
gcc/ * config/sparc/sparc.md (UNSPEC_SHORT_LOAD): New unspec. (zero-extend_v8qi_vis, zero_extend_v4hi_vis): New expanders. (*zero_extend_v8qi_<P:mode>_insn, *zero_extend_v4hi_<P:mode>_insn): New insns. * config/sparc/sparc.c (vector_init_move_words, vector_init_prepare_elts, sparc_expand_vector_init_vis2, sparc_expand_vector_init_vis1): New functions. (vector_init_bshuffle): Rewrite to handle more cases and make use of locs[] array prepared by vector_init_prepare_elts. (vector_init_fpmerge, vector_init_faligndata): Delete. (sparc_expand_vector_init): Rewrite using new infrastructure. gcc/testsuite/ * lib/test-supports.exp (check_effective_target_ultrasparc_vis2_hw): New proc. (check_effective_target_ultrasparc_vis3_hw): New proc. * gcc.target/sparc/vec-init-1.inc: New vector init common code. * gcc.target/sparc/vec-init-2.inc: Likewise. * gcc.target/sparc/vec-init-3.inc: Likewise. * gcc.target/sparc/vec-init-1-vis1.c: New test. * gcc.target/sparc/vec-init-1-vis2.c: New test. * gcc.target/sparc/vec-init-1-vis3.c: New test. * gcc.target/sparc/vec-init-2-vis1.c: New test. * gcc.target/sparc/vec-init-2-vis2.c: New test. * gcc.target/sparc/vec-init-2-vis3.c: New test. * gcc.target/sparc/vec-init-3-vis1.c: New test. * gcc.target/sparc/vec-init-3-vis2.c: New test. * gcc.target/sparc/vec-init-3-vis3.c: New test. From-SVN: r181024
4271 lines
124 KiB
Text
4271 lines
124 KiB
Text
# Copyright (C) 1999, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
|
|
# 2011 Free Software Foundation, Inc.
|
|
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with GCC; see the file COPYING3. If not see
|
|
# <http://www.gnu.org/licenses/>.
|
|
|
|
# Please email any bugs, comments, and/or additions to this file to:
|
|
# gcc-patches@gcc.gnu.org
|
|
|
|
# This file defines procs for determining features supported by the target.
|
|
|
|
# Try to compile the code given by CONTENTS into an output file of
|
|
# type TYPE, where TYPE is as for target_compile. Return a list
|
|
# whose first element contains the compiler messages and whose
|
|
# second element is the name of the output file.
|
|
#
|
|
# BASENAME is a prefix to use for source and output files.
|
|
# If ARGS is not empty, its first element is a string that
|
|
# should be added to the command line.
|
|
#
|
|
# Assume by default that CONTENTS is C code.
|
|
# Otherwise, code should contain:
|
|
# "// C++" for c++,
|
|
# "! Fortran" for Fortran code,
|
|
# "/* ObjC", for ObjC
|
|
# "// ObjC++" for ObjC++
|
|
# and "// Go" for Go
|
|
# If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
|
|
# allow for ObjC/ObjC++ specific flags.
|
|
proc check_compile {basename type contents args} {
|
|
global tool
|
|
verbose "check_compile tool: $tool for $basename"
|
|
|
|
if { [llength $args] > 0 } {
|
|
set options [list "additional_flags=[lindex $args 0]"]
|
|
} else {
|
|
set options ""
|
|
}
|
|
switch -glob -- $contents {
|
|
"*! Fortran*" { set src ${basename}[pid].f90 }
|
|
"*// C++*" { set src ${basename}[pid].cc }
|
|
"*// ObjC++*" { set src ${basename}[pid].mm }
|
|
"*/* ObjC*" { set src ${basename}[pid].m }
|
|
"*// Go*" { set src ${basename}[pid].go }
|
|
default {
|
|
switch -- $tool {
|
|
"objc" { set src ${basename}[pid].m }
|
|
"obj-c++" { set src ${basename}[pid].mm }
|
|
default { set src ${basename}[pid].c }
|
|
}
|
|
}
|
|
}
|
|
|
|
set compile_type $type
|
|
switch -glob $type {
|
|
assembly { set output ${basename}[pid].s }
|
|
object { set output ${basename}[pid].o }
|
|
executable { set output ${basename}[pid].exe }
|
|
"rtl-*" {
|
|
set output ${basename}[pid].s
|
|
lappend options "additional_flags=-fdump-$type"
|
|
set compile_type assembly
|
|
}
|
|
}
|
|
set f [open $src "w"]
|
|
puts $f $contents
|
|
close $f
|
|
set lines [${tool}_target_compile $src $output $compile_type "$options"]
|
|
file delete $src
|
|
|
|
set scan_output $output
|
|
# Don't try folding this into the switch above; calling "glob" before the
|
|
# file is created won't work.
|
|
if [regexp "rtl-(.*)" $type dummy rtl_type] {
|
|
set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
|
|
file delete $output
|
|
}
|
|
|
|
return [list $lines $scan_output]
|
|
}
|
|
|
|
proc current_target_name { } {
|
|
global target_info
|
|
if [info exists target_info(target,name)] {
|
|
set answer $target_info(target,name)
|
|
} else {
|
|
set answer ""
|
|
}
|
|
return $answer
|
|
}
|
|
|
|
# Implement an effective-target check for property PROP by invoking
|
|
# the Tcl command ARGS and seeing if it returns true.
|
|
|
|
proc check_cached_effective_target { prop args } {
|
|
global et_cache
|
|
|
|
set target [current_target_name]
|
|
if {![info exists et_cache($prop,target)]
|
|
|| $et_cache($prop,target) != $target} {
|
|
verbose "check_cached_effective_target $prop: checking $target" 2
|
|
set et_cache($prop,target) $target
|
|
set et_cache($prop,value) [uplevel eval $args]
|
|
}
|
|
set value $et_cache($prop,value)
|
|
verbose "check_cached_effective_target $prop: returning $value for $target" 2
|
|
return $value
|
|
}
|
|
|
|
# Like check_compile, but delete the output file and return true if the
|
|
# compiler printed no messages.
|
|
proc check_no_compiler_messages_nocache {args} {
|
|
set result [eval check_compile $args]
|
|
set lines [lindex $result 0]
|
|
set output [lindex $result 1]
|
|
remote_file build delete $output
|
|
return [string match "" $lines]
|
|
}
|
|
|
|
# Like check_no_compiler_messages_nocache, but cache the result.
|
|
# PROP is the property we're checking, and doubles as a prefix for
|
|
# temporary filenames.
|
|
proc check_no_compiler_messages {prop args} {
|
|
return [check_cached_effective_target $prop {
|
|
eval [list check_no_compiler_messages_nocache $prop] $args
|
|
}]
|
|
}
|
|
|
|
# Like check_compile, but return true if the compiler printed no
|
|
# messages and if the contents of the output file satisfy PATTERN.
|
|
# If PATTERN has the form "!REGEXP", the contents satisfy it if they
|
|
# don't match regular expression REGEXP, otherwise they satisfy it
|
|
# if they do match regular expression PATTERN. (PATTERN can start
|
|
# with something like "[!]" if the regular expression needs to match
|
|
# "!" as the first character.)
|
|
#
|
|
# Delete the output file before returning. The other arguments are
|
|
# as for check_compile.
|
|
proc check_no_messages_and_pattern_nocache {basename pattern args} {
|
|
global tool
|
|
|
|
set result [eval [list check_compile $basename] $args]
|
|
set lines [lindex $result 0]
|
|
set output [lindex $result 1]
|
|
|
|
set ok 0
|
|
if { [string match "" $lines] } {
|
|
set chan [open "$output"]
|
|
set invert [regexp {^!(.*)} $pattern dummy pattern]
|
|
set ok [expr { [regexp $pattern [read $chan]] != $invert }]
|
|
close $chan
|
|
}
|
|
|
|
remote_file build delete $output
|
|
return $ok
|
|
}
|
|
|
|
# Like check_no_messages_and_pattern_nocache, but cache the result.
|
|
# PROP is the property we're checking, and doubles as a prefix for
|
|
# temporary filenames.
|
|
proc check_no_messages_and_pattern {prop pattern args} {
|
|
return [check_cached_effective_target $prop {
|
|
eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
|
|
}]
|
|
}
|
|
|
|
# Try to compile and run an executable from code CONTENTS. Return true
|
|
# if the compiler reports no messages and if execution "passes" in the
|
|
# usual DejaGNU sense. The arguments are as for check_compile, with
|
|
# TYPE implicitly being "executable".
|
|
proc check_runtime_nocache {basename contents args} {
|
|
global tool
|
|
|
|
set result [eval [list check_compile $basename executable $contents] $args]
|
|
set lines [lindex $result 0]
|
|
set output [lindex $result 1]
|
|
|
|
set ok 0
|
|
if { [string match "" $lines] } {
|
|
# No error messages, everything is OK.
|
|
set result [remote_load target "./$output" "" ""]
|
|
set status [lindex $result 0]
|
|
verbose "check_runtime_nocache $basename: status is <$status>" 2
|
|
if { $status == "pass" } {
|
|
set ok 1
|
|
}
|
|
}
|
|
remote_file build delete $output
|
|
return $ok
|
|
}
|
|
|
|
# Like check_runtime_nocache, but cache the result. PROP is the
|
|
# property we're checking, and doubles as a prefix for temporary
|
|
# filenames.
|
|
proc check_runtime {prop args} {
|
|
global tool
|
|
|
|
return [check_cached_effective_target $prop {
|
|
eval [list check_runtime_nocache $prop] $args
|
|
}]
|
|
}
|
|
|
|
###############################
|
|
# proc check_weak_available { }
|
|
###############################
|
|
|
|
# weak symbols are only supported in some configs/object formats
|
|
# this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
|
|
|
|
proc check_weak_available { } {
|
|
global target_cpu
|
|
|
|
# All mips targets should support it
|
|
|
|
if { [ string first "mips" $target_cpu ] >= 0 } {
|
|
return 1
|
|
}
|
|
|
|
# All solaris2 targets should support it
|
|
|
|
if { [istarget *-*-solaris2*] } {
|
|
return 1
|
|
}
|
|
|
|
# DEC OSF/1/Digital UNIX/Tru64 UNIX supports it
|
|
|
|
if { [istarget alpha*-dec-osf*] } {
|
|
return 1
|
|
}
|
|
|
|
# Windows targets Cygwin and MingW32 support it
|
|
|
|
if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
|
|
return 1
|
|
}
|
|
|
|
# HP-UX 10.X doesn't support it
|
|
|
|
if { [istarget hppa*-*-hpux10*] } {
|
|
return 0
|
|
}
|
|
|
|
# ELF and ECOFF support it. a.out does with gas/gld but may also with
|
|
# other linkers, so we should try it
|
|
|
|
set objformat [gcc_target_object_format]
|
|
|
|
switch $objformat {
|
|
elf { return 1 }
|
|
ecoff { return 1 }
|
|
a.out { return 1 }
|
|
mach-o { return 1 }
|
|
som { return 1 }
|
|
unknown { return -1 }
|
|
default { return 0 }
|
|
}
|
|
}
|
|
|
|
###############################
|
|
# proc check_weak_override_available { }
|
|
###############################
|
|
|
|
# Like check_weak_available, but return 0 if weak symbol definitions
|
|
# cannot be overridden.
|
|
|
|
proc check_weak_override_available { } {
|
|
if { [istarget *-*-mingw*] } {
|
|
return 0
|
|
}
|
|
return [check_weak_available]
|
|
}
|
|
|
|
###############################
|
|
# proc check_visibility_available { what_kind }
|
|
###############################
|
|
|
|
# The visibility attribute is only support in some object formats
|
|
# This proc returns 1 if it is supported, 0 if not.
|
|
# The argument is the kind of visibility, default/protected/hidden/internal.
|
|
|
|
proc check_visibility_available { what_kind } {
|
|
if [string match "" $what_kind] { set what_kind "hidden" }
|
|
|
|
return [check_no_compiler_messages visibility_available_$what_kind object "
|
|
void f() __attribute__((visibility(\"$what_kind\")));
|
|
void f() {}
|
|
"]
|
|
}
|
|
|
|
###############################
|
|
# proc check_alias_available { }
|
|
###############################
|
|
|
|
# Determine if the target toolchain supports the alias attribute.
|
|
|
|
# Returns 2 if the target supports aliases. Returns 1 if the target
|
|
# only supports weak aliased. Returns 0 if the target does not
|
|
# support aliases at all. Returns -1 if support for aliases could not
|
|
# be determined.
|
|
|
|
proc check_alias_available { } {
|
|
global alias_available_saved
|
|
global tool
|
|
|
|
if [info exists alias_available_saved] {
|
|
verbose "check_alias_available returning saved $alias_available_saved" 2
|
|
} else {
|
|
set src alias[pid].c
|
|
set obj alias[pid].o
|
|
verbose "check_alias_available compiling testfile $src" 2
|
|
set f [open $src "w"]
|
|
# Compile a small test program. The definition of "g" is
|
|
# necessary to keep the Solaris assembler from complaining
|
|
# about the program.
|
|
puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
|
|
puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
|
|
close $f
|
|
set lines [${tool}_target_compile $src $obj object ""]
|
|
file delete $src
|
|
remote_file build delete $obj
|
|
|
|
if [string match "" $lines] then {
|
|
# No error messages, everything is OK.
|
|
set alias_available_saved 2
|
|
} else {
|
|
if [regexp "alias definitions not supported" $lines] {
|
|
verbose "check_alias_available target does not support aliases" 2
|
|
|
|
set objformat [gcc_target_object_format]
|
|
|
|
if { $objformat == "elf" } {
|
|
verbose "check_alias_available but target uses ELF format, so it ought to" 2
|
|
set alias_available_saved -1
|
|
} else {
|
|
set alias_available_saved 0
|
|
}
|
|
} else {
|
|
if [regexp "only weak aliases are supported" $lines] {
|
|
verbose "check_alias_available target supports only weak aliases" 2
|
|
set alias_available_saved 1
|
|
} else {
|
|
set alias_available_saved -1
|
|
}
|
|
}
|
|
}
|
|
|
|
verbose "check_alias_available returning $alias_available_saved" 2
|
|
}
|
|
|
|
return $alias_available_saved
|
|
}
|
|
|
|
# Returns 1 if the target toolchain supports ifunc, 0 otherwise.
|
|
|
|
proc check_ifunc_available { } {
|
|
return [check_no_compiler_messages ifunc_available object {
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
#endif
|
|
void g() {}
|
|
void f() __attribute__((ifunc("g")));
|
|
}]
|
|
}
|
|
|
|
# Returns true if --gc-sections is supported on the target.
|
|
|
|
proc check_gc_sections_available { } {
|
|
global gc_sections_available_saved
|
|
global tool
|
|
|
|
if {![info exists gc_sections_available_saved]} {
|
|
# Some targets don't support gc-sections despite whatever's
|
|
# advertised by ld's options.
|
|
if { [istarget alpha*-*-*]
|
|
|| [istarget ia64-*-*] } {
|
|
set gc_sections_available_saved 0
|
|
return 0
|
|
}
|
|
|
|
# elf2flt uses -q (--emit-relocs), which is incompatible with
|
|
# --gc-sections.
|
|
if { [board_info target exists ldflags]
|
|
&& [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
|
|
set gc_sections_available_saved 0
|
|
return 0
|
|
}
|
|
|
|
# VxWorks kernel modules are relocatable objects linked with -r,
|
|
# while RTP executables are linked with -q (--emit-relocs).
|
|
# Both of these options are incompatible with --gc-sections.
|
|
if { [istarget *-*-vxworks*] } {
|
|
set gc_sections_available_saved 0
|
|
return 0
|
|
}
|
|
|
|
# Check if the ld used by gcc supports --gc-sections.
|
|
set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
|
|
regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
|
|
set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
|
|
set ld_output [remote_exec host "$gcc_ld" "--help"]
|
|
if { [ string first "--gc-sections" $ld_output ] >= 0 } {
|
|
set gc_sections_available_saved 1
|
|
} else {
|
|
set gc_sections_available_saved 0
|
|
}
|
|
}
|
|
return $gc_sections_available_saved
|
|
}
|
|
|
|
# Return 1 if according to target_info struct and explicit target list
|
|
# target is supposed to support trampolines.
|
|
|
|
proc check_effective_target_trampolines { } {
|
|
if [target_info exists no_trampolines] {
|
|
return 0
|
|
}
|
|
if { [istarget avr-*-*]
|
|
|| [istarget hppa2.0w-hp-hpux11.23]
|
|
|| [istarget hppa64-hp-hpux11.23] } {
|
|
return 0;
|
|
}
|
|
return 1
|
|
}
|
|
|
|
# Return 1 if according to target_info struct and explicit target list
|
|
# target is supposed to keep null pointer checks. This could be due to
|
|
# use of option fno-delete-null-pointer-checks or hardwired in target.
|
|
|
|
proc check_effective_target_keeps_null_pointer_checks { } {
|
|
if [target_info exists keeps_null_pointer_checks] {
|
|
return 1
|
|
}
|
|
if { [istarget avr-*-*] } {
|
|
return 1;
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Return true if profiling is supported on the target.
