
||
e->dest->index);
|
||
err = true;
|
||
}
|
||
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "PHI argument\n");
|
||
debug_generic_stmt (op);
|
||
}
|
||
|
||
e->aux = (void *) 2;
|
||
}
|
||
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
{
|
||
if (e->aux != (void *) 2)
|
||
{
|
||
error ("No argument flowing through edge %d->%d\n", e->src->index,
|
||
e->dest->index);
|
||
err = true;
|
||
}
|
||
e->aux = (void *) 0;
|
||
}
|
||
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "for PHI node\n");
|
||
debug_generic_stmt (phi);
|
||
}
|
||
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Verify common invariants in the SSA web.
|
||
TODO: verify the variable annotations. */
|
||
|
||
void
|
||
verify_ssa (void)
|
||
{
|
||
bool err = false;
|
||
basic_block bb;
|
||
basic_block *definition_block = xcalloc (num_ssa_names, sizeof (basic_block));
|
||
|
||
timevar_push (TV_TREE_SSA_VERIFY);
|
||
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
/* Verify and register all the SSA_NAME definitions found in the
|
||
function. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
tree phi;
|
||
block_stmt_iterator bsi;
|
||
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
err |= verify_def (bb, definition_block, PHI_RESULT (phi), phi);
|
||
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt;
|
||
stmt_ann_t ann;
|
||
unsigned int j;
|
||
v_may_def_optype v_may_defs;
|
||
v_must_def_optype v_must_defs;
|
||
def_optype defs;
|
||
|
||
stmt = bsi_stmt (bsi);
|
||
ann = stmt_ann (stmt);
|
||
get_stmt_operands (stmt);
|
||
|
||
v_may_defs = V_MAY_DEF_OPS (ann);
|
||
if (ann->makes_aliased_stores && NUM_V_MAY_DEFS (v_may_defs) == 0)
|
||
error ("Makes aliased stores, but no V_MAY_DEFS");
|
||
|
||
for (j = 0; j < NUM_V_MAY_DEFS (v_may_defs); j++)
|
||
{
|
||
tree op = V_MAY_DEF_RESULT (v_may_defs, j);
|
||
if (is_gimple_reg (op))
|
||
{
|
||
error ("Found a virtual definition for a GIMPLE register");
|
||
debug_generic_stmt (op);
|
||
debug_generic_stmt (stmt);
|
||
err = true;
|
||
}
|
||
err |= verify_def (bb, definition_block, op, stmt);
|
||
}
|
||
|
||
v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
|
||
for (j = 0; j < NUM_V_MUST_DEFS (v_must_defs); j++)
|
||
{
|
||
tree op = V_MUST_DEF_OP (v_must_defs, j);
|
||
if (is_gimple_reg (op))
|
||
{
|
||
error ("Found a virtual must-def for a GIMPLE register");
|
||
debug_generic_stmt (op);
|
||
debug_generic_stmt (stmt);
|
||
err = true;
|
||
}
|
||
err |= verify_def (bb, definition_block, op, stmt);
|
||
}
|
||
|
||
defs = DEF_OPS (ann);
|
||
for (j = 0; j < NUM_DEFS (defs); j++)
|
||
{
|
||
tree op = DEF_OP (defs, j);
|
||
if (TREE_CODE (op) == SSA_NAME && !is_gimple_reg (op))
|
||
{
|
||
error ("Found a real definition for a non-GIMPLE register");
|
||
debug_generic_stmt (op);
|
||
debug_generic_stmt (stmt);
|
||
err = true;
|
||
}
|
||
err |= verify_def (bb, definition_block, op, stmt);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Now verify all the uses and make sure they agree with the definitions
|
||
found in the previous pass. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
edge e;
|
||
tree phi;
|
||
block_stmt_iterator bsi;
|
||
|
||
/* Make sure that all edges have a clear 'aux' field. */
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
{
|
||
if (e->aux)
|
||
{
|
||
error ("AUX pointer initialized for edge %d->%d\n", e->src->index,
|
||
e->dest->index);
|
||
err = true;
|
||
}
|
||
}
|
||
|
||
/* Verify the arguments for every PHI node in the block. */
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
err |= verify_phi_args (phi, bb, definition_block);
|
||
|
||
/* Now verify all the uses and vuses in every statement of the block.
