
2019-11-20 Richard Biener <rguenther@suse.de> PR c/92088 c/ * c-decl.c (grokdeclarator): Prevent inlining of nested function with VLA arguments. * builtins.c (compute_objsize): Deal with VLAs. * gcc.dg/torture/pr92088-1.c: New testcase. * gcc.dg/torture/pr92088-2.c: Likewise. From-SVN: r278477
11382 lines
351 KiB
C
11382 lines
351 KiB
C
/* Expand builtin functions.
|
||
Copyright (C) 1988-2019 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* Legacy warning! Please add no further builtin simplifications here
|
||
(apart from pure constant folding) - builtin simplifications should go
|
||
to match.pd or gimple-fold.c instead. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "memmodel.h"
|
||
#include "gimple.h"
|
||
#include "predict.h"
|
||
#include "tm_p.h"
|
||
#include "stringpool.h"
|
||
#include "tree-vrp.h"
|
||
#include "tree-ssanames.h"
|
||
#include "expmed.h"
|
||
#include "optabs.h"
|
||
#include "emit-rtl.h"
|
||
#include "recog.h"
|
||
#include "diagnostic-core.h"
|
||
#include "alias.h"
|
||
#include "fold-const.h"
|
||
#include "fold-const-call.h"
|
||
#include "gimple-ssa-warn-restrict.h"
|
||
#include "stor-layout.h"
|
||
#include "calls.h"
|
||
#include "varasm.h"
|
||
#include "tree-object-size.h"
|
||
#include "realmpfr.h"
|
||
#include "cfgrtl.h"
|
||
#include "except.h"
|
||
#include "dojump.h"
|
||
#include "explow.h"
|
||
#include "stmt.h"
|
||
#include "expr.h"
|
||
#include "libfuncs.h"
|
||
#include "output.h"
|
||
#include "typeclass.h"
|
||
#include "langhooks.h"
|
||
#include "value-prof.h"
|
||
#include "builtins.h"
|
||
#include "stringpool.h"
|
||
#include "attribs.h"
|
||
#include "asan.h"
|
||
#include "internal-fn.h"
|
||
#include "case-cfn-macros.h"
|
||
#include "gimple-fold.h"
|
||
#include "intl.h"
|
||
#include "file-prefix-map.h" /* remap_macro_filename() */
|
||
#include "gomp-constants.h"
|
||
#include "omp-general.h"
|
||
#include "tree-dfa.h"
|
||
|
||
struct target_builtins default_target_builtins;
|
||
#if SWITCHABLE_TARGET
|
||
struct target_builtins *this_target_builtins = &default_target_builtins;
|
||
#endif
|
||
|
||
/* Define the names of the builtin function types and codes. */
|
||
const char *const built_in_class_names[BUILT_IN_LAST]
|
||
= {"NOT_BUILT_IN", "BUILT_IN_FRONTEND", "BUILT_IN_MD", "BUILT_IN_NORMAL"};
|
||
|
||
#define DEF_BUILTIN(X, N, C, T, LT, B, F, NA, AT, IM, COND) #X,
|
||
const char * built_in_names[(int) END_BUILTINS] =
|
||
{
|
||
#include "builtins.def"
|
||
};
|
||
|
||
/* Setup an array of builtin_info_type, make sure each element decl is
|
||
initialized to NULL_TREE. */
|
||
builtin_info_type builtin_info[(int)END_BUILTINS];
|
||
|
||
/* Non-zero if __builtin_constant_p should be folded right away. */
|
||
bool force_folding_builtin_constant_p;
|
||
|
||
static int target_char_cast (tree, char *);
|
||
static rtx get_memory_rtx (tree, tree);
|
||
static int apply_args_size (void);
|
||
static int apply_result_size (void);
|
||
static rtx result_vector (int, rtx);
|
||
static void expand_builtin_prefetch (tree);
|
||
static rtx expand_builtin_apply_args (void);
|
||
static rtx expand_builtin_apply_args_1 (void);
|
||
static rtx expand_builtin_apply (rtx, rtx, rtx);
|
||
static void expand_builtin_return (rtx);
|
||
static enum type_class type_to_class (tree);
|
||
static rtx expand_builtin_classify_type (tree);
|
||
static rtx expand_builtin_mathfn_3 (tree, rtx, rtx);
|
||
static rtx expand_builtin_mathfn_ternary (tree, rtx, rtx);
|
||
static rtx expand_builtin_interclass_mathfn (tree, rtx);
|
||
static rtx expand_builtin_sincos (tree);
|
||
static rtx expand_builtin_cexpi (tree, rtx);
|
||
static rtx expand_builtin_int_roundingfn (tree, rtx);
|
||
static rtx expand_builtin_int_roundingfn_2 (tree, rtx);
|
||
static rtx expand_builtin_next_arg (void);
|
||
static rtx expand_builtin_va_start (tree);
|
||
static rtx expand_builtin_va_end (tree);
|
||
static rtx expand_builtin_va_copy (tree);
|
||
static rtx inline_expand_builtin_string_cmp (tree, rtx);
|
||
static rtx expand_builtin_strcmp (tree, rtx);
|
||
static rtx expand_builtin_strncmp (tree, rtx, machine_mode);
|
||
static rtx builtin_memcpy_read_str (void *, HOST_WIDE_INT, scalar_int_mode);
|
||
static rtx expand_builtin_memchr (tree, rtx);
|
||
static rtx expand_builtin_memcpy (tree, rtx);
|
||
static rtx expand_builtin_memory_copy_args (tree dest, tree src, tree len,
|
||
rtx target, tree exp,
|
||
memop_ret retmode,
|
||
bool might_overlap);
|
||
static rtx expand_builtin_memmove (tree, rtx);
|
||
static rtx expand_builtin_mempcpy (tree, rtx);
|
||
static rtx expand_builtin_mempcpy_args (tree, tree, tree, rtx, tree, memop_ret);
|
||
static rtx expand_builtin_strcat (tree, rtx);
|
||
static rtx expand_builtin_strcpy (tree, rtx);
|
||
static rtx expand_builtin_strcpy_args (tree, tree, tree, rtx);
|
||
static rtx expand_builtin_stpcpy (tree, rtx, machine_mode);
|
||
static rtx expand_builtin_stpncpy (tree, rtx);
|
||
static rtx expand_builtin_strncat (tree, rtx);
|
||
static rtx expand_builtin_strncpy (tree, rtx);
|
||
static rtx builtin_memset_gen_str (void *, HOST_WIDE_INT, scalar_int_mode);
|
||
static rtx expand_builtin_memset (tree, rtx, machine_mode);
|
||
static rtx expand_builtin_memset_args (tree, tree, tree, rtx, machine_mode, tree);
|
||
static rtx expand_builtin_bzero (tree);
|
||
static rtx expand_builtin_strlen (tree, rtx, machine_mode);
|
||
static rtx expand_builtin_strnlen (tree, rtx, machine_mode);
|
||
static rtx expand_builtin_alloca (tree);
|
||
static rtx expand_builtin_unop (machine_mode, tree, rtx, rtx, optab);
|
||
static rtx expand_builtin_frame_address (tree, tree);
|
||
static tree stabilize_va_list_loc (location_t, tree, int);
|
||
static rtx expand_builtin_expect (tree, rtx);
|
||
static rtx expand_builtin_expect_with_probability (tree, rtx);
|
||
static tree fold_builtin_constant_p (tree);
|
||
static tree fold_builtin_classify_type (tree);
|
||
static tree fold_builtin_strlen (location_t, tree, tree);
|
||
static tree fold_builtin_inf (location_t, tree, int);
|
||
static tree rewrite_call_expr (location_t, tree, int, tree, int, ...);
|
||
static bool validate_arg (const_tree, enum tree_code code);
|
||
static rtx expand_builtin_fabs (tree, rtx, rtx);
|
||
static rtx expand_builtin_signbit (tree, rtx);
|
||
static tree fold_builtin_memcmp (location_t, tree, tree, tree);
|
||
static tree fold_builtin_isascii (location_t, tree);
|
||
static tree fold_builtin_toascii (location_t, tree);
|
||
static tree fold_builtin_isdigit (location_t, tree);
|
||
static tree fold_builtin_fabs (location_t, tree, tree);
|
||
static tree fold_builtin_abs (location_t, tree, tree);
|
||
static tree fold_builtin_unordered_cmp (location_t, tree, tree, tree, enum tree_code,
|
||
enum tree_code);
|
||
static tree fold_builtin_0 (location_t, tree);
|
||
static tree fold_builtin_1 (location_t, tree, tree);
|
||
static tree fold_builtin_2 (location_t, tree, tree, tree);
|
||
static tree fold_builtin_3 (location_t, tree, tree, tree, tree);
|
||
static tree fold_builtin_varargs (location_t, tree, tree*, int);
|
||
|
||
static tree fold_builtin_strpbrk (location_t, tree, tree, tree);
|
||
static tree fold_builtin_strspn (location_t, tree, tree);
|
||
static tree fold_builtin_strcspn (location_t, tree, tree);
|
||
|
||
static rtx expand_builtin_object_size (tree);
|
||
static rtx expand_builtin_memory_chk (tree, rtx, machine_mode,
|
||
enum built_in_function);
|
||
static void maybe_emit_chk_warning (tree, enum built_in_function);
|
||
static void maybe_emit_sprintf_chk_warning (tree, enum built_in_function);
|
||
static void maybe_emit_free_warning (tree);
|
||
static tree fold_builtin_object_size (tree, tree);
|
||
|
||
unsigned HOST_WIDE_INT target_newline;
|
||
unsigned HOST_WIDE_INT target_percent;
|
||
static unsigned HOST_WIDE_INT target_c;
|
||
static unsigned HOST_WIDE_INT target_s;
|
||
char target_percent_c[3];
|
||
char target_percent_s[3];
|
||
char target_percent_s_newline[4];
|
||
static tree do_mpfr_remquo (tree, tree, tree);
|
||
static tree do_mpfr_lgamma_r (tree, tree, tree);
|
||
static void expand_builtin_sync_synchronize (void);
|
||
|
||
/* Return true if NAME starts with __builtin_ or __sync_. */
|
||
|
||
static bool
|
||
is_builtin_name (const char *name)
|
||
{
|
||
if (strncmp (name, "__builtin_", 10) == 0)
|
||
return true;
|
||
if (strncmp (name, "__sync_", 7) == 0)
|
||
return true;
|
||
if (strncmp (name, "__atomic_", 9) == 0)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Return true if NODE should be considered for inline expansion regardless
|
||
of the optimization level. This means whenever a function is invoked with
|
||
its "internal" name, which normally contains the prefix "__builtin". */
|
||
|
||
bool
|
||
called_as_built_in (tree node)
|
||
{
|
||
/* Note that we must use DECL_NAME, not DECL_ASSEMBLER_NAME_SET_P since
|
||
we want the name used to call the function, not the name it
|
||
will have. */
|
||
const char *name = IDENTIFIER_POINTER (DECL_NAME (node));
|
||
return is_builtin_name (name);
|
||
}
|
||
|
||
/* Compute values M and N such that M divides (address of EXP - N) and such
|
||
that N < M. If these numbers can be determined, store M in alignp and N in
|
||
*BITPOSP and return true. Otherwise return false and store BITS_PER_UNIT to
|
||
*alignp and any bit-offset to *bitposp.
|
||
|
||
Note that the address (and thus the alignment) computed here is based
|
||
on the address to which a symbol resolves, whereas DECL_ALIGN is based
|
||
on the address at which an object is actually located. These two
|
||
addresses are not always the same. For example, on ARM targets,
|
||
the address &foo of a Thumb function foo() has the lowest bit set,
|
||
whereas foo() itself starts on an even address.
|
||
|
||
If ADDR_P is true we are taking the address of the memory reference EXP
|
||
and thus cannot rely on the access taking place. */
|
||
|
||
static bool
|
||
get_object_alignment_2 (tree exp, unsigned int *alignp,
|
||
unsigned HOST_WIDE_INT *bitposp, bool addr_p)
|
||
{
|
||
poly_int64 bitsize, bitpos;
|
||
tree offset;
|
||
machine_mode mode;
|
||
int unsignedp, reversep, volatilep;
|
||
unsigned int align = BITS_PER_UNIT;
|
||
bool known_alignment = false;
|
||
|
||
/* Get the innermost object and the constant (bitpos) and possibly
|
||
variable (offset) offset of the access. */
|
||
exp = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode,
|
||
&unsignedp, &reversep, &volatilep);
|
||
|
||
/* Extract alignment information from the innermost object and
|
||
possibly adjust bitpos and offset. */
|
||
if (TREE_CODE (exp) == FUNCTION_DECL)
|
||
{
|
||
/* Function addresses can encode extra information besides their
|
||
alignment. However, if TARGET_PTRMEMFUNC_VBIT_LOCATION
|
||
allows the low bit to be used as a virtual bit, we know
|
||
that the address itself must be at least 2-byte aligned. */
|
||
if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_pfn)
|
||
align = 2 * BITS_PER_UNIT;
|
||
}
|
||
else if (TREE_CODE (exp) == LABEL_DECL)
|
||
;
|
||
else if (TREE_CODE (exp) == CONST_DECL)
|
||
{
|
||
/* The alignment of a CONST_DECL is determined by its initializer. */
|
||
exp = DECL_INITIAL (exp);
|
||
align = TYPE_ALIGN (TREE_TYPE (exp));
|
||
if (CONSTANT_CLASS_P (exp))
|
||
align = targetm.constant_alignment (exp, align);
|
||
|
||
known_alignment = true;
|
||
}
|
||
else if (DECL_P (exp))
|
||
{
|
||
align = DECL_ALIGN (exp);
|
||
known_alignment = true;
|
||
}
|
||
else if (TREE_CODE (exp) == INDIRECT_REF
|
||
|| TREE_CODE (exp) == MEM_REF
|
||
|| TREE_CODE (exp) == TARGET_MEM_REF)
|
||
{
|
||
tree addr = TREE_OPERAND (exp, 0);
|
||
unsigned ptr_align;
|
||
unsigned HOST_WIDE_INT ptr_bitpos;
|
||
unsigned HOST_WIDE_INT ptr_bitmask = ~0;
|
||
|
||
/* If the address is explicitely aligned, handle that. */
|
||
if (TREE_CODE (addr) == BIT_AND_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (addr, 1)) == INTEGER_CST)
|
||
{
|
||
ptr_bitmask = TREE_INT_CST_LOW (TREE_OPERAND (addr, 1));
|
||
ptr_bitmask *= BITS_PER_UNIT;
|
||
align = least_bit_hwi (ptr_bitmask);
|
||
addr = TREE_OPERAND (addr, 0);
|
||
}
|
||
|
||
known_alignment
|
||
= get_pointer_alignment_1 (addr, &ptr_align, &ptr_bitpos);
|
||
align = MAX (ptr_align, align);
|
||
|
||
/* Re-apply explicit alignment to the bitpos. */
|
||
ptr_bitpos &= ptr_bitmask;
|
||
|
||
/* The alignment of the pointer operand in a TARGET_MEM_REF
|
||
has to take the variable offset parts into account. */
|
||
if (TREE_CODE (exp) == TARGET_MEM_REF)
|
||
{
|
||
if (TMR_INDEX (exp))
|
||
{
|
||
unsigned HOST_WIDE_INT step = 1;
|
||
if (TMR_STEP (exp))
|
||
step = TREE_INT_CST_LOW (TMR_STEP (exp));
|
||
align = MIN (align, least_bit_hwi (step) * BITS_PER_UNIT);
|
||
}
|
||
if (TMR_INDEX2 (exp))
|
||
align = BITS_PER_UNIT;
|
||
known_alignment = false;
|
||
}
|
||
|
||
/* When EXP is an actual memory reference then we can use
|
||
TYPE_ALIGN of a pointer indirection to derive alignment.
|
||
Do so only if get_pointer_alignment_1 did not reveal absolute
|
||
alignment knowledge and if using that alignment would
|
||
improve the situation. */
|
||
unsigned int talign;
|
||
if (!addr_p && !known_alignment
|
||
&& (talign = min_align_of_type (TREE_TYPE (exp)) * BITS_PER_UNIT)
|
||
&& talign > align)
|
||
align = talign;
|
||
else
|
||
{
|
||
/* Else adjust bitpos accordingly. */
|
||
bitpos += ptr_bitpos;
|
||
if (TREE_CODE (exp) == MEM_REF
|
||
|| TREE_CODE (exp) == TARGET_MEM_REF)
|
||
bitpos += mem_ref_offset (exp).force_shwi () * BITS_PER_UNIT;
|
||
}
|
||
}
|
||
else if (TREE_CODE (exp) == STRING_CST)
|
||
{
|
||
/* STRING_CST are the only constant objects we allow to be not
|
||
wrapped inside a CONST_DECL. */
|
||
align = TYPE_ALIGN (TREE_TYPE (exp));
|
||
if (CONSTANT_CLASS_P (exp))
|
||
align = targetm.constant_alignment (exp, align);
|
||
|
||
known_alignment = true;
|
||
}
|
||
|
||
/* If there is a non-constant offset part extract the maximum
|
||
alignment that can prevail. */
|
||
if (offset)
|
||
{
|
||
unsigned int trailing_zeros = tree_ctz (offset);
|
||
if (trailing_zeros < HOST_BITS_PER_INT)
|
||
{
|
||
unsigned int inner = (1U << trailing_zeros) * BITS_PER_UNIT;
|
||
if (inner)
|
||
align = MIN (align, inner);
|
||
}
|
||
}
|
||
|
||
/* Account for the alignment of runtime coefficients, so that the constant
|
||
bitpos is guaranteed to be accurate. */
|
||
unsigned int alt_align = ::known_alignment (bitpos - bitpos.coeffs[0]);
|
||
if (alt_align != 0 && alt_align < align)
|
||
{
|
||
align = alt_align;
|
||
known_alignment = false;
|
||
}
|
||
|
||
*alignp = align;
|
||
*bitposp = bitpos.coeffs[0] & (align - 1);
|
||
return known_alignment;
|
||
}
|
||
|
||
/* For a memory reference expression EXP compute values M and N such that M
|
||
divides (&EXP - N) and such that N < M. If these numbers can be determined,
|
||
store M in alignp and N in *BITPOSP and return true. Otherwise return false
|
||
and store BITS_PER_UNIT to *alignp and any bit-offset to *bitposp. */
|
||
|
||
bool
|
||
get_object_alignment_1 (tree exp, unsigned int *alignp,
|
||
unsigned HOST_WIDE_INT *bitposp)
|
||
{
|
||
return get_object_alignment_2 (exp, alignp, bitposp, false);
|
||
}
|
||
|
||
/* Return the alignment in bits of EXP, an object. */
|
||
|
||
unsigned int
|
||
get_object_alignment (tree exp)
|
||
{
|
||
unsigned HOST_WIDE_INT bitpos = 0;
|
||
unsigned int align;
|
||
|
||
get_object_alignment_1 (exp, &align, &bitpos);
|
||
|
||
/* align and bitpos now specify known low bits of the pointer.
|
||
ptr & (align - 1) == bitpos. */
|
||
|
||
if (bitpos != 0)
|
||
align = least_bit_hwi (bitpos);
|
||
return align;
|
||
}
|
||
|
||
/* For a pointer valued expression EXP compute values M and N such that M
|
||
divides (EXP - N) and such that N < M. If these numbers can be determined,
|
||
store M in alignp and N in *BITPOSP and return true. Return false if
|
||
the results are just a conservative approximation.
|
||
|
||
If EXP is not a pointer, false is returned too. */
|
||
|
||
bool
|
||
get_pointer_alignment_1 (tree exp, unsigned int *alignp,
|
||
unsigned HOST_WIDE_INT *bitposp)
|
||
{
|
||
STRIP_NOPS (exp);
|
||
|
||
if (TREE_CODE (exp) == ADDR_EXPR)
|
||
return get_object_alignment_2 (TREE_OPERAND (exp, 0),
|
||
alignp, bitposp, true);
|
||
else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
|
||
{
|
||
unsigned int align;
|
||
unsigned HOST_WIDE_INT bitpos;
|
||
bool res = get_pointer_alignment_1 (TREE_OPERAND (exp, 0),
|
||
&align, &bitpos);
|
||
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
|
||
bitpos += TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)) * BITS_PER_UNIT;
|
||
else
|
||
{
|
||
unsigned int trailing_zeros = tree_ctz (TREE_OPERAND (exp, 1));
|
||
if (trailing_zeros < HOST_BITS_PER_INT)
|
||
{
|
||
unsigned int inner = (1U << trailing_zeros) * BITS_PER_UNIT;
|
||
if (inner)
|
||
align = MIN (align, inner);
|
||
}
|
||
}
|
||
*alignp = align;
|
||
*bitposp = bitpos & (align - 1);
|
||
return res;
|
||
}
|
||
else if (TREE_CODE (exp) == SSA_NAME
|
||
&& POINTER_TYPE_P (TREE_TYPE (exp)))
|
||
{
|
||
unsigned int ptr_align, ptr_misalign;
|
||
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (exp);
|
||
|
||
if (pi && get_ptr_info_alignment (pi, &ptr_align, &ptr_misalign))
|
||
{
|
||
*bitposp = ptr_misalign * BITS_PER_UNIT;
|
||
*alignp = ptr_align * BITS_PER_UNIT;
|
||
/* Make sure to return a sensible alignment when the multiplication
|
||
by BITS_PER_UNIT overflowed. */
|
||
if (*alignp == 0)
|
||
*alignp = 1u << (HOST_BITS_PER_INT - 1);
|
||
/* We cannot really tell whether this result is an approximation. */
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
*bitposp = 0;
|
||
*alignp = BITS_PER_UNIT;
|
||
return false;
|
||
}
|
||
}
|
||
else if (TREE_CODE (exp) == INTEGER_CST)
|
||
{
|
||
*alignp = BIGGEST_ALIGNMENT;
|
||
*bitposp = ((TREE_INT_CST_LOW (exp) * BITS_PER_UNIT)
|
||
& (BIGGEST_ALIGNMENT - 1));
|
||
return true;
|
||
}
|
||
|
||
*bitposp = 0;
|
||
*alignp = BITS_PER_UNIT;
|
||
return false;
|
||
}
|
||
|
||
/* Return the alignment in bits of EXP, a pointer valued expression.
|
||
The alignment returned is, by default, the alignment of the thing that
|
||
EXP points to. If it is not a POINTER_TYPE, 0 is returned.
|
||
|
||
Otherwise, look at the expression to see if we can do better, i.e., if the
|
||
expression is actually pointing at an object whose alignment is tighter. */
|
||
|
||
unsigned int
|
||
get_pointer_alignment (tree exp)
|
||
{
|
||
unsigned HOST_WIDE_INT bitpos = 0;
|
||
unsigned int align;
|
||
|
||
get_pointer_alignment_1 (exp, &align, &bitpos);
|
||
|
||
/* align and bitpos now specify known low bits of the pointer.
|
||
ptr & (align - 1) == bitpos. */
|
||
|
||
if (bitpos != 0)
|
||
align = least_bit_hwi (bitpos);
|
||
|
||
return align;
|
||
}
|
||
|
||
/* Return the number of leading non-zero elements in the sequence
|
||
[ PTR, PTR + MAXELTS ) where each element's size is ELTSIZE bytes.
|
||
ELTSIZE must be a power of 2 less than 8. Used by c_strlen. */
|
||
|
||
unsigned
|
||
string_length (const void *ptr, unsigned eltsize, unsigned maxelts)
|
||
{
|
||
gcc_checking_assert (eltsize == 1 || eltsize == 2 || eltsize == 4);
|
||
|
||
unsigned n;
|
||
|
||
if (eltsize == 1)
|
||
{
|
||
/* Optimize the common case of plain char. */
|
||
for (n = 0; n < maxelts; n++)
|
||
{
|
||
const char *elt = (const char*) ptr + n;
|
||
if (!*elt)
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (n = 0; n < maxelts; n++)
|
||
{
|
||
const char *elt = (const char*) ptr + n * eltsize;
|
||
if (!memcmp (elt, "\0\0\0\0", eltsize))
|
||
break;
|
||
}
|
||
}
|
||
return n;
|
||
}
|
||
|
||
/* For a call at LOC to a function FN that expects a string in the argument
|
||
ARG, issue a diagnostic due to it being a called with an argument
|
||
declared at NONSTR that is a character array with no terminating NUL. */
|
||
|
||
void
|
||
warn_string_no_nul (location_t loc, const char *fn, tree arg, tree decl)
|
||
{
|
||
if (TREE_NO_WARNING (arg))
|
||
return;
|
||
|
||
loc = expansion_point_location_if_in_system_header (loc);
|
||
|
||
if (warning_at (loc, OPT_Wstringop_overflow_,
|
||
"%qs argument missing terminating nul", fn))
|
||
{
|
||
inform (DECL_SOURCE_LOCATION (decl),
|
||
"referenced argument declared here");
|
||
TREE_NO_WARNING (arg) = 1;
|
||
}
|
||
}
|
||
|
||
/* If EXP refers to an unterminated constant character array return
|
||
the declaration of the object of which the array is a member or
|
||
element and if SIZE is not null, set *SIZE to the size of
|
||
the unterminated array and set *EXACT if the size is exact or
|
||
clear it otherwise. Otherwise return null. */
|
||
|
||
tree
|
||
unterminated_array (tree exp, tree *size /* = NULL */, bool *exact /* = NULL */)
|
||
{
|
||
/* C_STRLEN will return NULL and set DECL in the info
|
||
structure if EXP references a unterminated array. */
|
||
c_strlen_data lendata = { };
|
||
tree len = c_strlen (exp, 1, &lendata);
|
||
if (len == NULL_TREE && lendata.minlen && lendata.decl)
|
||
{
|
||
if (size)
|
||
{
|
||
len = lendata.minlen;
|
||
if (lendata.off)
|
||
{
|
||
/* Constant offsets are already accounted for in LENDATA.MINLEN,
|
||
but not in a SSA_NAME + CST expression. */
|
||
if (TREE_CODE (lendata.off) == INTEGER_CST)
|
||
*exact = true;
|
||
else if (TREE_CODE (lendata.off) == PLUS_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (lendata.off, 1)) == INTEGER_CST)
|
||
{
|
||
/* Subtract the offset from the size of the array. */
|
||
*exact = false;
|
||
tree temp = TREE_OPERAND (lendata.off, 1);
|
||
temp = fold_convert (ssizetype, temp);
|
||
len = fold_build2 (MINUS_EXPR, ssizetype, len, temp);
|
||
}
|
||
else
|
||
*exact = false;
|
||
}
|
||
else
|
||
*exact = true;
|
||
|
||
*size = len;
|
||
}
|
||
return lendata.decl;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Compute the length of a null-terminated character string or wide
|
||
character string handling character sizes of 1, 2, and 4 bytes.
|
||
TREE_STRING_LENGTH is not the right way because it evaluates to
|
||
the size of the character array in bytes (as opposed to characters)
|
||
and because it can contain a zero byte in the middle.
|
||
|
||
ONLY_VALUE should be nonzero if the result is not going to be emitted
|
||
into the instruction stream and zero if it is going to be expanded.
|
||
E.g. with i++ ? "foo" : "bar", if ONLY_VALUE is nonzero, constant 3
|
||
is returned, otherwise NULL, since
|
||
len = c_strlen (ARG, 1); if (len) expand_expr (len, ...); would not
|
||
evaluate the side-effects.
|
||
|
||
If ONLY_VALUE is two then we do not emit warnings about out-of-bound
|
||
accesses. Note that this implies the result is not going to be emitted
|
||
into the instruction stream.
|
||
|
||
Additional information about the string accessed may be recorded
|
||
in DATA. For example, if ARG references an unterminated string,
|
||
then the declaration will be stored in the DECL field. If the
|
||
length of the unterminated string can be determined, it'll be
|
||
stored in the LEN field. Note this length could well be different
|
||
than what a C strlen call would return.
|
||
|
||
ELTSIZE is 1 for normal single byte character strings, and 2 or
|
||
4 for wide characer strings. ELTSIZE is by default 1.
|
||
|
||
The value returned is of type `ssizetype'. */
|
||
|
||
tree
|
||
c_strlen (tree arg, int only_value, c_strlen_data *data, unsigned eltsize)
|
||
{
|
||
/* If we were not passed a DATA pointer, then get one to a local
|
||
structure. That avoids having to check DATA for NULL before
|
||
each time we want to use it. */
|
||
c_strlen_data local_strlen_data = { };
|
||
if (!data)
|
||
data = &local_strlen_data;
|
||
|
||
gcc_checking_assert (eltsize == 1 || eltsize == 2 || eltsize == 4);
|
||
|
||
tree src = STRIP_NOPS (arg);
|
||
if (TREE_CODE (src) == COND_EXPR
|
||
&& (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
|
||
{
|
||
tree len1, len2;
|
||
|
||
len1 = c_strlen (TREE_OPERAND (src, 1), only_value, data, eltsize);
|
||
len2 = c_strlen (TREE_OPERAND (src, 2), only_value, data, eltsize);
|
||
if (tree_int_cst_equal (len1, len2))
|
||
return len1;
|
||
}
|
||
|
||
if (TREE_CODE (src) == COMPOUND_EXPR
|
||
&& (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
|
||
return c_strlen (TREE_OPERAND (src, 1), only_value, data, eltsize);
|
||
|
||
location_t loc = EXPR_LOC_OR_LOC (src, input_location);
|
||
|
||
/* Offset from the beginning of the string in bytes. */
|
||
tree byteoff;
|
||
tree memsize;
|
||
tree decl;
|
||
src = string_constant (src, &byteoff, &memsize, &decl);
|
||
if (src == 0)
|
||
return NULL_TREE;
|
||
|
||
/* Determine the size of the string element. */
|
||
if (eltsize != tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (src)))))
|
||
return NULL_TREE;
|
||
|
||
/* Set MAXELTS to sizeof (SRC) / sizeof (*SRC) - 1, the maximum possible
|
||
length of SRC. Prefer TYPE_SIZE() to TREE_STRING_LENGTH() if possible
|
||
in case the latter is less than the size of the array, such as when
|
||
SRC refers to a short string literal used to initialize a large array.
|
||
In that case, the elements of the array after the terminating NUL are
|
||
all NUL. */
|
||
HOST_WIDE_INT strelts = TREE_STRING_LENGTH (src);
|
||
strelts = strelts / eltsize;
|
||
|
||
if (!tree_fits_uhwi_p (memsize))
|
||
return NULL_TREE;
|
||
|
||
HOST_WIDE_INT maxelts = tree_to_uhwi (memsize) / eltsize;
|
||
|
||
/* PTR can point to the byte representation of any string type, including
|
||
char* and wchar_t*. */
|
||
const char *ptr = TREE_STRING_POINTER (src);
|
||
|
||
if (byteoff && TREE_CODE (byteoff) != INTEGER_CST)
|
||
{
|
||
/* The code below works only for single byte character types. */
|
||
if (eltsize != 1)
|
||
return NULL_TREE;
|
||
|
||
/* If the string has an internal NUL character followed by any
|
||
non-NUL characters (e.g., "foo\0bar"), we can't compute
|
||
the offset to the following NUL if we don't know where to
|
||
start searching for it. */
|
||
unsigned len = string_length (ptr, eltsize, strelts);
|
||
|
||
/* Return when an embedded null character is found or none at all.