|
|
|
|
proc check_profiling_available { test_what } {
|
|
global profiling_available_saved
|
|
|
|
verbose "Profiling argument is <$test_what>" 1
|
|
|
|
# These conditions depend on the argument so examine them before
|
|
# looking at the cache variable.
|
|
|
|
# Tree profiling requires TLS runtime support.
|
|
if { $test_what == "-fprofile-generate" } {
|
|
if { ![check_effective_target_tls_runtime] } {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Support for -p on solaris2 relies on mcrt1.o which comes with the
|
|
# vendor compiler. We cannot reliably predict the directory where the
|
|
# vendor compiler (and thus mcrt1.o) is installed so we can't
|
|
# necessarily find mcrt1.o even if we have it.
|
|
if { [istarget *-*-solaris2*] && $test_what == "-p" } {
|
|
return 0
|
|
}
|
|
|
|
# Support for -p on irix relies on libprof1.a which doesn't appear to
|
|
# exist on any irix6 system currently posting testsuite results.
|
|
# Support for -pg on irix relies on gcrt1.o which doesn't exist yet.
|
|
# See: http://gcc.gnu.org/ml/gcc/2002-10/msg00169.html
|
|
if { [istarget mips*-*-irix*]
|
|
&& ($test_what == "-p" || $test_what == "-pg") } {
|
|
return 0
|
|
}
|
|
|
|
# We don't yet support profiling for MIPS16.
|
|
if { [istarget mips*-*-*]
|
|
&& ![check_effective_target_nomips16]
|
|
&& ($test_what == "-p" || $test_what == "-pg") } {
|
|
return 0
|
|
}
|
|
|
|
# MinGW does not support -p.
|
|
if { [istarget *-*-mingw*] && $test_what == "-p" } {
|
|
return 0
|
|
}
|
|
|
|
# cygwin does not support -p.
|
|
if { [istarget *-*-cygwin*] && $test_what == "-p" } {
|
|
return 0
|
|
}
|
|
|
|
# uClibc does not have gcrt1.o.
|
|
if { [check_effective_target_uclibc]
|
|
&& ($test_what == "-p" || $test_what == "-pg") } {
|
|
return 0
|
|
}
|
|
|
|
# Now examine the cache variable.
|
|
if {![info exists profiling_available_saved]} {
|
|
# Some targets don't have any implementation of __bb_init_func or are
|
|
# missing other needed machinery.
|
|
if { [istarget am3*-*-linux*]
|
|
|| [istarget arm*-*-eabi*]
|
|
|| [istarget arm*-*-elf]
|
|
|| [istarget arm*-*-symbianelf*]
|
|
|| [istarget avr-*-*]
|
|
|| [istarget bfin-*-*]
|
|
|| [istarget cris-*-*]
|
|
|| [istarget crisv32-*-*]
|
|
|| [istarget fido-*-elf]
|
|
|| [istarget h8300-*-*]
|
|
|| [istarget lm32-*-*]
|
|
|| [istarget m32c-*-elf]
|
|
|| [istarget m68k-*-elf]
|
|
|| [istarget m68k-*-uclinux*]
|
|
|| [istarget mep-*-elf]
|
|
|| [istarget mips*-*-elf*]
|
|
|| [istarget mmix-*-*]
|
|
|| [istarget mn10300-*-elf*]
|
|
|| [istarget moxie-*-elf*]
|
|
|| [istarget picochip-*-*]
|
|
|| [istarget powerpc-*-eabi*]
|
|
|| [istarget powerpc-*-elf]
|
|
|| [istarget rx-*-*]
|
|
|| [istarget tic6x-*-elf]
|
|
|| [istarget xstormy16-*]
|
|
|| [istarget xtensa*-*-elf]
|
|
|| [istarget *-*-rtems*]
|
|
|| [istarget *-*-vxworks*] } {
|
|
set profiling_available_saved 0
|
|
} else {
|
|
set profiling_available_saved 1
|
|
}
|
|
}
|
|
|
|
return $profiling_available_saved
|
|
}
|
|
|
|
# Check to see if a target is "freestanding". This is as per the definition
|
|
# in Section 4 of C99 standard. Effectively, it is a target which supports no
|
|
# extra headers or libraries other than what is considered essential.
|
|
proc check_effective_target_freestanding { } {
|
|
if { [istarget picochip-*-*] } then {
|
|
return 1
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if target has packed layout of structure members by
|
|
# default, 0 otherwise. Note that this is slightly different than
|
|
# whether the target has "natural alignment": both attributes may be
|
|
# false.
|
|
|
|
proc check_effective_target_default_packed { } {
|
|
return [check_no_compiler_messages default_packed assembly {
|
|
struct x { char a; long b; } c;
|
|
int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
|
|
# documentation, where the test also comes from.
|
|
|
|
proc check_effective_target_pcc_bitfield_type_matters { } {
|
|
# PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
|
|
# bitfields, but let's stick to the example code from the docs.
|
|
return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
|
|
struct foo1 { char x; char :0; char y; };
|
|
struct foo2 { char x; int :0; char y; };
|
|
int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Add to FLAGS all the target-specific flags needed to use thread-local storage.
|
|
|
|
proc add_options_for_tls { flags } {
|
|
# Tru64 UNIX uses emutls, which relies on a couple of pthread functions
|
|
# which only live in libpthread, so always pass -pthread for TLS.
|
|
if { [istarget alpha*-dec-osf*] } {
|
|
return "$flags -pthread"
|
|
}
|
|
# On Solaris 8 and 9, __tls_get_addr/___tls_get_addr only lives in
|
|
# libthread, so always pass -pthread for native TLS.
|
|
# Need to duplicate native TLS check from
|
|
# check_effective_target_tls_native to avoid recursion.
|
|
if { [istarget *-*-solaris2.\[89\]*] &&
|
|
[check_no_messages_and_pattern tls_native "!emutls" assembly {
|
|
__thread int i;
|
|
int f (void) { return i; }
|
|
void g (int j) { i = j; }
|
|
}] } {
|
|
return "$flags -pthread"
|
|
}
|
|
return $flags
|
|
}
|
|
|
|
# Return 1 if thread local storage (TLS) is supported, 0 otherwise.
|
|
|
|
proc check_effective_target_tls {} {
|
|
return [check_no_compiler_messages tls assembly {
|
|
__thread int i;
|
|
int f (void) { return i; }
|
|
void g (int j) { i = j; }
|
|
}]
|
|
}
|
|
|
|
# Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
|
|
|
|
proc check_effective_target_tls_native {} {
|
|
# VxWorks uses emulated TLS machinery, but with non-standard helper
|
|
# functions, so we fail to automatically detect it.
|
|
if { [istarget *-*-vxworks*] } {
|
|
return 0
|
|
}
|
|
|
|
return [check_no_messages_and_pattern tls_native "!emutls" assembly {
|
|
__thread int i;
|
|
int f (void) { return i; }
|
|
void g (int j) { i = j; }
|
|
}]
|
|
}
|
|
|
|
# Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
|
|
|
|
proc check_effective_target_tls_emulated {} {
|
|
# VxWorks uses emulated TLS machinery, but with non-standard helper
|
|
# functions, so we fail to automatically detect it.
|
|
if { [istarget *-*-vxworks*] } {
|
|
return 1
|
|
}
|
|
|
|
return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
|
|
__thread int i;
|
|
int f (void) { return i; }
|
|
void g (int j) { i = j; }
|
|
}]
|
|
}
|
|
|
|
# Return 1 if TLS executables can run correctly, 0 otherwise.
|
|
|
|
proc check_effective_target_tls_runtime {} {
|
|
return [check_runtime tls_runtime {
|
|
__thread int thr = 0;
|
|
int main (void) { return thr; }
|
|
} [add_options_for_tls ""]]
|
|
}
|
|
|
|
# Return 1 if -ffunction-sections is supported, 0 otherwise.
|
|
|
|
proc check_effective_target_function_sections {} {
|
|
# Darwin has its own scheme and silently accepts -ffunction-sections.
|
|
if { [istarget *-*-darwin*] } {
|
|
return 0
|
|
}
|
|
|
|
return [check_no_compiler_messages functionsections assembly {
|
|
void foo (void) { }
|
|
} "-ffunction-sections"]
|
|
}
|
|
|
|
# Return 1 if instruction scheduling is available, 0 otherwise.
|
|
|
|
proc check_effective_target_scheduling {} {
|
|
return [check_no_compiler_messages scheduling object {
|
|
void foo (void) { }
|
|
} "-fschedule-insns"]
|
|
}
|
|
|
|
# Return 1 if compilation with -fgraphite is error-free for trivial
|
|
# code, 0 otherwise.
|
|
|
|
proc check_effective_target_fgraphite {} {
|
|
return [check_no_compiler_messages fgraphite object {
|
|
void foo (void) { }
|
|
} "-O1 -fgraphite"]
|
|
}
|
|
|
|
# Return 1 if compilation with -fopenmp is error-free for trivial
|
|
# code, 0 otherwise.
|
|
|
|
proc check_effective_target_fopenmp {} {
|
|
return [check_no_compiler_messages fopenmp object {
|
|
void foo (void) { }
|
|
} "-fopenmp"]
|
|
}
|
|
|
|
# Return 1 if the target supports mmap, 0 otherwise.
|
|
|
|
proc check_effective_target_mmap {} {
|
|
return [check_function_available "mmap"]
|
|
}
|
|
|
|
# Return 1 if compilation with -pthread is error-free for trivial
|
|
# code, 0 otherwise.
|
|
|
|
proc check_effective_target_pthread {} {
|
|
return [check_no_compiler_messages pthread object {
|
|
void foo (void) { }
|
|
} "-pthread"]
|
|
}
|
|
|
|
# Return 1 if compilation with -mpe-aligned-commons is error-free
|
|
# for trivial code, 0 otherwise.
|
|
|
|
proc check_effective_target_pe_aligned_commons {} {
|
|
if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
|
|
return [check_no_compiler_messages pe_aligned_commons object {
|
|
int foo;
|
|
} "-mpe-aligned-commons"]
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Return 1 if the target supports -static
|
|
proc check_effective_target_static {} {
|
|
return [check_no_compiler_messages static executable {
|
|
int main (void) { return 0; }
|
|
} "-static"]
|
|
}
|
|
|
|
# Return 1 if the target supports -fstack-protector
|
|
proc check_effective_target_fstack_protector {} {
|
|
return [check_runtime fstack_protector {
|
|
int main (void) { return 0; }
|
|
} "-fstack-protector"]
|
|
}
|
|
|
|
# Return 1 if compilation with -freorder-blocks-and-partition is error-free
|
|
# for trivial code, 0 otherwise.
|
|
|
|
proc check_effective_target_freorder {} {
|
|
return [check_no_compiler_messages freorder object {
|
|
void foo (void) { }
|
|
} "-freorder-blocks-and-partition"]
|
|
}
|
|
|
|
# Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
|
|
# emitted, 0 otherwise. Whether a shared library can actually be built is
|
|
# out of scope for this test.
|
|
|
|
proc check_effective_target_fpic { } {
|
|
# Note that M68K has a multilib that supports -fpic but not
|
|
# -fPIC, so we need to check both. We test with a program that
|
|
# requires GOT references.
|
|
foreach arg {fpic fPIC} {
|
|
if [check_no_compiler_messages $arg object {
|
|
extern int foo (void); extern int bar;
|
|
int baz (void) { return foo () + bar; }
|
|
} "-$arg"] {
|
|
return 1
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.
|
|
|
|
proc check_effective_target_pie { } {
|
|
if { [istarget *-*-darwin\[912\]*]
|
|
|| [istarget *-*-linux*] } {
|
|
return 1;
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Return true if the target supports -mpaired-single (as used on MIPS).
|
|
|
|
proc check_effective_target_mpaired_single { } {
|
|
return [check_no_compiler_messages mpaired_single object {
|
|
void foo (void) { }
|
|
} "-mpaired-single"]
|
|
}
|
|
|
|
# Return true if the target has access to FPU instructions.
|
|
|
|
proc check_effective_target_hard_float { } {
|
|
if { [istarget mips*-*-*] } {
|
|
return [check_no_compiler_messages hard_float assembly {
|
|
#if (defined __mips_soft_float || defined __mips16)
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# This proc is actually checking the availabilty of FPU
|
|
# support for doubles, so on the RX we must fail if the
|
|
# 64-bit double multilib has been selected.
|
|
if { [istarget rx-*-*] } {
|
|
return 0
|
|
# return [check_no_compiler_messages hard_float assembly {
|
|
#if defined __RX_64_BIT_DOUBLES__
|
|
#error FOO
|
|
#endif
|
|
# }]
|
|
}
|
|
|
|
# The generic test equates hard_float with "no call for adding doubles".
|
|
return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
|
|
double a (double b, double c) { return b + c; }
|
|
}]
|
|
}
|
|
|
|
# Return true if the target is a 64-bit MIPS target.
|
|
|
|
proc check_effective_target_mips64 { } {
|
|
return [check_no_compiler_messages mips64 assembly {
|
|
#ifndef __mips64
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return true if the target is a MIPS target that does not produce
|
|
# MIPS16 code.
|
|
|
|
proc check_effective_target_nomips16 { } {
|
|
return [check_no_compiler_messages nomips16 object {
|
|
#ifndef __mips
|
|
#error FOO
|
|
#else
|
|
/* A cheap way of testing for -mflip-mips16. */
|
|
void foo (void) { asm ("addiu $20,$20,1"); }
|
|
void bar (void) { asm ("addiu $20,$20,1"); }
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Add the options needed for MIPS16 function attributes. At the moment,
|
|
# we don't support MIPS16 PIC.
|
|
|
|
proc add_options_for_mips16_attribute { flags } {
|
|
return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
|
|
}
|
|
|
|
# Return true if we can force a mode that allows MIPS16 code generation.
|
|
# We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
|
|
# for o32 and o64.
|
|
|
|
proc check_effective_target_mips16_attribute { } {
|
|
return [check_no_compiler_messages mips16_attribute assembly {
|
|
#ifdef PIC
|
|
#error FOO
|
|
#endif
|
|
#if defined __mips_hard_float \
|
|
&& (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
|
|
&& (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
|
|
#error FOO
|
|
#endif
|
|
} [add_options_for_mips16_attribute ""]]
|
|
}
|
|
|
|
# Return 1 if the target supports long double larger than double when
|
|
# using the new ABI, 0 otherwise.
|
|
|
|
proc check_effective_target_mips_newabi_large_long_double { } {
|
|
return [check_no_compiler_messages mips_newabi_large_long_double object {
|
|
int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
|
|
} "-mabi=64"]
|
|
}
|
|
|
|
# Return 1 if the current multilib does not generate PIC by default.
|
|
|
|
proc check_effective_target_nonpic { } {
|
|
return [check_no_compiler_messages nonpic assembly {
|
|
#if __PIC__
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target does not use a status wrapper.