|
||
|
||
Remember, the RHS of a V_MAY_DEF is a use as well. */
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
stmt_ann_t ann = stmt_ann (stmt);
|
||
unsigned int j;
|
||
vuse_optype vuses;
|
||
v_may_def_optype v_may_defs;
|
||
use_optype uses;
|
||
|
||
vuses = VUSE_OPS (ann);
|
||
for (j = 0; j < NUM_VUSES (vuses); j++)
|
||
{
|
||
tree op = VUSE_OP (vuses, j);
|
||
|
||
if (is_gimple_reg (op))
|
||
{
|
||
error ("Found a virtual use for a GIMPLE register");
|
||
debug_generic_stmt (op);
|
||
debug_generic_stmt (stmt);
|
||
err = true;
|
||
}
|
||
err |= verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
|
||
op, stmt, false);
|
||
}
|
||
|
||
v_may_defs = V_MAY_DEF_OPS (ann);
|
||
for (j = 0; j < NUM_V_MAY_DEFS (v_may_defs); j++)
|
||
{
|
||
tree op = V_MAY_DEF_OP (v_may_defs, j);
|
||
|
||
if (is_gimple_reg (op))
|
||
{
|
||
error ("Found a virtual use for a GIMPLE register");
|
||
debug_generic_stmt (op);
|
||
debug_generic_stmt (stmt);
|
||
err = true;
|
||
}
|
||
err |= verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
|
||
op, stmt, false);
|
||
}
|
||
|
||
uses = USE_OPS (ann);
|
||
for (j = 0; j < NUM_USES (uses); j++)
|
||
{
|
||
tree op = USE_OP (uses, j);
|
||
|
||
if (TREE_CODE (op) == SSA_NAME && !is_gimple_reg (op))
|
||
{
|
||
error ("Found a real use of a non-GIMPLE register");
|
||
debug_generic_stmt (op);
|
||
debug_generic_stmt (stmt);
|
||
err = true;
|
||
}
|
||
err |= verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
|
||
op, stmt, false);
|
||
}
|
||
}
|
||
}
|
||
|
||
free (definition_block);
|
||
|
||
timevar_pop (TV_TREE_SSA_VERIFY);
|
||
|
||
if (err)
|
||
internal_error ("verify_ssa failed.");
|
||
}
|
||
|
||
|
||
/* Set the USED bit in the annotation for T. */
|
||
|
||
void
|
||
set_is_used (tree t)
|
||
{
|
||
while (1)
|
||
{
|
||
if (SSA_VAR_P (t))
|
||
break;
|
||
|
||
if (TREE_CODE (t) == REALPART_EXPR || TREE_CODE (t) == IMAGPART_EXPR)
|
||
t = TREE_OPERAND (t, 0);
|
||
else
|
||
while (handled_component_p (t))
|
||
t = TREE_OPERAND (t, 0);
|
||
}
|
||
|
||
if (TREE_CODE (t) == SSA_NAME)
|
||
t = SSA_NAME_VAR (t);
|
||
|
||
var_ann (t)->used = 1;
|
||
}
|
||
|
||
|
||
/* Initialize global DFA and SSA structures. */
|
||
|
||
void
|
||
init_tree_ssa (void)
|
||
{
|
||
VARRAY_TREE_INIT (referenced_vars, 20, "referenced_vars");
|
||
call_clobbered_vars = BITMAP_XMALLOC ();
|
||
init_ssa_operands ();
|
||
init_ssanames ();
|
||
init_phinodes ();
|
||
global_var = NULL_TREE;
|
||
aliases_computed_p = false;
|
||
}
|
||
|
||
|
||
/* Deallocate memory associated with SSA data structures for FNDECL. */
|
||
|
||
void
|
||
delete_tree_ssa (void)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
block_stmt_iterator bsi;
|
||
|
||
/* Remove annotations from every tree in the function. */
|
||
FOR_EACH_BB (bb)
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
bsi_stmt (bsi)->common.ann = NULL;
|
||
|
||
/* Remove annotations from every referenced variable. */
|
||
if (referenced_vars)
|
||
{
|
||
for (i = 0; i < num_referenced_vars; i++)
|
||
referenced_var (i)->common.ann = NULL;
|
||
referenced_vars = NULL;
|
||
}
|
||
|
||
fini_ssanames ();
|
||
fini_phinodes ();
|
||
fini_ssa_operands ();
|
||
|
||
global_var = NULL_TREE;
|
||
BITMAP_XFREE (call_clobbered_vars);
|
||