|
||
In the latter case, set the DECL/LEN field in the DATA structure
|
||
so that callers may examine them. */
|
||
if (len + 1 < strelts)
|
||
return NULL_TREE;
|
||
else if (len >= maxelts)
|
||
{
|
||
data->decl = decl;
|
||
data->off = byteoff;
|
||
data->minlen = ssize_int (len);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* For empty strings the result should be zero. */
|
||
if (len == 0)
|
||
return ssize_int (0);
|
||
|
||
/* We don't know the starting offset, but we do know that the string
|
||
has no internal zero bytes. If the offset falls within the bounds
|
||
of the string subtract the offset from the length of the string,
|
||
and return that. Otherwise the length is zero. Take care to
|
||
use SAVE_EXPR in case the OFFSET has side-effects. */
|
||
tree offsave = TREE_SIDE_EFFECTS (byteoff) ? save_expr (byteoff)
|
||
: byteoff;
|
||
offsave = fold_convert_loc (loc, sizetype, offsave);
|
||
tree condexp = fold_build2_loc (loc, LE_EXPR, boolean_type_node, offsave,
|
||
size_int (len));
|
||
tree lenexp = fold_build2_loc (loc, MINUS_EXPR, sizetype, size_int (len),
|
||
offsave);
|
||
lenexp = fold_convert_loc (loc, ssizetype, lenexp);
|
||
return fold_build3_loc (loc, COND_EXPR, ssizetype, condexp, lenexp,
|
||
build_zero_cst (ssizetype));
|
||
}
|
||
|
||
/* Offset from the beginning of the string in elements. */
|
||
HOST_WIDE_INT eltoff;
|
||
|
||
/* We have a known offset into the string. Start searching there for
|
||
a null character if we can represent it as a single HOST_WIDE_INT. */
|
||
if (byteoff == 0)
|
||
eltoff = 0;
|
||
else if (! tree_fits_uhwi_p (byteoff) || tree_to_uhwi (byteoff) % eltsize)
|
||
eltoff = -1;
|
||
else
|
||
eltoff = tree_to_uhwi (byteoff) / eltsize;
|
||
|
||
/* If the offset is known to be out of bounds, warn, and call strlen at
|
||
runtime. */
|
||
if (eltoff < 0 || eltoff >= maxelts)
|
||
{
|
||
/* Suppress multiple warnings for propagated constant strings. */
|
||
if (only_value != 2
|
||
&& !TREE_NO_WARNING (arg)
|
||
&& warning_at (loc, OPT_Warray_bounds,
|
||
"offset %qwi outside bounds of constant string",
|
||
eltoff))
|
||
{
|
||
if (decl)
|
||
inform (DECL_SOURCE_LOCATION (decl), "%qE declared here", decl);
|
||
TREE_NO_WARNING (arg) = 1;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* If eltoff is larger than strelts but less than maxelts the
|
||
string length is zero, since the excess memory will be zero. */
|
||
if (eltoff > strelts)
|
||
return ssize_int (0);
|
||
|
||
/* Use strlen to search for the first zero byte. Since any strings
|
||
constructed with build_string will have nulls appended, we win even
|
||
if we get handed something like (char[4])"abcd".
|
||
|
||
Since ELTOFF is our starting index into the string, no further
|
||
calculation is needed. */
|
||
unsigned len = string_length (ptr + eltoff * eltsize, eltsize,
|
||
strelts - eltoff);
|
||
|
||
/* Don't know what to return if there was no zero termination.
|
||
Ideally this would turn into a gcc_checking_assert over time.
|
||
Set DECL/LEN so callers can examine them. */
|
||
if (len >= maxelts - eltoff)
|
||
{
|
||
data->decl = decl;
|
||
data->off = byteoff;
|
||
data->minlen = ssize_int (len);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
return ssize_int (len);
|
||
}
|
||
|
||
/* Return a constant integer corresponding to target reading
|
||
GET_MODE_BITSIZE (MODE) bits from string constant STR. If
|
||
NULL_TERMINATED_P, reading stops after '\0' character, all further ones
|
||
are assumed to be zero, otherwise it reads as many characters
|
||
as needed. */
|
||
|
||
rtx
|
||
c_readstr (const char *str, scalar_int_mode mode,
|
||
bool null_terminated_p/*=true*/)
|
||
{
|
||
HOST_WIDE_INT ch;
|
||
unsigned int i, j;
|
||
HOST_WIDE_INT tmp[MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_WIDE_INT];
|
||
|
||
gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
|
||
unsigned int len = (GET_MODE_PRECISION (mode) + HOST_BITS_PER_WIDE_INT - 1)
|
||
/ HOST_BITS_PER_WIDE_INT;
|
||
|
||
gcc_assert (len <= MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_WIDE_INT);
|
||
for (i = 0; i < len; i++)
|
||
tmp[i] = 0;
|
||
|
||
ch = 1;
|
||
for (i = 0; i < GET_MODE_SIZE (mode); i++)
|
||
{
|
||
j = i;
|
||
if (WORDS_BIG_ENDIAN)
|
||
j = GET_MODE_SIZE (mode) - i - 1;
|
||
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
|
||
&& GET_MODE_SIZE (mode) >= UNITS_PER_WORD)
|
||
j = j + UNITS_PER_WORD - 2 * (j % UNITS_PER_WORD) - 1;
|
||
j *= BITS_PER_UNIT;
|
||
|
||
if (ch || !null_terminated_p)
|
||
ch = (unsigned char) str[i];
|
||
tmp[j / HOST_BITS_PER_WIDE_INT] |= ch << (j % HOST_BITS_PER_WIDE_INT);
|
||
}
|
||
|
||
wide_int c = wide_int::from_array (tmp, len, GET_MODE_PRECISION (mode));
|
||
return immed_wide_int_const (c, mode);
|
||
}
|
||
|
||
/* Cast a target constant CST to target CHAR and if that value fits into
|
||
host char type, return zero and put that value into variable pointed to by
|
||
P. */
|
||
|
||
static int
|
||
target_char_cast (tree cst, char *p)
|
||
{
|
||
unsigned HOST_WIDE_INT val, hostval;
|
||
|
||
if (TREE_CODE (cst) != INTEGER_CST
|
||
|| CHAR_TYPE_SIZE > HOST_BITS_PER_WIDE_INT)
|
||
return 1;
|
||
|
||
/* Do not care if it fits or not right here. */
|
||
val = TREE_INT_CST_LOW (cst);
|
||
|
||
if (CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT)
|
||
val &= (HOST_WIDE_INT_1U << CHAR_TYPE_SIZE) - 1;
|
||
|
||
hostval = val;
|
||
if (HOST_BITS_PER_CHAR < HOST_BITS_PER_WIDE_INT)
|
||
hostval &= (HOST_WIDE_INT_1U << HOST_BITS_PER_CHAR) - 1;
|
||
|
||
if (val != hostval)
|
||
return 1;
|
||
|
||
*p = hostval;
|
||
return 0;
|
||
}
|
||
|
||
/* Similar to save_expr, but assumes that arbitrary code is not executed
|
||
in between the multiple evaluations. In particular, we assume that a
|
||
non-addressable local variable will not be modified. */
|
||
|
||
static tree
|
||
builtin_save_expr (tree exp)
|
||
{
|
||
if (TREE_CODE (exp) == SSA_NAME
|
||
|| (TREE_ADDRESSABLE (exp) == 0
|
||
&& (TREE_CODE (exp) == PARM_DECL
|
||
|| (VAR_P (exp) && !TREE_STATIC (exp)))))
|
||
return exp;
|
||
|
||
return save_expr (exp);
|
||
}
|
||
|
||
/* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT
|
||
times to get the address of either a higher stack frame, or a return
|
||
address located within it (depending on FNDECL_CODE). */
|
||
|
||
static rtx
|
||
expand_builtin_return_addr (enum built_in_function fndecl_code, int count)
|
||
{
|
||
int i;
|
||
rtx tem = INITIAL_FRAME_ADDRESS_RTX;
|
||
if (tem == NULL_RTX)
|
||
{
|
||
/* For a zero count with __builtin_return_address, we don't care what
|
||
frame address we return, because target-specific definitions will
|
||
override us. Therefore frame pointer elimination is OK, and using
|
||
the soft frame pointer is OK.
|
||
|
||
For a nonzero count, or a zero count with __builtin_frame_address,
|
||
we require a stable offset from the current frame pointer to the
|
||
previous one, so we must use the hard frame pointer, and
|
||
we must disable frame pointer elimination. */
|
||
if (count == 0 && fndecl_code == BUILT_IN_RETURN_ADDRESS)
|
||
tem = frame_pointer_rtx;
|
||
else
|
||
{
|
||
tem = hard_frame_pointer_rtx;
|
||
|
||
/* Tell reload not to eliminate the frame pointer. */
|
||
crtl->accesses_prior_frames = 1;
|
||
}
|
||
}
|
||
|
||
if (count > 0)
|
||
SETUP_FRAME_ADDRESSES ();
|
||
|
||
/* On the SPARC, the return address is not in the frame, it is in a
|
||
register. There is no way to access it off of the current frame
|
||
pointer, but it can be accessed off the previous frame pointer by
|
||
reading the value from the register window save area. */
|
||
if (RETURN_ADDR_IN_PREVIOUS_FRAME && fndecl_code == BUILT_IN_RETURN_ADDRESS)
|
||
count--;
|
||
|
||
/* Scan back COUNT frames to the specified frame. */
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
/* Assume the dynamic chain pointer is in the word that the
|
||
frame address points to, unless otherwise specified. */
|
||
tem = DYNAMIC_CHAIN_ADDRESS (tem);
|
||
tem = memory_address (Pmode, tem);
|
||
tem = gen_frame_mem (Pmode, tem);
|
||
tem = copy_to_reg (tem);
|
||
}
|
||
|
||
/* For __builtin_frame_address, return what we've got. But, on
|
||
the SPARC for example, we may have to add a bias. */
|
||
if (fndecl_code == BUILT_IN_FRAME_ADDRESS)
|
||
return FRAME_ADDR_RTX (tem);
|
||
|
||
/* For __builtin_return_address, get the return address from that frame. */
|
||
#ifdef RETURN_ADDR_RTX
|
||
tem = RETURN_ADDR_RTX (count, tem);
|
||
#else
|
||
tem = memory_address (Pmode,
|
||
plus_constant (Pmode, tem, GET_MODE_SIZE (Pmode)));
|
||
tem = gen_frame_mem (Pmode, tem);
|
||
#endif
|
||
return tem;
|
||
}
|
||
|
||
/* Alias set used for setjmp buffer. */
|
||
static alias_set_type setjmp_alias_set = -1;
|
||
|
||
/* Construct the leading half of a __builtin_setjmp call. Control will
|
||
return to RECEIVER_LABEL. This is also called directly by the SJLJ
|
||
exception handling code. */
|
||
|
||
void
|
||
expand_builtin_setjmp_setup (rtx buf_addr, rtx receiver_label)
|
||
{
|
||
machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
|
||
rtx stack_save;
|
||
rtx mem;
|
||
|
||
if (setjmp_alias_set == -1)
|
||
setjmp_alias_set = new_alias_set ();
|
||
|
||
buf_addr = convert_memory_address (Pmode, buf_addr);
|
||
|
||
buf_addr = force_reg (Pmode, force_operand (buf_addr, NULL_RTX));
|
||
|
||
/* We store the frame pointer and the address of receiver_label in
|
||
the buffer and use the rest of it for the stack save area, which
|
||
is machine-dependent. */
|
||
|
||
mem = gen_rtx_MEM (Pmode, buf_addr);
|
||
set_mem_alias_set (mem, setjmp_alias_set);
|
||
emit_move_insn (mem, hard_frame_pointer_rtx);
|
||
|
||
mem = gen_rtx_MEM (Pmode, plus_constant (Pmode, buf_addr,
|
||
GET_MODE_SIZE (Pmode))),
|
||
set_mem_alias_set (mem, setjmp_alias_set);
|
||
|
||
emit_move_insn (validize_mem (mem),
|
||
force_reg (Pmode, gen_rtx_LABEL_REF (Pmode, receiver_label)));
|
||
|
||
stack_save = gen_rtx_MEM (sa_mode,
|
||
plus_constant (Pmode, buf_addr,
|
||
2 * GET_MODE_SIZE (Pmode)));
|
||
set_mem_alias_set (stack_save, setjmp_alias_set);
|
||
emit_stack_save (SAVE_NONLOCAL, &stack_save);
|
||
|
||
/* If there is further processing to do, do it. */
|
||
if (targetm.have_builtin_setjmp_setup ())
|
||
emit_insn (targetm.gen_builtin_setjmp_setup (buf_addr));
|
||
|
||
/* We have a nonlocal label. */
|
||
cfun->has_nonlocal_label = 1;
|
||
}
|
||
|
||
/* Construct the trailing part of a __builtin_setjmp call. This is
|
||
also called directly by the SJLJ exception handling code.
|
||
If RECEIVER_LABEL is NULL, instead contruct a nonlocal goto handler. */
|
||
|
||
void
|
||
expand_builtin_setjmp_receiver (rtx receiver_label)
|
||
{
|
||
rtx chain;
|
||
|
||
/* Mark the FP as used when we get here, so we have to make sure it's
|
||
marked as used by this function. */
|
||
emit_use (hard_frame_pointer_rtx);
|
||
|
||
/* Mark the static chain as clobbered here so life information
|
||
doesn't get messed up for it. */
|
||
chain = rtx_for_static_chain (current_function_decl, true);
|
||
if (chain && REG_P (chain))
|
||
emit_clobber (chain);
|
||
|
||
if (!HARD_FRAME_POINTER_IS_ARG_POINTER && fixed_regs[ARG_POINTER_REGNUM])
|
||
{
|
||
/* If the argument pointer can be eliminated in favor of the
|
||
frame pointer, we don't need to restore it. We assume here
|
||
that if such an elimination is present, it can always be used.
|
||
This is the case on all known machines; if we don't make this
|
||
assumption, we do unnecessary saving on many machines. */
|
||
size_t i;
|
||
static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
|
||
if (elim_regs[i].from == ARG_POINTER_REGNUM
|
||
&& elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
|
||
break;
|
||
|
||
if (i == ARRAY_SIZE (elim_regs))
|
||
{
|
||
/* Now restore our arg pointer from the address at which it
|
||
was saved in our stack frame. */
|
||
emit_move_insn (crtl->args.internal_arg_pointer,
|
||
copy_to_reg (get_arg_pointer_save_area ()));
|
||
}
|
||
}
|
||
|
||
if (receiver_label != NULL && targetm.have_builtin_setjmp_receiver ())
|
||
emit_insn (targetm.gen_builtin_setjmp_receiver (receiver_label));
|
||
else if (targetm.have_nonlocal_goto_receiver ())
|
||
emit_insn (targetm.gen_nonlocal_goto_receiver ());
|
||
else
|
||
{ /* Nothing */ }
|
||
|
||
/* We must not allow the code we just generated to be reordered by
|
||
scheduling. Specifically, the update of the frame pointer must
|
||
happen immediately, not later. */
|
||
emit_insn (gen_blockage ());
|
||
}
|
||
|
||
/* __builtin_longjmp is passed a pointer to an array of five words (not
|
||
all will be used on all machines). It operates similarly to the C
|
||
library function of the same name, but is more efficient. Much of
|
||
the code below is copied from the handling of non-local gotos. */
|
||
|
||
static void
|
||
expand_builtin_longjmp (rtx buf_addr, rtx value)
|
||
{
|
||
rtx fp, lab, stack;
|
||
rtx_insn *insn, *last;
|
||
machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
|
||
|
||
/* DRAP is needed for stack realign if longjmp is expanded to current
|
||
function */
|
||
if (SUPPORTS_STACK_ALIGNMENT)
|
||
crtl->need_drap = true;
|
||
|
||
if (setjmp_alias_set == -1)
|
||
setjmp_alias_set = new_alias_set ();
|
||
|
||
buf_addr = convert_memory_address (Pmode, buf_addr);
|
||
|
||
buf_addr = force_reg (Pmode, buf_addr);
|
||
|
||
/* We require that the user must pass a second argument of 1, because
|
||
that is what builtin_setjmp will return. */
|
||
gcc_assert (value == const1_rtx);
|
||
|
||
last = get_last_insn ();
|
||
if (targetm.have_builtin_longjmp ())
|
||
emit_insn (targetm.gen_builtin_longjmp (buf_addr));
|
||
else
|
||
{
|
||
fp = gen_rtx_MEM (Pmode, buf_addr);
|
||
lab = gen_rtx_MEM (Pmode, plus_constant (Pmode, buf_addr,
|
||
GET_MODE_SIZE (Pmode)));
|
||
|
||
stack = gen_rtx_MEM (sa_mode, plus_constant (Pmode, buf_addr,
|
||
2 * GET_MODE_SIZE (Pmode)));
|
||
set_mem_alias_set (fp, setjmp_alias_set);
|
||
set_mem_alias_set (lab, setjmp_alias_set);
|
||
set_mem_alias_set (stack, setjmp_alias_set);
|
||
|
||
/* Pick up FP, label, and SP from the block and jump. This code is
|
||
from expand_goto in stmt.c; see there for detailed comments. */
|
||
if (targetm.have_nonlocal_goto ())
|
||
/* We have to pass a value to the nonlocal_goto pattern that will
|
||
get copied into the static_chain pointer, but it does not matter
|
||
what that value is, because builtin_setjmp does not use it. */
|
||
emit_insn (targetm.gen_nonlocal_goto (value, lab, stack, fp));
|
||
else
|
||
{
|
||
emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
|
||
emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx));
|
||
|
||
lab = copy_to_reg (lab);
|
||
|
||
/* Restore the frame pointer and stack pointer. We must use a
|
||
temporary since the setjmp buffer may be a local. */
|
||
fp = copy_to_reg (fp);
|
||
emit_stack_restore (SAVE_NONLOCAL, stack);
|
||
|
||
/* Ensure the frame pointer move is not optimized. */
|
||
emit_insn (gen_blockage ());
|
||
emit_clobber (hard_frame_pointer_rtx);
|
||
emit_clobber (frame_pointer_rtx);
|
||
emit_move_insn (hard_frame_pointer_rtx, fp);
|
||
|
||
emit_use (hard_frame_pointer_rtx);
|
||
emit_use (stack_pointer_rtx);
|
||
emit_indirect_jump (lab);
|
||
}
|
||
}
|
||
|
||
/* Search backwards and mark the jump insn as a non-local goto.
|
||
Note that this precludes the use of __builtin_longjmp to a
|
||
__builtin_setjmp target in the same function. However, we've
|
||
already cautioned the user that these functions are for
|
||
internal exception handling use only. */
|
||
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
|
||
{
|
||
gcc_assert (insn != last);
|
||
|
||
if (JUMP_P (insn))
|
||
{
|
||
add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx);
|
||
break;
|
||
}
|
||
else if (CALL_P (insn))
|
||
break;
|
||
}
|
||
}
|
||
|
||
static inline bool
|
||
more_const_call_expr_args_p (const const_call_expr_arg_iterator *iter)
|
||
{
|
||
return (iter->i < iter->n);
|
||
}
|
||
|
||
/* This function validates the types of a function call argument list
|
||
against a specified list of tree_codes. If the last specifier is a 0,
|
||
that represents an ellipsis, otherwise the last specifier must be a
|
||
VOID_TYPE. */
|
||
|
||
static bool
|
||
validate_arglist (const_tree callexpr, ...)
|
||
{
|
||
enum tree_code code;
|
||
bool res = 0;
|
||
va_list ap;
|
||
const_call_expr_arg_iterator iter;
|
||
const_tree arg;
|
||
|
||
va_start (ap, callexpr);
|
||
init_const_call_expr_arg_iterator (callexpr, &iter);
|
||
|
||
/* Get a bitmap of pointer argument numbers declared attribute nonnull. */
|
||
tree fn = CALL_EXPR_FN (callexpr);
|
||
bitmap argmap = get_nonnull_args (TREE_TYPE (TREE_TYPE (fn)));
|
||
|
||
for (unsigned argno = 1; ; ++argno)
|
||
{
|
||
code = (enum tree_code) va_arg (ap, int);
|
||
|
||
switch (code)
|
||
{
|
||
case 0:
|
||
/* This signifies an ellipses, any further arguments are all ok. */
|
||
res = true;
|
||
goto end;
|
||
case VOID_TYPE:
|
||
/* This signifies an endlink, if no arguments remain, return
|
||
true, otherwise return false. */
|
||
res = !more_const_call_expr_args_p (&iter);
|
||
goto end;
|
||
case POINTER_TYPE:
|
||
/* The actual argument must be nonnull when either the whole
|
||
called function has been declared nonnull, or when the formal
|
||
argument corresponding to the actual argument has been. */
|
||
if (argmap
|
||
&& (bitmap_empty_p (argmap) || bitmap_bit_p (argmap, argno)))
|
||
{
|
||
arg = next_const_call_expr_arg (&iter);
|
||
if (!validate_arg (arg, code) || integer_zerop (arg))
|
||
goto end;
|
||
break;
|
||
}
|
||
/* FALLTHRU */
|
||
default:
|
||
/* If no parameters remain or the parameter's code does not
|
||
match the specified code, return false. Otherwise continue
|
||
checking any remaining arguments. */
|
||
arg = next_const_call_expr_arg (&iter);
|
||
if (!validate_arg (arg, code))
|
||
goto end;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* We need gotos here since we can only have one VA_CLOSE in a
|
||
function. */
|
||
end: ;
|
||
va_end (ap);
|
||
|
||
BITMAP_FREE (argmap);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Expand a call to __builtin_nonlocal_goto. We're passed the target label
|
||
and the address of the save area. */
|
||
|
||
static rtx
|
||
expand_builtin_nonlocal_goto (tree exp)
|
||
{
|
||
tree t_label, t_save_area;
|
||
rtx r_label, r_save_area, r_fp, r_sp;
|
||
rtx_insn *insn;
|
||
|
||
if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
t_label = CALL_EXPR_ARG (exp, 0);
|
||
t_save_area = CALL_EXPR_ARG (exp, 1);
|
||
|
||
r_label = expand_normal (t_label);
|
||
r_label = convert_memory_address (Pmode, r_label);
|
||
r_save_area = expand_normal (t_save_area);
|
||
r_save_area = convert_memory_address (Pmode, r_save_area);
|
||
/* Copy the address of the save location to a register just in case it was
|
||
based on the frame pointer. */
|
||
r_save_area = copy_to_reg (r_save_area);
|
||
r_fp = gen_rtx_MEM (Pmode, r_save_area);
|
||
r_sp = gen_rtx_MEM (STACK_SAVEAREA_MODE (SAVE_NONLOCAL),
|
||
plus_constant (Pmode, r_save_area,
|
||
GET_MODE_SIZE (Pmode)));
|
||
|
||
crtl->has_nonlocal_goto = 1;
|
||
|
||
/* ??? We no longer need to pass the static chain value, afaik. */
|
||
if (targetm.have_nonlocal_goto ())
|
||
emit_insn (targetm.gen_nonlocal_goto (const0_rtx, r_label, r_sp, r_fp));
|
||
else
|
||
{
|
||
emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
|
||
emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx));
|
||
|
||
r_label = copy_to_reg (r_label);
|
||
|
||
/* Restore the frame pointer and stack pointer. We must use a
|
||
temporary since the setjmp buffer may be a local. */
|
||
r_fp = copy_to_reg (r_fp);
|
||
emit_stack_restore (SAVE_NONLOCAL, r_sp);
|
||
|
||
/* Ensure the frame pointer move is not optimized. */
|
||
emit_insn (gen_blockage ());
|
||
emit_clobber (hard_frame_pointer_rtx);
|
||
emit_clobber (frame_pointer_rtx);
|
||
emit_move_insn (hard_frame_pointer_rtx, r_fp);
|
||
|
||
/* USE of hard_frame_pointer_rtx added for consistency;
|
||
not clear if really needed. */
|
||
emit_use (hard_frame_pointer_rtx);
|
||
emit_use (stack_pointer_rtx);
|
||
|
||
/* If the architecture is using a GP register, we must
|
||
conservatively assume that the target function makes use of it.
|
||
The prologue of functions with nonlocal gotos must therefore
|
||
initialize the GP register to the appropriate value, and we
|
||
must then make sure that this value is live at the point
|
||
of the jump. (Note that this doesn't necessarily apply
|
||
to targets with a nonlocal_goto pattern; they are free
|
||
to implement it in their own way. Note also that this is
|
||
a no-op if the GP register is a global invariant.) */
|
||
unsigned regnum = PIC_OFFSET_TABLE_REGNUM;
|
||
if (regnum != INVALID_REGNUM && fixed_regs[regnum])
|
||
emit_use (pic_offset_table_rtx);
|
||
|
||
emit_indirect_jump (r_label);
|
||
}
|
||
|
||
/* Search backwards to the jump insn and mark it as a
|
||
non-local goto. */
|
||
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
|
||
{
|
||
if (JUMP_P (insn))
|
||
{
|
||
add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx);
|
||
break;
|
||
}
|
||
else if (CALL_P (insn))
|
||
break;
|
||
}
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* __builtin_update_setjmp_buf is passed a pointer to an array of five words
|
||
(not all will be used on all machines) that was passed to __builtin_setjmp.
|
||
It updates the stack pointer in that block to the current value. This is
|
||
also called directly by the SJLJ exception handling code. */
|
||
|
||
void
|
||
expand_builtin_update_setjmp_buf (rtx buf_addr)
|
||
{
|
||
machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
|
||
buf_addr = convert_memory_address (Pmode, buf_addr);
|
||
rtx stack_save
|
||
= gen_rtx_MEM (sa_mode,
|
||
memory_address
|
||
(sa_mode,
|
||
plus_constant (Pmode, buf_addr,
|
||
2 * GET_MODE_SIZE (Pmode))));
|
||
|
||
emit_stack_save (SAVE_NONLOCAL, &stack_save);
|
||
}
|
||
|
||
/* Expand a call to __builtin_prefetch. For a target that does not support
|
||
data prefetch, evaluate the memory address argument in case it has side
|
||
effects. */
|
||
|
||
static void
|
||
expand_builtin_prefetch (tree exp)
|
||
{
|
||
tree arg0, arg1, arg2;
|
||
int nargs;
|
||
rtx op0, op1, op2;
|
||
|
||
if (!validate_arglist (exp, POINTER_TYPE, 0))
|
||
return;
|
||
|
||
arg0 = CALL_EXPR_ARG (exp, 0);
|
||
|
||
/* Arguments 1 and 2 are optional; argument 1 (read/write) defaults to
|
||
zero (read) and argument 2 (locality) defaults to 3 (high degree of
|
||
locality). */
|
||
nargs = call_expr_nargs (exp);
|
||
if (nargs > 1)
|
||
arg1 = CALL_EXPR_ARG (exp, 1);
|
||
else
|
||
arg1 = integer_zero_node;
|
||
if (nargs > 2)
|
||
arg2 = CALL_EXPR_ARG (exp, 2);
|
||
else
|
||
arg2 = integer_three_node;
|
||
|
||
/* Argument 0 is an address. */
|
||
op0 = expand_expr (arg0, NULL_RTX, Pmode, EXPAND_NORMAL);
|
||
|
||
/* Argument 1 (read/write flag) must be a compile-time constant int. */
|
||
if (TREE_CODE (arg1) != INTEGER_CST)
|
||
{
|
||
error ("second argument to %<__builtin_prefetch%> must be a constant");
|
||
arg1 = integer_zero_node;
|
||
}
|
||
op1 = expand_normal (arg1);
|
||
/* Argument 1 must be either zero or one. */
|
||
if (INTVAL (op1) != 0 && INTVAL (op1) != 1)
|
||
{
|
||
warning (0, "invalid second argument to %<__builtin_prefetch%>;"
|
||
" using zero");
|
||
op1 = const0_rtx;
|
||
}
|
||
|
||
/* Argument 2 (locality) must be a compile-time constant int. */
|
||
if (TREE_CODE (arg2) != INTEGER_CST)
|
||
{
|
||
error ("third argument to %<__builtin_prefetch%> must be a constant");
|
||
arg2 = integer_zero_node;
|
||
}
|
||
op2 = expand_normal (arg2);
|
||
/* Argument 2 must be 0, 1, 2, or 3. */
|
||
if (INTVAL (op2) < 0 || INTVAL (op2) > 3)
|
||
{
|
||
warning (0, "invalid third argument to %<__builtin_prefetch%>; using zero");
|
||
op2 = const0_rtx;
|
||
}
|
||
|
||
if (targetm.have_prefetch ())
|
||
{
|
||
class expand_operand ops[3];
|
||
|
||
create_address_operand (&ops[0], op0);
|
||
create_integer_operand (&ops[1], INTVAL (op1));
|
||
create_integer_operand (&ops[2], INTVAL (op2));
|
||
if (maybe_expand_insn (targetm.code_for_prefetch, 3, ops))
|
||
return;
|
||
}
|
||
|
||
/* Don't do anything with direct references to volatile memory, but
|
||
generate code to handle other side effects. */
|
||
if (!MEM_P (op0) && side_effects_p (op0))
|
||
emit_insn (op0);
|
||
}
|
||
|
||
/* Get a MEM rtx for expression EXP which is the address of an operand
|
||
to be used in a string instruction (cmpstrsi, cpymemsi, ..). LEN is
|
||
the maximum length of the block of memory that might be accessed or
|
||
NULL if unknown. */
|
||
|
||
static rtx
|
||
get_memory_rtx (tree exp, tree len)
|
||
{
|
||
tree orig_exp = exp;
|
||
rtx addr, mem;
|
||
|
||
/* When EXP is not resolved SAVE_EXPR, MEM_ATTRS can be still derived
|
||
from its expression, for expr->a.b only <variable>.a.b is recorded. */
|
||
if (TREE_CODE (exp) == SAVE_EXPR && !SAVE_EXPR_RESOLVED_P (exp))
|
||
exp = TREE_OPERAND (exp, 0);
|
||
|
||
addr = expand_expr (orig_exp, NULL_RTX, ptr_mode, EXPAND_NORMAL);
|
||
mem = gen_rtx_MEM (BLKmode, memory_address (BLKmode, addr));
|
||
|
||
/* Get an expression we can use to find the attributes to assign to MEM.