|
|
|
|
proc check_effective_target_unwrapped { } {
|
|
if { [target_info needs_status_wrapper] != "" \
|
|
&& [target_info needs_status_wrapper] != "0" } {
|
|
return 0
|
|
}
|
|
return 1
|
|
}
|
|
|
|
# Return true if iconv is supported on the target. In particular IBM1047.
|
|
|
|
proc check_iconv_available { test_what } {
|
|
global libiconv
|
|
|
|
# If the tool configuration file has not set libiconv, try "-liconv"
|
|
if { ![info exists libiconv] } {
|
|
set libiconv "-liconv"
|
|
}
|
|
set test_what [lindex $test_what 1]
|
|
return [check_runtime_nocache $test_what [subst {
|
|
#include <iconv.h>
|
|
int main (void)
|
|
{
|
|
iconv_t cd;
|
|
|
|
cd = iconv_open ("$test_what", "UTF-8");
|
|
if (cd == (iconv_t) -1)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
}] $libiconv]
|
|
}
|
|
|
|
# Return 1 if an ASCII locale is supported on this host, 0 otherwise.
|
|
|
|
proc check_ascii_locale_available { } {
|
|
if { ([ishost alpha*-dec-osf*] || [ishost mips-sgi-irix*]) } {
|
|
# Neither Tru64 UNIX nor IRIX support an ASCII locale.
|
|
return 0
|
|
} else {
|
|
return 1
|
|
}
|
|
}
|
|
|
|
# Return true if named sections are supported on this target.
|
|
|
|
proc check_named_sections_available { } {
|
|
return [check_no_compiler_messages named_sections assembly {
|
|
int __attribute__ ((section("whatever"))) foo;
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports Fortran real kinds larger than real(8),
|
|
# 0 otherwise.
|
|
#
|
|
# When the target name changes, replace the cached result.
|
|
|
|
proc check_effective_target_fortran_large_real { } {
|
|
return [check_no_compiler_messages fortran_large_real executable {
|
|
! Fortran
|
|
integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
|
|
real(kind=k) :: x
|
|
x = cos (x)
|
|
end
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports Fortran real kind real(16),
|
|
# 0 otherwise. Contrary to check_effective_target_fortran_large_real
|
|
# this checks for Real(16) only; the other returned real(10) if
|
|
# both real(10) and real(16) are available.
|
|
#
|
|
# When the target name changes, replace the cached result.
|
|
|
|
proc check_effective_target_fortran_real_16 { } {
|
|
return [check_no_compiler_messages fortran_real_16 executable {
|
|
! Fortran
|
|
real(kind=16) :: x
|
|
x = cos (x)
|
|
end
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports Fortran integer kinds larger than
|
|
# integer(8), 0 otherwise.
|
|
#
|
|
# When the target name changes, replace the cached result.
|
|
|
|
proc check_effective_target_fortran_large_int { } {
|
|
return [check_no_compiler_messages fortran_large_int executable {
|
|
! Fortran
|
|
integer,parameter :: k = selected_int_kind (range (0_8) + 1)
|
|
integer(kind=k) :: i
|
|
end
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports Fortran integer(16), 0 otherwise.
|
|
#
|
|
# When the target name changes, replace the cached result.
|
|
|
|
proc check_effective_target_fortran_integer_16 { } {
|
|
return [check_no_compiler_messages fortran_integer_16 executable {
|
|
! Fortran
|
|
integer(16) :: i
|
|
end
|
|
}]
|
|
}
|
|
|
|
# Return 1 if we can statically link libgfortran, 0 otherwise.
|
|
#
|
|
# When the target name changes, replace the cached result.
|
|
|
|
proc check_effective_target_static_libgfortran { } {
|
|
return [check_no_compiler_messages static_libgfortran executable {
|
|
! Fortran
|
|
print *, 'test'
|
|
end
|
|
} "-static"]
|
|
}
|
|
|
|
proc check_linker_plugin_available { } {
|
|
return [check_no_compiler_messages_nocache linker_plugin executable {
|
|
int main() { return 0; }
|
|
} "-flto -fuse-linker-plugin"]
|
|
}
|
|
|
|
# Return 1 if the target supports executing 750CL paired-single instructions, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_750cl_hw_available { } {
|
|
return [check_cached_effective_target 750cl_hw_available {
|
|
# If this is not the right target then we can skip the test.
|
|
if { ![istarget powerpc-*paired*] } {
|
|
expr 0
|
|
} else {
|
|
check_runtime_nocache 750cl_hw_available {
|
|
int main()
|
|
{
|
|
#ifdef __MACH__
|
|
asm volatile ("ps_mul v0,v0,v0");
|
|
#else
|
|
asm volatile ("ps_mul 0,0,0");
|
|
#endif
|
|
return 0;
|
|
}
|
|
} "-mpaired"
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target OS supports running SSE executables, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_sse_os_support_available { } {
|
|
return [check_cached_effective_target sse_os_support_available {
|
|
# If this is not the right target then we can skip the test.
|
|
if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
|
|
expr 0
|
|
} elseif { [istarget i?86-*-solaris2*] } {
|
|
# The Solaris 2 kernel doesn't save and restore SSE registers
|
|
# before Solaris 9 4/04. Before that, executables die with SIGILL.
|
|
check_runtime_nocache sse_os_support_available {
|
|
int main ()
|
|
{
|
|
asm volatile ("movaps %xmm0,%xmm0");
|
|
return 0;
|
|
}
|
|
} "-msse"
|
|
} else {
|
|
expr 1
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target OS supports running AVX executables, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_avx_os_support_available { } {
|
|
return [check_cached_effective_target avx_os_support_available {
|
|
# If this is not the right target then we can skip the test.
|
|
if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
|
|
expr 0
|
|
} else {
|
|
# Check that OS has AVX and SSE saving enabled.
|
|
check_runtime_nocache avx_os_support_available {
|
|
int main ()
|
|
{
|
|
unsigned int eax, edx;
|
|
|
|
asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
|
|
return (eax & 6) != 6;
|
|
}
|
|
} ""
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports executing SSE instructions, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_sse_hw_available { } {
|
|
return [check_cached_effective_target sse_hw_available {
|
|
# If this is not the right target then we can skip the test.
|
|
if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
|
|
expr 0
|
|
} else {
|
|
check_runtime_nocache sse_hw_available {
|
|
#include "cpuid.h"
|
|
int main ()
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
|
|
return !(edx & bit_SSE);
|
|
return 1;
|
|
}
|
|
} ""
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports executing SSE2 instructions, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_sse2_hw_available { } {
|
|
return [check_cached_effective_target sse2_hw_available {
|
|
# If this is not the right target then we can skip the test.
|
|
if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
|
|
expr 0
|
|
} else {
|
|
check_runtime_nocache sse2_hw_available {
|
|
#include "cpuid.h"
|
|
int main ()
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
|
|
return !(edx & bit_SSE2);
|
|
return 1;
|
|
}
|
|
} ""
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports executing AVX instructions, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_avx_hw_available { } {
|
|
return [check_cached_effective_target avx_hw_available {
|
|
# If this is not the right target then we can skip the test.
|
|
if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
|
|
expr 0
|
|
} else {
|
|
check_runtime_nocache avx_hw_available {
|
|
#include "cpuid.h"
|
|
int main ()
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
|
|
return ((ecx & (bit_AVX | bit_OSXSAVE))
|
|
!= (bit_AVX | bit_OSXSAVE));
|
|
return 1;
|
|
}
|
|
} ""
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports running SSE executables, 0 otherwise.
|
|
|
|
proc check_effective_target_sse_runtime { } {
|
|
if { [check_effective_target_sse]
|
|
&& [check_sse_hw_available]
|
|
&& [check_sse_os_support_available] } {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Return 1 if the target supports running SSE2 executables, 0 otherwise.
|
|
|
|
proc check_effective_target_sse2_runtime { } {
|
|
if { [check_effective_target_sse2]
|
|
&& [check_sse2_hw_available]
|
|
&& [check_sse_os_support_available] } {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Return 1 if the target supports running AVX executables, 0 otherwise.
|
|
|
|
proc check_effective_target_avx_runtime { } {
|
|
if { [check_effective_target_avx]
|
|
&& [check_avx_hw_available]
|
|
&& [check_avx_os_support_available] } {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Return 1 if the target supports executing VSX instructions, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_vsx_hw_available { } {
|
|
return [check_cached_effective_target vsx_hw_available {
|
|
# Some simulators are known to not support VSX instructions.
|
|
# For now, disable on Darwin
|
|
if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
|
|
expr 0
|
|
} else {
|
|
set options "-mvsx"
|
|
check_runtime_nocache vsx_hw_available {
|
|
int main()
|
|
{
|
|
#ifdef __MACH__
|
|
asm volatile ("xxlor vs0,vs0,vs0");
|
|
#else
|
|
asm volatile ("xxlor 0,0,0");
|
|
#endif
|
|
return 0;
|
|
}
|
|
} $options
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports executing AltiVec instructions, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_vmx_hw_available { } {
|
|
return [check_cached_effective_target vmx_hw_available {
|
|
# Some simulators are known to not support VMX instructions.
|
|
if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
|
|
expr 0
|
|
} else {
|
|
# Most targets don't require special flags for this test case, but
|
|
# Darwin does. Just to be sure, make sure VSX is not enabled for
|
|
# the altivec tests.
|
|
if { [istarget *-*-darwin*]
|
|
|| [istarget *-*-aix*] } {
|
|
set options "-maltivec -mno-vsx"
|
|
} else {
|
|
set options "-mno-vsx"
|
|
}
|
|
check_runtime_nocache vmx_hw_available {
|
|
int main()
|
|
{
|
|
#ifdef __MACH__
|
|
asm volatile ("vor v0,v0,v0");
|
|
#else
|
|
asm volatile ("vor 0,0,0");
|
|
#endif
|
|
return 0;
|
|
}
|
|
} $options
|
|
}
|
|
}]
|
|
}
|
|
|
|
proc check_ppc_recip_hw_available { } {
|
|
return [check_cached_effective_target ppc_recip_hw_available {
|
|
# Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
|
|
# For now, disable on Darwin
|
|
if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
|
|
expr 0
|
|
} else {
|
|
set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
|
|
check_runtime_nocache ppc_recip_hw_available {
|
|
volatile double d_recip, d_rsqrt, d_four = 4.0;
|
|
volatile float f_recip, f_rsqrt, f_four = 4.0f;
|
|
int main()
|
|
{
|
|
asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
|
|
asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
|
|
asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
|
|
asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
|
|
return 0;
|
|
}
|
|
} $options
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports executing AltiVec and Cell PPU
|
|
# instructions, 0 otherwise. Cache the result.
|
|
|
|
proc check_effective_target_cell_hw { } {
|
|
return [check_cached_effective_target cell_hw_available {
|
|
# Some simulators are known to not support VMX and PPU instructions.
|
|
if { [istarget powerpc-*-eabi*] } {
|
|
expr 0
|
|
} else {
|
|
# Most targets don't require special flags for this test
|
|
# case, but Darwin and AIX do.
|
|
if { [istarget *-*-darwin*]
|
|
|| [istarget *-*-aix*] } {
|
|
set options "-maltivec -mcpu=cell"
|
|
} else {
|
|
set options "-mcpu=cell"
|
|
}
|
|
check_runtime_nocache cell_hw_available {
|
|
int main()
|
|
{
|
|
#ifdef __MACH__
|
|
asm volatile ("vor v0,v0,v0");
|
|
asm volatile ("lvlx v0,r0,r0");
|
|
#else
|
|
asm volatile ("vor 0,0,0");
|
|
asm volatile ("lvlx 0,0,0");
|
|
#endif
|
|
return 0;
|
|
}
|
|
} $options
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports executing 64-bit instructions, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_effective_target_powerpc64 { } {
|
|
global powerpc64_available_saved
|
|
global tool
|
|
|
|
if [info exists powerpc64_available_saved] {
|
|
verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
|
|
} else {
|
|
set powerpc64_available_saved 0
|
|
|
|
# Some simulators are known to not support powerpc64 instructions.
|
|
if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
|
|
verbose "check_effective_target_powerpc64 returning 0" 2
|
|
return $powerpc64_available_saved
|
|
}
|
|
|
|
# Set up, compile, and execute a test program containing a 64-bit
|
|
# instruction. Include the current process ID in the file
|
|
# names to prevent conflicts with invocations for multiple
|
|
# testsuites.
|
|
set src ppc[pid].c
|
|
set exe ppc[pid].x
|
|
|
|
set f [open $src "w"]
|
|
puts $f "int main() {"
|
|
puts $f "#ifdef __MACH__"
|
|
puts $f " asm volatile (\"extsw r0,r0\");"
|
|
puts $f "#else"
|
|
puts $f " asm volatile (\"extsw 0,0\");"
|
|
puts $f "#endif"
|
|
puts $f " return 0; }"
|
|
close $f
|
|
|
|
set opts "additional_flags=-mcpu=G5"
|
|
|
|
verbose "check_effective_target_powerpc64 compiling testfile $src" 2
|
|
set lines [${tool}_target_compile $src $exe executable "$opts"]
|
|
file delete $src
|
|
|
|
if [string match "" $lines] then {
|
|
# No error message, compilation succeeded.
|
|
set result [${tool}_load "./$exe" "" ""]
|
|
set status [lindex $result 0]
|
|
remote_file build delete $exe
|
|
verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
|
|
|
|
if { $status == "pass" } then {
|
|
set powerpc64_available_saved 1
|
|
}
|
|
} else {
|
|
verbose "check_effective_target_powerpc64 testfile compilation failed" 2
|
|
}
|
|
}
|
|
|
|
return $powerpc64_available_saved
|
|
}
|
|
|
|
# GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
|
|
# complex float arguments. This affects gfortran tests that call cabsf
|
|
# in libm built by an earlier compiler. Return 1 if libm uses the same
|
|
# argument passing as the compiler under test, 0 otherwise.
|
|
#
|
|
# When the target name changes, replace the cached result.
|
|
|
|
proc check_effective_target_broken_cplxf_arg { } {
|
|
return [check_cached_effective_target broken_cplxf_arg {
|
|
# Skip the work for targets known not to be affected.
|
|
if { ![istarget powerpc64-*-linux*] } {
|
|
expr 0
|
|
} elseif { ![is-effective-target lp64] } {
|
|
expr 0
|
|
} else {
|
|
check_runtime_nocache broken_cplxf_arg {
|
|
#include <complex.h>
|
|
extern void abort (void);
|
|
float fabsf (float);
|
|
float cabsf (_Complex float);
|
|
int main ()
|
|
{
|
|
_Complex float cf;
|
|
float f;
|
|
cf = 3 + 4.0fi;
|
|
f = cabsf (cf);
|
|
if (fabsf (f - 5.0) > 0.0001)
|
|
abort ();
|
|
return 0;
|
|
}
|
|
} "-lm"
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 is this is a TI C6X target supporting C67X instructions
|
|
proc check_effective_target_ti_c67x { } {
|
|
return [check_no_compiler_messages ti_c67x assembly {
|
|
#if !defined(_TMS320C6700)
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 is this is a TI C6X target supporting C64X+ instructions
|
|
proc check_effective_target_ti_c64xp { } {
|
|
return [check_no_compiler_messages ti_c64xp assembly {
|
|
#if !defined(_TMS320C6400_PLUS)
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
|
|
proc check_alpha_max_hw_available { } {
|
|
return [check_runtime alpha_max_hw_available {
|
|
int main() { return __builtin_alpha_amask(1<<8) != 0; }
|
|
}]
|
|
}
|
|
|
|
# Returns true iff the FUNCTION is available on the target system.
|
|
# (This is essentially a Tcl implementation of Autoconf's
|
|
# AC_CHECK_FUNC.)
|
|
|
|
proc check_function_available { function } {
|
|
return [check_no_compiler_messages ${function}_available \
|
|
executable [subst {
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
#endif
|
|
char $function ();
|
|
int main () { $function (); }
|
|
}] "-fno-builtin" ]
|
|
}
|
|
|
|
# Returns true iff "fork" is available on the target system.
|
|
|
|
proc check_fork_available {} {
|
|
return [check_function_available "fork"]
|
|
}
|
|
|
|
# Returns true iff "mkfifo" is available on the target system.
|
|
|
|
proc check_mkfifo_available {} {
|
|
if { [istarget *-*-cygwin*] } {
|
|
# Cygwin has mkfifo, but support is incomplete.
|
|
return 0
|
|
}
|
|
|
|
return [check_function_available "mkfifo"]