call_clobbered_vars = NULL;
|
||
aliases_computed_p = false;
|
||
}
|
||
|
||
|
||
/* Return true if EXPR is a useless type conversion, otherwise return
|
||
false. */
|
||
|
||
bool
|
||
tree_ssa_useless_type_conversion_1 (tree outer_type, tree inner_type)
|
||
{
|
||
/* If the inner and outer types are effectively the same, then
|
||
strip the type conversion and enter the equivalence into
|
||
the table. */
|
||
if (inner_type == outer_type
|
||
|| (lang_hooks.types_compatible_p (inner_type, outer_type)))
|
||
return true;
|
||
|
||
/* If both types are pointers and the outer type is a (void *), then
|
||
the conversion is not necessary. The opposite is not true since
|
||
that conversion would result in a loss of information if the
|
||
equivalence was used. Consider an indirect function call where
|
||
we need to know the exact type of the function to correctly
|
||
implement the ABI. */
|
||
else if (POINTER_TYPE_P (inner_type)
|
||
&& POINTER_TYPE_P (outer_type)
|
||
&& TREE_CODE (TREE_TYPE (outer_type)) == VOID_TYPE)
|
||
return true;
|
||
|
||
/* Pointers and references are equivalent once we get to GENERIC,
|
||
so strip conversions that just switch between them. */
|
||
else if (POINTER_TYPE_P (inner_type)
|
||
&& POINTER_TYPE_P (outer_type)
|
||
&& lang_hooks.types_compatible_p (TREE_TYPE (inner_type),
|
||
TREE_TYPE (outer_type)))
|
||
return true;
|
||
|
||
/* If both the inner and outer types are integral types, then the
|
||
conversion is not necessary if they have the same mode and
|
||
signedness and precision. Note that type _Bool can have size of
|
||
4 (only happens on powerpc-darwin right now but can happen on any
|
||
target that defines BOOL_TYPE_SIZE to be INT_TYPE_SIZE) and a
|
||
precision of 1 while unsigned int is the same expect for a
|
||
precision of 4 so testing of precision is necessary. */
|
||
else if (INTEGRAL_TYPE_P (inner_type)
|
||
&& INTEGRAL_TYPE_P (outer_type)
|
||
&& TYPE_MODE (inner_type) == TYPE_MODE (outer_type)
|
||
&& TYPE_UNSIGNED (inner_type) == TYPE_UNSIGNED (outer_type)
|
||
&& TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
|
||
return true;
|
||
|
||
/* Recurse for complex types. */
|
||
else if (TREE_CODE (inner_type) == COMPLEX_TYPE
|
||
&& TREE_CODE (outer_type) == COMPLEX_TYPE
|
||
&& tree_ssa_useless_type_conversion_1 (TREE_TYPE (outer_type),
|
||
TREE_TYPE (inner_type)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if EXPR is a useless type conversion, otherwise return
|
||
false. */
|
||
|
||
bool
|
||
tree_ssa_useless_type_conversion (tree expr)
|
||
{
|
||
/* If we have an assignment that merely uses a NOP_EXPR to change
|
||
the top of the RHS to the type of the LHS and the type conversion
|
||
is "safe", then strip away the type conversion so that we can
|
||
enter LHS = RHS into the const_and_copies table. */
|
||
if (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
|
||
return tree_ssa_useless_type_conversion_1 (TREE_TYPE (expr),
|
||
TREE_TYPE (TREE_OPERAND (expr,
|
||
0)));
|
||
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Internal helper for walk_use_def_chains. VAR, FN and DATA are as
|
||
described in walk_use_def_chains. VISITED is a bitmap used to mark
|
||
visited SSA_NAMEs to avoid infinite loops. */
|
||
|
||
static bool
|
||