|
||
First remove any nops. */
|
||
while (CONVERT_EXPR_P (exp)
|
||
&& POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
||
exp = TREE_OPERAND (exp, 0);
|
||
|
||
/* Build a MEM_REF representing the whole accessed area as a byte blob,
|
||
(as builtin stringops may alias with anything). */
|
||
exp = fold_build2 (MEM_REF,
|
||
build_array_type (char_type_node,
|
||
build_range_type (sizetype,
|
||
size_one_node, len)),
|
||
exp, build_int_cst (ptr_type_node, 0));
|
||
|
||
/* If the MEM_REF has no acceptable address, try to get the base object
|
||
from the original address we got, and build an all-aliasing
|
||
unknown-sized access to that one. */
|
||
if (is_gimple_mem_ref_addr (TREE_OPERAND (exp, 0)))
|
||
set_mem_attributes (mem, exp, 0);
|
||
else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
||
&& (exp = get_base_address (TREE_OPERAND (TREE_OPERAND (exp, 0),
|
||
0))))
|
||
{
|
||
exp = build_fold_addr_expr (exp);
|
||
exp = fold_build2 (MEM_REF,
|
||
build_array_type (char_type_node,
|
||
build_range_type (sizetype,
|
||
size_zero_node,
|
||
NULL)),
|
||
exp, build_int_cst (ptr_type_node, 0));
|
||
set_mem_attributes (mem, exp, 0);
|
||
}
|
||
set_mem_alias_set (mem, 0);
|
||
return mem;
|
||
}
|
||
|
||
/* Built-in functions to perform an untyped call and return. */
|
||
|
||
#define apply_args_mode \
|
||
(this_target_builtins->x_apply_args_mode)
|
||
#define apply_result_mode \
|
||
(this_target_builtins->x_apply_result_mode)
|
||
|
||
/* Return the size required for the block returned by __builtin_apply_args,
|
||
and initialize apply_args_mode. */
|
||
|
||
static int
|
||
apply_args_size (void)
|
||
{
|
||
static int size = -1;
|
||
int align;
|
||
unsigned int regno;
|
||
|
||
/* The values computed by this function never change. */
|
||
if (size < 0)
|
||
{
|
||
/* The first value is the incoming arg-pointer. */
|
||
size = GET_MODE_SIZE (Pmode);
|
||
|
||
/* The second value is the structure value address unless this is
|
||
passed as an "invisible" first argument. */
|
||
if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
|
||
size += GET_MODE_SIZE (Pmode);
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (FUNCTION_ARG_REGNO_P (regno))
|
||
{
|
||
fixed_size_mode mode = targetm.calls.get_raw_arg_mode (regno);
|
||
|
||
gcc_assert (mode != VOIDmode);
|
||
|
||
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
|
||
if (size % align != 0)
|
||
size = CEIL (size, align) * align;
|
||
size += GET_MODE_SIZE (mode);
|
||
apply_args_mode[regno] = mode;
|
||
}
|
||
else
|
||
{
|
||
apply_args_mode[regno] = as_a <fixed_size_mode> (VOIDmode);
|
||
}
|
||
}
|
||
return size;
|
||
}
|
||
|
||
/* Return the size required for the block returned by __builtin_apply,
|
||
and initialize apply_result_mode. */
|
||
|
||
static int
|
||
apply_result_size (void)
|
||
{
|
||
static int size = -1;
|
||
int align, regno;
|
||
|
||
/* The values computed by this function never change. */
|
||
if (size < 0)
|
||
{
|
||
size = 0;
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (targetm.calls.function_value_regno_p (regno))
|
||
{
|
||
fixed_size_mode mode = targetm.calls.get_raw_result_mode (regno);
|
||
|
||
gcc_assert (mode != VOIDmode);
|
||
|
||
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
|
||
if (size % align != 0)
|
||
size = CEIL (size, align) * align;
|
||
size += GET_MODE_SIZE (mode);
|
||
apply_result_mode[regno] = mode;
|
||
}
|
||
else
|
||
apply_result_mode[regno] = as_a <fixed_size_mode> (VOIDmode);
|
||
|
||
/* Allow targets that use untyped_call and untyped_return to override
|
||
the size so that machine-specific information can be stored here. */
|
||
#ifdef APPLY_RESULT_SIZE
|
||
size = APPLY_RESULT_SIZE;
|
||
#endif
|
||
}
|
||
return size;
|
||
}
|
||
|
||
/* Create a vector describing the result block RESULT. If SAVEP is true,
|
||
the result block is used to save the values; otherwise it is used to
|
||
restore the values. */
|
||
|
||
static rtx
|
||
result_vector (int savep, rtx result)
|
||
{
|
||
int regno, size, align, nelts;
|
||
fixed_size_mode mode;
|
||
rtx reg, mem;
|
||
rtx *savevec = XALLOCAVEC (rtx, FIRST_PSEUDO_REGISTER);
|
||
|
||
size = nelts = 0;
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if ((mode = apply_result_mode[regno]) != VOIDmode)
|
||
{
|
||
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
|
||
if (size % align != 0)
|
||
size = CEIL (size, align) * align;
|
||
reg = gen_rtx_REG (mode, savep ? regno : INCOMING_REGNO (regno));
|
||
mem = adjust_address (result, mode, size);
|
||
savevec[nelts++] = (savep
|
||
? gen_rtx_SET (mem, reg)
|
||
: gen_rtx_SET (reg, mem));
|
||
size += GET_MODE_SIZE (mode);
|
||
}
|
||
return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, savevec));
|
||
}
|
||
|
||
/* Save the state required to perform an untyped call with the same
|
||
arguments as were passed to the current function. */
|
||
|
||
static rtx
|
||
expand_builtin_apply_args_1 (void)
|
||
{
|
||
rtx registers, tem;
|
||
int size, align, regno;
|
||
fixed_size_mode mode;
|
||
rtx struct_incoming_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 1);
|
||
|
||
/* Create a block where the arg-pointer, structure value address,
|
||
and argument registers can be saved. */
|
||
registers = assign_stack_local (BLKmode, apply_args_size (), -1);
|
||
|
||
/* Walk past the arg-pointer and structure value address. */
|
||
size = GET_MODE_SIZE (Pmode);
|
||
if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
|
||
size += GET_MODE_SIZE (Pmode);
|
||
|
||
/* Save each register used in calling a function to the block. */
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if ((mode = apply_args_mode[regno]) != VOIDmode)
|
||
{
|
||
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
|
||
if (size % align != 0)
|
||
size = CEIL (size, align) * align;
|
||
|
||
tem = gen_rtx_REG (mode, INCOMING_REGNO (regno));
|
||
|
||
emit_move_insn (adjust_address (registers, mode, size), tem);
|
||
size += GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
/* Save the arg pointer to the block. */
|
||
tem = copy_to_reg (crtl->args.internal_arg_pointer);
|
||
/* We need the pointer as the caller actually passed them to us, not
|
||
as we might have pretended they were passed. Make sure it's a valid
|
||
operand, as emit_move_insn isn't expected to handle a PLUS. */
|
||
if (STACK_GROWS_DOWNWARD)
|
||
tem
|
||
= force_operand (plus_constant (Pmode, tem,
|
||
crtl->args.pretend_args_size),
|
||
NULL_RTX);
|
||
emit_move_insn (adjust_address (registers, Pmode, 0), tem);
|
||
|
||
size = GET_MODE_SIZE (Pmode);
|
||
|
||
/* Save the structure value address unless this is passed as an
|
||
"invisible" first argument. */
|
||
if (struct_incoming_value)
|
||
emit_move_insn (adjust_address (registers, Pmode, size),
|
||
copy_to_reg (struct_incoming_value));
|
||
|
||
/* Return the address of the block. */
|
||
return copy_addr_to_reg (XEXP (registers, 0));
|
||
}
|
||
|
||
/* __builtin_apply_args returns block of memory allocated on
|
||
the stack into which is stored the arg pointer, structure
|
||
value address, static chain, and all the registers that might
|
||
possibly be used in performing a function call. The code is
|
||
moved to the start of the function so the incoming values are
|
||
saved. */
|
||
|
||
static rtx
|
||
expand_builtin_apply_args (void)
|
||
{
|
||
/* Don't do __builtin_apply_args more than once in a function.
|
||
Save the result of the first call and reuse it. */
|
||
if (apply_args_value != 0)
|
||
return apply_args_value;
|
||
{
|
||
/* When this function is called, it means that registers must be
|
||
saved on entry to this function. So we migrate the
|
||
call to the first insn of this function. */
|
||
rtx temp;
|
||
|
||
start_sequence ();
|
||
temp = expand_builtin_apply_args_1 ();
|
||
rtx_insn *seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
apply_args_value = temp;
|
||
|
||
/* Put the insns after the NOTE that starts the function.
|
||
If this is inside a start_sequence, make the outer-level insn
|
||
chain current, so the code is placed at the start of the
|
||
function. If internal_arg_pointer is a non-virtual pseudo,
|
||
it needs to be placed after the function that initializes
|
||
that pseudo. */
|
||
push_topmost_sequence ();
|
||
if (REG_P (crtl->args.internal_arg_pointer)
|
||
&& REGNO (crtl->args.internal_arg_pointer) > LAST_VIRTUAL_REGISTER)
|
||
emit_insn_before (seq, parm_birth_insn);
|
||
else
|
||
emit_insn_before (seq, NEXT_INSN (entry_of_function ()));
|
||
pop_topmost_sequence ();
|
||
return temp;
|
||
}
|
||
}
|
||
|
||
/* Perform an untyped call and save the state required to perform an
|
||
untyped return of whatever value was returned by the given function. */
|
||
|
||
static rtx
|
||
expand_builtin_apply (rtx function, rtx arguments, rtx argsize)
|
||
{
|
||
int size, align, regno;
|
||
fixed_size_mode mode;
|
||
rtx incoming_args, result, reg, dest, src;
|
||
rtx_call_insn *call_insn;
|
||
rtx old_stack_level = 0;
|
||
rtx call_fusage = 0;
|
||
rtx struct_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0);
|
||
|
||
arguments = convert_memory_address (Pmode, arguments);
|
||
|
||
/* Create a block where the return registers can be saved. */
|
||
result = assign_stack_local (BLKmode, apply_result_size (), -1);
|
||
|
||
/* Fetch the arg pointer from the ARGUMENTS block. */
|
||
incoming_args = gen_reg_rtx (Pmode);
|
||
emit_move_insn (incoming_args, gen_rtx_MEM (Pmode, arguments));
|
||
if (!STACK_GROWS_DOWNWARD)
|
||
incoming_args = expand_simple_binop (Pmode, MINUS, incoming_args, argsize,
|
||
incoming_args, 0, OPTAB_LIB_WIDEN);
|
||
|
||
/* Push a new argument block and copy the arguments. Do not allow
|
||
the (potential) memcpy call below to interfere with our stack
|
||
manipulations. */
|
||
do_pending_stack_adjust ();
|
||
NO_DEFER_POP;
|
||
|
||
/* Save the stack with nonlocal if available. */
|
||
if (targetm.have_save_stack_nonlocal ())
|
||
emit_stack_save (SAVE_NONLOCAL, &old_stack_level);
|
||
else
|
||
emit_stack_save (SAVE_BLOCK, &old_stack_level);
|
||
|
||
/* Allocate a block of memory onto the stack and copy the memory
|
||
arguments to the outgoing arguments address. We can pass TRUE
|
||
as the 4th argument because we just saved the stack pointer
|
||
and will restore it right after the call. */
|
||
allocate_dynamic_stack_space (argsize, 0, BIGGEST_ALIGNMENT, -1, true);
|
||
|
||
/* Set DRAP flag to true, even though allocate_dynamic_stack_space
|
||
may have already set current_function_calls_alloca to true.
|
||
current_function_calls_alloca won't be set if argsize is zero,
|
||
so we have to guarantee need_drap is true here. */
|
||
if (SUPPORTS_STACK_ALIGNMENT)
|
||
crtl->need_drap = true;
|
||
|
||
dest = virtual_outgoing_args_rtx;
|
||
if (!STACK_GROWS_DOWNWARD)
|
||
{
|
||
if (CONST_INT_P (argsize))
|
||
dest = plus_constant (Pmode, dest, -INTVAL (argsize));
|
||
else
|
||
dest = gen_rtx_PLUS (Pmode, dest, negate_rtx (Pmode, argsize));
|
||
}
|
||
dest = gen_rtx_MEM (BLKmode, dest);
|
||
set_mem_align (dest, PARM_BOUNDARY);
|
||
src = gen_rtx_MEM (BLKmode, incoming_args);
|
||
set_mem_align (src, PARM_BOUNDARY);
|
||
emit_block_move (dest, src, argsize, BLOCK_OP_NORMAL);
|
||
|
||
/* Refer to the argument block. */
|
||
apply_args_size ();
|
||
arguments = gen_rtx_MEM (BLKmode, arguments);
|
||
set_mem_align (arguments, PARM_BOUNDARY);
|
||
|
||
/* Walk past the arg-pointer and structure value address. */
|
||
size = GET_MODE_SIZE (Pmode);
|
||
if (struct_value)
|
||
size += GET_MODE_SIZE (Pmode);
|
||
|
||
/* Restore each of the registers previously saved. Make USE insns
|
||
for each of these registers for use in making the call. */
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if ((mode = apply_args_mode[regno]) != VOIDmode)
|
||
{
|
||
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
|
||
if (size % align != 0)
|
||
size = CEIL (size, align) * align;
|
||
reg = gen_rtx_REG (mode, regno);
|
||
emit_move_insn (reg, adjust_address (arguments, mode, size));
|
||
use_reg (&call_fusage, reg);
|
||
size += GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
/* Restore the structure value address unless this is passed as an
|
||
"invisible" first argument. */
|
||
size = GET_MODE_SIZE (Pmode);
|
||
if (struct_value)
|
||
{
|
||
rtx value = gen_reg_rtx (Pmode);
|
||
emit_move_insn (value, adjust_address (arguments, Pmode, size));
|
||
emit_move_insn (struct_value, value);
|
||
if (REG_P (struct_value))
|
||
use_reg (&call_fusage, struct_value);
|
||
}
|
||
|
||
/* All arguments and registers used for the call are set up by now! */
|
||
function = prepare_call_address (NULL, function, NULL, &call_fusage, 0, 0);
|
||
|
||
/* Ensure address is valid. SYMBOL_REF is already valid, so no need,
|
||
and we don't want to load it into a register as an optimization,
|
||
because prepare_call_address already did it if it should be done. */
|
||
if (GET_CODE (function) != SYMBOL_REF)
|
||
function = memory_address (FUNCTION_MODE, function);
|
||
|
||
/* Generate the actual call instruction and save the return value. */
|
||
if (targetm.have_untyped_call ())
|
||
{
|
||
rtx mem = gen_rtx_MEM (FUNCTION_MODE, function);
|
||
emit_call_insn (targetm.gen_untyped_call (mem, result,
|
||
result_vector (1, result)));
|
||
}
|
||
else if (targetm.have_call_value ())
|
||
{
|
||
rtx valreg = 0;
|
||
|
||
/* Locate the unique return register. It is not possible to
|
||
express a call that sets more than one return register using
|
||
call_value; use untyped_call for that. In fact, untyped_call
|
||
only needs to save the return registers in the given block. */
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if ((mode = apply_result_mode[regno]) != VOIDmode)
|
||
{
|
||
gcc_assert (!valreg); /* have_untyped_call required. */
|
||
|
||
valreg = gen_rtx_REG (mode, regno);
|
||
}
|
||
|
||
emit_insn (targetm.gen_call_value (valreg,
|
||
gen_rtx_MEM (FUNCTION_MODE, function),
|
||
const0_rtx, NULL_RTX, const0_rtx));
|
||
|
||
emit_move_insn (adjust_address (result, GET_MODE (valreg), 0), valreg);
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
/* Find the CALL insn we just emitted, and attach the register usage
|
||
information. */
|
||
call_insn = last_call_insn ();
|
||
add_function_usage_to (call_insn, call_fusage);
|
||
|
||
/* Restore the stack. */
|
||
if (targetm.have_save_stack_nonlocal ())
|
||
emit_stack_restore (SAVE_NONLOCAL, old_stack_level);
|
||
else
|
||
emit_stack_restore (SAVE_BLOCK, old_stack_level);
|
||
fixup_args_size_notes (call_insn, get_last_insn (), 0);
|
||
|
||
OK_DEFER_POP;
|
||
|
||
/* Return the address of the result block. */
|
||
result = copy_addr_to_reg (XEXP (result, 0));
|
||
return convert_memory_address (ptr_mode, result);
|
||
}
|
||
|
||
/* Perform an untyped return. */
|
||
|
||
static void
|
||
expand_builtin_return (rtx result)
|
||
{
|
||
int size, align, regno;
|
||
fixed_size_mode mode;
|
||
rtx reg;
|
||
rtx_insn *call_fusage = 0;
|
||
|
||
result = convert_memory_address (Pmode, result);
|
||
|
||
apply_result_size ();
|
||
result = gen_rtx_MEM (BLKmode, result);
|
||
|
||
if (targetm.have_untyped_return ())
|
||
{
|
||
rtx vector = result_vector (0, result);
|
||
emit_jump_insn (targetm.gen_untyped_return (result, vector));
|
||
emit_barrier ();
|
||
return;
|
||
}
|
||
|
||
/* Restore the return value and note that each value is used. */
|
||
size = 0;
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if ((mode = apply_result_mode[regno]) != VOIDmode)
|
||
{
|
||
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
|
||
if (size % align != 0)
|
||
size = CEIL (size, align) * align;
|
||
reg = gen_rtx_REG (mode, INCOMING_REGNO (regno));
|
||
emit_move_insn (reg, adjust_address (result, mode, size));
|
||
|
||
push_to_sequence (call_fusage);
|
||
emit_use (reg);
|
||
call_fusage = get_insns ();
|
||
end_sequence ();
|
||
size += GET_MODE_SIZE (mode);
|
||
}
|
||
|
||
/* Put the USE insns before the return. */
|
||
emit_insn (call_fusage);
|
||
|
||
/* Return whatever values was restored by jumping directly to the end
|
||
of the function. */
|
||
expand_naked_return ();
|
||
}
|
||
|
||
/* Used by expand_builtin_classify_type and fold_builtin_classify_type. */
|
||
|
||
static enum type_class
|
||
type_to_class (tree type)
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case VOID_TYPE: return void_type_class;
|
||
case INTEGER_TYPE: return integer_type_class;
|
||
case ENUMERAL_TYPE: return enumeral_type_class;
|
||
case BOOLEAN_TYPE: return boolean_type_class;
|
||
case POINTER_TYPE: return pointer_type_class;
|
||
case REFERENCE_TYPE: return reference_type_class;
|
||
case OFFSET_TYPE: return offset_type_class;
|
||
case REAL_TYPE: return real_type_class;
|
||
case COMPLEX_TYPE: return complex_type_class;
|
||
case FUNCTION_TYPE: return function_type_class;
|
||
case METHOD_TYPE: return method_type_class;
|
||
case RECORD_TYPE: return record_type_class;
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE: return union_type_class;
|
||
case ARRAY_TYPE: return (TYPE_STRING_FLAG (type)
|
||
? string_type_class : array_type_class);
|
||
case LANG_TYPE: return lang_type_class;
|
||
default: return no_type_class;
|
||
}
|
||
}
|
||
|
||
/* Expand a call EXP to __builtin_classify_type. */
|
||
|
||
static rtx
|
||
expand_builtin_classify_type (tree exp)
|
||
{
|
||
if (call_expr_nargs (exp))
|
||
return GEN_INT (type_to_class (TREE_TYPE (CALL_EXPR_ARG (exp, 0))));
|
||
return GEN_INT (no_type_class);
|
||
}
|
||
|
||
/* This helper macro, meant to be used in mathfn_built_in below, determines
|
||
which among a set of builtin math functions is appropriate for a given type
|
||
mode. The `F' (float) and `L' (long double) are automatically generated
|
||
from the 'double' case. If a function supports the _Float<N> and _Float<N>X
|
||
types, there are additional types that are considered with 'F32', 'F64',
|
||
'F128', etc. suffixes. */
|
||
#define CASE_MATHFN(MATHFN) \
|
||
CASE_CFN_##MATHFN: \
|
||
fcode = BUILT_IN_##MATHFN; fcodef = BUILT_IN_##MATHFN##F ; \
|
||
fcodel = BUILT_IN_##MATHFN##L ; break;
|
||
/* Similar to the above, but also add support for the _Float<N> and _Float<N>X
|
||
types. */
|
||
#define CASE_MATHFN_FLOATN(MATHFN) \
|
||
CASE_CFN_##MATHFN: \
|
||
fcode = BUILT_IN_##MATHFN; fcodef = BUILT_IN_##MATHFN##F ; \
|
||
fcodel = BUILT_IN_##MATHFN##L ; fcodef16 = BUILT_IN_##MATHFN##F16 ; \
|
||
fcodef32 = BUILT_IN_##MATHFN##F32; fcodef64 = BUILT_IN_##MATHFN##F64 ; \
|
||
fcodef128 = BUILT_IN_##MATHFN##F128 ; fcodef32x = BUILT_IN_##MATHFN##F32X ; \
|
||
fcodef64x = BUILT_IN_##MATHFN##F64X ; fcodef128x = BUILT_IN_##MATHFN##F128X ;\
|
||
break;
|
||
/* Similar to above, but appends _R after any F/L suffix. */
|
||
#define CASE_MATHFN_REENT(MATHFN) \
|
||
case CFN_BUILT_IN_##MATHFN##_R: \
|
||
case CFN_BUILT_IN_##MATHFN##F_R: \
|
||
case CFN_BUILT_IN_##MATHFN##L_R: \
|
||
fcode = BUILT_IN_##MATHFN##_R; fcodef = BUILT_IN_##MATHFN##F_R ; \
|
||
fcodel = BUILT_IN_##MATHFN##L_R ; break;
|
||
|
||
/* Return a function equivalent to FN but operating on floating-point
|
||
values of type TYPE, or END_BUILTINS if no such function exists.
|
||
This is purely an operation on function codes; it does not guarantee
|
||
that the target actually has an implementation of the function. */
|
||
|
||
static built_in_function
|
||
mathfn_built_in_2 (tree type, combined_fn fn)
|
||
{
|
||
tree mtype;
|
||
built_in_function fcode, fcodef, fcodel;
|
||
built_in_function fcodef16 = END_BUILTINS;
|
||
built_in_function fcodef32 = END_BUILTINS;
|
||
built_in_function fcodef64 = END_BUILTINS;
|
||
built_in_function fcodef128 = END_BUILTINS;
|
||
built_in_function fcodef32x = END_BUILTINS;
|
||
built_in_function fcodef64x = END_BUILTINS;
|
||
built_in_function fcodef128x = END_BUILTINS;
|
||
|
||
switch (fn)
|
||
{
|
||
CASE_MATHFN (ACOS)
|
||
CASE_MATHFN (ACOSH)
|
||
CASE_MATHFN (ASIN)
|
||
CASE_MATHFN (ASINH)
|
||
CASE_MATHFN (ATAN)
|
||
CASE_MATHFN (ATAN2)
|
||
CASE_MATHFN (ATANH)
|
||
CASE_MATHFN (CBRT)
|
||
CASE_MATHFN_FLOATN (CEIL)
|
||
CASE_MATHFN (CEXPI)
|
||
CASE_MATHFN_FLOATN (COPYSIGN)
|
||
CASE_MATHFN (COS)
|
||
CASE_MATHFN (COSH)
|
||
CASE_MATHFN (DREM)
|
||
CASE_MATHFN (ERF)
|
||
CASE_MATHFN (ERFC)
|
||
CASE_MATHFN (EXP)
|
||
CASE_MATHFN (EXP10)
|
||
CASE_MATHFN (EXP2)
|
||
CASE_MATHFN (EXPM1)
|
||
CASE_MATHFN (FABS)
|
||
CASE_MATHFN (FDIM)
|
||
CASE_MATHFN_FLOATN (FLOOR)
|
||
CASE_MATHFN_FLOATN (FMA)
|
||
CASE_MATHFN_FLOATN (FMAX)
|
||
CASE_MATHFN_FLOATN (FMIN)
|
||
CASE_MATHFN (FMOD)
|
||
CASE_MATHFN (FREXP)
|
||
CASE_MATHFN (GAMMA)
|
||
CASE_MATHFN_REENT (GAMMA) /* GAMMA_R */
|
||
CASE_MATHFN (HUGE_VAL)
|
||
CASE_MATHFN (HYPOT)
|
||
CASE_MATHFN (ILOGB)
|
||
CASE_MATHFN (ICEIL)
|
||
CASE_MATHFN (IFLOOR)
|
||
CASE_MATHFN (INF)
|
||
CASE_MATHFN (IRINT)
|
||
CASE_MATHFN (IROUND)
|
||
CASE_MATHFN (ISINF)
|
||
CASE_MATHFN (J0)
|
||
CASE_MATHFN (J1)
|
||
CASE_MATHFN (JN)
|
||
CASE_MATHFN (LCEIL)
|
||
CASE_MATHFN (LDEXP)
|
||
CASE_MATHFN (LFLOOR)
|
||
CASE_MATHFN (LGAMMA)
|
||
CASE_MATHFN_REENT (LGAMMA) /* LGAMMA_R */
|
||
CASE_MATHFN (LLCEIL)
|
||
CASE_MATHFN (LLFLOOR)
|
||
CASE_MATHFN (LLRINT)
|
||
CASE_MATHFN (LLROUND)
|
||
CASE_MATHFN (LOG)
|
||
CASE_MATHFN (LOG10)
|
||
CASE_MATHFN (LOG1P)
|
||
CASE_MATHFN (LOG2)
|
||
CASE_MATHFN (LOGB)
|
||
CASE_MATHFN (LRINT)
|
||
CASE_MATHFN (LROUND)
|
||
CASE_MATHFN (MODF)
|
||
CASE_MATHFN (NAN)
|
||
CASE_MATHFN (NANS)
|
||
CASE_MATHFN_FLOATN (NEARBYINT)
|
||
CASE_MATHFN (NEXTAFTER)
|
||
CASE_MATHFN (NEXTTOWARD)
|
||
CASE_MATHFN (POW)
|
||
CASE_MATHFN (POWI)
|
||
CASE_MATHFN (POW10)
|
||
CASE_MATHFN (REMAINDER)
|
||
CASE_MATHFN (REMQUO)
|
||
CASE_MATHFN_FLOATN (RINT)
|
||
CASE_MATHFN_FLOATN (ROUND)
|
||
CASE_MATHFN_FLOATN (ROUNDEVEN)
|
||
CASE_MATHFN (SCALB)
|
||
CASE_MATHFN (SCALBLN)
|
||
CASE_MATHFN (SCALBN)
|
||
CASE_MATHFN (SIGNBIT)
|
||
CASE_MATHFN (SIGNIFICAND)
|
||
CASE_MATHFN (SIN)
|
||
CASE_MATHFN (SINCOS)
|
||
CASE_MATHFN (SINH)
|
||
CASE_MATHFN_FLOATN (SQRT)
|
||
CASE_MATHFN (TAN)
|
||
CASE_MATHFN (TANH)
|
||
CASE_MATHFN (TGAMMA)
|
||
CASE_MATHFN_FLOATN (TRUNC)
|
||
CASE_MATHFN (Y0)
|
||
CASE_MATHFN (Y1)
|
||
CASE_MATHFN (YN)
|
||
|
||
default:
|
||
return END_BUILTINS;
|
||
}
|
||
|
||
mtype = TYPE_MAIN_VARIANT (type);
|
||
if (mtype == double_type_node)
|
||
return fcode;
|
||
else if (mtype == float_type_node)
|
||
return fcodef;
|
||
else if (mtype == long_double_type_node)
|
||
return fcodel;
|
||
else if (mtype == float16_type_node)
|
||
return fcodef16;
|
||
else if (mtype == float32_type_node)
|
||
return fcodef32;
|
||
else if (mtype == float64_type_node)
|
||
return fcodef64;
|
||
else if (mtype == float128_type_node)
|
||
return fcodef128;
|
||
else if (mtype == float32x_type_node)
|
||
return fcodef32x;
|
||
else if (mtype == float64x_type_node)
|
||
return fcodef64x;
|
||
else if (mtype == float128x_type_node)
|
||
return fcodef128x;
|
||
else
|
||
return END_BUILTINS;
|
||
}
|
||
|
||
/* Return mathematic function equivalent to FN but operating directly on TYPE,
|
||
if available. If IMPLICIT_P is true use the implicit builtin declaration,
|
||
otherwise use the explicit declaration. If we can't do the conversion,
|
||
return null. */
|
||
|
||
static tree
|
||
mathfn_built_in_1 (tree type, combined_fn fn, bool implicit_p)
|
||
{
|
||
built_in_function fcode2 = mathfn_built_in_2 (type, fn);
|
||
if (fcode2 == END_BUILTINS)
|
||
return NULL_TREE;
|
||
|
||
if (implicit_p && !builtin_decl_implicit_p (fcode2))
|
||
return NULL_TREE;
|
||
|
||
return builtin_decl_explicit (fcode2);
|
||
}
|
||
|
||
/* Like mathfn_built_in_1, but always use the implicit array. */
|
||
|
||
tree
|
||
mathfn_built_in (tree type, combined_fn fn)
|
||
{
|
||
return mathfn_built_in_1 (type, fn, /*implicit=*/ 1);
|
||
}
|
||
|
||
/* Like mathfn_built_in_1, but take a built_in_function and
|
||
always use the implicit array. */
|
||
|
||
tree
|
||
mathfn_built_in (tree type, enum built_in_function fn)
|
||
{
|
||
return mathfn_built_in_1 (type, as_combined_fn (fn), /*implicit=*/ 1);
|
||
}
|
||
|
||
/* If BUILT_IN_NORMAL function FNDECL has an associated internal function,
|
||
return its code, otherwise return IFN_LAST. Note that this function
|
||
only tests whether the function is defined in internals.def, not whether
|
||
it is actually available on the target. */
|
||
|
||
internal_fn
|
||
associated_internal_fn (tree fndecl)
|
||
{
|
||
gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL);
|
||
tree return_type = TREE_TYPE (TREE_TYPE (fndecl));
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
#define DEF_INTERNAL_FLT_FN(NAME, FLAGS, OPTAB, TYPE) \
|
||
CASE_FLT_FN (BUILT_IN_##NAME): return IFN_##NAME;
|
||
#define DEF_INTERNAL_FLT_FLOATN_FN(NAME, FLAGS, OPTAB, TYPE) \
|
||
CASE_FLT_FN (BUILT_IN_##NAME): return IFN_##NAME; \
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_##NAME): return IFN_##NAME;
|
||
#define DEF_INTERNAL_INT_FN(NAME, FLAGS, OPTAB, TYPE) \
|
||
CASE_INT_FN (BUILT_IN_##NAME): return IFN_##NAME;
|
||
#include "internal-fn.def"
|
||
|
||
CASE_FLT_FN (BUILT_IN_POW10):
|
||
return IFN_EXP10;
|
||
|
||
CASE_FLT_FN (BUILT_IN_DREM):
|
||
return IFN_REMAINDER;
|
||
|
||
CASE_FLT_FN (BUILT_IN_SCALBN):
|
||
CASE_FLT_FN (BUILT_IN_SCALBLN):
|
||
if (REAL_MODE_FORMAT (TYPE_MODE (return_type))->b == 2)
|
||
return IFN_LDEXP;
|
||
return IFN_LAST;
|
||
|
||
default:
|
||
return IFN_LAST;
|
||
}
|
||
}
|
||
|
||
/* If CALL is a call to a BUILT_IN_NORMAL function that could be replaced
|
||
on the current target by a call to an internal function, return the
|
||
code of that internal function, otherwise return IFN_LAST. The caller
|
||
is responsible for ensuring that any side-effects of the built-in
|
||
call are dealt with correctly. E.g. if CALL sets errno, the caller
|
||
must decide that the errno result isn't needed or make it available
|
||
in some other way. */
|
||
|
||
internal_fn
|
||
replacement_internal_fn (gcall *call)
|
||
{
|
||
if (gimple_call_builtin_p (call, BUILT_IN_NORMAL))
|
||
{
|
||
internal_fn ifn = associated_internal_fn (gimple_call_fndecl (call));
|
||
if (ifn != IFN_LAST)
|
||
{
|
||
tree_pair types = direct_internal_fn_types (ifn, call);
|
||
optimization_type opt_type = bb_optimization_type (gimple_bb (call));
|
||
if (direct_internal_fn_supported_p (ifn, types, opt_type))
|
||
return ifn;
|
||
}
|
||
}
|
||
return IFN_LAST;
|
||
}
|
||
|
||
/* Expand a call to the builtin trinary math functions (fma).