|
|
}
|
|
|
|
# Returns true iff "__cxa_atexit" is used on the target system.
|
|
|
|
proc check_cxa_atexit_available { } {
|
|
return [check_cached_effective_target cxa_atexit_available {
|
|
if { [istarget hppa*-*-hpux10*] } {
|
|
# HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
|
|
expr 0
|
|
} elseif { [istarget *-*-vxworks] } {
|
|
# vxworks doesn't have __cxa_atexit but subsequent test passes.
|
|
expr 0
|
|
} else {
|
|
check_runtime_nocache cxa_atexit_available {
|
|
// C++
|
|
#include <stdlib.h>
|
|
static unsigned int count;
|
|
struct X
|
|
{
|
|
X() { count = 1; }
|
|
~X()
|
|
{
|
|
if (count != 3)
|
|
exit(1);
|
|
count = 4;
|
|
}
|
|
};
|
|
void f()
|
|
{
|
|
static X x;
|
|
}
|
|
struct Y
|
|
{
|
|
Y() { f(); count = 2; }
|
|
~Y()
|
|
{
|
|
if (count != 2)
|
|
exit(1);
|
|
count = 3;
|
|
}
|
|
};
|
|
Y y;
|
|
int main() { return 0; }
|
|
}
|
|
}
|
|
}]
|
|
}
|
|
|
|
proc check_effective_target_objc2 { } {
|
|
return [check_no_compiler_messages objc2 object {
|
|
#ifdef __OBJC2__
|
|
int dummy[1];
|
|
#else
|
|
#error
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
proc check_effective_target_next_runtime { } {
|
|
return [check_no_compiler_messages objc2 object {
|
|
#ifdef __NEXT_RUNTIME__
|
|
int dummy[1];
|
|
#else
|
|
#error
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 if we're generating 32-bit code using default options, 0
|
|
# otherwise.
|
|
|
|
proc check_effective_target_ilp32 { } {
|
|
return [check_no_compiler_messages ilp32 object {
|
|
int dummy[sizeof (int) == 4
|
|
&& sizeof (void *) == 4
|
|
&& sizeof (long) == 4 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if we're generating ia32 code using default options, 0
|
|
# otherwise.
|
|
|
|
proc check_effective_target_ia32 { } {
|
|
return [check_no_compiler_messages ia32 object {
|
|
int dummy[sizeof (int) == 4
|
|
&& sizeof (void *) == 4
|
|
&& sizeof (long) == 4 ? 1 : -1] = { __i386__ };
|
|
}]
|
|
}
|
|
|
|
# Return 1 if we're generating x32 code using default options, 0
|
|
# otherwise.
|
|
|
|
proc check_effective_target_x32 { } {
|
|
return [check_no_compiler_messages x32 object {
|
|
int dummy[sizeof (int) == 4
|
|
&& sizeof (void *) == 4
|
|
&& sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
|
|
}]
|
|
}
|
|
|
|
# Return 1 if we're generating 32-bit or larger integers using default
|
|
# options, 0 otherwise.
|
|
|
|
proc check_effective_target_int32plus { } {
|
|
return [check_no_compiler_messages int32plus object {
|
|
int dummy[sizeof (int) >= 4 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if we're generating 32-bit or larger pointers using default
|
|
# options, 0 otherwise.
|
|
|
|
proc check_effective_target_ptr32plus { } {
|
|
return [check_no_compiler_messages ptr32plus object {
|
|
int dummy[sizeof (void *) >= 4 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if we support 32-bit or larger array and structure sizes
|
|
# using default options, 0 otherwise.
|
|
|
|
proc check_effective_target_size32plus { } {
|
|
return [check_no_compiler_messages size32plus object {
|
|
char dummy[65537];
|
|
}]
|
|
}
|
|
|
|
# Returns 1 if we're generating 16-bit or smaller integers with the
|
|
# default options, 0 otherwise.
|
|
|
|
proc check_effective_target_int16 { } {
|
|
return [check_no_compiler_messages int16 object {
|
|
int dummy[sizeof (int) < 4 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if we're generating 64-bit code using default options, 0
|
|
# otherwise.
|
|
|
|
proc check_effective_target_lp64 { } {
|
|
return [check_no_compiler_messages lp64 object {
|
|
int dummy[sizeof (int) == 4
|
|
&& sizeof (void *) == 8
|
|
&& sizeof (long) == 8 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if we're generating 64-bit code using default llp64 options,
|
|
# 0 otherwise.
|
|
|
|
proc check_effective_target_llp64 { } {
|
|
return [check_no_compiler_messages llp64 object {
|
|
int dummy[sizeof (int) == 4
|
|
&& sizeof (void *) == 8
|
|
&& sizeof (long long) == 8
|
|
&& sizeof (long) == 4 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports long double larger than double,
|
|
# 0 otherwise.
|
|
|
|
proc check_effective_target_large_long_double { } {
|
|
return [check_no_compiler_messages large_long_double object {
|
|
int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports double larger than float,
|
|
# 0 otherwise.
|
|
|
|
proc check_effective_target_large_double { } {
|
|
return [check_no_compiler_messages large_double object {
|
|
int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports double of 64 bits,
|
|
# 0 otherwise.
|
|
|
|
proc check_effective_target_double64 { } {
|
|
return [check_no_compiler_messages double64 object {
|
|
int dummy[sizeof(double) == 8 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports double of at least 64 bits,
|
|
# 0 otherwise.
|
|
|
|
proc check_effective_target_double64plus { } {
|
|
return [check_no_compiler_messages double64plus object {
|
|
int dummy[sizeof(double) >= 8 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports compiling fixed-point,
|
|
# 0 otherwise.
|
|
|
|
proc check_effective_target_fixed_point { } {
|
|
return [check_no_compiler_messages fixed_point object {
|
|
_Sat _Fract x; _Sat _Accum y;
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports compiling decimal floating point,
|
|
# 0 otherwise.
|
|
|
|
proc check_effective_target_dfp_nocache { } {
|
|
verbose "check_effective_target_dfp_nocache: compiling source" 2
|
|
set ret [check_no_compiler_messages_nocache dfp object {
|
|
float x __attribute__((mode(DD)));
|
|
}]
|
|
verbose "check_effective_target_dfp_nocache: returning $ret" 2
|
|
return $ret
|
|
}
|
|
|
|
proc check_effective_target_dfprt_nocache { } {
|
|
return [check_runtime_nocache dfprt {
|
|
typedef float d64 __attribute__((mode(DD)));
|
|
d64 x = 1.2df, y = 2.3dd, z;
|
|
int main () { z = x + y; return 0; }
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports compiling Decimal Floating Point,
|
|
# 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_dfp { } {
|
|
return [check_cached_effective_target dfp {
|
|
check_effective_target_dfp_nocache
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports linking and executing Decimal Floating
|
|
# Point, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_dfprt { } {
|
|
return [check_cached_effective_target dfprt {
|
|
check_effective_target_dfprt_nocache
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
|
|
|
|
proc check_effective_target_ucn_nocache { } {
|
|
# -std=c99 is only valid for C
|
|
if [check_effective_target_c] {
|
|
set ucnopts "-std=c99"
|
|
}
|
|
append ucnopts " -fextended-identifiers"
|
|
verbose "check_effective_target_ucn_nocache: compiling source" 2
|
|
set ret [check_no_compiler_messages_nocache ucn object {
|
|
int \u00C0;
|
|
} $ucnopts]
|
|
verbose "check_effective_target_ucn_nocache: returning $ret" 2
|
|
return $ret
|
|
}
|
|
|
|
# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets, so cache the result.
|
|
|
|
proc check_effective_target_ucn { } {
|
|
return [check_cached_effective_target ucn {
|
|
check_effective_target_ucn_nocache
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target needs a command line argument to enable a SIMD
|
|
# instruction set.
|
|
|
|
proc check_effective_target_vect_cmdline_needed { } {
|
|
global et_vect_cmdline_needed_saved
|
|
global et_vect_cmdline_needed_target_name
|
|
|
|
if { ![info exists et_vect_cmdline_needed_target_name] } {
|
|
set et_vect_cmdline_needed_target_name ""
|
|
}
|
|
|
|
# If the target has changed since we set the cached value, clear it.
|
|
set current_target [current_target_name]
|
|
if { $current_target != $et_vect_cmdline_needed_target_name } {
|
|
verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
|
|
set et_vect_cmdline_needed_target_name $current_target
|
|
if { [info exists et_vect_cmdline_needed_saved] } {
|
|
verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
|
|
unset et_vect_cmdline_needed_saved
|
|
}
|
|
}
|
|
|
|
if [info exists et_vect_cmdline_needed_saved] {
|
|
verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
|
|
} else {
|
|
set et_vect_cmdline_needed_saved 1
|
|
if { [istarget alpha*-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| (([istarget x86_64-*-*] || [istarget i?86-*-*])
|
|
&& ([check_effective_target_x32]
|
|
|| [check_effective_target_lp64]))
|
|
|| ([istarget powerpc*-*-*]
|
|
&& ([check_effective_target_powerpc_spe]
|
|
|| [check_effective_target_powerpc_altivec]))
|
|
|| [istarget spu-*-*]
|
|
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
|
|
set et_vect_cmdline_needed_saved 0
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
|
|
return $et_vect_cmdline_needed_saved
|
|
}
|
|
|
|
# Return 1 if the target supports hardware vectors of int, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_int { } {
|
|
global et_vect_int_saved
|
|
|
|
if [info exists et_vect_int_saved] {
|
|
verbose "check_effective_target_vect_int: using cached result" 2
|
|
} else {
|
|
set et_vect_int_saved 0
|
|
if { [istarget i?86-*-*]
|
|
|| ([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget spu-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget sparc*-*-*]
|
|
|| [istarget alpha*-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| [check_effective_target_arm32]
|
|
|| ([istarget mips*-*-*]
|
|
&& [check_effective_target_mips_loongson]) } {
|
|
set et_vect_int_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
|
|
return $et_vect_int_saved
|
|
}
|
|
|
|
# Return 1 if the target supports signed int->float conversion
|
|
#
|
|
|
|
proc check_effective_target_vect_intfloat_cvt { } {
|
|
global et_vect_intfloat_cvt_saved
|
|
|
|
if [info exists et_vect_intfloat_cvt_saved] {
|
|
verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
|
|
} else {
|
|
set et_vect_intfloat_cvt_saved 0
|
|
if { [istarget i?86-*-*]
|
|
|| ([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget x86_64-*-*] } {
|
|
set et_vect_intfloat_cvt_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
|
|
return $et_vect_intfloat_cvt_saved
|
|
}
|
|
|
|
#Return 1 if we're supporting __int128 for target, 0 otherwise.
|
|
|
|
proc check_effective_target_int128 { } {
|
|
return [check_no_compiler_messages int128 object {
|
|
int dummy[
|
|
#ifndef __SIZEOF_INT128__
|
|
-1
|
|
#else
|
|
1
|
|
#endif
|
|
];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports unsigned int->float conversion
|
|
#
|
|
|
|
proc check_effective_target_vect_uintfloat_cvt { } {
|
|
global et_vect_uintfloat_cvt_saved
|
|
|
|
if [info exists et_vect_uintfloat_cvt_saved] {
|
|
verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
|
|
} else {
|
|
set et_vect_uintfloat_cvt_saved 0
|
|
if { [istarget i?86-*-*]
|
|
|| ([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget x86_64-*-*] } {
|
|
set et_vect_uintfloat_cvt_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
|
|
return $et_vect_uintfloat_cvt_saved
|
|
}
|
|
|
|
|
|
# Return 1 if the target supports signed float->int conversion
|
|
#
|
|
|
|
proc check_effective_target_vect_floatint_cvt { } {
|
|
global et_vect_floatint_cvt_saved
|
|
|
|
if [info exists et_vect_floatint_cvt_saved] {
|
|
verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
|
|
} else {
|
|
set et_vect_floatint_cvt_saved 0
|
|
if { [istarget i?86-*-*]
|
|
|| ([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget x86_64-*-*] } {
|
|
set et_vect_floatint_cvt_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
|
|
return $et_vect_floatint_cvt_saved
|
|
}
|
|
|
|
# Return 1 if the target supports unsigned float->int conversion
|
|
#
|
|
|
|
proc check_effective_target_vect_floatuint_cvt { } {
|
|
global et_vect_floatuint_cvt_saved
|
|
|
|
if [info exists et_vect_floatuint_cvt_saved] {
|
|
verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
|
|
} else {
|
|
set et_vect_floatuint_cvt_saved 0
|
|
if { ([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*]) } {
|
|
set et_vect_floatuint_cvt_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
|
|
return $et_vect_floatuint_cvt_saved
|
|
}
|
|
|
|
# Return 1 is this is an arm target using 32-bit instructions
|
|
proc check_effective_target_arm32 { } {
|
|
return [check_no_compiler_messages arm32 assembly {
|
|
#if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 is this is an arm target not using Thumb
|
|
proc check_effective_target_arm_nothumb { } {
|
|
return [check_no_compiler_messages arm_nothumb assembly {
|
|
#if (defined(__thumb__) || defined(__thumb2__))
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 if this is a little-endian ARM target
|
|
proc check_effective_target_arm_little_endian { } {
|
|
return [check_no_compiler_messages arm_little_endian assembly {
|
|
#if !defined(__arm__) || !defined(__ARMEL__)
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 if this is an ARM target that only supports aligned vector accesses
|
|
proc check_effective_target_arm_vect_no_misalign { } {
|
|
return [check_no_compiler_messages arm_vect_no_misalign assembly {
|
|
#if !defined(__arm__) \
|
|
|| (defined(__ARMEL__) \
|
|
&& (!defined(__thumb__) || defined(__thumb2__)))
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
|
|
# Return 1 if this is an ARM target supporting -mfpu=vfp
|
|
# -mfloat-abi=softfp. Some multilibs may be incompatible with these
|
|
# options.
|
|
|
|
proc check_effective_target_arm_vfp_ok { } {
|
|
if { [check_effective_target_arm32] } {
|
|
return [check_no_compiler_messages arm_vfp_ok object {
|
|
int dummy;
|
|
} "-mfpu=vfp -mfloat-abi=softfp"]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is an ARM target supporting -mfpu=vfp
|
|
# -mfloat-abi=hard. Some multilibs may be incompatible with these
|
|
# options.
|
|
|
|
proc check_effective_target_arm_hard_vfp_ok { } {
|
|
if { [check_effective_target_arm32] } {
|
|
return [check_no_compiler_messages arm_hard_vfp_ok executable {
|
|
int main() { return 0;}
|
|
} "-mfpu=vfp -mfloat-abi=hard"]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is an ARM target that supports DSP multiply with
|
|
# current multilib flags.
|
|
|
|
proc check_effective_target_arm_dsp { } {
|
|
return [check_no_compiler_messages arm_dsp assembly {
|
|
#ifndef __ARM_FEATURE_DSP
|
|
#error not DSP
|
|
#endif
|
|
int i;
|
|
}]
|
|
}
|
|
|
|
# Return 1 if this is an ARM target that supports unaligned word/halfword
|
|
# load/store instructions.
|
|
|
|
proc check_effective_target_arm_unaligned { } {
|
|
return [check_no_compiler_messages arm_unaligned assembly {
|
|
#ifndef __ARM_FEATURE_UNALIGNED
|
|
#error no unaligned support
|
|
#endif
|
|
int i;
|
|
}]
|
|
}
|
|
|
|
# Add the options needed for NEON. We need either -mfloat-abi=softfp
|
|
# or -mfloat-abi=hard, but if one is already specified by the
|
|
# multilib, use it. Similarly, if a -mfpu option already enables
|
|
# NEON, do not add -mfpu=neon.
|
|
|
|
proc add_options_for_arm_neon { flags } {
|
|
if { ! [check_effective_target_arm_neon_ok] } {
|
|
return "$flags"
|
|
}
|
|
global et_arm_neon_flags
|
|
return "$flags $et_arm_neon_flags"
|
|
}
|
|
|
|
# Return 1 if this is an ARM target supporting -mfpu=neon
|
|
# -mfloat-abi=softfp or equivalent options. Some multilibs may be
|
|
# incompatible with these options. Also set et_arm_neon_flags to the
|
|
# best options to add.
|
|
|
|
proc check_effective_target_arm_neon_ok_nocache { } {
|
|
global et_arm_neon_flags
|
|
set et_arm_neon_flags ""
|
|
if { [check_effective_target_arm32] } {
|
|
foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} {
|
|
if { [check_no_compiler_messages_nocache arm_neon_ok object {
|
|
#include "arm_neon.h"
|
|
int dummy;
|
|
} "$flags"] } {
|
|
set et_arm_neon_flags $flags
|
|
return 1
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
proc check_effective_target_arm_neon_ok { } {
|
|
return [check_cached_effective_target arm_neon_ok \
|
|
check_effective_target_arm_neon_ok_nocache]