walk_use_def_chains_1 (tree var, walk_use_def_chains_fn fn, void *data,
|
||
bitmap visited)
|
||
{
|
||
tree def_stmt;
|
||
|
||
if (bitmap_bit_p (visited, SSA_NAME_VERSION (var)))
|
||
return false;
|
||
|
||
bitmap_set_bit (visited, SSA_NAME_VERSION (var));
|
||
|
||
def_stmt = SSA_NAME_DEF_STMT (var);
|
||
|
||
if (TREE_CODE (def_stmt) != PHI_NODE)
|
||
{
|
||
/* If we reached the end of the use-def chain, call FN. */
|
||
return (*fn) (var, def_stmt, data);
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* Otherwise, follow use-def links out of each PHI argument and call
|
||
FN after visiting each one. */
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
{
|
||
tree arg = PHI_ARG_DEF (def_stmt, i);
|
||
if (TREE_CODE (arg) == SSA_NAME
|
||
&& walk_use_def_chains_1 (arg, fn, data, visited))
|
||
return true;
|
||
|
||
if ((*fn) (arg, def_stmt, data))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
/* Walk use-def chains starting at the SSA variable VAR. Call function FN
|
||
at each reaching definition found. FN takes three arguments: VAR, its
|
||
defining statement (DEF_STMT) and a generic pointer to whatever state
|
||
information that FN may want to maintain (DATA). FN is able to stop the
|
||
walk by returning true, otherwise in order to continue the walk, FN
|
||
should return false.
|
||
|
||
Note, that if DEF_STMT is a PHI node, the semantics are slightly
|
||
different. For each argument ARG of the PHI node, this function will:
|
||
|
||
1- Walk the use-def chains for ARG.
|
||
2- Call (*FN) (ARG, PHI, DATA).
|
||
|
||
Note how the first argument to FN is no longer the original variable
|
||
VAR, but the PHI argument currently being examined. If FN wants to get
|
||
at VAR, it should call PHI_RESULT (PHI). */
|
||
|
||
void
|
||
walk_use_def_chains (tree var, walk_use_def_chains_fn fn, void *data)
|
||
{
|
||
tree def_stmt;
|
||
|
||
#if defined ENABLE_CHECKING
|
||
if (TREE_CODE (var) != SSA_NAME)
|
||
abort ();
|
||
#endif
|
||
|
||
def_stmt = SSA_NAME_DEF_STMT (var);
|
||
|
||
/* We only need to recurse if the reaching definition comes from a PHI
|
||
node. */
|
||
if (TREE_CODE (def_stmt) != PHI_NODE)
|
||
(*fn) (var, def_stmt, data);
|
||
else
|
||
{
|
||
bitmap visited = BITMAP_XMALLOC ();
|
||
walk_use_def_chains_1 (var, fn, data, visited);
|
||
BITMAP_XFREE (visited);
|
||
}
|
||
}
|
||
|
||
/* Replaces VAR with REPL in memory reference expression *X in
|
||
statement STMT. */
|
||
|
||
static void
|
||
propagate_into_addr (tree stmt, tree var, tree *x, tree repl)
|
||
{
|
||
tree new_var, ass_stmt, addr_var;
|
||
basic_block bb;
|
||
block_stmt_iterator bsi;
|
||
|
||
/* There is nothing special to handle in the other cases. */
|
||
if (TREE_CODE (repl) != ADDR_EXPR)
|
||
return;
|
||
addr_var = TREE_OPERAND (repl, 0);
|
||
|
||
while (TREE_CODE (*x) == ARRAY_REF
|
||
|| TREE_CODE (*x) == COMPONENT_REF
|
||
|| TREE_CODE (*x) == BIT_FIELD_REF)
|
||
x = &TREE_OPERAND (*x, 0);
|
||
|
||
if (TREE_CODE (*x) != INDIRECT_REF
|
||
|| TREE_OPERAND (*x, 0) != var)
|
||
return;
|
||
|
||
modify_stmt (stmt);
|
||
if (TREE_TYPE (*x) == TREE_TYPE (addr_var))
|
||
{
|
||
*x = addr_var;
|
||
mark_new_vars_to_rename (stmt, vars_to_rename);
|
||
return;
|
||
}
|
||
|
||
/* Frontends sometimes produce expressions like *&a instead of a[0].