|
||
Return NULL_RTX if a normal call should be emitted rather than expanding the
|
||
function in-line. EXP is the expression that is a call to the builtin
|
||
function; if convenient, the result should be placed in TARGET.
|
||
SUBTARGET may be used as the target for computing one of EXP's
|
||
operands. */
|
||
|
||
static rtx
|
||
expand_builtin_mathfn_ternary (tree exp, rtx target, rtx subtarget)
|
||
{
|
||
optab builtin_optab;
|
||
rtx op0, op1, op2, result;
|
||
rtx_insn *insns;
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
tree arg0, arg1, arg2;
|
||
machine_mode mode;
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE, REAL_TYPE, REAL_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg0 = CALL_EXPR_ARG (exp, 0);
|
||
arg1 = CALL_EXPR_ARG (exp, 1);
|
||
arg2 = CALL_EXPR_ARG (exp, 2);
|
||
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_FMA):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FMA):
|
||
builtin_optab = fma_optab; break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Make a suitable register to place result in. */
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
|
||
/* Before working hard, check whether the instruction is available. */
|
||
if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing)
|
||
return NULL_RTX;
|
||
|
||
result = gen_reg_rtx (mode);
|
||
|
||
/* Always stabilize the argument list. */
|
||
CALL_EXPR_ARG (exp, 0) = arg0 = builtin_save_expr (arg0);
|
||
CALL_EXPR_ARG (exp, 1) = arg1 = builtin_save_expr (arg1);
|
||
CALL_EXPR_ARG (exp, 2) = arg2 = builtin_save_expr (arg2);
|
||
|
||
op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
|
||
op1 = expand_normal (arg1);
|
||
op2 = expand_normal (arg2);
|
||
|
||
start_sequence ();
|
||
|
||
/* Compute into RESULT.
|
||
Set RESULT to wherever the result comes back. */
|
||
result = expand_ternary_op (mode, builtin_optab, op0, op1, op2,
|
||
result, 0);
|
||
|
||
/* If we were unable to expand via the builtin, stop the sequence
|
||
(without outputting the insns) and call to the library function
|
||
with the stabilized argument list. */
|
||
if (result == 0)
|
||
{
|
||
end_sequence ();
|
||
return expand_call (exp, target, target == const0_rtx);
|
||
}
|
||
|
||
/* Output the entire sequence. */
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (insns);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Expand a call to the builtin sin and cos math functions.
|
||
Return NULL_RTX if a normal call should be emitted rather than expanding the
|
||
function in-line. EXP is the expression that is a call to the builtin
|
||
function; if convenient, the result should be placed in TARGET.
|
||
SUBTARGET may be used as the target for computing one of EXP's
|
||
operands. */
|
||
|
||
static rtx
|
||
expand_builtin_mathfn_3 (tree exp, rtx target, rtx subtarget)
|
||
{
|
||
optab builtin_optab;
|
||
rtx op0;
|
||
rtx_insn *insns;
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
machine_mode mode;
|
||
tree arg;
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_SIN):
|
||
CASE_FLT_FN (BUILT_IN_COS):
|
||
builtin_optab = sincos_optab; break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Make a suitable register to place result in. */
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
|
||
/* Check if sincos insn is available, otherwise fallback
|
||
to sin or cos insn. */
|
||
if (optab_handler (builtin_optab, mode) == CODE_FOR_nothing)
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_SIN):
|
||
builtin_optab = sin_optab; break;
|
||
CASE_FLT_FN (BUILT_IN_COS):
|
||
builtin_optab = cos_optab; break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Before working hard, check whether the instruction is available. */
|
||
if (optab_handler (builtin_optab, mode) != CODE_FOR_nothing)
|
||
{
|
||
rtx result = gen_reg_rtx (mode);
|
||
|
||
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
|
||
need to expand the argument again. This way, we will not perform
|
||
side-effects more the once. */
|
||
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
|
||
|
||
op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
|
||
|
||
start_sequence ();
|
||
|
||
/* Compute into RESULT.
|
||
Set RESULT to wherever the result comes back. */
|
||
if (builtin_optab == sincos_optab)
|
||
{
|
||
int ok;
|
||
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_SIN):
|
||
ok = expand_twoval_unop (builtin_optab, op0, 0, result, 0);
|
||
break;
|
||
CASE_FLT_FN (BUILT_IN_COS):
|
||
ok = expand_twoval_unop (builtin_optab, op0, result, 0, 0);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
gcc_assert (ok);
|
||
}
|
||
else
|
||
result = expand_unop (mode, builtin_optab, op0, result, 0);
|
||
|
||
if (result != 0)
|
||
{
|
||
/* Output the entire sequence. */
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (insns);
|
||
return result;
|
||
}
|
||
|
||
/* If we were unable to expand via the builtin, stop the sequence
|
||
(without outputting the insns) and call to the library function
|
||
with the stabilized argument list. */
|
||
end_sequence ();
|
||
}
|
||
|
||
return expand_call (exp, target, target == const0_rtx);
|
||
}
|
||
|
||
/* Given an interclass math builtin decl FNDECL and it's argument ARG
|
||
return an RTL instruction code that implements the functionality.
|
||
If that isn't possible or available return CODE_FOR_nothing. */
|
||
|
||
static enum insn_code
|
||
interclass_mathfn_icode (tree arg, tree fndecl)
|
||
{
|
||
bool errno_set = false;
|
||
optab builtin_optab = unknown_optab;
|
||
machine_mode mode;
|
||
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_ILOGB):
|
||
errno_set = true; builtin_optab = ilogb_optab; break;
|
||
CASE_FLT_FN (BUILT_IN_ISINF):
|
||
builtin_optab = isinf_optab; break;
|
||
case BUILT_IN_ISNORMAL:
|
||
case BUILT_IN_ISFINITE:
|
||
CASE_FLT_FN (BUILT_IN_FINITE):
|
||
case BUILT_IN_FINITED32:
|
||
case BUILT_IN_FINITED64:
|
||
case BUILT_IN_FINITED128:
|
||
case BUILT_IN_ISINFD32:
|
||
case BUILT_IN_ISINFD64:
|
||
case BUILT_IN_ISINFD128:
|
||
/* These builtins have no optabs (yet). */
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* There's no easy way to detect the case we need to set EDOM. */
|
||
if (flag_errno_math && errno_set)
|
||
return CODE_FOR_nothing;
|
||
|
||
/* Optab mode depends on the mode of the input argument. */
|
||
mode = TYPE_MODE (TREE_TYPE (arg));
|
||
|
||
if (builtin_optab)
|
||
return optab_handler (builtin_optab, mode);
|
||
return CODE_FOR_nothing;
|
||
}
|
||
|
||
/* Expand a call to one of the builtin math functions that operate on
|
||
floating point argument and output an integer result (ilogb, isinf,
|
||
isnan, etc).
|
||
Return 0 if a normal call should be emitted rather than expanding the
|
||
function in-line. EXP is the expression that is a call to the builtin
|
||
function; if convenient, the result should be placed in TARGET. */
|
||
|
||
static rtx
|
||
expand_builtin_interclass_mathfn (tree exp, rtx target)
|
||
{
|
||
enum insn_code icode = CODE_FOR_nothing;
|
||
rtx op0;
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
machine_mode mode;
|
||
tree arg;
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
icode = interclass_mathfn_icode (arg, fndecl);
|
||
mode = TYPE_MODE (TREE_TYPE (arg));
|
||
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
class expand_operand ops[1];
|
||
rtx_insn *last = get_last_insn ();
|
||
tree orig_arg = arg;
|
||
|
||
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
|
||
need to expand the argument again. This way, we will not perform
|
||
side-effects more the once. */
|
||
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
|
||
|
||
op0 = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
||
|
||
if (mode != GET_MODE (op0))
|
||
op0 = convert_to_mode (mode, op0, 0);
|
||
|
||
create_output_operand (&ops[0], target, TYPE_MODE (TREE_TYPE (exp)));
|
||
if (maybe_legitimize_operands (icode, 0, 1, ops)
|
||
&& maybe_emit_unop_insn (icode, ops[0].value, op0, UNKNOWN))
|
||
return ops[0].value;
|
||
|
||
delete_insns_since (last);
|
||
CALL_EXPR_ARG (exp, 0) = orig_arg;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Expand a call to the builtin sincos math function.
|
||
Return NULL_RTX if a normal call should be emitted rather than expanding the
|
||
function in-line. EXP is the expression that is a call to the builtin
|
||
function. */
|
||
|
||
static rtx
|
||
expand_builtin_sincos (tree exp)
|
||
{
|
||
rtx op0, op1, op2, target1, target2;
|
||
machine_mode mode;
|
||
tree arg, sinp, cosp;
|
||
int result;
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
tree alias_type, alias_off;
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE,
|
||
POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
sinp = CALL_EXPR_ARG (exp, 1);
|
||
cosp = CALL_EXPR_ARG (exp, 2);
|
||
|
||
/* Make a suitable register to place result in. */
|
||
mode = TYPE_MODE (TREE_TYPE (arg));
|
||
|
||
/* Check if sincos insn is available, otherwise emit the call. */
|
||
if (optab_handler (sincos_optab, mode) == CODE_FOR_nothing)
|
||
return NULL_RTX;
|
||
|
||
target1 = gen_reg_rtx (mode);
|
||
target2 = gen_reg_rtx (mode);
|
||
|
||
op0 = expand_normal (arg);
|
||
alias_type = build_pointer_type_for_mode (TREE_TYPE (arg), ptr_mode, true);
|
||
alias_off = build_int_cst (alias_type, 0);
|
||
op1 = expand_normal (fold_build2_loc (loc, MEM_REF, TREE_TYPE (arg),
|
||
sinp, alias_off));
|
||
op2 = expand_normal (fold_build2_loc (loc, MEM_REF, TREE_TYPE (arg),
|
||
cosp, alias_off));
|
||
|
||
/* Compute into target1 and target2.
|
||
Set TARGET to wherever the result comes back. */
|
||
result = expand_twoval_unop (sincos_optab, op0, target2, target1, 0);
|
||
gcc_assert (result);
|
||
|
||
/* Move target1 and target2 to the memory locations indicated
|
||
by op1 and op2. */
|
||
emit_move_insn (op1, target1);
|
||
emit_move_insn (op2, target2);
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Expand a call to the internal cexpi builtin to the sincos math function.
|
||
EXP is the expression that is a call to the builtin function; if convenient,
|
||
the result should be placed in TARGET. */
|
||
|
||
static rtx
|
||
expand_builtin_cexpi (tree exp, rtx target)
|
||
{
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
tree arg, type;
|
||
machine_mode mode;
|
||
rtx op0, op1, op2;
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
type = TREE_TYPE (arg);
|
||
mode = TYPE_MODE (TREE_TYPE (arg));
|
||
|
||
/* Try expanding via a sincos optab, fall back to emitting a libcall
|
||
to sincos or cexp. We are sure we have sincos or cexp because cexpi
|
||
is only generated from sincos, cexp or if we have either of them. */
|
||
if (optab_handler (sincos_optab, mode) != CODE_FOR_nothing)
|
||
{
|
||
op1 = gen_reg_rtx (mode);
|
||
op2 = gen_reg_rtx (mode);
|
||
|
||
op0 = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
||
|
||
/* Compute into op1 and op2. */
|
||
expand_twoval_unop (sincos_optab, op0, op2, op1, 0);
|
||
}
|
||
else if (targetm.libc_has_function (function_sincos))
|
||
{
|
||
tree call, fn = NULL_TREE;
|
||
tree top1, top2;
|
||
rtx op1a, op2a;
|
||
|
||
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
|
||
fn = builtin_decl_explicit (BUILT_IN_SINCOSF);
|
||
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
|
||
fn = builtin_decl_explicit (BUILT_IN_SINCOS);
|
||
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
|
||
fn = builtin_decl_explicit (BUILT_IN_SINCOSL);
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
op1 = assign_temp (TREE_TYPE (arg), 1, 1);
|
||
op2 = assign_temp (TREE_TYPE (arg), 1, 1);
|
||
op1a = copy_addr_to_reg (XEXP (op1, 0));
|
||
op2a = copy_addr_to_reg (XEXP (op2, 0));
|
||
top1 = make_tree (build_pointer_type (TREE_TYPE (arg)), op1a);
|
||
top2 = make_tree (build_pointer_type (TREE_TYPE (arg)), op2a);
|
||
|
||
/* Make sure not to fold the sincos call again. */
|
||
call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
|
||
expand_normal (build_call_nary (TREE_TYPE (TREE_TYPE (fn)),
|
||
call, 3, arg, top1, top2));
|
||
}
|
||
else
|
||
{
|
||
tree call, fn = NULL_TREE, narg;
|
||
tree ctype = build_complex_type (type);
|
||
|
||
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
|
||
fn = builtin_decl_explicit (BUILT_IN_CEXPF);
|
||
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
|
||
fn = builtin_decl_explicit (BUILT_IN_CEXP);
|
||
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
|
||
fn = builtin_decl_explicit (BUILT_IN_CEXPL);
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
/* If we don't have a decl for cexp create one. This is the
|
||
friendliest fallback if the user calls __builtin_cexpi
|
||
without full target C99 function support. */
|
||
if (fn == NULL_TREE)
|
||
{
|
||
tree fntype;
|
||
const char *name = NULL;
|
||
|
||
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
|
||
name = "cexpf";
|
||
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
|
||
name = "cexp";
|
||
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
|
||
name = "cexpl";
|
||
|
||
fntype = build_function_type_list (ctype, ctype, NULL_TREE);
|
||
fn = build_fn_decl (name, fntype);
|
||
}
|
||
|
||
narg = fold_build2_loc (loc, COMPLEX_EXPR, ctype,
|
||
build_real (type, dconst0), arg);
|
||
|
||
/* Make sure not to fold the cexp call again. */
|
||
call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
|
||
return expand_expr (build_call_nary (ctype, call, 1, narg),
|
||
target, VOIDmode, EXPAND_NORMAL);
|
||
}
|
||
|
||
/* Now build the proper return type. */
|
||
return expand_expr (build2 (COMPLEX_EXPR, build_complex_type (type),
|
||
make_tree (TREE_TYPE (arg), op2),
|
||
make_tree (TREE_TYPE (arg), op1)),
|
||
target, VOIDmode, EXPAND_NORMAL);
|
||
}
|
||
|
||
/* Conveniently construct a function call expression. FNDECL names the
|
||
function to be called, N is the number of arguments, and the "..."
|
||
parameters are the argument expressions. Unlike build_call_exr
|
||
this doesn't fold the call, hence it will always return a CALL_EXPR. */
|
||
|
||
static tree
|
||
build_call_nofold_loc (location_t loc, tree fndecl, int n, ...)
|
||
{
|
||
va_list ap;
|
||
tree fntype = TREE_TYPE (fndecl);
|
||
tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
|
||
|
||
va_start (ap, n);
|
||
fn = build_call_valist (TREE_TYPE (fntype), fn, n, ap);
|
||
va_end (ap);
|
||
SET_EXPR_LOCATION (fn, loc);
|
||
return fn;
|
||
}
|
||
|
||
/* Expand a call to one of the builtin rounding functions gcc defines
|
||
as an extension (lfloor and lceil). As these are gcc extensions we
|
||
do not need to worry about setting errno to EDOM.
|
||
If expanding via optab fails, lower expression to (int)(floor(x)).
|
||
EXP is the expression that is a call to the builtin function;
|
||
if convenient, the result should be placed in TARGET. */
|
||
|
||
static rtx
|
||
expand_builtin_int_roundingfn (tree exp, rtx target)
|
||
{
|
||
convert_optab builtin_optab;
|
||
rtx op0, tmp;
|
||
rtx_insn *insns;
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
enum built_in_function fallback_fn;
|
||
tree fallback_fndecl;
|
||
machine_mode mode;
|
||
tree arg;
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_ICEIL):
|
||
CASE_FLT_FN (BUILT_IN_LCEIL):
|
||
CASE_FLT_FN (BUILT_IN_LLCEIL):
|
||
builtin_optab = lceil_optab;
|
||
fallback_fn = BUILT_IN_CEIL;
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_IFLOOR):
|
||
CASE_FLT_FN (BUILT_IN_LFLOOR):
|
||
CASE_FLT_FN (BUILT_IN_LLFLOOR):
|
||
builtin_optab = lfloor_optab;
|
||
fallback_fn = BUILT_IN_FLOOR;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Make a suitable register to place result in. */
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
|
||
need to expand the argument again. This way, we will not perform
|
||
side-effects more the once. */
|
||
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
|
||
|
||
op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL);
|
||
|
||
start_sequence ();
|
||
|
||
/* Compute into TARGET. */
|
||
if (expand_sfix_optab (target, op0, builtin_optab))
|
||
{
|
||
/* Output the entire sequence. */
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (insns);
|
||
return target;
|
||
}
|
||
|
||
/* If we were unable to expand via the builtin, stop the sequence
|
||
(without outputting the insns). */
|
||
end_sequence ();
|
||
|
||
/* Fall back to floating point rounding optab. */
|
||
fallback_fndecl = mathfn_built_in (TREE_TYPE (arg), fallback_fn);
|
||
|
||
/* For non-C99 targets we may end up without a fallback fndecl here
|
||
if the user called __builtin_lfloor directly. In this case emit
|
||
a call to the floor/ceil variants nevertheless. This should result
|
||
in the best user experience for not full C99 targets. */
|
||
if (fallback_fndecl == NULL_TREE)
|
||
{
|
||
tree fntype;
|
||
const char *name = NULL;
|
||
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
case BUILT_IN_ICEIL:
|
||
case BUILT_IN_LCEIL:
|
||
case BUILT_IN_LLCEIL:
|
||
name = "ceil";
|
||
break;
|
||
case BUILT_IN_ICEILF:
|
||
case BUILT_IN_LCEILF:
|
||
case BUILT_IN_LLCEILF:
|
||
name = "ceilf";
|
||
break;
|
||
case BUILT_IN_ICEILL:
|
||
case BUILT_IN_LCEILL:
|
||
case BUILT_IN_LLCEILL:
|
||
name = "ceill";
|
||
break;
|
||
case BUILT_IN_IFLOOR:
|
||
case BUILT_IN_LFLOOR:
|
||
case BUILT_IN_LLFLOOR:
|
||
name = "floor";
|
||
break;
|
||
case BUILT_IN_IFLOORF:
|
||
case BUILT_IN_LFLOORF:
|
||
case BUILT_IN_LLFLOORF:
|
||
name = "floorf";
|
||
break;
|
||
case BUILT_IN_IFLOORL:
|
||
case BUILT_IN_LFLOORL:
|
||
case BUILT_IN_LLFLOORL:
|
||
name = "floorl";
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
fntype = build_function_type_list (TREE_TYPE (arg),
|
||
TREE_TYPE (arg), NULL_TREE);
|
||
fallback_fndecl = build_fn_decl (name, fntype);
|
||
}
|
||
|
||
exp = build_call_nofold_loc (EXPR_LOCATION (exp), fallback_fndecl, 1, arg);
|
||
|
||
tmp = expand_normal (exp);
|
||
tmp = maybe_emit_group_store (tmp, TREE_TYPE (exp));
|
||
|
||
/* Truncate the result of floating point optab to integer
|
||
via expand_fix (). */
|
||
target = gen_reg_rtx (mode);
|
||
expand_fix (target, tmp, 0);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Expand a call to one of the builtin math functions doing integer
|
||
conversion (lrint).
|
||
Return 0 if a normal call should be emitted rather than expanding the
|
||
function in-line. EXP is the expression that is a call to the builtin
|
||
function; if convenient, the result should be placed in TARGET. */
|
||
|
||
static rtx
|
||
expand_builtin_int_roundingfn_2 (tree exp, rtx target)
|
||
{
|
||
convert_optab builtin_optab;
|
||
rtx op0;
|
||
rtx_insn *insns;
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
tree arg;
|
||
machine_mode mode;
|
||
enum built_in_function fallback_fn = BUILT_IN_NONE;
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_IRINT):
|
||
fallback_fn = BUILT_IN_LRINT;
|
||
gcc_fallthrough ();
|
||
CASE_FLT_FN (BUILT_IN_LRINT):
|
||
CASE_FLT_FN (BUILT_IN_LLRINT):
|
||
builtin_optab = lrint_optab;
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_IROUND):
|
||
fallback_fn = BUILT_IN_LROUND;
|
||
gcc_fallthrough ();
|
||
CASE_FLT_FN (BUILT_IN_LROUND):
|
||
CASE_FLT_FN (BUILT_IN_LLROUND):
|
||
builtin_optab = lround_optab;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* There's no easy way to detect the case we need to set EDOM. */
|
||
if (flag_errno_math && fallback_fn == BUILT_IN_NONE)
|
||
return NULL_RTX;
|
||
|
||
/* Make a suitable register to place result in. */
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
|
||
/* There's no easy way to detect the case we need to set EDOM. */
|
||
if (!flag_errno_math)
|
||
{
|
||
rtx result = gen_reg_rtx (mode);
|
||
|
||
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
|
||
need to expand the argument again. This way, we will not perform
|
||
side-effects more the once. */
|
||
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
|
||
|
||
op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL);
|
||
|
||
start_sequence ();
|
||
|
||
if (expand_sfix_optab (result, op0, builtin_optab))
|
||
{
|
||
/* Output the entire sequence. */
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (insns);
|
||
return result;
|
||
}
|
||
|
||
/* If we were unable to expand via the builtin, stop the sequence
|
||
(without outputting the insns) and call to the library function
|
||
with the stabilized argument list. */
|
||
end_sequence ();
|
||
}
|
||
|
||
if (fallback_fn != BUILT_IN_NONE)
|
||
{
|
||
/* Fall back to rounding to long int. Use implicit_p 0 - for non-C99
|
||
targets, (int) round (x) should never be transformed into
|
||
BUILT_IN_IROUND and if __builtin_iround is called directly, emit
|
||
a call to lround in the hope that the target provides at least some
|
||
C99 functions. This should result in the best user experience for
|
||
not full C99 targets. */
|
||
tree fallback_fndecl = mathfn_built_in_1
|
||
(TREE_TYPE (arg), as_combined_fn (fallback_fn), 0);
|
||
|
||
exp = build_call_nofold_loc (EXPR_LOCATION (exp),
|
||
fallback_fndecl, 1, arg);
|
||
|
||
target = expand_call (exp, NULL_RTX, target == const0_rtx);
|
||
target = maybe_emit_group_store (target, TREE_TYPE (exp));
|
||
return convert_to_mode (mode, target, 0);
|
||
}
|
||
|
||
return expand_call (exp, target, target == const0_rtx);
|
||
}
|
||
|
||
/* Expand a call to the powi built-in mathematical function. Return NULL_RTX if
|
||
a normal call should be emitted rather than expanding the function
|
||
in-line. EXP is the expression that is a call to the builtin
|
||
function; if convenient, the result should be placed in TARGET. */
|
||
|
||
static rtx
|
||
expand_builtin_powi (tree exp, rtx target)
|
||
{
|
||
tree arg0, arg1;
|
||
rtx op0, op1;
|
||
machine_mode mode;
|
||
machine_mode mode2;
|
||
|
||
if (! validate_arglist (exp, REAL_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg0 = CALL_EXPR_ARG (exp, 0);
|
||
arg1 = CALL_EXPR_ARG (exp, 1);
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
|
||
/* Emit a libcall to libgcc. */
|
||
|
||
/* Mode of the 2nd argument must match that of an int. */
|
||
mode2 = int_mode_for_size (INT_TYPE_SIZE, 0).require ();
|
||
|
||
if (target == NULL_RTX)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
op0 = expand_expr (arg0, NULL_RTX, mode, EXPAND_NORMAL);
|
||
if (GET_MODE (op0) != mode)
|
||
op0 = convert_to_mode (mode, op0, 0);
|
||
op1 = expand_expr (arg1, NULL_RTX, mode2, EXPAND_NORMAL);
|
||
if (GET_MODE (op1) != mode2)
|
||
op1 = convert_to_mode (mode2, op1, 0);
|
||
|
||
target = emit_library_call_value (optab_libfunc (powi_optab, mode),
|
||
target, LCT_CONST, mode,
|
||
op0, mode, op1, mode2);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Expand expression EXP which is a call to the strlen builtin. Return
|
||
NULL_RTX if we failed and the caller should emit a normal call, otherwise
|
||
try to get the result in TARGET, if convenient. */
|
||
|
||
static rtx
|
||
expand_builtin_strlen (tree exp, rtx target,
|
||
machine_mode target_mode)
|
||
{
|
||
if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
class expand_operand ops[4];
|
||
rtx pat;
|
||
tree len;
|
||
tree src = CALL_EXPR_ARG (exp, 0);
|
||
rtx src_reg;
|
||
rtx_insn *before_strlen;
|
||
machine_mode insn_mode;
|
||
enum insn_code icode = CODE_FOR_nothing;
|
||
unsigned int align;
|
||
|
||
/* If the length can be computed at compile-time, return it. */
|
||
len = c_strlen (src, 0);
|
||
if (len)
|
||
return expand_expr (len, target, target_mode, EXPAND_NORMAL);
|
||
|
||
/* If the length can be computed at compile-time and is constant
|
||
integer, but there are side-effects in src, evaluate
|
||
src for side-effects, then return len.