|
|
}
|
|
|
|
# Add the options needed for NEON. We need either -mfloat-abi=softfp
|
|
# or -mfloat-abi=hard, but if one is already specified by the
|
|
# multilib, use it.
|
|
|
|
proc add_options_for_arm_fp16 { flags } {
|
|
if { ! [check_effective_target_arm_fp16_ok] } {
|
|
return "$flags"
|
|
}
|
|
global et_arm_fp16_flags
|
|
return "$flags $et_arm_fp16_flags"
|
|
}
|
|
|
|
# Return 1 if this is an ARM target that can support a VFP fp16 variant.
|
|
# Skip multilibs that are incompatible with these options and set
|
|
# et_arm_fp16_flags to the best options to add.
|
|
|
|
proc check_effective_target_arm_fp16_ok_nocache { } {
|
|
global et_arm_fp16_flags
|
|
set et_arm_fp16_flags ""
|
|
if { ! [check_effective_target_arm32] } {
|
|
return 0;
|
|
}
|
|
if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] {
|
|
# Multilib flags would override -mfpu.
|
|
return 0
|
|
}
|
|
if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
|
|
# Must generate floating-point instructions.
|
|
return 0
|
|
}
|
|
if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
|
|
# The existing -mfpu value is OK; use it, but add softfp.
|
|
set et_arm_fp16_flags "-mfloat-abi=softfp"
|
|
return 1;
|
|
}
|
|
# Add -mfpu for a VFP fp16 variant since there is no preprocessor
|
|
# macro to check for this support.
|
|
set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
|
|
if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
|
|
int dummy;
|
|
} "$flags"] } {
|
|
set et_arm_fp16_flags "$flags"
|
|
return 1
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
proc check_effective_target_arm_fp16_ok { } {
|
|
return [check_cached_effective_target arm_fp16_ok \
|
|
check_effective_target_arm_fp16_ok_nocache]
|
|
}
|
|
|
|
# Creates a series of routines that return 1 if the given architecture
|
|
# can be selected and a routine to give the flags to select that architecture
|
|
# Note: Extra flags may be added to disable options from newer compilers
|
|
# (Thumb in particular - but others may be added in the future)
|
|
# Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
|
|
# /* { dg-add-options arm_arch_v5 } */
|
|
foreach { armfunc armflag armdef } { v5 "-march=armv5 -marm" __ARM_ARCH_5__
|
|
v6 "-march=armv6" __ARM_ARCH_6__
|
|
v6k "-march=armv6k" __ARM_ARCH_6K__
|
|
v7a "-march=armv7-a" __ARM_ARCH_7A__ } {
|
|
eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] {
|
|
proc check_effective_target_arm_arch_FUNC_ok { } {
|
|
if { [ string match "*-marm*" "FLAG" ] &&
|
|
![check_effective_target_arm_arm_ok] } {
|
|
return 0
|
|
}
|
|
return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
|
|
#if !defined (DEF)
|
|
#error FOO
|
|
#endif
|
|
} "FLAG" ]
|
|
}
|
|
|
|
proc add_options_for_arm_arch_FUNC { flags } {
|
|
return "$flags FLAG"
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if this is an ARM target where -marm causes ARM to be
|
|
# used (not Thumb)
|
|
|
|
proc check_effective_target_arm_arm_ok { } {
|
|
return [check_no_compiler_messages arm_arm_ok assembly {
|
|
#if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
|
|
#error FOO
|
|
#endif
|
|
} "-marm"]
|
|
}
|
|
|
|
|
|
# Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
|
|
# used.
|
|
|
|
proc check_effective_target_arm_thumb1_ok { } {
|
|
return [check_no_compiler_messages arm_thumb1_ok assembly {
|
|
#if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
|
|
#error FOO
|
|
#endif
|
|
} "-mthumb"]
|
|
}
|
|
|
|
# Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
|
|
# used.
|
|
|
|
proc check_effective_target_arm_thumb2_ok { } {
|
|
return [check_no_compiler_messages arm_thumb2_ok assembly {
|
|
#if !defined(__thumb2__)
|
|
#error FOO
|
|
#endif
|
|
} "-mthumb"]
|
|
}
|
|
|
|
# Return 1 if this is an ARM target where Thumb-1 is used without options
|
|
# added by the test.
|
|
|
|
proc check_effective_target_arm_thumb1 { } {
|
|
return [check_no_compiler_messages arm_thumb1 assembly {
|
|
#if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
|
|
#error not thumb1
|
|
#endif
|
|
int i;
|
|
} ""]
|
|
}
|
|
|
|
# Return 1 if this is an ARM target where Thumb-2 is used without options
|
|
# added by the test.
|
|
|
|
proc check_effective_target_arm_thumb2 { } {
|
|
return [check_no_compiler_messages arm_thumb2 assembly {
|
|
#if !defined(__thumb2__)
|
|
#error FOO
|
|
#endif
|
|
int i;
|
|
} ""]
|
|
}
|
|
|
|
# Return 1 if this is an ARM cortex-M profile cpu
|
|
|
|
proc check_effective_target_arm_cortex_m { } {
|
|
return [check_no_compiler_messages arm_cortex_m assembly {
|
|
#if !defined(__ARM_ARCH_7M__) \
|
|
&& !defined (__ARM_ARCH_7EM__) \
|
|
&& !defined (__ARM_ARCH_6M__)
|
|
#error FOO
|
|
#endif
|
|
int i;
|
|
} "-mthumb"]
|
|
}
|
|
|
|
# Return 1 if the target supports executing NEON instructions, 0
|
|
# otherwise. Cache the result.
|
|
|
|
proc check_effective_target_arm_neon_hw { } {
|
|
return [check_runtime arm_neon_hw_available {
|
|
int
|
|
main (void)
|
|
{
|
|
long long a = 0, b = 1;
|
|
asm ("vorr %P0, %P1, %P2"
|
|
: "=w" (a)
|
|
: "0" (a), "w" (b));
|
|
return (a != 1);
|
|
}
|
|
} [add_options_for_arm_neon ""]]
|
|
}
|
|
|
|
# Return 1 if this is a ARM target with NEON enabled.
|
|
|
|
proc check_effective_target_arm_neon { } {
|
|
if { [check_effective_target_arm32] } {
|
|
return [check_no_compiler_messages arm_neon object {
|
|
#ifndef __ARM_NEON__
|
|
#error not NEON
|
|
#else
|
|
int dummy;
|
|
#endif
|
|
}]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this a Loongson-2E or -2F target using an ABI that supports
|
|
# the Loongson vector modes.
|
|
|
|
proc check_effective_target_mips_loongson { } {
|
|
return [check_no_compiler_messages loongson assembly {
|
|
#if !defined(__mips_loongson_vector_rev)
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 if this is an ARM target that adheres to the ABI for the ARM
|
|
# Architecture.
|
|
|
|
proc check_effective_target_arm_eabi { } {
|
|
return [check_no_compiler_messages arm_eabi object {
|
|
#ifndef __ARM_EABI__
|
|
#error not EABI
|
|
#else
|
|
int dummy;
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
|
|
# Some multilibs may be incompatible with this option.
|
|
|
|
proc check_effective_target_arm_iwmmxt_ok { } {
|
|
if { [check_effective_target_arm32] } {
|
|
return [check_no_compiler_messages arm_iwmmxt_ok object {
|
|
int dummy;
|
|
} "-mcpu=iwmmxt"]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC target with floating-point registers.
|
|
|
|
proc check_effective_target_powerpc_fprs { } {
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget rs6000-*-*] } {
|
|
return [check_no_compiler_messages powerpc_fprs object {
|
|
#ifdef __NO_FPRS__
|
|
#error no FPRs
|
|
#else
|
|
int dummy;
|
|
#endif
|
|
}]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC target with hardware double-precision
|
|
# floating point.
|
|
|
|
proc check_effective_target_powerpc_hard_double { } {
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget rs6000-*-*] } {
|
|
return [check_no_compiler_messages powerpc_hard_double object {
|
|
#ifdef _SOFT_DOUBLE
|
|
#error soft double
|
|
#else
|
|
int dummy;
|
|
#endif
|
|
}]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC target supporting -maltivec.
|
|
|
|
proc check_effective_target_powerpc_altivec_ok { } {
|
|
if { ([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget rs6000-*-*] } {
|
|
# AltiVec is not supported on AIX before 5.3.
|
|
if { [istarget powerpc*-*-aix4*]
|
|
|| [istarget powerpc*-*-aix5.1*]
|
|
|| [istarget powerpc*-*-aix5.2*] } {
|
|
return 0
|
|
}
|
|
return [check_no_compiler_messages powerpc_altivec_ok object {
|
|
int dummy;
|
|
} "-maltivec"]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC target supporting -mvsx
|
|
|
|
proc check_effective_target_powerpc_vsx_ok { } {
|
|
if { ([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget rs6000-*-*] } {
|
|
# AltiVec is not supported on AIX before 5.3.
|
|
if { [istarget powerpc*-*-aix4*]
|
|
|| [istarget powerpc*-*-aix5.1*]
|
|
|| [istarget powerpc*-*-aix5.2*] } {
|
|
return 0
|
|
}
|
|
return [check_no_compiler_messages powerpc_vsx_ok object {
|
|
int main (void) {
|
|
#ifdef __MACH__
|
|
asm volatile ("xxlor vs0,vs0,vs0");
|
|
#else
|
|
asm volatile ("xxlor 0,0,0");
|
|
#endif
|
|
return 0;
|
|
}
|
|
} "-mvsx"]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC target supporting -mcpu=cell.
|
|
|
|
proc check_effective_target_powerpc_ppu_ok { } {
|
|
if [check_effective_target_powerpc_altivec_ok] {
|
|
return [check_no_compiler_messages cell_asm_available object {
|
|
int main (void) {
|
|
#ifdef __MACH__
|
|
asm volatile ("lvlx v0,v0,v0");
|
|
#else
|
|
asm volatile ("lvlx 0,0,0");
|
|
#endif
|
|
return 0;
|
|
}
|
|
}]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC target that supports SPU.
|
|
|
|
proc check_effective_target_powerpc_spu { } {
|
|
if { [istarget powerpc*-*-linux*] } {
|
|
return [check_effective_target_powerpc_altivec_ok]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC SPE target. The check includes options
|
|
# specified by dg-options for this test, so don't cache the result.
|
|
|
|
proc check_effective_target_powerpc_spe_nocache { } {
|
|
if { [istarget powerpc*-*-*] } {
|
|
return [check_no_compiler_messages_nocache powerpc_spe object {
|
|
#ifndef __SPE__
|
|
#error not SPE
|
|
#else
|
|
int dummy;
|
|
#endif
|
|
} [current_compiler_flags]]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC target with SPE enabled.
|
|
|
|
proc check_effective_target_powerpc_spe { } {
|
|
if { [istarget powerpc*-*-*] } {
|
|
return [check_no_compiler_messages powerpc_spe object {
|
|
#ifndef __SPE__
|
|
#error not SPE
|
|
#else
|
|
int dummy;
|
|
#endif
|
|
}]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC target with Altivec enabled.
|
|
|
|
proc check_effective_target_powerpc_altivec { } {
|
|
if { [istarget powerpc*-*-*] } {
|
|
return [check_no_compiler_messages powerpc_altivec object {
|
|
#ifndef __ALTIVEC__
|
|
#error not Altivec
|
|
#else
|
|
int dummy;
|
|
#endif
|
|
}]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a PowerPC 405 target. The check includes options
|
|
# specified by dg-options for this test, so don't cache the result.
|
|
|
|
proc check_effective_target_powerpc_405_nocache { } {
|
|
if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
|
|
return [check_no_compiler_messages_nocache powerpc_405 object {
|
|
#ifdef __PPC405__
|
|
int dummy;
|
|
#else
|
|
#error not a PPC405
|
|
#endif
|
|
} [current_compiler_flags]]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# Return 1 if this is a SPU target with a toolchain that
|
|
# supports automatic overlay generation.
|
|
|
|
proc check_effective_target_spu_auto_overlay { } {
|
|
if { [istarget spu*-*-elf*] } {
|
|
return [check_no_compiler_messages spu_auto_overlay executable {
|
|
int main (void) { }
|
|
} "-Wl,--auto-overlay" ]
|
|
} else {
|
|
return 0
|
|
}
|
|
}
|
|
|
|
# The VxWorks SPARC simulator accepts only EM_SPARC executables and
|
|
# chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
|
|
# test environment appears to run executables on such a simulator.
|
|
|
|
proc check_effective_target_ultrasparc_hw { } {
|
|
return [check_runtime ultrasparc_hw {
|
|
int main() { return 0; }
|
|
} "-mcpu=ultrasparc"]
|
|
}
|
|
|
|
# Return 1 if the test environment supports executing UltraSPARC VIS2
|
|
# instructions. We check this by attempting: "bmask %g0, %g0, %g0"
|
|
|
|
proc check_effective_target_ultrasparc_vis2_hw { } {
|
|
return [check_runtime ultrasparc_hw {
|
|
int main() { __asm__(".word 0x81b00320"); return 0; }
|
|
} "-mcpu=ultrasparc3"]
|
|
}
|
|
|
|
# Return 1 if the test environment supports executing UltraSPARC VIS3
|
|
# instructions. We check this by attempting: "addxc %g0, %g0, %g0"
|
|
|
|
proc check_effective_target_ultrasparc_vis3_hw { } {
|
|
return [check_runtime ultrasparc_hw {
|
|
int main() { __asm__(".word 0x81b00220"); return 0; }
|
|
} "-mcpu=niagara3"]
|
|
}
|
|
|
|
# Return 1 if the target supports hardware vector shift operation.
|
|
|
|
proc check_effective_target_vect_shift { } {
|
|
global et_vect_shift_saved
|
|
|
|
if [info exists et_vect_shift_saved] {
|
|
verbose "check_effective_target_vect_shift: using cached result" 2
|
|
} else {
|
|
set et_vect_shift_saved 0
|
|
if { ([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget ia64-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [check_effective_target_arm32]
|
|
|| ([istarget mips*-*-*]
|
|
&& [check_effective_target_mips_loongson]) } {
|
|
set et_vect_shift_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
|
|
return $et_vect_shift_saved
|
|
}
|
|
|
|
# Return 1 if the target supports hardware vector shift operation for char.
|
|
|
|
proc check_effective_target_vect_shift_char { } {
|
|
global et_vect_shift_char_saved
|
|
|
|
if [info exists et_vect_shift_char_saved] {
|
|
verbose "check_effective_target_vect_shift_char: using cached result" 2
|
|
} else {
|
|
set et_vect_shift_char_saved 0
|
|
if { ([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*])
|
|
|| [check_effective_target_arm32] } {
|
|
set et_vect_shift_char_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2
|
|
return $et_vect_shift_char_saved
|
|
}
|
|
|
|
# Return 1 if the target supports hardware vectors of long, 0 otherwise.
|
|
#
|
|
# This can change for different subtargets so do not cache the result.
|
|
|
|
proc check_effective_target_vect_long { } {
|
|
if { [istarget i?86-*-*]
|
|
|| (([istarget powerpc*-*-*]
|
|
&& ![istarget powerpc-*-linux*paired*])
|
|
&& [check_effective_target_ilp32])
|
|
|| [istarget x86_64-*-*]
|
|
|| [check_effective_target_arm32]
|
|
|| ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
|
|
set answer 1
|
|
} else {
|
|
set answer 0
|
|
}
|
|
|
|
verbose "check_effective_target_vect_long: returning $answer" 2
|
|
return $answer
|
|
}
|
|
|
|
# Return 1 if the target supports hardware vectors of float, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_float { } {
|
|
global et_vect_float_saved
|
|
|
|
if [info exists et_vect_float_saved] {
|
|
verbose "check_effective_target_vect_float: using cached result" 2
|
|
} else {
|
|
set et_vect_float_saved 0
|
|
if { [istarget i?86-*-*]
|
|
|| [istarget powerpc*-*-*]
|
|
|| [istarget spu-*-*]
|
|
|| [istarget mipsisa64*-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| [check_effective_target_arm32] } {
|
|
set et_vect_float_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
|
|
return $et_vect_float_saved
|
|
}
|
|
|
|
# Return 1 if the target supports hardware vectors of double, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_double { } {