|
||
Create a temporary variable to handle this case. */
|
||
ass_stmt = build2 (MODIFY_EXPR, void_type_node, NULL_TREE, repl);
|
||
new_var = duplicate_ssa_name (var, ass_stmt);
|
||
TREE_OPERAND (*x, 0) = new_var;
|
||
TREE_OPERAND (ass_stmt, 0) = new_var;
|
||
|
||
bb = bb_for_stmt (stmt);
|
||
tree_block_label (bb);
|
||
bsi = bsi_after_labels (bb);
|
||
bsi_insert_after (&bsi, ass_stmt, BSI_NEW_STMT);
|
||
|
||
mark_new_vars_to_rename (stmt, vars_to_rename);
|
||
}
|
||
|
||
/* Replaces immediate uses of VAR by REPL. */
|
||
|
||
static void
|
||
replace_immediate_uses (tree var, tree repl)
|
||
{
|
||
use_optype uses;
|
||
vuse_optype vuses;
|
||
v_may_def_optype v_may_defs;
|
||
int i, j, n;
|
||
dataflow_t df;
|
||
tree stmt;
|
||
stmt_ann_t ann;
|
||
bool mark_new_vars;
|
||
|
||
df = get_immediate_uses (SSA_NAME_DEF_STMT (var));
|
||
n = num_immediate_uses (df);
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
stmt = immediate_use (df, i);
|
||
ann = stmt_ann (stmt);
|
||
|
||
if (TREE_CODE (stmt) == PHI_NODE)
|
||
{
|
||
for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
|
||
if (PHI_ARG_DEF (stmt, j) == var)
|
||
{
|
||
SET_PHI_ARG_DEF (stmt, j, repl);
|
||
if (TREE_CODE (repl) == SSA_NAME
|
||
&& PHI_ARG_EDGE (stmt, j)->flags & EDGE_ABNORMAL)
|
||
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (repl) = 1;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
get_stmt_operands (stmt);
|
||
mark_new_vars = false;
|
||
if (is_gimple_reg (SSA_NAME_VAR (var)))
|
||
{
|
||
if (TREE_CODE (stmt) == MODIFY_EXPR)
|
||
{
|
||
propagate_into_addr (stmt, var, &TREE_OPERAND (stmt, 0), repl);
|
||
propagate_into_addr (stmt, var, &TREE_OPERAND (stmt, 1), repl);
|
||
}
|
||
|
||
uses = USE_OPS (ann);
|
||
for (j = 0; j < (int) NUM_USES (uses); j++)
|
||
if (USE_OP (uses, j) == var)
|
||
{
|
||
propagate_value (USE_OP_PTR (uses, j), repl);
|
||
mark_new_vars = POINTER_TYPE_P (TREE_TYPE (repl));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
vuses = VUSE_OPS (ann);
|
||
for (j = 0; j < (int) NUM_VUSES (vuses); j++)
|
||
if (VUSE_OP (vuses, j) == var)
|
||
propagate_value (VUSE_OP_PTR (vuses, j), repl);
|
||
|
||
v_may_defs = V_MAY_DEF_OPS (ann);
|
||
for (j = 0; j < (int) NUM_V_MAY_DEFS (v_may_defs); j++)
|
||
if (V_MAY_DEF_OP (v_may_defs, j) == var)
|
||
propagate_value (V_MAY_DEF_OP_PTR (v_may_defs, j), repl);
|
||
}
|
||
|
||
/* If REPL is a pointer, it may have different memory tags associated
|
||
with it. For instance, VAR may have had a name tag while REPL
|
||
only had a type tag. In these cases, the virtual operands (if