|
||
E.g. x = strlen (i++ ? "xfoo" + 1 : "bar");
|
||
can be optimized into: i++; x = 3; */
|
||
len = c_strlen (src, 1);
|
||
if (len && TREE_CODE (len) == INTEGER_CST)
|
||
{
|
||
expand_expr (src, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
return expand_expr (len, target, target_mode, EXPAND_NORMAL);
|
||
}
|
||
|
||
align = get_pointer_alignment (src) / BITS_PER_UNIT;
|
||
|
||
/* If SRC is not a pointer type, don't do this operation inline. */
|
||
if (align == 0)
|
||
return NULL_RTX;
|
||
|
||
/* Bail out if we can't compute strlen in the right mode. */
|
||
FOR_EACH_MODE_FROM (insn_mode, target_mode)
|
||
{
|
||
icode = optab_handler (strlen_optab, insn_mode);
|
||
if (icode != CODE_FOR_nothing)
|
||
break;
|
||
}
|
||
if (insn_mode == VOIDmode)
|
||
return NULL_RTX;
|
||
|
||
/* Make a place to hold the source address. We will not expand
|
||
the actual source until we are sure that the expansion will
|
||
not fail -- there are trees that cannot be expanded twice. */
|
||
src_reg = gen_reg_rtx (Pmode);
|
||
|
||
/* Mark the beginning of the strlen sequence so we can emit the
|
||
source operand later. */
|
||
before_strlen = get_last_insn ();
|
||
|
||
create_output_operand (&ops[0], target, insn_mode);
|
||
create_fixed_operand (&ops[1], gen_rtx_MEM (BLKmode, src_reg));
|
||
create_integer_operand (&ops[2], 0);
|
||
create_integer_operand (&ops[3], align);
|
||
if (!maybe_expand_insn (icode, 4, ops))
|
||
return NULL_RTX;
|
||
|
||
/* Check to see if the argument was declared attribute nonstring
|
||
and if so, issue a warning since at this point it's not known
|
||
to be nul-terminated. */
|
||
maybe_warn_nonstring_arg (get_callee_fndecl (exp), exp);
|
||
|
||
/* Now that we are assured of success, expand the source. */
|
||
start_sequence ();
|
||
pat = expand_expr (src, src_reg, Pmode, EXPAND_NORMAL);
|
||
if (pat != src_reg)
|
||
{
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (GET_MODE (pat) != Pmode)
|
||
pat = convert_to_mode (Pmode, pat,
|
||
POINTERS_EXTEND_UNSIGNED);
|
||
#endif
|
||
emit_move_insn (src_reg, pat);
|
||
}
|
||
pat = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (before_strlen)
|
||
emit_insn_after (pat, before_strlen);
|
||
else
|
||
emit_insn_before (pat, get_insns ());
|
||
|
||
/* Return the value in the proper mode for this function. */
|
||
if (GET_MODE (ops[0].value) == target_mode)
|
||
target = ops[0].value;
|
||
else if (target != 0)
|
||
convert_move (target, ops[0].value, 0);
|
||
else
|
||
target = convert_to_mode (target_mode, ops[0].value, 0);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Expand call EXP to the strnlen built-in, returning the result
|
||
and setting it in TARGET. Otherwise return NULL_RTX on failure. */
|
||
|
||
static rtx
|
||
expand_builtin_strnlen (tree exp, rtx target, machine_mode target_mode)
|
||
{
|
||
if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree src = CALL_EXPR_ARG (exp, 0);
|
||
tree bound = CALL_EXPR_ARG (exp, 1);
|
||
|
||
if (!bound)
|
||
return NULL_RTX;
|
||
|
||
location_t loc = UNKNOWN_LOCATION;
|
||
if (EXPR_HAS_LOCATION (exp))
|
||
loc = EXPR_LOCATION (exp);
|
||
|
||
tree maxobjsize = max_object_size ();
|
||
tree func = get_callee_fndecl (exp);
|
||
|
||
/* FIXME: Change c_strlen() to return sizetype instead of ssizetype
|
||
so these conversions aren't necessary. */
|
||
c_strlen_data lendata = { };
|
||
tree len = c_strlen (src, 0, &lendata, 1);
|
||
if (len)
|
||
len = fold_convert_loc (loc, TREE_TYPE (bound), len);
|
||
|
||
if (TREE_CODE (bound) == INTEGER_CST)
|
||
{
|
||
if (!TREE_NO_WARNING (exp)
|
||
&& tree_int_cst_lt (maxobjsize, bound)
|
||
&& warning_at (loc, OPT_Wstringop_overflow_,
|
||
"%K%qD specified bound %E "
|
||
"exceeds maximum object size %E",
|
||
exp, func, bound, maxobjsize))
|
||
TREE_NO_WARNING (exp) = true;
|
||
|
||
bool exact = true;
|
||
if (!len || TREE_CODE (len) != INTEGER_CST)
|
||
{
|
||
/* Clear EXACT if LEN may be less than SRC suggests,
|
||
such as in
|
||
strnlen (&a[i], sizeof a)
|
||
where the value of i is unknown. Unless i's value is
|
||
zero, the call is unsafe because the bound is greater. */
|
||
lendata.decl = unterminated_array (src, &len, &exact);
|
||
if (!lendata.decl)
|
||
return NULL_RTX;
|
||
}
|
||
|
||
if (lendata.decl
|
||
&& !TREE_NO_WARNING (exp)
|
||
&& ((tree_int_cst_lt (len, bound))
|
||
|| !exact))
|
||
{
|
||
location_t warnloc
|
||
= expansion_point_location_if_in_system_header (loc);
|
||
|
||
if (warning_at (warnloc, OPT_Wstringop_overflow_,
|
||
exact
|
||
? G_("%K%qD specified bound %E exceeds the size %E "
|
||
"of unterminated array")
|
||
: G_("%K%qD specified bound %E may exceed the size "
|
||
"of at most %E of unterminated array"),
|
||
exp, func, bound, len))
|
||
{
|
||
inform (DECL_SOURCE_LOCATION (lendata.decl),
|
||
"referenced argument declared here");
|
||
TREE_NO_WARNING (exp) = true;
|
||
return NULL_RTX;
|
||
}
|
||
}
|
||
|
||
if (!len)
|
||
return NULL_RTX;
|
||
|
||
len = fold_build2_loc (loc, MIN_EXPR, size_type_node, len, bound);
|
||
return expand_expr (len, target, target_mode, EXPAND_NORMAL);
|
||
}
|
||
|
||
if (TREE_CODE (bound) != SSA_NAME)
|
||
return NULL_RTX;
|
||
|
||
wide_int min, max;
|
||
enum value_range_kind rng = get_range_info (bound, &min, &max);
|
||
if (rng != VR_RANGE)
|
||
return NULL_RTX;
|
||
|
||
if (!TREE_NO_WARNING (exp)
|
||
&& wi::ltu_p (wi::to_wide (maxobjsize, min.get_precision ()), min)
|
||
&& warning_at (loc, OPT_Wstringop_overflow_,
|
||
"%K%qD specified bound [%wu, %wu] "
|
||
"exceeds maximum object size %E",
|
||
exp, func, min.to_uhwi (), max.to_uhwi (), maxobjsize))
|
||
TREE_NO_WARNING (exp) = true;
|
||
|
||
bool exact = true;
|
||
if (!len || TREE_CODE (len) != INTEGER_CST)
|
||
{
|
||
lendata.decl = unterminated_array (src, &len, &exact);
|
||
if (!lendata.decl)
|
||
return NULL_RTX;
|
||
}
|
||
|
||
if (lendata.decl
|
||
&& !TREE_NO_WARNING (exp)
|
||
&& (wi::ltu_p (wi::to_wide (len), min)
|
||
|| !exact))
|
||
{
|
||
location_t warnloc
|
||
= expansion_point_location_if_in_system_header (loc);
|
||
|
||
if (warning_at (warnloc, OPT_Wstringop_overflow_,
|
||
exact
|
||
? G_("%K%qD specified bound [%wu, %wu] exceeds "
|
||
"the size %E of unterminated array")
|
||
: G_("%K%qD specified bound [%wu, %wu] may exceed "
|
||
"the size of at most %E of unterminated array"),
|
||
exp, func, min.to_uhwi (), max.to_uhwi (), len))
|
||
{
|
||
inform (DECL_SOURCE_LOCATION (lendata.decl),
|
||
"referenced argument declared here");
|
||
TREE_NO_WARNING (exp) = true;
|
||
}
|
||
}
|
||
|
||
if (lendata.decl)
|
||
return NULL_RTX;
|
||
|
||
if (wi::gtu_p (min, wi::to_wide (len)))
|
||
return expand_expr (len, target, target_mode, EXPAND_NORMAL);
|
||
|
||
len = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (len), len, bound);
|
||
return expand_expr (len, target, target_mode, EXPAND_NORMAL);
|
||
}
|
||
|
||
/* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE)
|
||
bytes from constant string DATA + OFFSET and return it as target
|
||
constant. */
|
||
|
||
static rtx
|
||
builtin_memcpy_read_str (void *data, HOST_WIDE_INT offset,
|
||
scalar_int_mode mode)
|
||
{
|
||
const char *str = (const char *) data;
|
||
|
||
gcc_assert (offset >= 0
|
||
&& ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
|
||
<= strlen (str) + 1));
|
||
|
||
return c_readstr (str + offset, mode);
|
||
}
|
||
|
||
/* LEN specify length of the block of memcpy/memset operation.
|
||
Figure out its range and put it into MIN_SIZE/MAX_SIZE.
|
||
In some cases we can make very likely guess on max size, then we
|
||
set it into PROBABLE_MAX_SIZE. */
|
||
|
||
static void
|
||
determine_block_size (tree len, rtx len_rtx,
|
||
unsigned HOST_WIDE_INT *min_size,
|
||
unsigned HOST_WIDE_INT *max_size,
|
||
unsigned HOST_WIDE_INT *probable_max_size)
|
||
{
|
||
if (CONST_INT_P (len_rtx))
|
||
{
|
||
*min_size = *max_size = *probable_max_size = UINTVAL (len_rtx);
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
wide_int min, max;
|
||
enum value_range_kind range_type = VR_UNDEFINED;
|
||
|
||
/* Determine bounds from the type. */
|
||
if (tree_fits_uhwi_p (TYPE_MIN_VALUE (TREE_TYPE (len))))
|
||
*min_size = tree_to_uhwi (TYPE_MIN_VALUE (TREE_TYPE (len)));
|
||
else
|
||
*min_size = 0;
|
||
if (tree_fits_uhwi_p (TYPE_MAX_VALUE (TREE_TYPE (len))))
|
||
*probable_max_size = *max_size
|
||
= tree_to_uhwi (TYPE_MAX_VALUE (TREE_TYPE (len)));
|
||
else
|
||
*probable_max_size = *max_size = GET_MODE_MASK (GET_MODE (len_rtx));
|
||
|
||
if (TREE_CODE (len) == SSA_NAME)
|
||
range_type = get_range_info (len, &min, &max);
|
||
if (range_type == VR_RANGE)
|
||
{
|
||
if (wi::fits_uhwi_p (min) && *min_size < min.to_uhwi ())
|
||
*min_size = min.to_uhwi ();
|
||
if (wi::fits_uhwi_p (max) && *max_size > max.to_uhwi ())
|
||
*probable_max_size = *max_size = max.to_uhwi ();
|
||
}
|
||
else if (range_type == VR_ANTI_RANGE)
|
||
{
|
||
/* Anti range 0...N lets us to determine minimal size to N+1. */
|
||
if (min == 0)
|
||
{
|
||
if (wi::fits_uhwi_p (max) && max.to_uhwi () + 1 != 0)
|
||
*min_size = max.to_uhwi () + 1;
|
||
}
|
||
/* Code like
|
||
|
||
int n;
|
||
if (n < 100)
|
||
memcpy (a, b, n)
|
||
|
||
Produce anti range allowing negative values of N. We still
|
||
can use the information and make a guess that N is not negative.
|
||
*/
|
||
else if (!wi::leu_p (max, 1 << 30) && wi::fits_uhwi_p (min))
|
||
*probable_max_size = min.to_uhwi () - 1;
|
||
}
|
||
}
|
||
gcc_checking_assert (*max_size <=
|
||
(unsigned HOST_WIDE_INT)
|
||
GET_MODE_MASK (GET_MODE (len_rtx)));
|
||
}
|
||
|
||
/* Try to verify that the sizes and lengths of the arguments to a string
|
||
manipulation function given by EXP are within valid bounds and that
|
||
the operation does not lead to buffer overflow or read past the end.
|
||
Arguments other than EXP may be null. When non-null, the arguments
|
||
have the following meaning:
|
||
DST is the destination of a copy call or NULL otherwise.
|
||
SRC is the source of a copy call or NULL otherwise.
|
||
DSTWRITE is the number of bytes written into the destination obtained
|
||
from the user-supplied size argument to the function (such as in
|
||
memcpy(DST, SRCs, DSTWRITE) or strncpy(DST, DRC, DSTWRITE).
|
||
MAXREAD is the user-supplied bound on the length of the source sequence
|
||
(such as in strncat(d, s, N). It specifies the upper limit on the number
|
||
of bytes to write. If NULL, it's taken to be the same as DSTWRITE.
|
||
SRCSTR is the source string (such as in strcpy(DST, SRC)) when the
|
||
expression EXP is a string function call (as opposed to a memory call
|
||
like memcpy). As an exception, SRCSTR can also be an integer denoting
|
||
the precomputed size of the source string or object (for functions like
|
||
memcpy).
|
||
DSTSIZE is the size of the destination object specified by the last
|
||
argument to the _chk builtins, typically resulting from the expansion
|
||
of __builtin_object_size (such as in __builtin___strcpy_chk(DST, SRC,
|
||
DSTSIZE).
|
||
|
||
When DSTWRITE is null LEN is checked to verify that it doesn't exceed
|
||
SIZE_MAX.
|
||
|
||
If the call is successfully verified as safe return true, otherwise
|
||
return false. */
|
||
|
||
static bool
|
||
check_access (tree exp, tree, tree, tree dstwrite,
|
||
tree maxread, tree srcstr, tree dstsize)
|
||
{
|
||
int opt = OPT_Wstringop_overflow_;
|
||
|
||
/* The size of the largest object is half the address space, or
|
||
PTRDIFF_MAX. (This is way too permissive.) */
|
||
tree maxobjsize = max_object_size ();
|
||
|
||
/* Either the length of the source string for string functions or
|
||
the size of the source object for raw memory functions. */
|
||
tree slen = NULL_TREE;
|
||
|
||
tree range[2] = { NULL_TREE, NULL_TREE };
|
||
|
||
/* Set to true when the exact number of bytes written by a string
|
||
function like strcpy is not known and the only thing that is
|
||
known is that it must be at least one (for the terminating nul). */
|
||
bool at_least_one = false;
|
||
if (srcstr)
|
||
{
|
||
/* SRCSTR is normally a pointer to string but as a special case
|
||
it can be an integer denoting the length of a string. */
|
||
if (POINTER_TYPE_P (TREE_TYPE (srcstr)))
|
||
{
|
||
/* Try to determine the range of lengths the source string
|
||
refers to. If it can be determined and is less than
|
||
the upper bound given by MAXREAD add one to it for
|
||
the terminating nul. Otherwise, set it to one for
|
||
the same reason, or to MAXREAD as appropriate. */
|
||
c_strlen_data lendata = { };
|
||
get_range_strlen (srcstr, &lendata, /* eltsize = */ 1);
|
||
range[0] = lendata.minlen;
|
||
range[1] = lendata.maxbound ? lendata.maxbound : lendata.maxlen;
|
||
if (range[0] && (!maxread || TREE_CODE (maxread) == INTEGER_CST))
|
||
{
|
||
if (maxread && tree_int_cst_le (maxread, range[0]))
|
||
range[0] = range[1] = maxread;
|
||
else
|
||
range[0] = fold_build2 (PLUS_EXPR, size_type_node,
|
||
range[0], size_one_node);
|
||
|
||
if (maxread && tree_int_cst_le (maxread, range[1]))
|
||
range[1] = maxread;
|
||
else if (!integer_all_onesp (range[1]))
|
||
range[1] = fold_build2 (PLUS_EXPR, size_type_node,
|
||
range[1], size_one_node);
|
||
|
||
slen = range[0];
|
||
}
|
||
else
|
||
{
|
||
at_least_one = true;
|
||
slen = size_one_node;
|
||
}
|
||
}
|
||
else
|
||
slen = srcstr;
|
||
}
|
||
|
||
if (!dstwrite && !maxread)
|
||
{
|
||
/* When the only available piece of data is the object size
|
||
there is nothing to do. */
|
||
if (!slen)
|
||
return true;
|
||
|
||
/* Otherwise, when the length of the source sequence is known
|
||
(as with strlen), set DSTWRITE to it. */
|
||
if (!range[0])
|
||
dstwrite = slen;
|
||
}
|
||
|
||
if (!dstsize)
|
||
dstsize = maxobjsize;
|
||
|
||
if (dstwrite)
|
||
get_size_range (dstwrite, range);
|
||
|
||
tree func = get_callee_fndecl (exp);
|
||
|
||
/* First check the number of bytes to be written against the maximum
|
||
object size. */
|
||
if (range[0]
|
||
&& TREE_CODE (range[0]) == INTEGER_CST
|
||
&& tree_int_cst_lt (maxobjsize, range[0]))
|
||
{
|
||
if (TREE_NO_WARNING (exp))
|
||
return false;
|
||
|
||
location_t loc = tree_nonartificial_location (exp);
|
||
loc = expansion_point_location_if_in_system_header (loc);
|
||
|
||
bool warned;
|
||
if (range[0] == range[1])
|
||
warned = warning_at (loc, opt,
|
||
"%K%qD specified size %E "
|
||
"exceeds maximum object size %E",
|
||
exp, func, range[0], maxobjsize);
|
||
else
|
||
warned = warning_at (loc, opt,
|
||
"%K%qD specified size between %E and %E "
|
||
"exceeds maximum object size %E",
|
||
exp, func,
|
||
range[0], range[1], maxobjsize);
|
||
if (warned)
|
||
TREE_NO_WARNING (exp) = true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* The number of bytes to write is "exact" if DSTWRITE is non-null,
|
||
constant, and in range of unsigned HOST_WIDE_INT. */
|
||
bool exactwrite = dstwrite && tree_fits_uhwi_p (dstwrite);
|
||
|
||
/* Next check the number of bytes to be written against the destination
|
||
object size. */
|
||
if (range[0] || !exactwrite || integer_all_onesp (dstwrite))
|
||
{
|
||
if (range[0]
|
||
&& TREE_CODE (range[0]) == INTEGER_CST
|
||
&& ((tree_fits_uhwi_p (dstsize)
|
||
&& tree_int_cst_lt (dstsize, range[0]))
|
||
|| (dstwrite
|
||
&& tree_fits_uhwi_p (dstwrite)
|
||
&& tree_int_cst_lt (dstwrite, range[0]))))
|
||
{
|
||
if (TREE_NO_WARNING (exp))
|
||
return false;
|
||
|
||
location_t loc = tree_nonartificial_location (exp);
|
||
loc = expansion_point_location_if_in_system_header (loc);
|
||
|
||
if (dstwrite == slen && at_least_one)
|
||
{
|
||
/* This is a call to strcpy with a destination of 0 size
|
||
and a source of unknown length. The call will write
|
||
at least one byte past the end of the destination. */
|
||
warning_at (loc, opt,
|
||
"%K%qD writing %E or more bytes into a region "
|
||
"of size %E overflows the destination",
|
||
exp, func, range[0], dstsize);
|
||
}
|
||
else if (tree_int_cst_equal (range[0], range[1]))
|
||
warning_n (loc, opt, tree_to_uhwi (range[0]),
|
||
"%K%qD writing %E byte into a region "
|
||
"of size %E overflows the destination",
|
||
"%K%qD writing %E bytes into a region "
|
||
"of size %E overflows the destination",
|
||
exp, func, range[0], dstsize);
|
||
else if (tree_int_cst_sign_bit (range[1]))
|
||
{
|
||
/* Avoid printing the upper bound if it's invalid. */
|
||
warning_at (loc, opt,
|
||
"%K%qD writing %E or more bytes into a region "
|
||
"of size %E overflows the destination",
|
||
exp, func, range[0], dstsize);
|
||
}
|
||
else
|
||
warning_at (loc, opt,
|
||
"%K%qD writing between %E and %E bytes into "
|
||
"a region of size %E overflows the destination",
|
||
exp, func, range[0], range[1],
|
||
dstsize);
|
||
|
||
/* Return error when an overflow has been detected. */
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Check the maximum length of the source sequence against the size
|
||
of the destination object if known, or against the maximum size
|
||
of an object. */
|
||
if (maxread)
|
||
{
|
||
get_size_range (maxread, range);
|
||
if (range[0] && dstsize && tree_fits_uhwi_p (dstsize))
|
||
{
|
||
location_t loc = tree_nonartificial_location (exp);
|
||
loc = expansion_point_location_if_in_system_header (loc);
|
||
|
||
if (tree_int_cst_lt (maxobjsize, range[0]))
|
||
{
|
||
if (TREE_NO_WARNING (exp))
|
||
return false;
|
||
|
||
/* Warn about crazy big sizes first since that's more
|
||
likely to be meaningful than saying that the bound
|
||
is greater than the object size if both are big. */
|
||
if (range[0] == range[1])
|
||
warning_at (loc, opt,
|
||
"%K%qD specified bound %E "
|
||
"exceeds maximum object size %E",
|
||
exp, func,
|
||
range[0], maxobjsize);
|
||
else
|
||
warning_at (loc, opt,
|
||
"%K%qD specified bound between %E and %E "
|
||
"exceeds maximum object size %E",
|
||
exp, func,
|
||
range[0], range[1], maxobjsize);
|
||
|
||
return false;
|
||
}
|
||
|
||
if (dstsize != maxobjsize && tree_int_cst_lt (dstsize, range[0]))
|
||
{
|
||
if (TREE_NO_WARNING (exp))
|
||
return false;
|
||
|
||
if (tree_int_cst_equal (range[0], range[1]))
|
||
warning_at (loc, opt,
|
||
"%K%qD specified bound %E "
|
||
"exceeds destination size %E",
|
||
exp, func,
|
||
range[0], dstsize);
|
||
else
|
||
warning_at (loc, opt,
|
||
"%K%qD specified bound between %E and %E "
|
||
"exceeds destination size %E",
|
||
exp, func,
|
||
range[0], range[1], dstsize);
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check for reading past the end of SRC. */
|
||
if (slen
|
||
&& slen == srcstr
|
||
&& dstwrite && range[0]
|
||
&& tree_int_cst_lt (slen, range[0]))
|
||
{
|
||
if (TREE_NO_WARNING (exp))
|
||
return false;
|
||
|
||
location_t loc = tree_nonartificial_location (exp);
|
||
|
||
if (tree_int_cst_equal (range[0], range[1]))
|
||
warning_n (loc, opt, tree_to_uhwi (range[0]),
|
||
"%K%qD reading %E byte from a region of size %E",
|
||
"%K%qD reading %E bytes from a region of size %E",
|
||
exp, func, range[0], slen);
|
||
else if (tree_int_cst_sign_bit (range[1]))
|
||
{
|
||
/* Avoid printing the upper bound if it's invalid. */
|
||
warning_at (loc, opt,
|
||
"%K%qD reading %E or more bytes from a region "
|
||
"of size %E",
|
||
exp, func, range[0], slen);
|
||
}
|
||
else
|
||
warning_at (loc, opt,
|
||
"%K%qD reading between %E and %E bytes from a region "
|
||
"of size %E",
|
||
exp, func, range[0], range[1], slen);
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Helper to compute the size of the object referenced by the DEST
|
||
expression which must have pointer type, using Object Size type
|
||
OSTYPE (only the least significant 2 bits are used). Return
|
||
an estimate of the size of the object if successful or NULL when
|
||
the size cannot be determined. When the referenced object involves
|
||
a non-constant offset in some range the returned value represents
|
||
the largest size given the smallest non-negative offset in the
|
||
range. If nonnull, set *PDECL to the decl of the referenced
|
||
subobject if it can be determined, or to null otherwise.
|
||
The function is intended for diagnostics and should not be used
|
||
to influence code generation or optimization. */
|
||
|
||
tree
|
||
compute_objsize (tree dest, int ostype, tree *pdecl /* = NULL */)
|
||
{
|
||
tree dummy = NULL_TREE;
|
||
if (!pdecl)
|
||
pdecl = &dummy;
|
||
|
||
unsigned HOST_WIDE_INT size;
|
||
|
||
/* Only the two least significant bits are meaningful. */
|
||
ostype &= 3;
|
||
|
||
if (compute_builtin_object_size (dest, ostype, &size, pdecl))
|
||
return build_int_cst (sizetype, size);
|
||
|
||
if (TREE_CODE (dest) == SSA_NAME)
|
||
{
|
||
gimple *stmt = SSA_NAME_DEF_STMT (dest);
|
||
if (!is_gimple_assign (stmt))
|
||
return NULL_TREE;
|
||
|
||
dest = gimple_assign_rhs1 (stmt);
|
||
|
||
tree_code code = gimple_assign_rhs_code (stmt);
|
||
if (code == POINTER_PLUS_EXPR)
|
||
{
|
||
/* compute_builtin_object_size fails for addresses with
|
||
non-constant offsets. Try to determine the range of
|
||
such an offset here and use it to adjust the constant
|
||
size. */
|
||
tree off = gimple_assign_rhs2 (stmt);
|
||
if (TREE_CODE (off) == INTEGER_CST)
|
||
{
|
||
if (tree size = compute_objsize (dest, ostype, pdecl))
|
||
{
|
||
wide_int wioff = wi::to_wide (off);
|
||
wide_int wisiz = wi::to_wide (size);
|
||
|
||
/* Ignore negative offsets for now. For others,
|
||
use the lower bound as the most optimistic
|
||
estimate of the (remaining) size. */
|
||
if (wi::sign_mask (wioff))
|
||
;
|
||
else if (wi::ltu_p (wioff, wisiz))
|
||
return wide_int_to_tree (TREE_TYPE (size),
|
||
wi::sub (wisiz, wioff));
|
||
else
|
||
return size_zero_node;
|
||
}
|
||
}
|
||
else if (TREE_CODE (off) == SSA_NAME
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (off)))
|
||
{
|
||
wide_int min, max;
|
||
enum value_range_kind rng = get_range_info (off, &min, &max);
|
||
|
||
if (rng == VR_RANGE)
|
||
{
|
||
if (tree size = compute_objsize (dest, ostype, pdecl))
|
||
{
|
||
wide_int wisiz = wi::to_wide (size);
|
||
|
||
/* Ignore negative offsets for now. For others,
|
||
use the lower bound as the most optimistic
|
||
estimate of the (remaining)size. */
|
||
if (wi::sign_mask (min)
|
||
|| wi::sign_mask (max))
|
||
;
|
||
else if (wi::ltu_p (min, wisiz))
|
||
return wide_int_to_tree (TREE_TYPE (size),
|
||
wi::sub (wisiz, min));
|
||
else
|
||
return size_zero_node;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if (code != ADDR_EXPR)
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Unless computing the largest size (for memcpy and other raw memory
|
||
functions), try to determine the size of the object from its type. */
|
||
if (!ostype)
|
||
return NULL_TREE;
|
||
|
||
if (TREE_CODE (dest) == ARRAY_REF
|
||
|| TREE_CODE (dest) == MEM_REF)
|
||
{
|
||
tree ref = TREE_OPERAND (dest, 0);
|
||
tree off = TREE_OPERAND (dest, 1);
|
||
if (tree size = compute_objsize (ref, ostype, pdecl))
|
||
{
|
||
/* If the declaration of the destination object is known
|
||
to have zero size, return zero. */
|
||
if (integer_zerop (size))
|
||
return integer_zero_node;
|
||
|
||
if (TREE_CODE (off) != INTEGER_CST
|
||
|| TREE_CODE (size) != INTEGER_CST)
|
||
return NULL_TREE;
|
||
|
||
if (TREE_CODE (dest) == ARRAY_REF)
|
||
{
|
||
tree eltype = TREE_TYPE (dest);
|
||
tree tpsize = TYPE_SIZE_UNIT (eltype);
|
||
if (tpsize && TREE_CODE (tpsize) == INTEGER_CST)
|
||
off = fold_build2 (MULT_EXPR, size_type_node, off, tpsize);
|
||
else
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (tree_int_cst_lt (off, size))
|
||
return fold_build2 (MINUS_EXPR, size_type_node, size, off);
|
||
return integer_zero_node;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (dest) == COMPONENT_REF)
|
||
{
|
||
*pdecl = TREE_OPERAND (dest, 1);
|
||
return component_ref_size (dest);
|
||
}
|
||
|
||
if (TREE_CODE (dest) != ADDR_EXPR)
|
||
return NULL_TREE;
|
||
|
||
tree ref = TREE_OPERAND (dest, 0);
|
||
if (DECL_P (ref))
|
||
{
|
||
*pdecl = ref;
|
||
if (tree size = DECL_SIZE_UNIT (ref))
|
||
return TREE_CODE (size) == INTEGER_CST ? size : NULL_TREE;
|
||
}
|
||
|
||
tree type = TREE_TYPE (dest);
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE
|
||
&& !array_at_struct_end_p (ref))
|
||
{
|
||
if (tree size = TYPE_SIZE_UNIT (type))
|
||
return TREE_CODE (size) == INTEGER_CST ? size : NULL_TREE;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Helper to determine and check the sizes of the source and the destination
|
||
of calls to __builtin_{bzero,memcpy,mempcpy,memset} calls. EXP is the
|
||
call expression, DEST is the destination argument, SRC is the source
|
||
argument or null, and LEN is the number of bytes. Use Object Size type-0
|
||
regardless of the OPT_Wstringop_overflow_ setting. Return true on success
|
||
(no overflow or invalid sizes), false otherwise. */
|
||
|
||
static bool
|
||
check_memop_access (tree exp, tree dest, tree src, tree size)
|
||
{
|
||
/* For functions like memset and memcpy that operate on raw memory
|
||
try to determine the size of the largest source and destination
|
||
object using type-0 Object Size regardless of the object size
|
||
type specified by the option. */
|
||
tree srcsize = src ? compute_objsize (src, 0) : NULL_TREE;
|
||
tree dstsize = compute_objsize (dest, 0);
|
||
|
||
return check_access (exp, dest, src, size, /*maxread=*/NULL_TREE,
|
||
srcsize, dstsize);
|
||
}
|
||
|
||
/* Validate memchr arguments without performing any expansion.
|
||
Return NULL_RTX. */
|
||
|
||
static rtx
|
||
expand_builtin_memchr (tree exp, rtx)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree arg1 = CALL_EXPR_ARG (exp, 0);
|
||
tree len = CALL_EXPR_ARG (exp, 2);
|
||
|
||
/* Diagnose calls where the specified length exceeds the size
|
||
of the object. */
|
||
if (warn_stringop_overflow)
|
||
{
|
||
tree size = compute_objsize (arg1, 0);
|
||
check_access (exp, /*dst=*/NULL_TREE, /*src=*/NULL_TREE, len,
|
||
/*maxread=*/NULL_TREE, size, /*objsize=*/NULL_TREE);
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Expand a call EXP to the memcpy builtin.
|
||
Return NULL_RTX if we failed, the caller should emit a normal call,
|
||
otherwise try to get the result in TARGET, if convenient (and in
|
||
mode MODE if that's convenient). */
|
||
|
||
static rtx
|
||
expand_builtin_memcpy (tree exp, rtx target)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
tree len = CALL_EXPR_ARG (exp, 2);
|
||
|
||
check_memop_access (exp, dest, src, len);
|
||
|
||
return expand_builtin_memory_copy_args (dest, src, len, target, exp,
|
||
/*retmode=*/ RETURN_BEGIN, false);
|
||
}
|
||
|
||
/* Check a call EXP to the memmove built-in for validity.
|
||
Return NULL_RTX on both success and failure. */
|
||
|
||
static rtx
|
||
expand_builtin_memmove (tree exp, rtx target)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
tree len = CALL_EXPR_ARG (exp, 2);
|
||
|
||
check_memop_access (exp, dest, src, len);
|
||
|
||
return expand_builtin_memory_copy_args (dest, src, len, target, exp,
|
||
/*retmode=*/ RETURN_BEGIN, true);
|
||
}
|
||
|
||
/* Expand a call EXP to the mempcpy builtin.
|
||
Return NULL_RTX if we failed; the caller should emit a normal call,
|
||
otherwise try to get the result in TARGET, if convenient (and in
|
||
mode MODE if that's convenient). */
|
||
|
||
static rtx
|
||
expand_builtin_mempcpy (tree exp, rtx target)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
tree len = CALL_EXPR_ARG (exp, 2);
|
||
|
||
/* Policy does not generally allow using compute_objsize (which
|
||
is used internally by check_memop_size) to change code generation
|
||
or drive optimization decisions.
|
||
|
||
In this instance it is safe because the code we generate has
|
||
the same semantics regardless of the return value of
|
||
check_memop_sizes. Exactly the same amount of data is copied
|
||
and the return value is exactly the same in both cases.