|
|
global et_vect_double_saved
|
|
|
|
if [info exists et_vect_double_saved] {
|
|
verbose "check_effective_target_vect_double: using cached result" 2
|
|
} else {
|
|
set et_vect_double_saved 0
|
|
if { [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*] } {
|
|
if { [check_no_compiler_messages vect_double assembly {
|
|
#ifdef __tune_atom__
|
|
# error No double vectorizer support.
|
|
#endif
|
|
}] } {
|
|
set et_vect_double_saved 1
|
|
} else {
|
|
set et_vect_double_saved 0
|
|
}
|
|
} elseif { [istarget spu-*-*] } {
|
|
set et_vect_double_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
|
|
return $et_vect_double_saved
|
|
}
|
|
|
|
# Return 1 if the target supports hardware vectors of long long, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_long_long { } {
|
|
global et_vect_long_long_saved
|
|
|
|
if [info exists et_vect_long_long_saved] {
|
|
verbose "check_effective_target_vect_long_long: using cached result" 2
|
|
} else {
|
|
set et_vect_long_long_saved 0
|
|
if { [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*] } {
|
|
set et_vect_long_long_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
|
|
return $et_vect_long_long_saved
|
|
}
|
|
|
|
|
|
# Return 1 if the target plus current options does not support a vector
|
|
# max instruction on "int", 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_no_int_max { } {
|
|
global et_vect_no_int_max_saved
|
|
|
|
if [info exists et_vect_no_int_max_saved] {
|
|
verbose "check_effective_target_vect_no_int_max: using cached result" 2
|
|
} else {
|
|
set et_vect_no_int_max_saved 0
|
|
if { [istarget sparc*-*-*]
|
|
|| [istarget spu-*-*]
|
|
|| [istarget alpha*-*-*]
|
|
|| ([istarget mips*-*-*]
|
|
&& [check_effective_target_mips_loongson]) } {
|
|
set et_vect_no_int_max_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
|
|
return $et_vect_no_int_max_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options does not support a vector
|
|
# add instruction on "int", 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_no_int_add { } {
|
|
global et_vect_no_int_add_saved
|
|
|
|
if [info exists et_vect_no_int_add_saved] {
|
|
verbose "check_effective_target_vect_no_int_add: using cached result" 2
|
|
} else {
|
|
set et_vect_no_int_add_saved 0
|
|
# Alpha only supports vector add on V8QI and V4HI.
|
|
if { [istarget alpha*-*-*] } {
|
|
set et_vect_no_int_add_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
|
|
return $et_vect_no_int_add_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options does not support vector
|
|
# bitwise instructions, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_no_bitwise { } {
|
|
global et_vect_no_bitwise_saved
|
|
|
|
if [info exists et_vect_no_bitwise_saved] {
|
|
verbose "check_effective_target_vect_no_bitwise: using cached result" 2
|
|
} else {
|
|
set et_vect_no_bitwise_saved 0
|
|
}
|
|
verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
|
|
return $et_vect_no_bitwise_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports vector permutation,
|
|
# 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_perm { } {
|
|
global et_vect_perm
|
|
|
|
if [info exists et_vect_perm_saved] {
|
|
verbose "check_effective_target_vect_perm: using cached result" 2
|
|
} else {
|
|
set et_vect_perm_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget spu-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*] } {
|
|
set et_vect_perm_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
|
|
return $et_vect_perm_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports vector permutation
|
|
# on byte-sized elements, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_perm_byte { } {
|
|
global et_vect_perm_byte
|
|
|
|
if [info exists et_vect_perm_byte_saved] {
|
|
verbose "check_effective_target_vect_perm_byte: using cached result" 2
|
|
} else {
|
|
set et_vect_perm_byte_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget spu-*-*] } {
|
|
set et_vect_perm_byte_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2
|
|
return $et_vect_perm_byte_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports vector permutation
|
|
# on short-sized elements, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_perm_short { } {
|
|
global et_vect_perm_short
|
|
|
|
if [info exists et_vect_perm_short_saved] {
|
|
verbose "check_effective_target_vect_perm_short: using cached result" 2
|
|
} else {
|
|
set et_vect_perm_short_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget spu-*-*] } {
|
|
set et_vect_perm_short_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2
|
|
return $et_vect_perm_short_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# widening summation of *short* args into *int* result, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
|
|
global et_vect_widen_sum_hi_to_si_pattern
|
|
|
|
if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
|
|
verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
|
|
} else {
|
|
set et_vect_widen_sum_hi_to_si_pattern_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget ia64-*-*] } {
|
|
set et_vect_widen_sum_hi_to_si_pattern_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
|
|
return $et_vect_widen_sum_hi_to_si_pattern_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# widening summation of *short* args into *int* result, 0 otherwise.
|
|
# A target can also support this widening summation if it can support
|
|
# promotion (unpacking) from shorts to ints.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_widen_sum_hi_to_si { } {
|
|
global et_vect_widen_sum_hi_to_si
|
|
|
|
if [info exists et_vect_widen_sum_hi_to_si_saved] {
|
|
verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
|
|
} else {
|
|
set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget ia64-*-*] } {
|
|
set et_vect_widen_sum_hi_to_si_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
|
|
return $et_vect_widen_sum_hi_to_si_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# widening summation of *char* args into *short* result, 0 otherwise.
|
|
# A target can also support this widening summation if it can support
|
|
# promotion (unpacking) from chars to shorts.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_widen_sum_qi_to_hi { } {
|
|
global et_vect_widen_sum_qi_to_hi
|
|
|
|
if [info exists et_vect_widen_sum_qi_to_hi_saved] {
|
|
verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
|
|
} else {
|
|
set et_vect_widen_sum_qi_to_hi_saved 0
|
|
if { [check_effective_target_vect_unpack]
|
|
|| [istarget ia64-*-*] } {
|
|
set et_vect_widen_sum_qi_to_hi_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
|
|
return $et_vect_widen_sum_qi_to_hi_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# widening summation of *char* args into *int* result, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_widen_sum_qi_to_si { } {
|
|
global et_vect_widen_sum_qi_to_si
|
|
|
|
if [info exists et_vect_widen_sum_qi_to_si_saved] {
|
|
verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
|
|
} else {
|
|
set et_vect_widen_sum_qi_to_si_saved 0
|
|
if { [istarget powerpc*-*-*] } {
|
|
set et_vect_widen_sum_qi_to_si_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
|
|
return $et_vect_widen_sum_qi_to_si_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# widening multiplication of *char* args into *short* result, 0 otherwise.
|
|
# A target can also support this widening multplication if it can support
|
|
# promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
|
|
# multiplication of shorts).
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
|
|
proc check_effective_target_vect_widen_mult_qi_to_hi { } {
|
|
global et_vect_widen_mult_qi_to_hi
|
|
|
|
if [info exists et_vect_widen_mult_qi_to_hi_saved] {
|
|
verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
|
|
} else {
|
|
if { [check_effective_target_vect_unpack]
|
|
&& [check_effective_target_vect_short_mult] } {
|
|
set et_vect_widen_mult_qi_to_hi_saved 1
|
|
} else {
|
|
set et_vect_widen_mult_qi_to_hi_saved 0
|
|
}
|
|
if { [istarget powerpc*-*-*]
|
|
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
|
|
set et_vect_widen_mult_qi_to_hi_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
|
|
return $et_vect_widen_mult_qi_to_hi_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# widening multiplication of *short* args into *int* result, 0 otherwise.
|
|
# A target can also support this widening multplication if it can support
|
|
# promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
|
|
# multiplication of ints).
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
|
|
proc check_effective_target_vect_widen_mult_hi_to_si { } {
|
|
global et_vect_widen_mult_hi_to_si
|
|
|
|
if [info exists et_vect_widen_mult_hi_to_si_saved] {
|
|
verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
|
|
} else {
|
|
if { [check_effective_target_vect_unpack]
|
|
&& [check_effective_target_vect_int_mult] } {
|
|
set et_vect_widen_mult_hi_to_si_saved 1
|
|
} else {
|
|
set et_vect_widen_mult_hi_to_si_saved 0
|
|
}
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget spu-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
|
|
set et_vect_widen_mult_hi_to_si_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
|
|
return $et_vect_widen_mult_hi_to_si_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# widening multiplication of *char* args into *short* result, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
|
|
global et_vect_widen_mult_qi_to_hi_pattern
|
|
|
|
if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] {
|
|
verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2
|
|
} else {
|
|
set et_vect_widen_mult_qi_to_hi_pattern_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
|
|
set et_vect_widen_mult_qi_to_hi_pattern_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2
|
|
return $et_vect_widen_mult_qi_to_hi_pattern_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# widening multiplication of *short* args into *int* result, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
|
|
global et_vect_widen_mult_hi_to_si_pattern
|
|
|
|
if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] {
|
|
verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2
|
|
} else {
|
|
set et_vect_widen_mult_hi_to_si_pattern_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget spu-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
|
|
set et_vect_widen_mult_hi_to_si_pattern_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2
|
|
return $et_vect_widen_mult_hi_to_si_pattern_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# widening shift, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_widen_shift { } {
|
|
global et_vect_widen_shift_saved
|
|
|
|
if [info exists et_vect_shift_saved] {
|
|
verbose "check_effective_target_vect_widen_shift: using cached result" 2
|
|
} else {
|
|
set et_vect_widen_shift_saved 0
|
|
if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
|
|
set et_vect_widen_shift_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2
|
|
return $et_vect_widen_shift_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# dot-product of signed chars, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_sdot_qi { } {
|
|
global et_vect_sdot_qi
|
|
|
|
if [info exists et_vect_sdot_qi_saved] {
|
|
verbose "check_effective_target_vect_sdot_qi: using cached result" 2
|
|
} else {
|
|
set et_vect_sdot_qi_saved 0
|
|
if { [istarget ia64-*-*] } {
|
|
set et_vect_udot_qi_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
|
|
return $et_vect_sdot_qi_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# dot-product of unsigned chars, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_udot_qi { } {
|
|
global et_vect_udot_qi
|
|
|
|
if [info exists et_vect_udot_qi_saved] {
|
|
verbose "check_effective_target_vect_udot_qi: using cached result" 2
|
|
} else {
|
|
set et_vect_udot_qi_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget ia64-*-*] } {
|
|
set et_vect_udot_qi_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
|
|
return $et_vect_udot_qi_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# dot-product of signed shorts, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_sdot_hi { } {
|
|
global et_vect_sdot_hi
|
|
|
|
if [info exists et_vect_sdot_hi_saved] {
|
|
verbose "check_effective_target_vect_sdot_hi: using cached result" 2
|
|
} else {
|
|
set et_vect_sdot_hi_saved 0
|
|
if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget ia64-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*] } {
|
|
set et_vect_sdot_hi_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
|
|
return $et_vect_sdot_hi_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# dot-product of unsigned shorts, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_udot_hi { } {
|
|
global et_vect_udot_hi
|
|
|
|
if [info exists et_vect_udot_hi_saved] {
|
|
verbose "check_effective_target_vect_udot_hi: using cached result" 2
|
|
} else {
|
|
set et_vect_udot_hi_saved 0
|
|
if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
|
|
set et_vect_udot_hi_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
|
|
return $et_vect_udot_hi_saved
|
|
}
|
|
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# demotion (packing) of shorts (to chars) and ints (to shorts)
|
|
# using modulo arithmetic, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_pack_trunc { } {
|
|
global et_vect_pack_trunc
|
|
|
|
if [info exists et_vect_pack_trunc_saved] {
|
|
verbose "check_effective_target_vect_pack_trunc: using cached result" 2
|
|
} else {
|
|
set et_vect_pack_trunc_saved 0
|
|
if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget spu-*-*]
|
|
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon]
|
|
&& [check_effective_target_arm_little_endian]) } {
|
|
set et_vect_pack_trunc_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
|
|
return $et_vect_pack_trunc_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options supports a vector
|
|
# promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_unpack { } {
|
|
global et_vect_unpack
|
|
|
|
if [info exists et_vect_unpack_saved] {
|
|
verbose "check_effective_target_vect_unpack: using cached result" 2
|
|
} else {
|
|
set et_vect_unpack_saved 0
|
|
if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget spu-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| ([istarget arm*-*-*] && [check_effective_target_arm_neon]
|
|
&& [check_effective_target_arm_little_endian]) } {
|
|
set et_vect_unpack_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
|
|
return $et_vect_unpack_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options does not guarantee
|
|
# that its STACK_BOUNDARY is >= the reguired vector alignment.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_unaligned_stack { } {
|
|
global et_unaligned_stack_saved
|
|
|
|
if [info exists et_unaligned_stack_saved] {
|
|
verbose "check_effective_target_unaligned_stack: using cached result" 2
|
|
} else {
|
|
set et_unaligned_stack_saved 0
|
|
}
|
|
verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
|
|
return $et_unaligned_stack_saved
|
|
}
|
|
|
|
# Return 1 if the target plus current options does not support a vector
|
|
# alignment mechanism, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_no_align { } {
|
|
global et_vect_no_align_saved
|
|
|
|
if [info exists et_vect_no_align_saved] {
|
|
verbose "check_effective_target_vect_no_align: using cached result" 2
|
|
} else {
|
|
set et_vect_no_align_saved 0
|
|
if { [istarget mipsisa64*-*-*]
|
|
|| [istarget sparc*-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| [check_effective_target_arm_vect_no_misalign]
|
|
|| ([istarget mips*-*-*]
|
|
&& [check_effective_target_mips_loongson]) } {
|
|
set et_vect_no_align_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
|
|
return $et_vect_no_align_saved
|
|
}
|
|
|
|
# Return 1 if the target supports a vector misalign access, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_hw_misalign { } {
|
|
global et_vect_hw_misalign_saved
|
|
|
|
if [info exists et_vect_hw_misalign_saved] {
|
|
verbose "check_effective_target_vect_hw_misalign: using cached result" 2
|
|
} else {
|
|
set et_vect_hw_misalign_saved 0
|
|
if { ([istarget x86_64-*-*]
|
|
|| [istarget i?86-*-*]) } {
|
|
set et_vect_hw_misalign_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
|
|
return $et_vect_hw_misalign_saved
|
|
}
|
|
|
|
|
|
# Return 1 if arrays are aligned to the vector alignment
|
|
# boundary, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vect_aligned_arrays { } {
|
|
global et_vect_aligned_arrays
|
|
|
|
if [info exists et_vect_aligned_arrays_saved] {
|
|
verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
|
|
} else {
|
|
set et_vect_aligned_arrays_saved 0
|
|
if { (([istarget x86_64-*-*]
|
|
|| [istarget i?86-*-*]) && [is-effective-target lp64])
|
|
|| [istarget spu-*-*] } {
|
|
set et_vect_aligned_arrays_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
|
|
return $et_vect_aligned_arrays_saved
|
|
}
|
|
|
|
# Return 1 if types of size 32 bit or less are naturally aligned
|
|
# (aligned to their type-size), 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_natural_alignment_32 { } {
|
|
global et_natural_alignment_32
|
|
|
|
if [info exists et_natural_alignment_32_saved] {
|
|
verbose "check_effective_target_natural_alignment_32: using cached result" 2
|
|
} else {
|
|
# FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
|
|
set et_natural_alignment_32_saved 1
|
|
if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
|
|
set et_natural_alignment_32_saved 0
|
|
}
|
|
}
|
|
verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
|
|
return $et_natural_alignment_32_saved
|
|
}
|
|
|
|
# Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
|
|
# type-size), 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_natural_alignment_64 { } {
|
|
global et_natural_alignment_64
|
|
|
|
if [info exists et_natural_alignment_64_saved] {
|
|
verbose "check_effective_target_natural_alignment_64: using cached result" 2
|
|
} else {
|
|
set et_natural_alignment_64_saved 0
|
|
if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
|
|
|| [istarget spu-*-*] } {
|
|
set et_natural_alignment_64_saved 1
|
|
}
|
|
}
|
|
verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
|
|
return $et_natural_alignment_64_saved
|
|
}
|
|
|
|
# Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vector_alignment_reachable { } {
|
|
global et_vector_alignment_reachable
|
|
|
|
if [info exists et_vector_alignment_reachable_saved] {
|
|
verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
|
|
} else {
|
|
if { [check_effective_target_vect_aligned_arrays]