|
||
any) in the statement will refer to different symbols which need
|
||
to be renamed. */
|
||
if (mark_new_vars)
|
||
mark_new_vars_to_rename (stmt, vars_to_rename);
|
||
else
|
||
modify_stmt (stmt);
|
||
}
|
||
}
|
||
|
||
/* Gets the value VAR is equivalent to according to EQ_TO. */
|
||
|
||
static tree
|
||
get_eq_name (tree *eq_to, tree var)
|
||
{
|
||
unsigned ver;
|
||
tree val = var;
|
||
|
||
while (TREE_CODE (val) == SSA_NAME)
|
||
{
|
||
ver = SSA_NAME_VERSION (val);
|
||
if (!eq_to[ver])
|
||
break;
|
||
|
||
val = eq_to[ver];
|
||
}
|
||
|
||
while (TREE_CODE (var) == SSA_NAME)
|
||
{
|
||
ver = SSA_NAME_VERSION (var);
|
||
if (!eq_to[ver])
|
||
break;
|
||
|
||
var = eq_to[ver];
|
||
eq_to[ver] = val;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Checks whether phi node PHI is redundant and if it is, records the ssa name
|
||
its result is redundant to to EQ_TO array. */
|
||
|
||
static void
|
||
check_phi_redundancy (tree phi, tree *eq_to)
|
||
{
|
||
tree val = NULL_TREE, def, res = PHI_RESULT (phi), stmt;
|
||
unsigned i, ver = SSA_NAME_VERSION (res), n;
|
||
dataflow_t df;
|
||
|
||
/* It is unlikely that such large phi node would be redundant. */
|
||
if (PHI_NUM_ARGS (phi) > 16)
|
||
return;
|
||
|
||
for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
|
||
{
|
||
def = PHI_ARG_DEF (phi, i);
|
||
|
||
if (TREE_CODE (def) == SSA_NAME)
|
||
{
|
||
def = get_eq_name (eq_to, def);
|
||
if (def == res)
|
||
continue;
|
||
}
|
||
|
||
if (val
|
||
&& !operand_equal_p (val, def, 0))
|
||
return;
|
||
|
||
val = def;
|
||
}
|
||
|
||
/* At least one of the arguments should not be equal to the result, or
|
||
something strange is happening. */
|
||
if (!val)
|
||
abort ();
|
||
|
||
if (get_eq_name (eq_to, res) == val)
|
||
return;
|
||
|
||
if (!may_propagate_copy (res, val))
|
||
return;
|
||
|
||
eq_to[ver] = val;
|
||
|
||
df = get_immediate_uses (SSA_NAME_DEF_STMT (res));
|
||
n = num_immediate_uses (df);
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
stmt = immediate_use (df, i);
|
||
|
||
if (TREE_CODE (stmt) == PHI_NODE)
|
||
check_phi_redundancy (stmt, eq_to);
|
||
}
|
||
}
|
||
|
||
/* Removes redundant phi nodes.
|
||
|
||
A redundant PHI node is a PHI node where all of its PHI arguments
|
||
are the same value, excluding any PHI arguments which are the same
|
||
as the PHI result.
|
||
|
||
A redundant PHI node is effectively a copy, so we forward copy propagate
|
||
which removes all uses of the destination of the PHI node then
|
||
finally we delete the redundant PHI node.