|
||
|
||
Furthermore, check_memop_size always uses mode 0 for the call to
|
||
compute_objsize, so the imprecise nature of compute_objsize is
|
||
avoided. */
|
||
|
||
/* Avoid expanding mempcpy into memcpy when the call is determined
|
||
to overflow the buffer. This also prevents the same overflow
|
||
from being diagnosed again when expanding memcpy. */
|
||
if (!check_memop_access (exp, dest, src, len))
|
||
return NULL_RTX;
|
||
|
||
return expand_builtin_mempcpy_args (dest, src, len,
|
||
target, exp, /*retmode=*/ RETURN_END);
|
||
}
|
||
|
||
/* Helper function to do the actual work for expand of memory copy family
|
||
functions (memcpy, mempcpy, stpcpy). Expansing should assign LEN bytes
|
||
of memory from SRC to DEST and assign to TARGET if convenient. Return
|
||
value is based on RETMODE argument. */
|
||
|
||
static rtx
|
||
expand_builtin_memory_copy_args (tree dest, tree src, tree len,
|
||
rtx target, tree exp, memop_ret retmode,
|
||
bool might_overlap)
|
||
{
|
||
const char *src_str;
|
||
unsigned int src_align = get_pointer_alignment (src);
|
||
unsigned int dest_align = get_pointer_alignment (dest);
|
||
rtx dest_mem, src_mem, dest_addr, len_rtx;
|
||
HOST_WIDE_INT expected_size = -1;
|
||
unsigned int expected_align = 0;
|
||
unsigned HOST_WIDE_INT min_size;
|
||
unsigned HOST_WIDE_INT max_size;
|
||
unsigned HOST_WIDE_INT probable_max_size;
|
||
|
||
bool is_move_done;
|
||
|
||
/* If DEST is not a pointer type, call the normal function. */
|
||
if (dest_align == 0)
|
||
return NULL_RTX;
|
||
|
||
/* If either SRC is not a pointer type, don't do this
|
||
operation in-line. */
|
||
if (src_align == 0)
|
||
return NULL_RTX;
|
||
|
||
if (currently_expanding_gimple_stmt)
|
||
stringop_block_profile (currently_expanding_gimple_stmt,
|
||
&expected_align, &expected_size);
|
||
|
||
if (expected_align < dest_align)
|
||
expected_align = dest_align;
|
||
dest_mem = get_memory_rtx (dest, len);
|
||
set_mem_align (dest_mem, dest_align);
|
||
len_rtx = expand_normal (len);
|
||
determine_block_size (len, len_rtx, &min_size, &max_size,
|
||
&probable_max_size);
|
||
src_str = c_getstr (src);
|
||
|
||
/* If SRC is a string constant and block move would be done by
|
||
pieces, we can avoid loading the string from memory and only
|
||
stored the computed constants. This works in the overlap
|
||
(memmove) case as well because store_by_pieces just generates a
|
||
series of stores of constants from the string constant returned
|
||
by c_getstr(). */
|
||
if (src_str
|
||
&& CONST_INT_P (len_rtx)
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1
|
||
&& can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str,
|
||
CONST_CAST (char *, src_str),
|
||
dest_align, false))
|
||
{
|
||
dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx),
|
||
builtin_memcpy_read_str,
|
||
CONST_CAST (char *, src_str),
|
||
dest_align, false, retmode);
|
||
dest_mem = force_operand (XEXP (dest_mem, 0), target);
|
||
dest_mem = convert_memory_address (ptr_mode, dest_mem);
|
||
return dest_mem;
|
||
}
|
||
|
||
src_mem = get_memory_rtx (src, len);
|
||
set_mem_align (src_mem, src_align);
|
||
|
||
/* Copy word part most expediently. */
|
||
enum block_op_methods method = BLOCK_OP_NORMAL;
|
||
if (CALL_EXPR_TAILCALL (exp)
|
||
&& (retmode == RETURN_BEGIN || target == const0_rtx))
|
||
method = BLOCK_OP_TAILCALL;
|
||
bool use_mempcpy_call = (targetm.libc_has_fast_function (BUILT_IN_MEMPCPY)
|
||
&& retmode == RETURN_END
|
||
&& !might_overlap
|
||
&& target != const0_rtx);
|
||
if (use_mempcpy_call)
|
||
method = BLOCK_OP_NO_LIBCALL_RET;
|
||
dest_addr = emit_block_move_hints (dest_mem, src_mem, len_rtx, method,
|
||
expected_align, expected_size,
|
||
min_size, max_size, probable_max_size,
|
||
use_mempcpy_call, &is_move_done, might_overlap);
|
||
|
||
/* Bail out when a mempcpy call would be expanded as libcall and when
|
||
we have a target that provides a fast implementation
|
||
of mempcpy routine. */
|
||
if (!is_move_done)
|
||
return NULL_RTX;
|
||
|
||
if (dest_addr == pc_rtx)
|
||
return NULL_RTX;
|
||
|
||
if (dest_addr == 0)
|
||
{
|
||
dest_addr = force_operand (XEXP (dest_mem, 0), target);
|
||
dest_addr = convert_memory_address (ptr_mode, dest_addr);
|
||
}
|
||
|
||
if (retmode != RETURN_BEGIN && target != const0_rtx)
|
||
{
|
||
dest_addr = gen_rtx_PLUS (ptr_mode, dest_addr, len_rtx);
|
||
/* stpcpy pointer to last byte. */
|
||
if (retmode == RETURN_END_MINUS_ONE)
|
||
dest_addr = gen_rtx_MINUS (ptr_mode, dest_addr, const1_rtx);
|
||
}
|
||
|
||
return dest_addr;
|
||
}
|
||
|
||
static rtx
|
||
expand_builtin_mempcpy_args (tree dest, tree src, tree len,
|
||
rtx target, tree orig_exp, memop_ret retmode)
|
||
{
|
||
return expand_builtin_memory_copy_args (dest, src, len, target, orig_exp,
|
||
retmode, false);
|
||
}
|
||
|
||
/* Expand into a movstr instruction, if one is available. Return NULL_RTX if
|
||
we failed, the caller should emit a normal call, otherwise try to
|
||
get the result in TARGET, if convenient.
|
||
Return value is based on RETMODE argument. */
|
||
|
||
static rtx
|
||
expand_movstr (tree dest, tree src, rtx target, memop_ret retmode)
|
||
{
|
||
class expand_operand ops[3];
|
||
rtx dest_mem;
|
||
rtx src_mem;
|
||
|
||
if (!targetm.have_movstr ())
|
||
return NULL_RTX;
|
||
|
||
dest_mem = get_memory_rtx (dest, NULL);
|
||
src_mem = get_memory_rtx (src, NULL);
|
||
if (retmode == RETURN_BEGIN)
|
||
{
|
||
target = force_reg (Pmode, XEXP (dest_mem, 0));
|
||
dest_mem = replace_equiv_address (dest_mem, target);
|
||
}
|
||
|
||
create_output_operand (&ops[0],
|
||
retmode != RETURN_BEGIN ? target : NULL_RTX, Pmode);
|
||
create_fixed_operand (&ops[1], dest_mem);
|
||
create_fixed_operand (&ops[2], src_mem);
|
||
if (!maybe_expand_insn (targetm.code_for_movstr, 3, ops))
|
||
return NULL_RTX;
|
||
|
||
if (retmode != RETURN_BEGIN && target != const0_rtx)
|
||
{
|
||
target = ops[0].value;
|
||
/* movstr is supposed to set end to the address of the NUL
|
||
terminator. If the caller requested a mempcpy-like return value,
|
||
adjust it. */
|
||
if (retmode == RETURN_END)
|
||
{
|
||
rtx tem = plus_constant (GET_MODE (target),
|
||
gen_lowpart (GET_MODE (target), target), 1);
|
||
emit_move_insn (target, force_operand (tem, NULL_RTX));
|
||
}
|
||
}
|
||
return target;
|
||
}
|
||
|
||
/* Do some very basic size validation of a call to the strcpy builtin
|
||
given by EXP. Return NULL_RTX to have the built-in expand to a call
|
||
to the library function. */
|
||
|
||
static rtx
|
||
expand_builtin_strcat (tree exp, rtx)
|
||
{
|
||
if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)
|
||
|| !warn_stringop_overflow)
|
||
return NULL_RTX;
|
||
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
|
||
/* There is no way here to determine the length of the string in
|
||
the destination to which the SRC string is being appended so
|
||
just diagnose cases when the souce string is longer than
|
||
the destination object. */
|
||
|
||
tree destsize = compute_objsize (dest, warn_stringop_overflow - 1);
|
||
|
||
check_access (exp, dest, src, /*size=*/NULL_TREE, /*maxread=*/NULL_TREE, src,
|
||
destsize);
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Expand expression EXP, which is a call to the strcpy builtin. Return
|
||
NULL_RTX if we failed the caller should emit a normal call, otherwise
|
||
try to get the result in TARGET, if convenient (and in mode MODE if that's
|
||
convenient). */
|
||
|
||
static rtx
|
||
expand_builtin_strcpy (tree exp, rtx target)
|
||
{
|
||
if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
|
||
if (warn_stringop_overflow)
|
||
{
|
||
tree destsize = compute_objsize (dest, warn_stringop_overflow - 1);
|
||
check_access (exp, dest, src, /*size=*/NULL_TREE, /*maxread=*/NULL_TREE,
|
||
src, destsize);
|
||
}
|
||
|
||
if (rtx ret = expand_builtin_strcpy_args (exp, dest, src, target))
|
||
{
|
||
/* Check to see if the argument was declared attribute nonstring
|
||
and if so, issue a warning since at this point it's not known
|
||
to be nul-terminated. */
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
maybe_warn_nonstring_arg (fndecl, exp);
|
||
return ret;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Helper function to do the actual work for expand_builtin_strcpy. The
|
||
arguments to the builtin_strcpy call DEST and SRC are broken out
|
||
so that this can also be called without constructing an actual CALL_EXPR.
|
||
The other arguments and return value are the same as for
|
||
expand_builtin_strcpy. */
|
||
|
||
static rtx
|
||
expand_builtin_strcpy_args (tree exp, tree dest, tree src, rtx target)
|
||
{
|
||
/* Detect strcpy calls with unterminated arrays.. */
|
||
if (tree nonstr = unterminated_array (src))
|
||
{
|
||
/* NONSTR refers to the non-nul terminated constant array. */
|
||
if (!TREE_NO_WARNING (exp))
|
||
warn_string_no_nul (EXPR_LOCATION (exp), "strcpy", src, nonstr);
|
||
return NULL_RTX;
|
||
}
|
||
|
||
return expand_movstr (dest, src, target, /*retmode=*/ RETURN_BEGIN);
|
||
}
|
||
|
||
/* Expand a call EXP to the stpcpy builtin.
|
||
Return NULL_RTX if we failed the caller should emit a normal call,
|
||
otherwise try to get the result in TARGET, if convenient (and in
|
||
mode MODE if that's convenient). */
|
||
|
||
static rtx
|
||
expand_builtin_stpcpy_1 (tree exp, rtx target, machine_mode mode)
|
||
{
|
||
tree dst, src;
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
dst = CALL_EXPR_ARG (exp, 0);
|
||
src = CALL_EXPR_ARG (exp, 1);
|
||
|
||
if (warn_stringop_overflow)
|
||
{
|
||
tree destsize = compute_objsize (dst, warn_stringop_overflow - 1);
|
||
check_access (exp, dst, src, /*size=*/NULL_TREE, /*maxread=*/NULL_TREE,
|
||
src, destsize);
|
||
}
|
||
|
||
/* If return value is ignored, transform stpcpy into strcpy. */
|
||
if (target == const0_rtx && builtin_decl_implicit (BUILT_IN_STRCPY))
|
||
{
|
||
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
|
||
tree result = build_call_nofold_loc (loc, fn, 2, dst, src);
|
||
return expand_expr (result, target, mode, EXPAND_NORMAL);
|
||
}
|
||
else
|
||
{
|
||
tree len, lenp1;
|
||
rtx ret;
|
||
|
||
/* Ensure we get an actual string whose length can be evaluated at
|
||
compile-time, not an expression containing a string. This is
|
||
because the latter will potentially produce pessimized code
|
||
when used to produce the return value. */
|
||
c_strlen_data lendata = { };
|
||
if (!c_getstr (src, NULL)
|
||
|| !(len = c_strlen (src, 0, &lendata, 1)))
|
||
return expand_movstr (dst, src, target,
|
||
/*retmode=*/ RETURN_END_MINUS_ONE);
|
||
|
||
if (lendata.decl && !TREE_NO_WARNING (exp))
|
||
warn_string_no_nul (EXPR_LOCATION (exp), "stpcpy", src, lendata.decl);
|
||
|
||
lenp1 = size_binop_loc (loc, PLUS_EXPR, len, ssize_int (1));
|
||
ret = expand_builtin_mempcpy_args (dst, src, lenp1,
|
||
target, exp,
|
||
/*retmode=*/ RETURN_END_MINUS_ONE);
|
||
|
||
if (ret)
|
||
return ret;
|
||
|
||
if (TREE_CODE (len) == INTEGER_CST)
|
||
{
|
||
rtx len_rtx = expand_normal (len);
|
||
|
||
if (CONST_INT_P (len_rtx))
|
||
{
|
||
ret = expand_builtin_strcpy_args (exp, dst, src, target);
|
||
|
||
if (ret)
|
||
{
|
||
if (! target)
|
||
{
|
||
if (mode != VOIDmode)
|
||
target = gen_reg_rtx (mode);
|
||
else
|
||
target = gen_reg_rtx (GET_MODE (ret));
|
||
}
|
||
if (GET_MODE (target) != GET_MODE (ret))
|
||
ret = gen_lowpart (GET_MODE (target), ret);
|
||
|
||
ret = plus_constant (GET_MODE (ret), ret, INTVAL (len_rtx));
|
||
ret = emit_move_insn (target, force_operand (ret, NULL_RTX));
|
||
gcc_assert (ret);
|
||
|
||
return target;
|
||
}
|
||
}
|
||
}
|
||
|
||
return expand_movstr (dst, src, target,
|
||
/*retmode=*/ RETURN_END_MINUS_ONE);
|
||
}
|
||
}
|
||
|
||
/* Expand a call EXP to the stpcpy builtin and diagnose uses of nonstring
|
||
arguments while being careful to avoid duplicate warnings (which could
|
||
be issued if the expander were to expand the call, resulting in it
|
||
being emitted in expand_call(). */
|
||
|
||
static rtx
|
||
expand_builtin_stpcpy (tree exp, rtx target, machine_mode mode)
|
||
{
|
||
if (rtx ret = expand_builtin_stpcpy_1 (exp, target, mode))
|
||
{
|
||
/* The call has been successfully expanded. Check for nonstring
|
||
arguments and issue warnings as appropriate. */
|
||
maybe_warn_nonstring_arg (get_callee_fndecl (exp), exp);
|
||
return ret;
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Check a call EXP to the stpncpy built-in for validity.
|
||
Return NULL_RTX on both success and failure. */
|
||
|
||
static rtx
|
||
expand_builtin_stpncpy (tree exp, rtx)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)
|
||
|| !warn_stringop_overflow)
|
||
return NULL_RTX;
|
||
|
||
/* The source and destination of the call. */
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
|
||
/* The exact number of bytes to write (not the maximum). */
|
||
tree len = CALL_EXPR_ARG (exp, 2);
|
||
|
||
/* The size of the destination object. */
|
||
tree destsize = compute_objsize (dest, warn_stringop_overflow - 1);
|
||
|
||
check_access (exp, dest, src, len, /*maxread=*/NULL_TREE, src, destsize);
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE)
|
||
bytes from constant string DATA + OFFSET and return it as target
|
||
constant. */
|
||
|
||
rtx
|
||
builtin_strncpy_read_str (void *data, HOST_WIDE_INT offset,
|
||
scalar_int_mode mode)
|
||
{
|
||
const char *str = (const char *) data;
|
||
|
||
if ((unsigned HOST_WIDE_INT) offset > strlen (str))
|
||
return const0_rtx;
|
||
|
||
return c_readstr (str + offset, mode);
|
||
}
|
||
|
||
/* Helper to check the sizes of sequences and the destination of calls
|
||
to __builtin_strncat and __builtin___strncat_chk. Returns true on
|
||
success (no overflow or invalid sizes), false otherwise. */
|
||
|
||
static bool
|
||
check_strncat_sizes (tree exp, tree objsize)
|
||
{
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
tree maxread = CALL_EXPR_ARG (exp, 2);
|
||
|
||
/* Try to determine the range of lengths that the source expression
|
||
refers to. */
|
||
c_strlen_data lendata = { };
|
||
get_range_strlen (src, &lendata, /* eltsize = */ 1);
|
||
|
||
/* Try to verify that the destination is big enough for the shortest
|
||
string. */
|
||
|
||
if (!objsize && warn_stringop_overflow)
|
||
{
|
||
/* If it hasn't been provided by __strncat_chk, try to determine
|
||
the size of the destination object into which the source is
|
||
being copied. */
|
||
objsize = compute_objsize (dest, warn_stringop_overflow - 1);
|
||
}
|
||
|
||
/* Add one for the terminating nul. */
|
||
tree srclen = (lendata.minlen
|
||
? fold_build2 (PLUS_EXPR, size_type_node, lendata.minlen,
|
||
size_one_node)
|
||
: NULL_TREE);
|
||
|
||
/* The strncat function copies at most MAXREAD bytes and always appends
|
||
the terminating nul so the specified upper bound should never be equal
|
||
to (or greater than) the size of the destination. */
|
||
if (tree_fits_uhwi_p (maxread) && tree_fits_uhwi_p (objsize)
|
||
&& tree_int_cst_equal (objsize, maxread))
|
||
{
|
||
location_t loc = tree_nonartificial_location (exp);
|
||
loc = expansion_point_location_if_in_system_header (loc);
|
||
|
||
warning_at (loc, OPT_Wstringop_overflow_,
|
||
"%K%qD specified bound %E equals destination size",
|
||
exp, get_callee_fndecl (exp), maxread);
|
||
|
||
return false;
|
||
}
|
||
|
||
if (!srclen
|
||
|| (maxread && tree_fits_uhwi_p (maxread)
|
||
&& tree_fits_uhwi_p (srclen)
|
||
&& tree_int_cst_lt (maxread, srclen)))
|
||
srclen = maxread;
|
||
|
||
/* The number of bytes to write is LEN but check_access will also
|
||
check SRCLEN if LEN's value isn't known. */
|
||
return check_access (exp, dest, src, /*size=*/NULL_TREE, maxread, srclen,
|
||
objsize);
|
||
}
|
||
|
||
/* Similar to expand_builtin_strcat, do some very basic size validation
|
||
of a call to the strcpy builtin given by EXP. Return NULL_RTX to have
|
||
the built-in expand to a call to the library function. */
|
||
|
||
static rtx
|
||
expand_builtin_strncat (tree exp, rtx)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)
|
||
|| !warn_stringop_overflow)
|
||
return NULL_RTX;
|
||
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
/* The upper bound on the number of bytes to write. */
|
||
tree maxread = CALL_EXPR_ARG (exp, 2);
|
||
/* The length of the source sequence. */
|
||
tree slen = c_strlen (src, 1);
|
||
|
||
/* Try to determine the range of lengths that the source expression
|
||
refers to. Since the lengths are only used for warning and not
|
||
for code generation disable strict mode below. */
|
||
tree maxlen = slen;
|
||
if (!maxlen)
|
||
{
|
||
c_strlen_data lendata = { };
|
||
get_range_strlen (src, &lendata, /* eltsize = */ 1);
|
||
maxlen = lendata.maxbound;
|
||
}
|
||
|
||
/* Try to verify that the destination is big enough for the shortest
|
||
string. First try to determine the size of the destination object
|
||
into which the source is being copied. */
|
||
tree destsize = compute_objsize (dest, warn_stringop_overflow - 1);
|
||
|
||
/* Add one for the terminating nul. */
|
||
tree srclen = (maxlen
|
||
? fold_build2 (PLUS_EXPR, size_type_node, maxlen,
|
||
size_one_node)
|
||
: NULL_TREE);
|
||
|
||
/* The strncat function copies at most MAXREAD bytes and always appends
|
||
the terminating nul so the specified upper bound should never be equal
|
||
to (or greater than) the size of the destination. */
|
||
if (tree_fits_uhwi_p (maxread) && tree_fits_uhwi_p (destsize)
|
||
&& tree_int_cst_equal (destsize, maxread))
|
||
{
|
||
location_t loc = tree_nonartificial_location (exp);
|
||
loc = expansion_point_location_if_in_system_header (loc);
|
||
|
||
warning_at (loc, OPT_Wstringop_overflow_,
|
||
"%K%qD specified bound %E equals destination size",
|
||
exp, get_callee_fndecl (exp), maxread);
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
if (!srclen
|
||
|| (maxread && tree_fits_uhwi_p (maxread)
|
||
&& tree_fits_uhwi_p (srclen)
|
||
&& tree_int_cst_lt (maxread, srclen)))
|
||
srclen = maxread;
|
||
|
||
/* The number of bytes to write is SRCLEN. */
|
||
check_access (exp, dest, src, NULL_TREE, maxread, srclen, destsize);
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Expand expression EXP, which is a call to the strncpy builtin. Return
|
||
NULL_RTX if we failed the caller should emit a normal call. */
|
||
|
||
static rtx
|
||
expand_builtin_strncpy (tree exp, rtx target)
|
||
{
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
if (validate_arglist (exp,
|
||
POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
{
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
/* The number of bytes to write (not the maximum). */
|
||
tree len = CALL_EXPR_ARG (exp, 2);
|
||
/* The length of the source sequence. */
|
||
tree slen = c_strlen (src, 1);
|
||
|
||
if (warn_stringop_overflow)
|
||
{
|
||
tree destsize = compute_objsize (dest,
|
||
warn_stringop_overflow - 1);
|
||
|
||
/* The number of bytes to write is LEN but check_access will also
|
||
check SLEN if LEN's value isn't known. */
|
||
check_access (exp, dest, src, len, /*maxread=*/NULL_TREE, src,
|
||
destsize);
|
||
}
|
||
|
||
/* We must be passed a constant len and src parameter. */
|
||
if (!tree_fits_uhwi_p (len) || !slen || !tree_fits_uhwi_p (slen))
|
||
return NULL_RTX;
|
||
|
||
slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1));
|
||
|
||
/* We're required to pad with trailing zeros if the requested
|
||
len is greater than strlen(s2)+1. In that case try to
|
||
use store_by_pieces, if it fails, punt. */
|
||
if (tree_int_cst_lt (slen, len))
|
||
{
|
||
unsigned int dest_align = get_pointer_alignment (dest);
|
||
const char *p = c_getstr (src);
|
||
rtx dest_mem;
|
||
|
||
if (!p || dest_align == 0 || !tree_fits_uhwi_p (len)
|
||
|| !can_store_by_pieces (tree_to_uhwi (len),
|
||
builtin_strncpy_read_str,
|
||
CONST_CAST (char *, p),
|
||
dest_align, false))
|
||
return NULL_RTX;
|
||
|
||
dest_mem = get_memory_rtx (dest, len);
|
||
store_by_pieces (dest_mem, tree_to_uhwi (len),
|
||
builtin_strncpy_read_str,
|
||
CONST_CAST (char *, p), dest_align, false,
|
||
RETURN_BEGIN);
|
||
dest_mem = force_operand (XEXP (dest_mem, 0), target);
|
||
dest_mem = convert_memory_address (ptr_mode, dest_mem);
|
||
return dest_mem;
|
||
}
|
||
}
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE)
|
||
bytes from constant string DATA + OFFSET and return it as target
|
||
constant. */
|
||
|
||
rtx
|
||
builtin_memset_read_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
|
||
scalar_int_mode mode)
|
||
{
|
||
const char *c = (const char *) data;
|
||
char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
|
||
|
||
memset (p, *c, GET_MODE_SIZE (mode));
|
||
|
||
return c_readstr (p, mode);
|
||
}
|
||
|
||
/* Callback routine for store_by_pieces. Return the RTL of a register
|
||
containing GET_MODE_SIZE (MODE) consecutive copies of the unsigned
|
||
char value given in the RTL register data. For example, if mode is
|
||
4 bytes wide, return the RTL for 0x01010101*data. */
|
||
|
||
static rtx
|
||
builtin_memset_gen_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
|
||
scalar_int_mode mode)
|
||
{
|
||
rtx target, coeff;
|
||
size_t size;
|
||
char *p;
|
||
|
||
size = GET_MODE_SIZE (mode);
|
||
if (size == 1)
|
||
return (rtx) data;
|
||
|
||
p = XALLOCAVEC (char, size);
|
||
memset (p, 1, size);
|
||
coeff = c_readstr (p, mode);
|
||
|
||
target = convert_to_mode (mode, (rtx) data, 1);
|
||
target = expand_mult (mode, target, coeff, NULL_RTX, 1);
|
||
return force_reg (mode, target);
|
||
}
|
||
|
||
/* Expand expression EXP, which is a call to the memset builtin. Return
|
||
NULL_RTX if we failed the caller should emit a normal call, otherwise
|
||
try to get the result in TARGET, if convenient (and in mode MODE if that's
|
||
convenient). */
|
||
|
||
static rtx
|
||
expand_builtin_memset (tree exp, rtx target, machine_mode mode)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree val = CALL_EXPR_ARG (exp, 1);
|
||
tree len = CALL_EXPR_ARG (exp, 2);
|
||
|
||
check_memop_access (exp, dest, NULL_TREE, len);
|
||
|
||
return expand_builtin_memset_args (dest, val, len, target, mode, exp);
|
||
}
|
||
|
||
/* Helper function to do the actual work for expand_builtin_memset. The
|
||
arguments to the builtin_memset call DEST, VAL, and LEN are broken out
|
||
so that this can also be called without constructing an actual CALL_EXPR.
|
||
The other arguments and return value are the same as for
|
||
expand_builtin_memset. */
|
||
|
||
static rtx
|
||
expand_builtin_memset_args (tree dest, tree val, tree len,
|
||
rtx target, machine_mode mode, tree orig_exp)
|
||
{
|
||
tree fndecl, fn;
|
||
enum built_in_function fcode;
|
||
machine_mode val_mode;
|
||
char c;
|
||
unsigned int dest_align;
|
||
rtx dest_mem, dest_addr, len_rtx;
|
||
HOST_WIDE_INT expected_size = -1;
|
||
unsigned int expected_align = 0;
|
||
unsigned HOST_WIDE_INT min_size;
|
||
unsigned HOST_WIDE_INT max_size;
|
||
unsigned HOST_WIDE_INT probable_max_size;
|
||
|
||
dest_align = get_pointer_alignment (dest);
|
||
|
||
/* If DEST is not a pointer type, don't do this operation in-line. */
|
||
if (dest_align == 0)
|
||
return NULL_RTX;
|
||
|
||
if (currently_expanding_gimple_stmt)
|
||
stringop_block_profile (currently_expanding_gimple_stmt,
|
||
&expected_align, &expected_size);
|
||
|
||
if (expected_align < dest_align)
|
||
expected_align = dest_align;
|
||
|
||
/* If the LEN parameter is zero, return DEST. */
|
||
if (integer_zerop (len))
|
||
{
|
||
/* Evaluate and ignore VAL in case it has side-effects. */
|
||
expand_expr (val, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
return expand_expr (dest, target, mode, EXPAND_NORMAL);
|
||
}
|
||
|
||
/* Stabilize the arguments in case we fail. */
|
||
dest = builtin_save_expr (dest);
|
||
val = builtin_save_expr (val);
|
||
len = builtin_save_expr (len);
|
||
|
||
len_rtx = expand_normal (len);
|
||
determine_block_size (len, len_rtx, &min_size, &max_size,
|
||
&probable_max_size);
|
||
dest_mem = get_memory_rtx (dest, len);
|
||
val_mode = TYPE_MODE (unsigned_char_type_node);
|
||
|
||
if (TREE_CODE (val) != INTEGER_CST)
|
||
{
|
||
rtx val_rtx;
|
||
|
||
val_rtx = expand_normal (val);
|
||
val_rtx = convert_to_mode (val_mode, val_rtx, 0);
|
||
|
||
/* Assume that we can memset by pieces if we can store
|
||
* the coefficients by pieces (in the required modes).
|
||
* We can't pass builtin_memset_gen_str as that emits RTL. */
|
||
c = 1;
|
||
if (tree_fits_uhwi_p (len)
|
||
&& can_store_by_pieces (tree_to_uhwi (len),
|
||
builtin_memset_read_str, &c, dest_align,
|
||
true))
|
||
{
|
||
val_rtx = force_reg (val_mode, val_rtx);
|
||
store_by_pieces (dest_mem, tree_to_uhwi (len),
|
||
builtin_memset_gen_str, val_rtx, dest_align,
|
||
true, RETURN_BEGIN);
|
||
}
|
||
else if (!set_storage_via_setmem (dest_mem, len_rtx, val_rtx,
|
||
dest_align, expected_align,
|
||
expected_size, min_size, max_size,
|
||
probable_max_size))
|
||
goto do_libcall;
|
||
|
||
dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
|
||
dest_mem = convert_memory_address (ptr_mode, dest_mem);
|
||
return dest_mem;
|
||
}
|
||
|
||
if (target_char_cast (val, &c))
|
||
goto do_libcall;
|
||
|
||
if (c)
|
||
{
|
||
if (tree_fits_uhwi_p (len)
|
||
&& can_store_by_pieces (tree_to_uhwi (len),
|
||
builtin_memset_read_str, &c, dest_align,
|
||
true))
|
||
store_by_pieces (dest_mem, tree_to_uhwi (len),
|
||
builtin_memset_read_str, &c, dest_align, true,
|
||
RETURN_BEGIN);
|
||
else if (!set_storage_via_setmem (dest_mem, len_rtx,
|
||
gen_int_mode (c, val_mode),
|
||
dest_align, expected_align,
|
||
expected_size, min_size, max_size,
|
||
probable_max_size))
|
||
goto do_libcall;
|
||
|
||
dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
|
||
dest_mem = convert_memory_address (ptr_mode, dest_mem);
|
||
return dest_mem;
|
||
}
|
||
|
||
set_mem_align (dest_mem, dest_align);
|
||
dest_addr = clear_storage_hints (dest_mem, len_rtx,
|
||
CALL_EXPR_TAILCALL (orig_exp)
|
||
? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL,
|
||
expected_align, expected_size,
|
||
min_size, max_size,
|
||
probable_max_size);
|
||
|
||
if (dest_addr == 0)
|
||
{
|
||
dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX);
|
||
dest_addr = convert_memory_address (ptr_mode, dest_addr);
|
||
}
|
||
|
||
return dest_addr;
|
||
|
||
do_libcall:
|
||
fndecl = get_callee_fndecl (orig_exp);
|
||
fcode = DECL_FUNCTION_CODE (fndecl);
|
||
if (fcode == BUILT_IN_MEMSET)
|
||
fn = build_call_nofold_loc (EXPR_LOCATION (orig_exp), fndecl, 3,
|
||
dest, val, len);
|
||
else if (fcode == BUILT_IN_BZERO)
|
||
fn = build_call_nofold_loc (EXPR_LOCATION (orig_exp), fndecl, 2,
|
||
dest, len);
|
||
else
|
||
gcc_unreachable ();
|
||
gcc_assert (TREE_CODE (fn) == CALL_EXPR);
|
||
CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (orig_exp);
|
||
return expand_call (fn, target, target == const0_rtx);
|
||
}
|
||
|
||
/* Expand expression EXP, which is a call to the bzero builtin. Return
|
||
NULL_RTX if we failed the caller should emit a normal call. */
|
||
|
||
static rtx
|
||
expand_builtin_bzero (tree exp)
|
||
{
|
||
if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree size = CALL_EXPR_ARG (exp, 1);
|
||
|
||
check_memop_access (exp, dest, NULL_TREE, size);
|
||
|
||
/* New argument list transforming bzero(ptr x, int y) to
|
||
memset(ptr x, int 0, size_t y). This is done this way
|
||
so that if it isn't expanded inline, we fallback to
|
||
calling bzero instead of memset. */
|
||
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
return expand_builtin_memset_args (dest, integer_zero_node,
|
||
fold_convert_loc (loc,
|
||
size_type_node, size),
|
||
const0_rtx, VOIDmode, exp);
|
||
}
|
||
|
||
/* Try to expand cmpstr operation ICODE with the given operands.