|
|
|| [check_effective_target_natural_alignment_32] } {
|
|
set et_vector_alignment_reachable_saved 1
|
|
} else {
|
|
set et_vector_alignment_reachable_saved 0
|
|
}
|
|
}
|
|
verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
|
|
return $et_vector_alignment_reachable_saved
|
|
}
|
|
|
|
# Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
|
|
#
|
|
# This won't change for different subtargets so cache the result.
|
|
|
|
proc check_effective_target_vector_alignment_reachable_for_64bit { } {
|
|
global et_vector_alignment_reachable_for_64bit
|
|
|
|
if [info exists et_vector_alignment_reachable_for_64bit_saved] {
|
|
verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
|
|
} else {
|
|
if { [check_effective_target_vect_aligned_arrays]
|
|
|| [check_effective_target_natural_alignment_64] } {
|
|
set et_vector_alignment_reachable_for_64bit_saved 1
|
|
} else {
|
|
set et_vector_alignment_reachable_for_64bit_saved 0
|
|
}
|
|
}
|
|
verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
|
|
return $et_vector_alignment_reachable_for_64bit_saved
|
|
}
|
|
|
|
# Return 1 if the target only requires element alignment for vector accesses
|
|
|
|
proc check_effective_target_vect_element_align { } {
|
|
global et_vect_element_align
|
|
|
|
if [info exists et_vect_element_align] {
|
|
verbose "check_effective_target_vect_element_align: using cached result" 2
|
|
} else {
|
|
set et_vect_element_align 0
|
|
if { ([istarget arm*-*-*]
|
|
&& ![check_effective_target_arm_vect_no_misalign])
|
|
|| [check_effective_target_vect_hw_misalign] } {
|
|
set et_vect_element_align 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2
|
|
return $et_vect_element_align
|
|
}
|
|
|
|
# Return 1 if the target supports vector conditional operations, 0 otherwise.
|
|
|
|
proc check_effective_target_vect_condition { } {
|
|
global et_vect_cond_saved
|
|
|
|
if [info exists et_vect_cond_saved] {
|
|
verbose "check_effective_target_vect_cond: using cached result" 2
|
|
} else {
|
|
set et_vect_cond_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget spu-*-*]
|
|
|| [istarget x86_64-*-*] } {
|
|
set et_vect_cond_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
|
|
return $et_vect_cond_saved
|
|
}
|
|
|
|
# Return 1 if the target supports vector conditional operations where
|
|
# the comparison has different type from the lhs, 0 otherwise.
|
|
|
|
proc check_effective_target_vect_cond_mixed { } {
|
|
global et_vect_cond_mixed_saved
|
|
|
|
if [info exists et_vect_cond_mixed_saved] {
|
|
verbose "check_effective_target_vect_cond_mixed: using cached result" 2
|
|
} else {
|
|
set et_vect_cond_mixed_saved 0
|
|
if { [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*] } {
|
|
set et_vect_cond_mixed_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2
|
|
return $et_vect_cond_mixed_saved
|
|
}
|
|
|
|
# Return 1 if the target supports vector char multiplication, 0 otherwise.
|
|
|
|
proc check_effective_target_vect_char_mult { } {
|
|
global et_vect_char_mult_saved
|
|
|
|
if [info exists et_vect_char_mult_saved] {
|
|
verbose "check_effective_target_vect_char_mult: using cached result" 2
|
|
} else {
|
|
set et_vect_char_mult_saved 0
|
|
if { [istarget ia64-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*] } {
|
|
set et_vect_char_mult_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
|
|
return $et_vect_char_mult_saved
|
|
}
|
|
|
|
# Return 1 if the target supports vector short multiplication, 0 otherwise.
|
|
|
|
proc check_effective_target_vect_short_mult { } {
|
|
global et_vect_short_mult_saved
|
|
|
|
if [info exists et_vect_short_mult_saved] {
|
|
verbose "check_effective_target_vect_short_mult: using cached result" 2
|
|
} else {
|
|
set et_vect_short_mult_saved 0
|
|
if { [istarget ia64-*-*]
|
|
|| [istarget spu-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget powerpc*-*-*]
|
|
|| [check_effective_target_arm32]
|
|
|| ([istarget mips*-*-*]
|
|
&& [check_effective_target_mips_loongson]) } {
|
|
set et_vect_short_mult_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
|
|
return $et_vect_short_mult_saved
|
|
}
|
|
|
|
# Return 1 if the target supports vector int multiplication, 0 otherwise.
|
|
|
|
proc check_effective_target_vect_int_mult { } {
|
|
global et_vect_int_mult_saved
|
|
|
|
if [info exists et_vect_int_mult_saved] {
|
|
verbose "check_effective_target_vect_int_mult: using cached result" 2
|
|
} else {
|
|
set et_vect_int_mult_saved 0
|
|
if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
|
|
|| [istarget spu-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| [check_effective_target_arm32] } {
|
|
set et_vect_int_mult_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
|
|
return $et_vect_int_mult_saved
|
|
}
|
|
|
|
# Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
|
|
|
|
proc check_effective_target_vect_extract_even_odd { } {
|
|
global et_vect_extract_even_odd_saved
|
|
|
|
if [info exists et_vect_extract_even_odd_saved] {
|
|
verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
|
|
} else {
|
|
set et_vect_extract_even_odd_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| [istarget spu-*-*] } {
|
|
set et_vect_extract_even_odd_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
|
|
return $et_vect_extract_even_odd_saved
|
|
}
|
|
|
|
# Return 1 if the target supports vector interleaving, 0 otherwise.
|
|
|
|
proc check_effective_target_vect_interleave { } {
|
|
global et_vect_interleave_saved
|
|
|
|
if [info exists et_vect_interleave_saved] {
|
|
verbose "check_effective_target_vect_interleave: using cached result" 2
|
|
} else {
|
|
set et_vect_interleave_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget ia64-*-*]
|
|
|| [istarget spu-*-*] } {
|
|
set et_vect_interleave_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
|
|
return $et_vect_interleave_saved
|
|
}
|
|
|
|
foreach N {2 3 4 8} {
|
|
eval [string map [list N $N] {
|
|
# Return 1 if the target supports 2-vector interleaving
|
|
proc check_effective_target_vect_stridedN { } {
|
|
global et_vect_stridedN_saved
|
|
|
|
if [info exists et_vect_stridedN_saved] {
|
|
verbose "check_effective_target_vect_stridedN: using cached result" 2
|
|
} else {
|
|
set et_vect_stridedN_saved 0
|
|
if { (N & -N) == N
|
|
&& [check_effective_target_vect_interleave]
|
|
&& [check_effective_target_vect_extract_even_odd] } {
|
|
set et_vect_stridedN_saved 1
|
|
}
|
|
if { [istarget arm*-*-*] && N >= 2 && N <= 4 } {
|
|
set et_vect_stridedN_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2
|
|
return $et_vect_stridedN_saved
|
|
}
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports multiple vector sizes
|
|
|
|
proc check_effective_target_vect_multiple_sizes { } {
|
|
global et_vect_multiple_sizes_saved
|
|
|
|
if [info exists et_vect_multiple_sizes_saved] {
|
|
verbose "check_effective_target_vect_multiple_sizes: using cached result" 2
|
|
} else {
|
|
set et_vect_multiple_sizes_saved 0
|
|
if { ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
|
|
set et_vect_multiple_sizes_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2
|
|
return $et_vect_multiple_sizes_saved
|
|
}
|
|
|
|
# Return 1 if the target supports vectors of 64 bits.
|
|
|
|
proc check_effective_target_vect64 { } {
|
|
global et_vect64_saved
|
|
|
|
if [info exists et_vect64_saved] {
|
|
verbose "check_effective_target_vect64: using cached result" 2
|
|
} else {
|
|
set et_vect64_saved 0
|
|
if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
|
|
set et_vect64_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_vect64: returning $et_vect64_saved" 2
|
|
return $et_vect64_saved
|
|
}
|
|
|
|
# Return 1 if the target supports section-anchors
|
|
|
|
proc check_effective_target_section_anchors { } {
|
|
global et_section_anchors_saved
|
|
|
|
if [info exists et_section_anchors_saved] {
|
|
verbose "check_effective_target_section_anchors: using cached result" 2
|
|
} else {
|
|
set et_section_anchors_saved 0
|
|
if { [istarget powerpc*-*-*]
|
|
|| [istarget arm*-*-*] } {
|
|
set et_section_anchors_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
|
|
return $et_section_anchors_saved
|
|
}
|
|
|
|
# Return 1 if the target supports atomic operations on "int" and "long".
|
|
|
|
proc check_effective_target_sync_int_long { } {
|
|
global et_sync_int_long_saved
|
|
|
|
if [info exists et_sync_int_long_saved] {
|
|
verbose "check_effective_target_sync_int_long: using cached result" 2
|
|
} else {
|
|
set et_sync_int_long_saved 0
|
|
# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
|
|
# load-reserved/store-conditional instructions.
|
|
if { [istarget ia64-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget alpha*-*-*]
|
|
|| [istarget arm*-*-linux-gnueabi]
|
|
|| [istarget bfin*-*linux*]
|
|
|| [istarget hppa*-*linux*]
|
|
|| [istarget s390*-*-*]
|
|
|| [istarget powerpc*-*-*]
|
|
|| [istarget sparc64-*-*]
|
|
|| [istarget sparcv9-*-*]
|
|
|| [istarget mips*-*-*] } {
|
|
set et_sync_int_long_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
|
|
return $et_sync_int_long_saved
|
|
}
|
|
|
|
# Return 1 if the target supports atomic operations on "long long" and can
|
|
# execute them
|
|
# So far only put checks in for ARM, others may want to add their own
|
|
proc check_effective_target_sync_longlong { } {
|
|
return [check_runtime sync_longlong_runtime {
|
|
#include <stdlib.h>
|
|
int main ()
|
|
{
|
|
long long l1;
|
|
|
|
if (sizeof (long long) != 8)
|
|
exit (1);
|
|
|
|
#ifdef __arm__
|
|
/* Just check for native; checking for kernel fallback is tricky. */
|
|
asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1");
|
|
#else
|
|
# error "Add other suitable archs here"
|
|
#endif
|
|
|
|
exit (0);
|
|
}
|
|
} "" ]
|
|
}
|
|
|
|
# Return 1 if the target supports atomic operations on "char" and "short".
|
|
|
|
proc check_effective_target_sync_char_short { } {
|
|
global et_sync_char_short_saved
|
|
|
|
if [info exists et_sync_char_short_saved] {
|
|
verbose "check_effective_target_sync_char_short: using cached result" 2
|
|
} else {
|
|
set et_sync_char_short_saved 0
|
|
# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
|
|
# load-reserved/store-conditional instructions.
|
|
if { [istarget ia64-*-*]
|
|
|| [istarget i?86-*-*]
|
|
|| [istarget x86_64-*-*]
|
|
|| [istarget alpha*-*-*]
|
|
|| [istarget arm*-*-linux-gnueabi]
|
|
|| [istarget hppa*-*linux*]
|
|
|| [istarget s390*-*-*]
|
|
|| [istarget powerpc*-*-*]
|
|
|| [istarget sparc64-*-*]
|
|
|| [istarget sparcv9-*-*]
|
|
|| [istarget mips*-*-*] } {
|
|
set et_sync_char_short_saved 1
|
|
}
|
|
}
|
|
|
|
verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
|
|
return $et_sync_char_short_saved
|
|
}
|
|
|
|
# Return 1 if the target uses a ColdFire FPU.
|
|
|
|
proc check_effective_target_coldfire_fpu { } {
|
|
return [check_no_compiler_messages coldfire_fpu assembly {
|
|
#ifndef __mcffpu__
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return true if this is a uClibc target.
|
|
|
|
proc check_effective_target_uclibc {} {
|
|
return [check_no_compiler_messages uclibc object {
|
|
#include <features.h>
|
|
#if !defined (__UCLIBC__)
|
|
#error FOO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return true if this is a uclibc target and if the uclibc feature
|
|
# described by __$feature__ is not present.
|
|
|
|
proc check_missing_uclibc_feature {feature} {
|
|
return [check_no_compiler_messages $feature object "
|
|
#include <features.h>
|
|
#if !defined (__UCLIBC) || defined (__${feature}__)
|
|
#error FOO
|
|
#endif
|
|
"]
|
|
}
|
|
|
|
# Return true if this is a Newlib target.
|
|
|
|
proc check_effective_target_newlib {} {
|
|
return [check_no_compiler_messages newlib object {
|
|
#include <newlib.h>
|
|
}]
|
|
}
|
|
|
|
# Return 1 if
|
|
# (a) an error of a few ULP is expected in string to floating-point
|
|
# conversion functions; and
|
|
# (b) overflow is not always detected correctly by those functions.
|
|
|
|
proc check_effective_target_lax_strtofp {} {
|
|
# By default, assume that all uClibc targets suffer from this.
|
|
return [check_effective_target_uclibc]
|
|
}
|
|
|
|
# Return 1 if this is a target for which wcsftime is a dummy
|
|
# function that always returns 0.
|
|
|
|
proc check_effective_target_dummy_wcsftime {} {
|
|
# By default, assume that all uClibc targets suffer from this.
|
|
return [check_effective_target_uclibc]
|
|
}
|
|
|
|
# Return 1 if constructors with initialization priority arguments are
|
|
# supposed on this target.
|
|
|
|
proc check_effective_target_init_priority {} {
|
|
return [check_no_compiler_messages init_priority assembly "
|
|
void f() __attribute__((constructor (1000)));
|
|
void f() \{\}
|
|
"]
|
|
}
|
|
|
|
# Return 1 if the target matches the effective target 'arg', 0 otherwise.
|
|
# This can be used with any check_* proc that takes no argument and
|
|
# returns only 1 or 0. It could be used with check_* procs that take
|
|
# arguments with keywords that pass particular arguments.
|
|
|
|
proc is-effective-target { arg } {
|
|
set selected 0
|
|
if { [info procs check_effective_target_${arg}] != [list] } {
|
|
set selected [check_effective_target_${arg}]
|
|
} else {
|
|
switch $arg {
|
|
"vmx_hw" { set selected [check_vmx_hw_available] }
|
|
"vsx_hw" { set selected [check_vsx_hw_available] }
|
|
"ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
|
|
"named_sections" { set selected [check_named_sections_available] }
|
|
"gc_sections" { set selected [check_gc_sections_available] }
|
|
"cxa_atexit" { set selected [check_cxa_atexit_available] }
|
|
default { error "unknown effective target keyword `$arg'" }
|
|
}
|
|
}
|
|
verbose "is-effective-target: $arg $selected" 2
|
|
return $selected
|
|
}
|
|
|
|
# Return 1 if the argument is an effective-target keyword, 0 otherwise.
|
|
|
|
proc is-effective-target-keyword { arg } {
|
|
if { [info procs check_effective_target_${arg}] != [list] } {
|
|
return 1
|
|
} else {
|
|
# These have different names for their check_* procs.
|
|
switch $arg {
|
|
"vmx_hw" { return 1 }
|
|
"vsx_hw" { return 1 }
|
|
"ppc_recip_hw" { return 1 }
|
|
"named_sections" { return 1 }
|
|
"gc_sections" { return 1 }
|
|
"cxa_atexit" { return 1 }
|
|
default { return 0 }
|
|
}
|
|
}
|
|
}
|
|
|
|
# Return 1 if target default to short enums
|
|
|
|
proc check_effective_target_short_enums { } {
|
|
return [check_no_compiler_messages short_enums assembly {
|
|
enum foo { bar };
|
|
int s[sizeof (enum foo) == 1 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if target supports merging string constants at link time.
|
|
|
|
proc check_effective_target_string_merging { } {
|
|
return [check_no_messages_and_pattern string_merging \
|
|
"rodata\\.str" assembly {
|
|
const char *var = "String";
|
|
} {-O2}]
|
|
}
|
|
|
|
# Return 1 if target has the basic signed and unsigned types in
|
|
# <stdint.h>, 0 otherwise. This will be obsolete when GCC ensures a
|
|
# working <stdint.h> for all targets.
|
|
|
|
proc check_effective_target_stdint_types { } {
|
|
return [check_no_compiler_messages stdint_types assembly {
|
|
#include <stdint.h>
|
|
int8_t a; int16_t b; int32_t c; int64_t d;
|
|
uint8_t e; uint16_t f; uint32_t g; uint64_t h;
|
|
}]
|
|
}
|
|
|
|
# Return 1 if target has the basic signed and unsigned types in
|
|
# <inttypes.h>, 0 otherwise. This is for tests that GCC's notions of
|
|
# these types agree with those in the header, as some systems have
|
|
# only <inttypes.h>.
|
|
|
|
proc check_effective_target_inttypes_types { } {
|
|
return [check_no_compiler_messages inttypes_types assembly {
|
|
#include <inttypes.h>
|
|
int8_t a; int16_t b; int32_t c; int64_t d;
|
|
uint8_t e; uint16_t f; uint32_t g; uint64_t h;
|
|
}]
|
|
}
|
|
|
|
# Return 1 if programs are intended to be run on a simulator
|
|
# (i.e. slowly) rather than hardware (i.e. fast).
|
|
|
|
proc check_effective_target_simulator { } {
|
|
|
|
# All "src/sim" simulators set this one.
|
|
if [board_info target exists is_simulator] {
|
|
return [board_info target is_simulator]
|
|
}
|
|
|
|
# The "sid" simulators don't set that one, but at least they set
|
|
# this one.
|
|
if [board_info target exists slow_simulator] {
|
|
return [board_info target slow_simulator]
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
# Return 1 if the target is a VxWorks kernel.
|
|
|
|
proc check_effective_target_vxworks_kernel { } {
|
|
return [check_no_compiler_messages vxworks_kernel assembly {
|
|
#if !defined __vxworks || defined __RTP__
|
|
#error NO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target is a VxWorks RTP.