|
||
|
||
Note that if we can not copy propagate the PHI node, then the PHI
|
||
will not be removed. Thus we do not have to worry about dependencies
|
||
between PHIs and the problems serializing PHIs into copies creates.
|
||
|
||
The most important effect of this pass is to remove degenerate PHI
|
||
nodes created by removing unreachable code. */
|
||
|
||
static void
|
||
kill_redundant_phi_nodes (void)
|
||
{
|
||
tree *eq_to;
|
||
unsigned i, old_num_ssa_names;
|
||
basic_block bb;
|
||
tree phi, var, repl, stmt;
|
||
|
||
/* The EQ_TO[VER] holds the value by that the ssa name VER should be
|
||
replaced. If EQ_TO[VER] is ssa name and it is decided to replace it by
|
||
other value, it may be necessary to follow the chain till the final value.
|
||
We perform path shortening (replacing the entries of the EQ_TO array with
|
||
heads of these chains) whenever we access the field to prevent quadratic
|
||
complexity (probably would not occur in practice anyway, but let us play
|
||
it safe). */
|
||
eq_to = xcalloc (num_ssa_names, sizeof (tree));
|
||
|
||
/* We have had cases where computing immediate uses takes a
|
||
significant amount of compile time. If we run into such
|
||
problems here, we may want to only compute immediate uses for
|
||
a subset of all the SSA_NAMEs instead of computing it for
|
||
all of the SSA_NAMEs. */
|
||
compute_immediate_uses (TDFA_USE_OPS | TDFA_USE_VOPS, NULL);
|
||
old_num_ssa_names = num_ssa_names;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
|
||
{
|
||
var = PHI_RESULT (phi);
|
||
check_phi_redundancy (phi, eq_to);
|
||
}
|
||
}
|
||
|
||
/* Now propagate the values. */
|
||
for (i = 0; i < old_num_ssa_names; i++)
|
||
{
|
||
if (!ssa_name (i))
|
||
continue;
|
||
|
||
repl = get_eq_name (eq_to, ssa_name (i));
|
||
if (repl != ssa_name (i))
|
||
replace_immediate_uses (ssa_name (i), repl);
|
||
}
|
||
|
||
/* And remove the dead phis. */
|
||
for (i = 0; i < old_num_ssa_names; i++)
|
||
{
|
||
if (!ssa_name (i))
|
||
continue;
|
||
|
||
repl = get_eq_name (eq_to, ssa_name (i));
|
||
if (repl != ssa_name (i))
|
||
{
|
||
stmt = SSA_NAME_DEF_STMT (ssa_name (i));
|
||
remove_phi_node (stmt, NULL_TREE, bb_for_stmt (stmt));
|
||
}
|
||
}
|
||
|
||
free_df ();
|
||
free (eq_to);
|
||
}
|
||
|
||
struct tree_opt_pass pass_redundant_phi =
|
||
{
|
||
"redphi", /* name */
|
||
NULL, /* gate */
|
||
kill_redundant_phi_nodes, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_cfg | PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func | TODO_rename_vars
|
||
| TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
|
||
};
|
||
|
||
/* Emit warnings for uninitialized variables. This is done in two passes.
|
||
|
||
The first pass notices real uses of SSA names with default definitions.
|
||
Such uses are unconditionally uninitialized, and we can be certain that
|
||
such a use is a mistake. This pass is run before most optimizations,
|
||
so that we catch as many as we can.