|
||
Return the result rtx on success, otherwise return null. */
|
||
|
||
static rtx
|
||
expand_cmpstr (insn_code icode, rtx target, rtx arg1_rtx, rtx arg2_rtx,
|
||
HOST_WIDE_INT align)
|
||
{
|
||
machine_mode insn_mode = insn_data[icode].operand[0].mode;
|
||
|
||
if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
|
||
target = NULL_RTX;
|
||
|
||
class expand_operand ops[4];
|
||
create_output_operand (&ops[0], target, insn_mode);
|
||
create_fixed_operand (&ops[1], arg1_rtx);
|
||
create_fixed_operand (&ops[2], arg2_rtx);
|
||
create_integer_operand (&ops[3], align);
|
||
if (maybe_expand_insn (icode, 4, ops))
|
||
return ops[0].value;
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Expand expression EXP, which is a call to the memcmp built-in function.
|
||
Return NULL_RTX if we failed and the caller should emit a normal call,
|
||
otherwise try to get the result in TARGET, if convenient.
|
||
RESULT_EQ is true if we can relax the returned value to be either zero
|
||
or nonzero, without caring about the sign. */
|
||
|
||
static rtx
|
||
expand_builtin_memcmp (tree exp, rtx target, bool result_eq)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree arg1 = CALL_EXPR_ARG (exp, 0);
|
||
tree arg2 = CALL_EXPR_ARG (exp, 1);
|
||
tree len = CALL_EXPR_ARG (exp, 2);
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (get_callee_fndecl (exp));
|
||
bool no_overflow = true;
|
||
|
||
/* Diagnose calls where the specified length exceeds the size of either
|
||
object. */
|
||
tree size = compute_objsize (arg1, 0);
|
||
no_overflow = check_access (exp, /*dst=*/NULL_TREE, /*src=*/NULL_TREE,
|
||
len, /*maxread=*/NULL_TREE, size,
|
||
/*objsize=*/NULL_TREE);
|
||
if (no_overflow)
|
||
{
|
||
size = compute_objsize (arg2, 0);
|
||
no_overflow = check_access (exp, /*dst=*/NULL_TREE, /*src=*/NULL_TREE,
|
||
len, /*maxread=*/NULL_TREE, size,
|
||
/*objsize=*/NULL_TREE);
|
||
}
|
||
|
||
/* If the specified length exceeds the size of either object,
|
||
call the function. */
|
||
if (!no_overflow)
|
||
return NULL_RTX;
|
||
|
||
/* Due to the performance benefit, always inline the calls first
|
||
when result_eq is false. */
|
||
rtx result = NULL_RTX;
|
||
|
||
if (!result_eq && fcode != BUILT_IN_BCMP)
|
||
{
|
||
result = inline_expand_builtin_string_cmp (exp, target);
|
||
if (result)
|
||
return result;
|
||
}
|
||
|
||
machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
unsigned int arg1_align = get_pointer_alignment (arg1) / BITS_PER_UNIT;
|
||
unsigned int arg2_align = get_pointer_alignment (arg2) / BITS_PER_UNIT;
|
||
|
||
/* If we don't have POINTER_TYPE, call the function. */
|
||
if (arg1_align == 0 || arg2_align == 0)
|
||
return NULL_RTX;
|
||
|
||
rtx arg1_rtx = get_memory_rtx (arg1, len);
|
||
rtx arg2_rtx = get_memory_rtx (arg2, len);
|
||
rtx len_rtx = expand_normal (fold_convert_loc (loc, sizetype, len));
|
||
|
||
/* Set MEM_SIZE as appropriate. */
|
||
if (CONST_INT_P (len_rtx))
|
||
{
|
||
set_mem_size (arg1_rtx, INTVAL (len_rtx));
|
||
set_mem_size (arg2_rtx, INTVAL (len_rtx));
|
||
}
|
||
|
||
by_pieces_constfn constfn = NULL;
|
||
|
||
const char *src_str = c_getstr (arg2);
|
||
if (result_eq && src_str == NULL)
|
||
{
|
||
src_str = c_getstr (arg1);
|
||
if (src_str != NULL)
|
||
std::swap (arg1_rtx, arg2_rtx);
|
||
}
|
||
|
||
/* If SRC is a string constant and block move would be done
|
||
by pieces, we can avoid loading the string from memory
|
||
and only stored the computed constants. */
|
||
if (src_str
|
||
&& CONST_INT_P (len_rtx)
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1)
|
||
constfn = builtin_memcpy_read_str;
|
||
|
||
result = emit_block_cmp_hints (arg1_rtx, arg2_rtx, len_rtx,
|
||
TREE_TYPE (len), target,
|
||
result_eq, constfn,
|
||
CONST_CAST (char *, src_str));
|
||
|
||
if (result)
|
||
{
|
||
/* Return the value in the proper mode for this function. */
|
||
if (GET_MODE (result) == mode)
|
||
return result;
|
||
|
||
if (target != 0)
|
||
{
|
||
convert_move (target, result, 0);
|
||
return target;
|
||
}
|
||
|
||
return convert_to_mode (mode, result, 0);
|
||
}
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Expand expression EXP, which is a call to the strcmp builtin. Return NULL_RTX
|
||
if we failed the caller should emit a normal call, otherwise try to get
|
||
the result in TARGET, if convenient. */
|
||
|
||
static rtx
|
||
expand_builtin_strcmp (tree exp, ATTRIBUTE_UNUSED rtx target)
|
||
{
|
||
if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
/* Due to the performance benefit, always inline the calls first. */
|
||
rtx result = NULL_RTX;
|
||
result = inline_expand_builtin_string_cmp (exp, target);
|
||
if (result)
|
||
return result;
|
||
|
||
insn_code cmpstr_icode = direct_optab_handler (cmpstr_optab, SImode);
|
||
insn_code cmpstrn_icode = direct_optab_handler (cmpstrn_optab, SImode);
|
||
if (cmpstr_icode == CODE_FOR_nothing && cmpstrn_icode == CODE_FOR_nothing)
|
||
return NULL_RTX;
|
||
|
||
tree arg1 = CALL_EXPR_ARG (exp, 0);
|
||
tree arg2 = CALL_EXPR_ARG (exp, 1);
|
||
|
||
unsigned int arg1_align = get_pointer_alignment (arg1) / BITS_PER_UNIT;
|
||
unsigned int arg2_align = get_pointer_alignment (arg2) / BITS_PER_UNIT;
|
||
|
||
/* If we don't have POINTER_TYPE, call the function. */
|
||
if (arg1_align == 0 || arg2_align == 0)
|
||
return NULL_RTX;
|
||
|
||
/* Stabilize the arguments in case gen_cmpstr(n)si fail. */
|
||
arg1 = builtin_save_expr (arg1);
|
||
arg2 = builtin_save_expr (arg2);
|
||
|
||
rtx arg1_rtx = get_memory_rtx (arg1, NULL);
|
||
rtx arg2_rtx = get_memory_rtx (arg2, NULL);
|
||
|
||
/* Try to call cmpstrsi. */
|
||
if (cmpstr_icode != CODE_FOR_nothing)
|
||
result = expand_cmpstr (cmpstr_icode, target, arg1_rtx, arg2_rtx,
|
||
MIN (arg1_align, arg2_align));
|
||
|
||
/* Try to determine at least one length and call cmpstrnsi. */
|
||
if (!result && cmpstrn_icode != CODE_FOR_nothing)
|
||
{
|
||
tree len;
|
||
rtx arg3_rtx;
|
||
|
||
tree len1 = c_strlen (arg1, 1);
|
||
tree len2 = c_strlen (arg2, 1);
|
||
|
||
if (len1)
|
||
len1 = size_binop (PLUS_EXPR, ssize_int (1), len1);
|
||
if (len2)
|
||
len2 = size_binop (PLUS_EXPR, ssize_int (1), len2);
|
||
|
||
/* If we don't have a constant length for the first, use the length
|
||
of the second, if we know it. We don't require a constant for
|
||
this case; some cost analysis could be done if both are available
|
||
but neither is constant. For now, assume they're equally cheap,
|
||
unless one has side effects. If both strings have constant lengths,
|
||
use the smaller. */
|
||
|
||
if (!len1)
|
||
len = len2;
|
||
else if (!len2)
|
||
len = len1;
|
||
else if (TREE_SIDE_EFFECTS (len1))
|
||
len = len2;
|
||
else if (TREE_SIDE_EFFECTS (len2))
|
||
len = len1;
|
||
else if (TREE_CODE (len1) != INTEGER_CST)
|
||
len = len2;
|
||
else if (TREE_CODE (len2) != INTEGER_CST)
|
||
len = len1;
|
||
else if (tree_int_cst_lt (len1, len2))
|
||
len = len1;
|
||
else
|
||
len = len2;
|
||
|
||
/* If both arguments have side effects, we cannot optimize. */
|
||
if (len && !TREE_SIDE_EFFECTS (len))
|
||
{
|
||
arg3_rtx = expand_normal (len);
|
||
result = expand_cmpstrn_or_cmpmem
|
||
(cmpstrn_icode, target, arg1_rtx, arg2_rtx, TREE_TYPE (len),
|
||
arg3_rtx, MIN (arg1_align, arg2_align));
|
||
}
|
||
}
|
||
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
if (result)
|
||
{
|
||
/* Check to see if the argument was declared attribute nonstring
|
||
and if so, issue a warning since at this point it's not known
|
||
to be nul-terminated. */
|
||
maybe_warn_nonstring_arg (fndecl, exp);
|
||
|
||
/* Return the value in the proper mode for this function. */
|
||
machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
|
||
if (GET_MODE (result) == mode)
|
||
return result;
|
||
if (target == 0)
|
||
return convert_to_mode (mode, result, 0);
|
||
convert_move (target, result, 0);
|
||
return target;
|
||
}
|
||
|
||
/* Expand the library call ourselves using a stabilized argument
|
||
list to avoid re-evaluating the function's arguments twice. */
|
||
tree fn = build_call_nofold_loc (EXPR_LOCATION (exp), fndecl, 2, arg1, arg2);
|
||
gcc_assert (TREE_CODE (fn) == CALL_EXPR);
|
||
CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
|
||
return expand_call (fn, target, target == const0_rtx);
|
||
}
|
||
|
||
/* Expand expression EXP, which is a call to the strncmp builtin. Return
|
||
NULL_RTX if we failed the caller should emit a normal call, otherwise try to get
|
||
the result in TARGET, if convenient. */
|
||
|
||
static rtx
|
||
expand_builtin_strncmp (tree exp, ATTRIBUTE_UNUSED rtx target,
|
||
ATTRIBUTE_UNUSED machine_mode mode)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
/* Due to the performance benefit, always inline the calls first. */
|
||
rtx result = NULL_RTX;
|
||
result = inline_expand_builtin_string_cmp (exp, target);
|
||
if (result)
|
||
return result;
|
||
|
||
/* If c_strlen can determine an expression for one of the string
|
||
lengths, and it doesn't have side effects, then emit cmpstrnsi
|
||
using length MIN(strlen(string)+1, arg3). */
|
||
insn_code cmpstrn_icode = direct_optab_handler (cmpstrn_optab, SImode);
|
||
if (cmpstrn_icode == CODE_FOR_nothing)
|
||
return NULL_RTX;
|
||
|
||
tree len;
|
||
|
||
tree arg1 = CALL_EXPR_ARG (exp, 0);
|
||
tree arg2 = CALL_EXPR_ARG (exp, 1);
|
||
tree arg3 = CALL_EXPR_ARG (exp, 2);
|
||
|
||
unsigned int arg1_align = get_pointer_alignment (arg1) / BITS_PER_UNIT;
|
||
unsigned int arg2_align = get_pointer_alignment (arg2) / BITS_PER_UNIT;
|
||
|
||
tree len1 = c_strlen (arg1, 1);
|
||
tree len2 = c_strlen (arg2, 1);
|
||
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
if (len1)
|
||
len1 = size_binop_loc (loc, PLUS_EXPR, ssize_int (1), len1);
|
||
if (len2)
|
||
len2 = size_binop_loc (loc, PLUS_EXPR, ssize_int (1), len2);
|
||
|
||
tree len3 = fold_convert_loc (loc, sizetype, arg3);
|
||
|
||
/* If we don't have a constant length for the first, use the length
|
||
of the second, if we know it. If neither string is constant length,
|
||
use the given length argument. We don't require a constant for
|
||
this case; some cost analysis could be done if both are available
|
||
but neither is constant. For now, assume they're equally cheap,
|
||
unless one has side effects. If both strings have constant lengths,
|
||
use the smaller. */
|
||
|
||
if (!len1 && !len2)
|
||
len = len3;
|
||
else if (!len1)
|
||
len = len2;
|
||
else if (!len2)
|
||
len = len1;
|
||
else if (TREE_SIDE_EFFECTS (len1))
|
||
len = len2;
|
||
else if (TREE_SIDE_EFFECTS (len2))
|
||
len = len1;
|
||
else if (TREE_CODE (len1) != INTEGER_CST)
|
||
len = len2;
|
||
else if (TREE_CODE (len2) != INTEGER_CST)
|
||
len = len1;
|
||
else if (tree_int_cst_lt (len1, len2))
|
||
len = len1;
|
||
else
|
||
len = len2;
|
||
|
||
/* If we are not using the given length, we must incorporate it here.
|
||
The actual new length parameter will be MIN(len,arg3) in this case. */
|
||
if (len != len3)
|
||
{
|
||
len = fold_convert_loc (loc, sizetype, len);
|
||
len = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (len), len, len3);
|
||
}
|
||
rtx arg1_rtx = get_memory_rtx (arg1, len);
|
||
rtx arg2_rtx = get_memory_rtx (arg2, len);
|
||
rtx arg3_rtx = expand_normal (len);
|
||
result = expand_cmpstrn_or_cmpmem (cmpstrn_icode, target, arg1_rtx,
|
||
arg2_rtx, TREE_TYPE (len), arg3_rtx,
|
||
MIN (arg1_align, arg2_align));
|
||
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
if (result)
|
||
{
|
||
/* Check to see if the argument was declared attribute nonstring
|
||
and if so, issue a warning since at this point it's not known
|
||
to be nul-terminated. */
|
||
maybe_warn_nonstring_arg (fndecl, exp);
|
||
|
||
/* Return the value in the proper mode for this function. */
|
||
mode = TYPE_MODE (TREE_TYPE (exp));
|
||
if (GET_MODE (result) == mode)
|
||
return result;
|
||
if (target == 0)
|
||
return convert_to_mode (mode, result, 0);
|
||
convert_move (target, result, 0);
|
||
return target;
|
||
}
|
||
|
||
/* Expand the library call ourselves using a stabilized argument
|
||
list to avoid re-evaluating the function's arguments twice. */
|
||
tree fn = build_call_nofold_loc (loc, fndecl, 3, arg1, arg2, len);
|
||
gcc_assert (TREE_CODE (fn) == CALL_EXPR);
|
||
CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
|
||
return expand_call (fn, target, target == const0_rtx);
|
||
}
|
||
|
||
/* Expand a call to __builtin_saveregs, generating the result in TARGET,
|
||
if that's convenient. */
|
||
|
||
rtx
|
||
expand_builtin_saveregs (void)
|
||
{
|
||
rtx val;
|
||
rtx_insn *seq;
|
||
|
||
/* Don't do __builtin_saveregs more than once in a function.
|
||
Save the result of the first call and reuse it. */
|
||
if (saveregs_value != 0)
|
||
return saveregs_value;
|
||
|
||
/* When this function is called, it means that registers must be
|
||
saved on entry to this function. So we migrate the call to the
|
||
first insn of this function. */
|
||
|
||
start_sequence ();
|
||
|
||
/* Do whatever the machine needs done in this case. */
|
||
val = targetm.calls.expand_builtin_saveregs ();
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
saveregs_value = val;
|
||
|
||
/* Put the insns after the NOTE that starts the function. If this
|
||
is inside a start_sequence, make the outer-level insn chain current, so
|
||
the code is placed at the start of the function. */
|
||
push_topmost_sequence ();
|
||
emit_insn_after (seq, entry_of_function ());
|
||
pop_topmost_sequence ();
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Expand a call to __builtin_next_arg. */
|
||
|
||
static rtx
|
||
expand_builtin_next_arg (void)
|
||
{
|
||
/* Checking arguments is already done in fold_builtin_next_arg
|
||
that must be called before this function. */
|
||
return expand_binop (ptr_mode, add_optab,
|
||
crtl->args.internal_arg_pointer,
|
||
crtl->args.arg_offset_rtx,
|
||
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
/* Make it easier for the backends by protecting the valist argument
|
||
from multiple evaluations. */
|
||
|
||
static tree
|
||
stabilize_va_list_loc (location_t loc, tree valist, int needs_lvalue)
|
||
{
|
||
tree vatype = targetm.canonical_va_list_type (TREE_TYPE (valist));
|
||
|
||
/* The current way of determining the type of valist is completely
|
||
bogus. We should have the information on the va builtin instead. */
|
||
if (!vatype)
|
||
vatype = targetm.fn_abi_va_list (cfun->decl);
|
||
|
||
if (TREE_CODE (vatype) == ARRAY_TYPE)
|
||
{
|
||
if (TREE_SIDE_EFFECTS (valist))
|
||
valist = save_expr (valist);
|
||
|
||
/* For this case, the backends will be expecting a pointer to
|
||
vatype, but it's possible we've actually been given an array
|
||
(an actual TARGET_CANONICAL_VA_LIST_TYPE (valist)).
|
||
So fix it. */
|
||
if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE)
|
||
{
|
||
tree p1 = build_pointer_type (TREE_TYPE (vatype));
|
||
valist = build_fold_addr_expr_with_type_loc (loc, valist, p1);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree pt = build_pointer_type (vatype);
|
||
|
||
if (! needs_lvalue)
|
||
{
|
||
if (! TREE_SIDE_EFFECTS (valist))
|
||
return valist;
|
||
|
||
valist = fold_build1_loc (loc, ADDR_EXPR, pt, valist);
|
||
TREE_SIDE_EFFECTS (valist) = 1;
|
||
}
|
||
|
||
if (TREE_SIDE_EFFECTS (valist))
|
||
valist = save_expr (valist);
|
||
valist = fold_build2_loc (loc, MEM_REF,
|
||
vatype, valist, build_int_cst (pt, 0));
|
||
}
|
||
|
||
return valist;
|
||
}
|
||
|
||
/* The "standard" definition of va_list is void*. */
|
||
|
||
tree
|
||
std_build_builtin_va_list (void)
|
||
{
|
||
return ptr_type_node;
|
||
}
|
||
|
||
/* The "standard" abi va_list is va_list_type_node. */
|
||
|
||
tree
|
||
std_fn_abi_va_list (tree fndecl ATTRIBUTE_UNUSED)
|
||
{
|
||
return va_list_type_node;
|
||
}
|
||
|
||
/* The "standard" type of va_list is va_list_type_node. */
|
||
|
||
tree
|
||
std_canonical_va_list_type (tree type)
|
||
{
|
||
tree wtype, htype;
|
||
|
||
wtype = va_list_type_node;
|
||
htype = type;
|
||
|
||
if (TREE_CODE (wtype) == ARRAY_TYPE)
|
||
{
|
||
/* If va_list is an array type, the argument may have decayed
|
||
to a pointer type, e.g. by being passed to another function.
|
||
In that case, unwrap both types so that we can compare the
|
||
underlying records. */
|
||
if (TREE_CODE (htype) == ARRAY_TYPE
|
||
|| POINTER_TYPE_P (htype))
|
||
{
|
||
wtype = TREE_TYPE (wtype);
|
||
htype = TREE_TYPE (htype);
|
||
}
|
||
}
|
||
if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype))
|
||
return va_list_type_node;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* The "standard" implementation of va_start: just assign `nextarg' to
|
||
the variable. */
|
||
|
||
void
|
||
std_expand_builtin_va_start (tree valist, rtx nextarg)
|
||
{
|
||
rtx va_r = expand_expr (valist, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
||
convert_move (va_r, nextarg, 0);
|
||
}
|
||
|
||
/* Expand EXP, a call to __builtin_va_start. */
|
||
|
||
static rtx
|
||
expand_builtin_va_start (tree exp)
|
||
{
|
||
rtx nextarg;
|
||
tree valist;
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
if (call_expr_nargs (exp) < 2)
|
||
{
|
||
error_at (loc, "too few arguments to function %<va_start%>");
|
||
return const0_rtx;
|
||
}
|
||
|
||
if (fold_builtin_next_arg (exp, true))
|
||
return const0_rtx;
|
||
|
||
nextarg = expand_builtin_next_arg ();
|
||
valist = stabilize_va_list_loc (loc, CALL_EXPR_ARG (exp, 0), 1);
|
||
|
||
if (targetm.expand_builtin_va_start)
|
||
targetm.expand_builtin_va_start (valist, nextarg);
|
||
else
|
||
std_expand_builtin_va_start (valist, nextarg);
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Expand EXP, a call to __builtin_va_end. */
|
||
|
||
static rtx
|
||
expand_builtin_va_end (tree exp)
|
||
{
|
||
tree valist = CALL_EXPR_ARG (exp, 0);
|
||
|
||
/* Evaluate for side effects, if needed. I hate macros that don't
|
||
do that. */
|
||
if (TREE_SIDE_EFFECTS (valist))
|
||
expand_expr (valist, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Expand EXP, a call to __builtin_va_copy. We do this as a
|
||
builtin rather than just as an assignment in stdarg.h because of the
|
||
nastiness of array-type va_list types. */
|
||
|
||
static rtx
|
||
expand_builtin_va_copy (tree exp)
|
||
{
|
||
tree dst, src, t;
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
dst = CALL_EXPR_ARG (exp, 0);
|
||
src = CALL_EXPR_ARG (exp, 1);
|
||
|
||
dst = stabilize_va_list_loc (loc, dst, 1);
|
||
src = stabilize_va_list_loc (loc, src, 0);
|
||
|
||
gcc_assert (cfun != NULL && cfun->decl != NULL_TREE);
|
||
|
||
if (TREE_CODE (targetm.fn_abi_va_list (cfun->decl)) != ARRAY_TYPE)
|
||
{
|
||
t = build2 (MODIFY_EXPR, targetm.fn_abi_va_list (cfun->decl), dst, src);
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
}
|
||
else
|
||
{
|
||
rtx dstb, srcb, size;
|
||
|
||
/* Evaluate to pointers. */
|
||
dstb = expand_expr (dst, NULL_RTX, Pmode, EXPAND_NORMAL);
|
||
srcb = expand_expr (src, NULL_RTX, Pmode, EXPAND_NORMAL);
|
||
size = expand_expr (TYPE_SIZE_UNIT (targetm.fn_abi_va_list (cfun->decl)),
|
||
NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
||
|
||
dstb = convert_memory_address (Pmode, dstb);
|
||
srcb = convert_memory_address (Pmode, srcb);
|
||
|
||
/* "Dereference" to BLKmode memories. */
|
||
dstb = gen_rtx_MEM (BLKmode, dstb);
|
||
set_mem_alias_set (dstb, get_alias_set (TREE_TYPE (TREE_TYPE (dst))));
|
||
set_mem_align (dstb, TYPE_ALIGN (targetm.fn_abi_va_list (cfun->decl)));
|
||
srcb = gen_rtx_MEM (BLKmode, srcb);
|
||
set_mem_alias_set (srcb, get_alias_set (TREE_TYPE (TREE_TYPE (src))));
|
||
set_mem_align (srcb, TYPE_ALIGN (targetm.fn_abi_va_list (cfun->decl)));
|
||
|
||
/* Copy. */
|
||
emit_block_move (dstb, srcb, size, BLOCK_OP_NORMAL);
|
||
}
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Expand a call to one of the builtin functions __builtin_frame_address or
|
||
__builtin_return_address. */
|
||
|
||
static rtx
|
||
expand_builtin_frame_address (tree fndecl, tree exp)
|
||
{
|
||
/* The argument must be a nonnegative integer constant.
|
||
It counts the number of frames to scan up the stack.
|
||
The value is either the frame pointer value or the return
|
||
address saved in that frame. */
|
||
if (call_expr_nargs (exp) == 0)
|
||
/* Warning about missing arg was already issued. */
|
||
return const0_rtx;
|
||
else if (! tree_fits_uhwi_p (CALL_EXPR_ARG (exp, 0)))
|
||
{
|
||
error ("invalid argument to %qD", fndecl);
|
||
return const0_rtx;
|
||
}
|
||
else
|
||
{
|
||
/* Number of frames to scan up the stack. */
|
||
unsigned HOST_WIDE_INT count = tree_to_uhwi (CALL_EXPR_ARG (exp, 0));
|
||
|
||
rtx tem = expand_builtin_return_addr (DECL_FUNCTION_CODE (fndecl), count);
|
||
|
||
/* Some ports cannot access arbitrary stack frames. */
|
||
if (tem == NULL)
|
||
{
|
||
warning (0, "unsupported argument to %qD", fndecl);
|
||
return const0_rtx;
|
||
}
|
||
|
||
if (count)
|
||
{
|
||
/* Warn since no effort is made to ensure that any frame
|
||
beyond the current one exists or can be safely reached. */
|
||
warning (OPT_Wframe_address, "calling %qD with "
|
||
"a nonzero argument is unsafe", fndecl);
|
||
}
|
||
|
||
/* For __builtin_frame_address, return what we've got. */
|
||
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
|
||
return tem;
|
||
|
||
if (!REG_P (tem)
|
||
&& ! CONSTANT_P (tem))
|
||
tem = copy_addr_to_reg (tem);
|
||
return tem;
|
||
}
|
||
}
|
||
|
||
/* Expand EXP, a call to the alloca builtin. Return NULL_RTX if we
|
||
failed and the caller should emit a normal call. */
|
||
|
||
static rtx
|
||
expand_builtin_alloca (tree exp)
|
||
{
|
||
rtx op0;
|
||
rtx result;
|
||
unsigned int align;
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
HOST_WIDE_INT max_size;
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
bool alloca_for_var = CALL_ALLOCA_FOR_VAR_P (exp);
|
||
bool valid_arglist
|
||
= (fcode == BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX
|
||
? validate_arglist (exp, INTEGER_TYPE, INTEGER_TYPE, INTEGER_TYPE,
|
||
VOID_TYPE)
|
||
: fcode == BUILT_IN_ALLOCA_WITH_ALIGN
|
||
? validate_arglist (exp, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE)
|
||
: validate_arglist (exp, INTEGER_TYPE, VOID_TYPE));
|
||
|
||
if (!valid_arglist)
|
||
return NULL_RTX;
|
||
|
||
if ((alloca_for_var
|
||
&& warn_vla_limit >= HOST_WIDE_INT_MAX
|
||
&& warn_alloc_size_limit < warn_vla_limit)
|
||
|| (!alloca_for_var
|
||
&& warn_alloca_limit >= HOST_WIDE_INT_MAX
|
||
&& warn_alloc_size_limit < warn_alloca_limit
|
||
))
|
||
{
|
||
/* -Walloca-larger-than and -Wvla-larger-than settings of
|
||
less than HOST_WIDE_INT_MAX override the more general
|
||
-Walloc-size-larger-than so unless either of the former
|
||
options is smaller than the last one (wchich would imply
|
||
that the call was already checked), check the alloca
|
||
arguments for overflow. */
|
||
tree args[] = { CALL_EXPR_ARG (exp, 0), NULL_TREE };
|
||
int idx[] = { 0, -1 };
|
||
maybe_warn_alloc_args_overflow (fndecl, exp, args, idx);
|
||
}
|
||
|
||
/* Compute the argument. */
|
||
op0 = expand_normal (CALL_EXPR_ARG (exp, 0));
|
||
|
||
/* Compute the alignment. */
|
||
align = (fcode == BUILT_IN_ALLOCA
|
||
? BIGGEST_ALIGNMENT
|
||
: TREE_INT_CST_LOW (CALL_EXPR_ARG (exp, 1)));
|
||
|
||
/* Compute the maximum size. */
|
||
max_size = (fcode == BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX
|
||
? TREE_INT_CST_LOW (CALL_EXPR_ARG (exp, 2))
|
||
: -1);
|
||
|
||
/* Allocate the desired space. If the allocation stems from the declaration
|
||
of a variable-sized object, it cannot accumulate. */
|
||
result
|
||
= allocate_dynamic_stack_space (op0, 0, align, max_size, alloca_for_var);
|
||
result = convert_memory_address (ptr_mode, result);
|
||
|
||
/* Dynamic allocations for variables are recorded during gimplification. */
|
||
if (!alloca_for_var && (flag_callgraph_info & CALLGRAPH_INFO_DYNAMIC_ALLOC))
|
||
record_dynamic_alloc (exp);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Emit a call to __asan_allocas_unpoison call in EXP. Add to second argument
|
||
of the call virtual_stack_dynamic_rtx - stack_pointer_rtx, which is the
|
||
STACK_DYNAMIC_OFFSET value. See motivation for this in comment to
|
||
handle_builtin_stack_restore function. */
|
||
|
||
static rtx
|
||
expand_asan_emit_allocas_unpoison (tree exp)
|
||
{
|
||
tree arg0 = CALL_EXPR_ARG (exp, 0);
|
||
tree arg1 = CALL_EXPR_ARG (exp, 1);
|
||
rtx top = expand_expr (arg0, NULL_RTX, ptr_mode, EXPAND_NORMAL);
|
||
rtx bot = expand_expr (arg1, NULL_RTX, ptr_mode, EXPAND_NORMAL);
|
||
rtx off = expand_simple_binop (Pmode, MINUS, virtual_stack_dynamic_rtx,
|
||
stack_pointer_rtx, NULL_RTX, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
off = convert_modes (ptr_mode, Pmode, off, 0);
|
||
bot = expand_simple_binop (ptr_mode, PLUS, bot, off, NULL_RTX, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
rtx ret = init_one_libfunc ("__asan_allocas_unpoison");
|
||
ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
|
||
top, ptr_mode, bot, ptr_mode);
|
||
return ret;
|
||
}
|
||
|
||
/* Expand a call to bswap builtin in EXP.
|
||
Return NULL_RTX if a normal call should be emitted rather than expanding the
|
||
function in-line. If convenient, the result should be placed in TARGET.
|
||
SUBTARGET may be used as the target for computing one of EXP's operands. */
|
||
|
||
static rtx
|
||
expand_builtin_bswap (machine_mode target_mode, tree exp, rtx target,
|
||
rtx subtarget)
|
||
{
|
||
tree arg;
|
||
rtx op0;
|
||
|
||
if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
op0 = expand_expr (arg,
|
||
subtarget && GET_MODE (subtarget) == target_mode
|
||
? subtarget : NULL_RTX,
|
||
target_mode, EXPAND_NORMAL);
|
||
if (GET_MODE (op0) != target_mode)
|
||
op0 = convert_to_mode (target_mode, op0, 1);
|
||
|
||
target = expand_unop (target_mode, bswap_optab, op0, target, 1);
|
||
|
||
gcc_assert (target);
|
||
|
||
return convert_to_mode (target_mode, target, 1);
|
||
}
|
||
|
||
/* Expand a call to a unary builtin in EXP.