|
|
|
|
proc check_effective_target_vxworks_rtp { } {
|
|
return [check_no_compiler_messages vxworks_rtp assembly {
|
|
#if !defined __vxworks || !defined __RTP__
|
|
#error NO
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target is expected to provide wide character support.
|
|
|
|
proc check_effective_target_wchar { } {
|
|
if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
|
|
return 0
|
|
}
|
|
return [check_no_compiler_messages wchar assembly {
|
|
#include <wchar.h>
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target has <pthread.h>.
|
|
|
|
proc check_effective_target_pthread_h { } {
|
|
return [check_no_compiler_messages pthread_h assembly {
|
|
#include <pthread.h>
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target can truncate a file from a file-descriptor,
|
|
# as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
|
|
# chsize. We test for a trivially functional truncation; no stubs.
|
|
# As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
|
|
# different function to be used.
|
|
|
|
proc check_effective_target_fd_truncate { } {
|
|
set prog {
|
|
#define _FILE_OFFSET_BITS 64
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
int main ()
|
|
{
|
|
FILE *f = fopen ("tst.tmp", "wb");
|
|
int fd;
|
|
const char t[] = "test writing more than ten characters";
|
|
char s[11];
|
|
int status = 0;
|
|
fd = fileno (f);
|
|
write (fd, t, sizeof (t) - 1);
|
|
lseek (fd, 0, 0);
|
|
if (ftruncate (fd, 10) != 0)
|
|
status = 1;
|
|
close (fd);
|
|
fclose (f);
|
|
if (status)
|
|
{
|
|
unlink ("tst.tmp");
|
|
exit (status);
|
|
}
|
|
f = fopen ("tst.tmp", "rb");
|
|
if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
|
|
status = 1;
|
|
fclose (f);
|
|
unlink ("tst.tmp");
|
|
exit (status);
|
|
}
|
|
}
|
|
|
|
if { [check_runtime ftruncate $prog] } {
|
|
return 1;
|
|
}
|
|
|
|
regsub "ftruncate" $prog "chsize" prog
|
|
return [check_runtime chsize $prog]
|
|
}
|
|
|
|
# Add to FLAGS all the target-specific flags needed to access the c99 runtime.
|
|
|
|
proc add_options_for_c99_runtime { flags } {
|
|
if { [istarget *-*-solaris2*] } {
|
|
return "$flags -std=c99"
|
|
}
|
|
if { [istarget mips-sgi-irix6.5*] } {
|
|
return "$flags -std=c99"
|
|
}
|
|
if { [istarget powerpc-*-darwin*] } {
|
|
return "$flags -mmacosx-version-min=10.3"
|
|
}
|
|
return $flags
|
|
}
|
|
|
|
# Add to FLAGS all the target-specific flags needed to enable
|
|
# full IEEE compliance mode.
|
|
|
|
proc add_options_for_ieee { flags } {
|
|
if { [istarget alpha*-*-*]
|
|
|| [istarget sh*-*-*] } {
|
|
return "$flags -mieee"
|
|
}
|
|
if { [istarget rx-*-*] } {
|
|
return "$flags -mnofpu"
|
|
}
|
|
return $flags
|
|
}
|
|
|
|
# Add to FLAGS the flags needed to enable functions to bind locally
|
|
# when using pic/PIC passes in the testsuite.
|
|
|
|
proc add_options_for_bind_pic_locally { flags } {
|
|
if {[check_no_compiler_messages using_pic2 assembly {
|
|
#if __PIC__ != 2
|
|
#error FOO
|
|
#endif
|
|
}]} {
|
|
return "$flags -fPIE"
|
|
}
|
|
if {[check_no_compiler_messages using_pic1 assembly {
|
|
#if __PIC__ != 1
|
|
#error FOO
|
|
#endif
|
|
}]} {
|
|
return "$flags -fpie"
|
|
}
|
|
|
|
return $flags
|
|
}
|
|
|
|
# Add to FLAGS the flags needed to enable 64-bit vectors.
|
|
|
|
proc add_options_for_double_vectors { flags } {
|
|
if [is-effective-target arm_neon_ok] {
|
|
return "$flags -mvectorize-with-neon-double"
|
|
}
|
|
|
|
return $flags
|
|
}
|
|
|
|
# Return 1 if the target provides a full C99 runtime.
|
|
|
|
proc check_effective_target_c99_runtime { } {
|
|
return [check_cached_effective_target c99_runtime {
|
|
global srcdir
|
|
|
|
set file [open "$srcdir/gcc.dg/builtins-config.h"]
|
|
set contents [read $file]
|
|
close $file
|
|
append contents {
|
|
#ifndef HAVE_C99_RUNTIME
|
|
#error FOO
|
|
#endif
|
|
}
|
|
check_no_compiler_messages_nocache c99_runtime assembly \
|
|
$contents [add_options_for_c99_runtime ""]
|
|
}]
|
|
}
|
|
|
|
# Return 1 if target wchar_t is at least 4 bytes.
|
|
|
|
proc check_effective_target_4byte_wchar_t { } {
|
|
return [check_no_compiler_messages 4byte_wchar_t object {
|
|
int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if the target supports automatic stack alignment.
|
|
|
|
proc check_effective_target_automatic_stack_alignment { } {
|
|
# Ordinarily x86 supports automatic stack alignment ...
|
|
if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
|
|
if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
|
|
# ... except Win64 SEH doesn't. Succeed for Win32 though.
|
|
return [check_effective_target_ilp32];
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
# Return 1 if avx instructions can be compiled.
|
|
|
|
proc check_effective_target_avx { } {
|
|
return [check_no_compiler_messages avx object {
|
|
void _mm256_zeroall (void)
|
|
{
|
|
__builtin_ia32_vzeroall ();
|
|
}
|
|
} "-O2 -mavx" ]
|
|
}
|
|
|
|
# Return 1 if sse instructions can be compiled.
|
|
proc check_effective_target_sse { } {
|
|
return [check_no_compiler_messages sse object {
|
|
int main ()
|
|
{
|
|
__builtin_ia32_stmxcsr ();
|
|
return 0;
|
|
}
|
|
} "-O2 -msse" ]
|
|
}
|
|
|
|
# Return 1 if sse2 instructions can be compiled.
|
|
proc check_effective_target_sse2 { } {
|
|
return [check_no_compiler_messages sse2 object {
|
|
typedef long long __m128i __attribute__ ((__vector_size__ (16)));
|
|
|
|
__m128i _mm_srli_si128 (__m128i __A, int __N)
|
|
{
|
|
return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
|
|
}
|
|
} "-O2 -msse2" ]
|
|
}
|
|
|
|
# Return 1 if F16C instructions can be compiled.
|
|
|
|
proc check_effective_target_f16c { } {
|
|
return [check_no_compiler_messages f16c object {
|
|
#include "immintrin.h"
|
|
float
|
|
foo (unsigned short val)
|
|
{
|
|
return _cvtsh_ss (val);
|
|
}
|
|
} "-O2 -mf16c" ]
|
|
}
|
|
|
|
# Return 1 if C wchar_t type is compatible with char16_t.
|
|
|
|
proc check_effective_target_wchar_t_char16_t_compatible { } {
|
|
return [check_no_compiler_messages wchar_t_char16_t object {
|
|
__WCHAR_TYPE__ wc;
|
|
__CHAR16_TYPE__ *p16 = &wc;
|
|
char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if C wchar_t type is compatible with char32_t.
|
|
|
|
proc check_effective_target_wchar_t_char32_t_compatible { } {
|
|
return [check_no_compiler_messages wchar_t_char32_t object {
|
|
__WCHAR_TYPE__ wc;
|
|
__CHAR32_TYPE__ *p32 = &wc;
|
|
char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
|
|
}]
|
|
}
|
|
|
|
# Return 1 if pow10 function exists.
|
|
|
|
proc check_effective_target_pow10 { } {
|
|
return [check_runtime pow10 {
|
|
#include <math.h>
|
|
int main () {
|
|
double x;
|
|
x = pow10 (1);
|
|
return 0;
|
|
}
|
|
} "-lm" ]
|
|
}
|
|
|
|
# Return 1 if current options generate DFP instructions, 0 otherwise.
|
|
|
|
proc check_effective_target_hard_dfp {} {
|
|
return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
|
|
typedef float d64 __attribute__((mode(DD)));
|
|
d64 x, y, z;
|
|
void foo (void) { z = x + y; }
|
|
}]
|
|
}
|
|
|
|
# Return 1 if string.h and wchar.h headers provide C++ requires overloads
|
|
# for strchr etc. functions.
|
|
|
|
proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
|
|
return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
|
|
#include <string.h>
|
|
#include <wchar.h>
|
|
#if !defined(__cplusplus) \
|
|
|| !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
|
|
|| !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
|
|
ISO C++ correct string.h and wchar.h protos not supported.
|
|
#else
|
|
int i;
|
|
#endif
|
|
}]
|
|
}
|
|
|
|
# Return 1 if GNU as is used.
|
|
|
|
proc check_effective_target_gas { } {
|
|
global use_gas_saved
|
|
global tool
|
|
|
|
if {![info exists use_gas_saved]} {
|
|
# Check if the as used by gcc is GNU as.
|
|
set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
|
|
# Provide /dev/null as input, otherwise gas times out reading from
|
|
# stdin.
|
|
set status [remote_exec host "$gcc_as" "-v /dev/null"]
|
|
set as_output [lindex $status 1]
|
|
if { [ string first "GNU" $as_output ] >= 0 } {
|
|
set use_gas_saved 1
|
|
} else {
|
|
set use_gas_saved 0
|
|
}
|
|
}
|
|
return $use_gas_saved
|
|
}
|
|
|
|
# Return 1 if GNU ld is used.
|
|
|
|
proc check_effective_target_gld { } {
|
|
global use_gld_saved
|
|
global tool
|
|
|
|
if {![info exists use_gld_saved]} {
|
|
# Check if the ld used by gcc is GNU ld.
|
|
set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
|
|
set status [remote_exec host "$gcc_ld" "--version"]
|
|
set ld_output [lindex $status 1]
|
|
if { [ string first "GNU" $ld_output ] >= 0 } {
|
|
set use_gld_saved 1
|
|
} else {
|
|
set use_gld_saved 0
|
|
}
|
|
}
|
|
return $use_gld_saved
|
|
}
|
|
|
|
# Return 1 if the compiler has been configure with link-time optimization
|
|
# (LTO) support.
|
|
|
|
proc check_effective_target_lto { } {
|
|
global ENABLE_LTO
|
|
return [info exists ENABLE_LTO]
|
|
}
|
|
|
|
# Return 1 if this target supports the -fsplit-stack option, 0
|
|
# otherwise.
|
|
|
|
proc check_effective_target_split_stack {} {
|
|
return [check_no_compiler_messages split_stack object {
|
|
void foo (void) { }
|
|
} "-fsplit-stack"]
|
|
}
|
|
|
|
# Return 1 if the language for the compiler under test is C.
|
|
|
|
proc check_effective_target_c { } {
|
|
global tool
|
|
if [string match $tool "gcc"] {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Return 1 if the language for the compiler under test is C++.
|
|
|
|
proc check_effective_target_c++ { } {
|
|
global tool
|
|
if [string match $tool "g++"] {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Return 1 if expensive testcases should be run.
|
|
|
|
proc check_effective_target_run_expensive_tests { } {
|
|
if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
# Returns 1 if "mempcpy" is available on the target system.
|
|
|
|
proc check_effective_target_mempcpy {} {
|
|
return [check_function_available "mempcpy"]
|
|
}
|
|
|
|
# Check whether the vectorizer tests are supported by the target and
|
|
# append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
|
|
# Set dg-do-what-default to either compile or run, depending on target
|
|
# capabilities. Return 1 if vectorizer tests are supported by
|
|
# target, 0 otherwise.
|
|
|
|
proc check_vect_support_and_set_flags { } {
|
|
global DEFAULT_VECTCFLAGS
|
|
global dg-do-what-default
|
|
|
|
if [istarget powerpc-*paired*] {
|
|
lappend DEFAULT_VECTCFLAGS "-mpaired"
|
|
if [check_750cl_hw_available] {
|
|
set dg-do-what-default run
|
|
} else {
|
|
set dg-do-what-default compile
|
|
}
|
|
} elseif [istarget powerpc*-*-*] {
|
|
# Skip targets not supporting -maltivec.
|
|
if ![is-effective-target powerpc_altivec_ok] {
|
|
return 0
|
|
}
|
|
|
|
lappend DEFAULT_VECTCFLAGS "-maltivec"
|
|
if [check_vsx_hw_available] {
|
|
lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
|
|
}
|
|
|
|
if [check_vmx_hw_available] {
|
|
set dg-do-what-default run
|
|
} else {
|
|
if [is-effective-target ilp32] {
|
|
# Specify a cpu that supports VMX for compile-only tests.
|
|
lappend DEFAULT_VECTCFLAGS "-mcpu=970"
|
|
}
|
|
set dg-do-what-default compile
|
|
}
|
|
} elseif { [istarget spu-*-*] } {
|
|
set dg-do-what-default run
|
|
} elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
|
|
lappend DEFAULT_VECTCFLAGS "-msse2"
|
|
if { [check_effective_target_sse2_runtime] } {
|
|
set dg-do-what-default run
|
|
} else {
|
|
set dg-do-what-default compile
|
|
}
|
|
} elseif { [istarget mips*-*-*]
|
|
&& ([check_effective_target_mpaired_single]
|
|
|| [check_effective_target_mips_loongson])
|
|
&& [check_effective_target_nomips16] } {
|
|
if { [check_effective_target_mpaired_single] } {
|
|
lappend DEFAULT_VECTCFLAGS "-mpaired-single"
|
|
}
|
|
set dg-do-what-default run
|
|
} elseif [istarget sparc*-*-*] {
|
|
lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
|
|
if [check_effective_target_ultrasparc_hw] {
|
|
set dg-do-what-default run
|
|
} else {
|
|
set dg-do-what-default compile
|
|
}
|
|
} elseif [istarget alpha*-*-*] {
|
|
# Alpha's vectorization capabilities are extremely limited.
|
|
# It's more effort than its worth disabling all of the tests
|
|
# that it cannot pass. But if you actually want to see what
|
|
# does work, command out the return.
|
|
return 0
|
|
|
|
lappend DEFAULT_VECTCFLAGS "-mmax"
|
|
if [check_alpha_max_hw_available] {
|
|
set dg-do-what-default run
|
|
} else {
|
|
set dg-do-what-default compile
|
|
}
|
|
} elseif [istarget ia64-*-*] {
|
|
set dg-do-what-default run
|
|
} elseif [is-effective-target arm_neon_ok] {
|
|
eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
|
|
# NEON does not support denormals, so is not used for vectorization by
|
|
# default to avoid loss of precision. We must pass -ffast-math to test
|
|
# vectorization of float operations.
|
|
lappend DEFAULT_VECTCFLAGS "-ffast-math"
|
|
if [is-effective-target arm_neon_hw] {
|
|
set dg-do-what-default run
|
|
} else {
|
|
set dg-do-what-default compile
|
|
}
|
|
} else {
|
|
return 0
|
|
}
|
|
|
|
return 1
|
|
}
|
|
|
|
proc check_effective_target_non_strict_align {} {
|
|
return [check_no_compiler_messages non_strict_align assembly {
|
|
char *y;
|
|
typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
|
|
c *z;
|
|
void foo(void) { z = (c *) y; }
|
|
} "-Wcast-align"]
|
|
}
|