|
||
|
||
The second pass follows PHI nodes to find uses that are potentially
|
||
uninitialized. In this case we can't necessarily prove that the use
|
||
is really uninitialized. This pass is run after most optimizations,
|
||
so that we thread as many jumps and possible, and delete as much dead
|
||
code as possible, in order to reduce false positives. We also look
|
||
again for plain uninitialized variables, since optimization may have
|
||
changed conditionally uninitialized to unconditionally uninitialized. */
|
||
|
||
/* Emit a warning for T, an SSA_NAME, being uninitialized. The exact
|
||
warning text is in MSGID and LOCUS may contain a location or be null. */
|
||
|
||
static void
|
||
warn_uninit (tree t, const char *msgid, location_t *locus)
|
||
{
|
||
tree var = SSA_NAME_VAR (t);
|
||
tree def = SSA_NAME_DEF_STMT (t);
|
||
|
||
/* Default uses (indicated by an empty definition statement),
|
||
are uninitialized. */
|
||
if (!IS_EMPTY_STMT (def))
|
||
return;
|
||
|
||
/* Except for PARMs of course, which are always initialized. */
|
||
if (TREE_CODE (var) == PARM_DECL)
|
||
return;
|
||
|
||
/* Hard register variables get their initial value from the ether. */
|
||
if (DECL_HARD_REGISTER (var))
|
||
return;
|
||
|
||
/* TREE_NO_WARNING either means we already warned, or the front end
|
||
wishes to suppress the warning. */
|
||
if (TREE_NO_WARNING (var))
|
||
return;
|
||
|
||
if (!locus)
|
||
locus = &DECL_SOURCE_LOCATION (var);
|
||
warning (msgid, locus, var);
|
||
TREE_NO_WARNING (var) = 1;
|
||
}
|
||
|
||
/* Called via walk_tree, look for SSA_NAMEs that have empty definitions
|
||
and warn about them. */
|
||
|
||
static tree
|
||
warn_uninitialized_var (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
location_t *locus = data;
|
||
tree t = *tp;
|
||
|
||
/* We only do data flow with SSA_NAMEs, so that's all we can warn about. */
|
||
if (TREE_CODE (t) == SSA_NAME)
|
||
{
|
||
warn_uninit (t, "%H'%D' is used uninitialized in this function", locus);
|
||
*walk_subtrees = 0;
|
||
}
|
||
else if (DECL_P (t) || TYPE_P (t))
|
||
*walk_subtrees = 0;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
|
||
and warn about them. */
|
||
|
||
static void
|
||
warn_uninitialized_phi (tree phi)
|
||
{
|
||
int i, n = PHI_NUM_ARGS (phi);
|
||
|
||
/* Don't look at memory tags. */
|
||
if (!is_gimple_reg (PHI_RESULT (phi)))
|
||
return;
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree op = PHI_ARG_DEF (phi, i);
|
||
if (TREE_CODE (op) == SSA_NAME)
|
||
warn_uninit (op, "%H'%D' may be used uninitialized in this function",
|
||
NULL);
|
||
}
|
||
}
|
||
|
||
static void
|
||
execute_early_warn_uninitialized (void)
|
||
{
|
||
block_stmt_iterator bsi;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
walk_tree (bsi_stmt_ptr (bsi), warn_uninitialized_var,
|
||
EXPR_LOCUS (bsi_stmt (bsi)), NULL);
|
||
}
|
||
|
||
static void
|
||
execute_late_warn_uninitialized (void)
|
||
{
|
||
basic_block bb;
|
||
tree phi;
|
||
|
||
/* Re-do the plain uninitialized variable check, as optimization may have
|
||
straightened control flow. Do this first so that we don't accidentally
|
||
get a "may be" warning when we'd have seen an "is" warning later. */
|
||
execute_early_warn_uninitialized ();
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
warn_uninitialized_phi (phi);
|
||
}
|
||
|
||
static bool
|
||
gate_warn_uninitialized (void)
|
||
{
|
||
return warn_uninitialized != 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_early_warn_uninitialized =
|
||
{
|
||
NULL, /* name */
|
||
gate_warn_uninitialized, /* gate */
|
||
execute_early_warn_uninitialized, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0 /* todo_flags_finish */
|
||
};
|
||
|
||
struct tree_opt_pass pass_late_warn_uninitialized =
|
||
{
|
||
NULL, /* name */
|
||
gate_warn_uninitialized, /* gate */
|
||
execute_late_warn_uninitialized, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0 /* todo_flags_finish */
|
||
};
|