|
||
Return NULL_RTX if a normal call should be emitted rather than expanding the
|
||
function in-line. If convenient, the result should be placed in TARGET.
|
||
SUBTARGET may be used as the target for computing one of EXP's operands. */
|
||
|
||
static rtx
|
||
expand_builtin_unop (machine_mode target_mode, tree exp, rtx target,
|
||
rtx subtarget, optab op_optab)
|
||
{
|
||
rtx op0;
|
||
|
||
if (!validate_arglist (exp, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
/* Compute the argument. */
|
||
op0 = expand_expr (CALL_EXPR_ARG (exp, 0),
|
||
(subtarget
|
||
&& (TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 0)))
|
||
== GET_MODE (subtarget))) ? subtarget : NULL_RTX,
|
||
VOIDmode, EXPAND_NORMAL);
|
||
/* Compute op, into TARGET if possible.
|
||
Set TARGET to wherever the result comes back. */
|
||
target = expand_unop (TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (exp, 0))),
|
||
op_optab, op0, target, op_optab != clrsb_optab);
|
||
gcc_assert (target);
|
||
|
||
return convert_to_mode (target_mode, target, 0);
|
||
}
|
||
|
||
/* Expand a call to __builtin_expect. We just return our argument
|
||
as the builtin_expect semantic should've been already executed by
|
||
tree branch prediction pass. */
|
||
|
||
static rtx
|
||
expand_builtin_expect (tree exp, rtx target)
|
||
{
|
||
tree arg;
|
||
|
||
if (call_expr_nargs (exp) < 2)
|
||
return const0_rtx;
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
|
||
target = expand_expr (arg, target, VOIDmode, EXPAND_NORMAL);
|
||
/* When guessing was done, the hints should be already stripped away. */
|
||
gcc_assert (!flag_guess_branch_prob
|
||
|| optimize == 0 || seen_error ());
|
||
return target;
|
||
}
|
||
|
||
/* Expand a call to __builtin_expect_with_probability. We just return our
|
||
argument as the builtin_expect semantic should've been already executed by
|
||
tree branch prediction pass. */
|
||
|
||
static rtx
|
||
expand_builtin_expect_with_probability (tree exp, rtx target)
|
||
{
|
||
tree arg;
|
||
|
||
if (call_expr_nargs (exp) < 3)
|
||
return const0_rtx;
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
|
||
target = expand_expr (arg, target, VOIDmode, EXPAND_NORMAL);
|
||
/* When guessing was done, the hints should be already stripped away. */
|
||
gcc_assert (!flag_guess_branch_prob
|
||
|| optimize == 0 || seen_error ());
|
||
return target;
|
||
}
|
||
|
||
|
||
/* Expand a call to __builtin_assume_aligned. We just return our first
|
||
argument as the builtin_assume_aligned semantic should've been already
|
||
executed by CCP. */
|
||
|
||
static rtx
|
||
expand_builtin_assume_aligned (tree exp, rtx target)
|
||
{
|
||
if (call_expr_nargs (exp) < 2)
|
||
return const0_rtx;
|
||
target = expand_expr (CALL_EXPR_ARG (exp, 0), target, VOIDmode,
|
||
EXPAND_NORMAL);
|
||
gcc_assert (!TREE_SIDE_EFFECTS (CALL_EXPR_ARG (exp, 1))
|
||
&& (call_expr_nargs (exp) < 3
|
||
|| !TREE_SIDE_EFFECTS (CALL_EXPR_ARG (exp, 2))));
|
||
return target;
|
||
}
|
||
|
||
void
|
||
expand_builtin_trap (void)
|
||
{
|
||
if (targetm.have_trap ())
|
||
{
|
||
rtx_insn *insn = emit_insn (targetm.gen_trap ());
|
||
/* For trap insns when not accumulating outgoing args force
|
||
REG_ARGS_SIZE note to prevent crossjumping of calls with
|
||
different args sizes. */
|
||
if (!ACCUMULATE_OUTGOING_ARGS)
|
||
add_args_size_note (insn, stack_pointer_delta);
|
||
}
|
||
else
|
||
{
|
||
tree fn = builtin_decl_implicit (BUILT_IN_ABORT);
|
||
tree call_expr = build_call_expr (fn, 0);
|
||
expand_call (call_expr, NULL_RTX, false);
|
||
}
|
||
|
||
emit_barrier ();
|
||
}
|
||
|
||
/* Expand a call to __builtin_unreachable. We do nothing except emit
|
||
a barrier saying that control flow will not pass here.
|
||
|
||
It is the responsibility of the program being compiled to ensure
|
||
that control flow does never reach __builtin_unreachable. */
|
||
static void
|
||
expand_builtin_unreachable (void)
|
||
{
|
||
emit_barrier ();
|
||
}
|
||
|
||
/* Expand EXP, a call to fabs, fabsf or fabsl.
|
||
Return NULL_RTX if a normal call should be emitted rather than expanding
|
||
the function inline. If convenient, the result should be placed
|
||
in TARGET. SUBTARGET may be used as the target for computing
|
||
the operand. */
|
||
|
||
static rtx
|
||
expand_builtin_fabs (tree exp, rtx target, rtx subtarget)
|
||
{
|
||
machine_mode mode;
|
||
tree arg;
|
||
rtx op0;
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
|
||
mode = TYPE_MODE (TREE_TYPE (arg));
|
||
op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
|
||
return expand_abs (mode, op0, target, 0, safe_from_p (target, arg, 1));
|
||
}
|
||
|
||
/* Expand EXP, a call to copysign, copysignf, or copysignl.
|
||
Return NULL is a normal call should be emitted rather than expanding the
|
||
function inline. If convenient, the result should be placed in TARGET.
|
||
SUBTARGET may be used as the target for computing the operand. */
|
||
|
||
static rtx
|
||
expand_builtin_copysign (tree exp, rtx target, rtx subtarget)
|
||
{
|
||
rtx op0, op1;
|
||
tree arg;
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE, REAL_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
|
||
|
||
arg = CALL_EXPR_ARG (exp, 1);
|
||
op1 = expand_normal (arg);
|
||
|
||
return expand_copysign (op0, op1, target);
|
||
}
|
||
|
||
/* Expand a call to __builtin___clear_cache. */
|
||
|
||
static rtx
|
||
expand_builtin___clear_cache (tree exp)
|
||
{
|
||
if (!targetm.code_for_clear_cache)
|
||
{
|
||
#ifdef CLEAR_INSN_CACHE
|
||
/* There is no "clear_cache" insn, and __clear_cache() in libgcc
|
||
does something. Just do the default expansion to a call to
|
||
__clear_cache(). */
|
||
return NULL_RTX;
|
||
#else
|
||
/* There is no "clear_cache" insn, and __clear_cache() in libgcc
|
||
does nothing. There is no need to call it. Do nothing. */
|
||
return const0_rtx;
|
||
#endif /* CLEAR_INSN_CACHE */
|
||
}
|
||
|
||
/* We have a "clear_cache" insn, and it will handle everything. */
|
||
tree begin, end;
|
||
rtx begin_rtx, end_rtx;
|
||
|
||
/* We must not expand to a library call. If we did, any
|
||
fallback library function in libgcc that might contain a call to
|
||
__builtin___clear_cache() would recurse infinitely. */
|
||
if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
|
||
{
|
||
error ("both arguments to %<__builtin___clear_cache%> must be pointers");
|
||
return const0_rtx;
|
||
}
|
||
|
||
if (targetm.have_clear_cache ())
|
||
{
|
||
class expand_operand ops[2];
|
||
|
||
begin = CALL_EXPR_ARG (exp, 0);
|
||
begin_rtx = expand_expr (begin, NULL_RTX, Pmode, EXPAND_NORMAL);
|
||
|
||
end = CALL_EXPR_ARG (exp, 1);
|
||
end_rtx = expand_expr (end, NULL_RTX, Pmode, EXPAND_NORMAL);
|
||
|
||
create_address_operand (&ops[0], begin_rtx);
|
||
create_address_operand (&ops[1], end_rtx);
|
||
if (maybe_expand_insn (targetm.code_for_clear_cache, 2, ops))
|
||
return const0_rtx;
|
||
}
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Given a trampoline address, make sure it satisfies TRAMPOLINE_ALIGNMENT. */
|
||
|
||
static rtx
|
||
round_trampoline_addr (rtx tramp)
|
||
{
|
||
rtx temp, addend, mask;
|
||
|
||
/* If we don't need too much alignment, we'll have been guaranteed
|
||
proper alignment by get_trampoline_type. */
|
||
if (TRAMPOLINE_ALIGNMENT <= STACK_BOUNDARY)
|
||
return tramp;
|
||
|
||
/* Round address up to desired boundary. */
|
||
temp = gen_reg_rtx (Pmode);
|
||
addend = gen_int_mode (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1, Pmode);
|
||
mask = gen_int_mode (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT, Pmode);
|
||
|
||
temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
|
||
temp, 0, OPTAB_LIB_WIDEN);
|
||
tramp = expand_simple_binop (Pmode, AND, temp, mask,
|
||
temp, 0, OPTAB_LIB_WIDEN);
|
||
|
||
return tramp;
|
||
}
|
||
|
||
static rtx
|
||
expand_builtin_init_trampoline (tree exp, bool onstack)
|
||
{
|
||
tree t_tramp, t_func, t_chain;
|
||
rtx m_tramp, r_tramp, r_chain, tmp;
|
||
|
||
if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE,
|
||
POINTER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
t_tramp = CALL_EXPR_ARG (exp, 0);
|
||
t_func = CALL_EXPR_ARG (exp, 1);
|
||
t_chain = CALL_EXPR_ARG (exp, 2);
|
||
|
||
r_tramp = expand_normal (t_tramp);
|
||
m_tramp = gen_rtx_MEM (BLKmode, r_tramp);
|
||
MEM_NOTRAP_P (m_tramp) = 1;
|
||
|
||
/* If ONSTACK, the TRAMP argument should be the address of a field
|
||
within the local function's FRAME decl. Either way, let's see if
|
||
we can fill in the MEM_ATTRs for this memory. */
|
||
if (TREE_CODE (t_tramp) == ADDR_EXPR)
|
||
set_mem_attributes (m_tramp, TREE_OPERAND (t_tramp, 0), true);
|
||
|
||
/* Creator of a heap trampoline is responsible for making sure the
|
||
address is aligned to at least STACK_BOUNDARY. Normally malloc
|
||
will ensure this anyhow. */
|
||
tmp = round_trampoline_addr (r_tramp);
|
||
if (tmp != r_tramp)
|
||
{
|
||
m_tramp = change_address (m_tramp, BLKmode, tmp);
|
||
set_mem_align (m_tramp, TRAMPOLINE_ALIGNMENT);
|
||
set_mem_size (m_tramp, TRAMPOLINE_SIZE);
|
||
}
|
||
|
||
/* The FUNC argument should be the address of the nested function.
|
||
Extract the actual function decl to pass to the hook. */
|
||
gcc_assert (TREE_CODE (t_func) == ADDR_EXPR);
|
||
t_func = TREE_OPERAND (t_func, 0);
|
||
gcc_assert (TREE_CODE (t_func) == FUNCTION_DECL);
|
||
|
||
r_chain = expand_normal (t_chain);
|
||
|
||
/* Generate insns to initialize the trampoline. */
|
||
targetm.calls.trampoline_init (m_tramp, t_func, r_chain);
|
||
|
||
if (onstack)
|
||
{
|
||
trampolines_created = 1;
|
||
|
||
if (targetm.calls.custom_function_descriptors != 0)
|
||
warning_at (DECL_SOURCE_LOCATION (t_func), OPT_Wtrampolines,
|
||
"trampoline generated for nested function %qD", t_func);
|
||
}
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
static rtx
|
||
expand_builtin_adjust_trampoline (tree exp)
|
||
{
|
||
rtx tramp;
|
||
|
||
if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tramp = expand_normal (CALL_EXPR_ARG (exp, 0));
|
||
tramp = round_trampoline_addr (tramp);
|
||
if (targetm.calls.trampoline_adjust_address)
|
||
tramp = targetm.calls.trampoline_adjust_address (tramp);
|
||
|
||
return tramp;
|
||
}
|
||
|
||
/* Expand a call to the builtin descriptor initialization routine.
|
||
A descriptor is made up of a couple of pointers to the static
|
||
chain and the code entry in this order. */
|
||
|
||
static rtx
|
||
expand_builtin_init_descriptor (tree exp)
|
||
{
|
||
tree t_descr, t_func, t_chain;
|
||
rtx m_descr, r_descr, r_func, r_chain;
|
||
|
||
if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, POINTER_TYPE,
|
||
VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
t_descr = CALL_EXPR_ARG (exp, 0);
|
||
t_func = CALL_EXPR_ARG (exp, 1);
|
||
t_chain = CALL_EXPR_ARG (exp, 2);
|
||
|
||
r_descr = expand_normal (t_descr);
|
||
m_descr = gen_rtx_MEM (BLKmode, r_descr);
|
||
MEM_NOTRAP_P (m_descr) = 1;
|
||
set_mem_align (m_descr, GET_MODE_ALIGNMENT (ptr_mode));
|
||
|
||
r_func = expand_normal (t_func);
|
||
r_chain = expand_normal (t_chain);
|
||
|
||
/* Generate insns to initialize the descriptor. */
|
||
emit_move_insn (adjust_address_nv (m_descr, ptr_mode, 0), r_chain);
|
||
emit_move_insn (adjust_address_nv (m_descr, ptr_mode,
|
||
POINTER_SIZE / BITS_PER_UNIT), r_func);
|
||
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Expand a call to the builtin descriptor adjustment routine. */
|
||
|
||
static rtx
|
||
expand_builtin_adjust_descriptor (tree exp)
|
||
{
|
||
rtx tramp;
|
||
|
||
if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tramp = expand_normal (CALL_EXPR_ARG (exp, 0));
|
||
|
||
/* Unalign the descriptor to allow runtime identification. */
|
||
tramp = plus_constant (ptr_mode, tramp,
|
||
targetm.calls.custom_function_descriptors);
|
||
|
||
return force_operand (tramp, NULL_RTX);
|
||
}
|
||
|
||
/* Expand the call EXP to the built-in signbit, signbitf or signbitl
|
||
function. The function first checks whether the back end provides
|
||
an insn to implement signbit for the respective mode. If not, it
|
||
checks whether the floating point format of the value is such that
|
||
the sign bit can be extracted. If that is not the case, error out.
|
||
EXP is the expression that is a call to the builtin function; if
|
||
convenient, the result should be placed in TARGET. */
|
||
static rtx
|
||
expand_builtin_signbit (tree exp, rtx target)
|
||
{
|
||
const struct real_format *fmt;
|
||
scalar_float_mode fmode;
|
||
scalar_int_mode rmode, imode;
|
||
tree arg;
|
||
int word, bitpos;
|
||
enum insn_code icode;
|
||
rtx temp;
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
fmode = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (arg));
|
||
rmode = SCALAR_INT_TYPE_MODE (TREE_TYPE (exp));
|
||
fmt = REAL_MODE_FORMAT (fmode);
|
||
|
||
arg = builtin_save_expr (arg);
|
||
|
||
/* Expand the argument yielding a RTX expression. */
|
||
temp = expand_normal (arg);
|
||
|
||
/* Check if the back end provides an insn that handles signbit for the
|
||
argument's mode. */
|
||
icode = optab_handler (signbit_optab, fmode);
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
rtx_insn *last = get_last_insn ();
|
||
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
|
||
if (maybe_emit_unop_insn (icode, target, temp, UNKNOWN))
|
||
return target;
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* For floating point formats without a sign bit, implement signbit
|
||
as "ARG < 0.0". */
|
||
bitpos = fmt->signbit_ro;
|
||
if (bitpos < 0)
|
||
{
|
||
/* But we can't do this if the format supports signed zero. */
|
||
gcc_assert (!fmt->has_signed_zero || !HONOR_SIGNED_ZEROS (fmode));
|
||
|
||
arg = fold_build2_loc (loc, LT_EXPR, TREE_TYPE (exp), arg,
|
||
build_real (TREE_TYPE (arg), dconst0));
|
||
return expand_expr (arg, target, VOIDmode, EXPAND_NORMAL);
|
||
}
|
||
|
||
if (GET_MODE_SIZE (fmode) <= UNITS_PER_WORD)
|
||
{
|
||
imode = int_mode_for_mode (fmode).require ();
|
||
temp = gen_lowpart (imode, temp);
|
||
}
|
||
else
|
||
{
|
||
imode = word_mode;
|
||
/* Handle targets with different FP word orders. */
|
||
if (FLOAT_WORDS_BIG_ENDIAN)
|
||
word = (GET_MODE_BITSIZE (fmode) - bitpos) / BITS_PER_WORD;
|
||
else
|
||
word = bitpos / BITS_PER_WORD;
|
||
temp = operand_subword_force (temp, word, fmode);
|
||
bitpos = bitpos % BITS_PER_WORD;
|
||
}
|
||
|
||
/* Force the intermediate word_mode (or narrower) result into a
|
||
register. This avoids attempting to create paradoxical SUBREGs
|
||
of floating point modes below. */
|
||
temp = force_reg (imode, temp);
|
||
|
||
/* If the bitpos is within the "result mode" lowpart, the operation
|
||
can be implement with a single bitwise AND. Otherwise, we need
|
||
a right shift and an AND. */
|
||
|
||
if (bitpos < GET_MODE_BITSIZE (rmode))
|
||
{
|
||
wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (rmode));
|
||
|
||
if (GET_MODE_SIZE (imode) > GET_MODE_SIZE (rmode))
|
||
temp = gen_lowpart (rmode, temp);
|
||
temp = expand_binop (rmode, and_optab, temp,
|
||
immed_wide_int_const (mask, rmode),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
}
|
||
else
|
||
{
|
||
/* Perform a logical right shift to place the signbit in the least
|
||
significant bit, then truncate the result to the desired mode
|
||
and mask just this bit. */
|
||
temp = expand_shift (RSHIFT_EXPR, imode, temp, bitpos, NULL_RTX, 1);
|
||
temp = gen_lowpart (rmode, temp);
|
||
temp = expand_binop (rmode, and_optab, temp, const1_rtx,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
return temp;
|
||
}
|
||
|
||
/* Expand fork or exec calls. TARGET is the desired target of the
|
||
call. EXP is the call. FN is the
|
||
identificator of the actual function. IGNORE is nonzero if the
|
||
value is to be ignored. */
|
||
|
||
static rtx
|
||
expand_builtin_fork_or_exec (tree fn, tree exp, rtx target, int ignore)
|
||
{
|
||
tree id, decl;
|
||
tree call;
|
||
|
||
/* If we are not profiling, just call the function. */
|
||
if (!profile_arc_flag)
|
||
return NULL_RTX;
|
||
|
||
/* Otherwise call the wrapper. This should be equivalent for the rest of
|
||
compiler, so the code does not diverge, and the wrapper may run the
|
||
code necessary for keeping the profiling sane. */
|
||
|
||
switch (DECL_FUNCTION_CODE (fn))
|
||
{
|
||
case BUILT_IN_FORK:
|
||
id = get_identifier ("__gcov_fork");
|
||
break;
|
||
|
||
case BUILT_IN_EXECL:
|
||
id = get_identifier ("__gcov_execl");
|
||
break;
|
||
|
||
case BUILT_IN_EXECV:
|
||
id = get_identifier ("__gcov_execv");
|
||
break;
|
||
|
||
case BUILT_IN_EXECLP:
|
||
id = get_identifier ("__gcov_execlp");
|
||
break;
|
||
|
||
case BUILT_IN_EXECLE:
|
||
id = get_identifier ("__gcov_execle");
|
||
break;
|
||
|
||
case BUILT_IN_EXECVP:
|
||
id = get_identifier ("__gcov_execvp");
|
||
break;
|
||
|
||
case BUILT_IN_EXECVE:
|
||
id = get_identifier ("__gcov_execve");
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
decl = build_decl (DECL_SOURCE_LOCATION (fn),
|
||
FUNCTION_DECL, id, TREE_TYPE (fn));
|
||
DECL_EXTERNAL (decl) = 1;
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
TREE_NOTHROW (decl) = 1;
|
||
DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
|
||
DECL_VISIBILITY_SPECIFIED (decl) = 1;
|
||
call = rewrite_call_expr (EXPR_LOCATION (exp), exp, 0, decl, 0);
|
||
return expand_call (call, target, ignore);
|
||
}
|
||
|
||
|
||
|
||
/* Reconstitute a mode for a __sync intrinsic operation. Since the type of
|
||
the pointer in these functions is void*, the tree optimizers may remove
|
||
casts. The mode computed in expand_builtin isn't reliable either, due
|
||
to __sync_bool_compare_and_swap.
|
||
|
||
FCODE_DIFF should be fcode - base, where base is the FOO_1 code for the
|
||
group of builtins. This gives us log2 of the mode size. */
|
||
|
||
static inline machine_mode
|
||
get_builtin_sync_mode (int fcode_diff)
|
||
{
|
||
/* The size is not negotiable, so ask not to get BLKmode in return
|
||
if the target indicates that a smaller size would be better. */
|
||
return int_mode_for_size (BITS_PER_UNIT << fcode_diff, 0).require ();
|
||
}
|
||
|
||
/* Expand the memory expression LOC and return the appropriate memory operand
|
||
for the builtin_sync operations. */
|
||
|
||
static rtx
|
||
get_builtin_sync_mem (tree loc, machine_mode mode)
|
||
{
|
||
rtx addr, mem;
|
||
int addr_space = TYPE_ADDR_SPACE (POINTER_TYPE_P (TREE_TYPE (loc))
|
||
? TREE_TYPE (TREE_TYPE (loc))
|
||
: TREE_TYPE (loc));
|
||
scalar_int_mode addr_mode = targetm.addr_space.address_mode (addr_space);
|
||
|
||
addr = expand_expr (loc, NULL_RTX, addr_mode, EXPAND_SUM);
|
||
addr = convert_memory_address (addr_mode, addr);
|
||
|
||
/* Note that we explicitly do not want any alias information for this
|
||
memory, so that we kill all other live memories. Otherwise we don't
|
||
satisfy the full barrier semantics of the intrinsic. */
|
||
mem = gen_rtx_MEM (mode, addr);
|
||
|
||
set_mem_addr_space (mem, addr_space);
|
||
|
||
mem = validize_mem (mem);
|
||
|
||
/* The alignment needs to be at least according to that of the mode. */
|
||
set_mem_align (mem, MAX (GET_MODE_ALIGNMENT (mode),
|
||
get_pointer_alignment (loc)));
|
||
set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
|
||
MEM_VOLATILE_P (mem) = 1;
|
||
|
||
return mem;
|
||
}
|
||
|
||
/* Make sure an argument is in the right mode.
|
||
EXP is the tree argument.
|
||
MODE is the mode it should be in. */
|
||
|
||
static rtx
|
||
expand_expr_force_mode (tree exp, machine_mode mode)
|
||
{
|
||
rtx val;
|
||
machine_mode old_mode;
|
||
|
||
val = expand_expr (exp, NULL_RTX, mode, EXPAND_NORMAL);
|
||
/* If VAL is promoted to a wider mode, convert it back to MODE. Take care
|
||
of CONST_INTs, where we know the old_mode only from the call argument. */
|
||
|
||
old_mode = GET_MODE (val);
|
||
if (old_mode == VOIDmode)
|
||
old_mode = TYPE_MODE (TREE_TYPE (exp));
|
||
val = convert_modes (mode, old_mode, val, 1);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Expand the __sync_xxx_and_fetch and __sync_fetch_and_xxx intrinsics.
|
||
EXP is the CALL_EXPR. CODE is the rtx code
|
||
that corresponds to the arithmetic or logical operation from the name;
|
||
an exception here is that NOT actually means NAND. TARGET is an optional
|
||
place for us to store the results; AFTER is true if this is the
|
||
fetch_and_xxx form. */
|
||
|
||
static rtx
|
||
expand_builtin_sync_operation (machine_mode mode, tree exp,
|
||
enum rtx_code code, bool after,
|
||
rtx target)
|
||
{
|
||
rtx val, mem;
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
if (code == NOT && warn_sync_nand)
|
||
{
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
|
||
static bool warned_f_a_n, warned_n_a_f;
|
||
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_1:
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_2:
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_4:
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_8:
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_16:
|
||
if (warned_f_a_n)
|
||
break;
|
||
|
||
fndecl = builtin_decl_implicit (BUILT_IN_SYNC_FETCH_AND_NAND_N);
|
||
inform (loc, "%qD changed semantics in GCC 4.4", fndecl);
|
||
warned_f_a_n = true;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_1:
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_2:
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_4:
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_8:
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_16:
|
||
if (warned_n_a_f)
|
||
break;
|
||
|
||
fndecl = builtin_decl_implicit (BUILT_IN_SYNC_NAND_AND_FETCH_N);
|
||
inform (loc, "%qD changed semantics in GCC 4.4", fndecl);
|
||
warned_n_a_f = true;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Expand the operands. */
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode);
|
||
|
||
return expand_atomic_fetch_op (target, mem, val, code, MEMMODEL_SYNC_SEQ_CST,
|
||
after);
|
||
}
|
||
|
||
/* Expand the __sync_val_compare_and_swap and __sync_bool_compare_and_swap
|
||
intrinsics. EXP is the CALL_EXPR. IS_BOOL is
|
||
true if this is the boolean form. TARGET is a place for us to store the
|
||
results; this is NOT optional if IS_BOOL is true. */
|
||
|
||
static rtx
|
||
expand_builtin_compare_and_swap (machine_mode mode, tree exp,
|
||
bool is_bool, rtx target)
|
||
{
|
||
rtx old_val, new_val, mem;
|
||
rtx *pbool, *poval;
|
||
|
||
/* Expand the operands. */
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
old_val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode);
|
||
new_val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 2), mode);
|
||
|
||
pbool = poval = NULL;
|
||
if (target != const0_rtx)
|
||
{
|
||
if (is_bool)
|
||
pbool = ⌖
|
||
else
|
||
poval = ⌖
|
||
}
|
||
if (!expand_atomic_compare_and_swap (pbool, poval, mem, old_val, new_val,
|
||
false, MEMMODEL_SYNC_SEQ_CST,
|
||
MEMMODEL_SYNC_SEQ_CST))
|
||
return NULL_RTX;
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Expand the __sync_lock_test_and_set intrinsic. Note that the most
|
||
general form is actually an atomic exchange, and some targets only
|
||
support a reduced form with the second argument being a constant 1.
|
||
EXP is the CALL_EXPR; TARGET is an optional place for us to store
|
||
the results. */
|
||
|
||
static rtx
|
||
expand_builtin_sync_lock_test_and_set (machine_mode mode, tree exp,
|
||
rtx target)
|
||
{
|
||
rtx val, mem;
|
||
|
||
/* Expand the operands. */
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode);
|
||
|
||
return expand_sync_lock_test_and_set (target, mem, val);
|
||
}
|
||
|
||
/* Expand the __sync_lock_release intrinsic. EXP is the CALL_EXPR. */
|
||
|
||
static void
|
||
expand_builtin_sync_lock_release (machine_mode mode, tree exp)
|
||
{
|
||
rtx mem;
|
||
|
||
/* Expand the operands. */
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
|
||
expand_atomic_store (mem, const0_rtx, MEMMODEL_SYNC_RELEASE, true);
|
||
}
|
||
|
||
/* Given an integer representing an ``enum memmodel'', verify its
|
||
correctness and return the memory model enum. */
|
||
|
||
static enum memmodel
|
||
get_memmodel (tree exp)
|
||
{
|
||
rtx op;
|
||
unsigned HOST_WIDE_INT val;
|
||
location_t loc
|
||
= expansion_point_location_if_in_system_header (input_location);
|
||
|
||
/* If the parameter is not a constant, it's a run time value so we'll just
|
||
convert it to MEMMODEL_SEQ_CST to avoid annoying runtime checking. */
|
||
if (TREE_CODE (exp) != INTEGER_CST)
|
||
return MEMMODEL_SEQ_CST;
|
||
|
||
op = expand_normal (exp);
|
||
|
||
val = INTVAL (op);
|
||
if (targetm.memmodel_check)
|
||
val = targetm.memmodel_check (val);
|
||
else if (val & ~MEMMODEL_MASK)
|
||
{
|
||
warning_at (loc, OPT_Winvalid_memory_model,
|
||
"unknown architecture specifier in memory model to builtin");
|
||
return MEMMODEL_SEQ_CST;
|
||
}
|
||
|
||
/* Should never see a user explicit SYNC memodel model, so >= LAST works. */
|
||
if (memmodel_base (val) >= MEMMODEL_LAST)
|
||
{
|
||
warning_at (loc, OPT_Winvalid_memory_model,
|
||
"invalid memory model argument to builtin");
|
||
return MEMMODEL_SEQ_CST;
|
||
}
|
||
|
||
/* Workaround for Bugzilla 59448. GCC doesn't track consume properly, so
|
||
be conservative and promote consume to acquire. */
|
||
if (val == MEMMODEL_CONSUME)
|
||
val = MEMMODEL_ACQUIRE;
|
||
|
||
return (enum memmodel) val;
|
||
}
|
||
|
||
/* Expand the __atomic_exchange intrinsic:
|
||
TYPE __atomic_exchange (TYPE *object, TYPE desired, enum memmodel)
|
||
EXP is the CALL_EXPR.
|
||
TARGET is an optional place for us to store the results. */
|
||
|
||
static rtx
|
||
expand_builtin_atomic_exchange (machine_mode mode, tree exp, rtx target)
|
||
{
|
||
rtx val, mem;
|
||
enum memmodel model;
|
||
|
||
model = get_memmodel (CALL_EXPR_ARG (exp, 2));
|
||
|
||
if (!flag_inline_atomics)
|
||
return NULL_RTX;
|
||
|
||
/* Expand the operands. */
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode);
|
||
|
||
return expand_atomic_exchange (target, mem, val, model);
|
||
}
|
||
|
||
/* Expand the __atomic_compare_exchange intrinsic:
|
||
bool __atomic_compare_exchange (TYPE *object, TYPE *expect,
|
||
TYPE desired, BOOL weak,
|
||
enum memmodel success,
|
||
enum memmodel failure)
|
||
EXP is the CALL_EXPR.
|
||
TARGET is an optional place for us to store the results. */
|
||
|
||
static rtx
|
||
expand_builtin_atomic_compare_exchange (machine_mode mode, tree exp,
|
||
rtx target)
|
||
{
|
||
rtx expect, desired, mem, oldval;
|
||
rtx_code_label *label;
|
||
enum memmodel success, failure;
|
||
tree weak;
|
||
bool is_weak;
|
||
location_t loc
|
||
= expansion_point_location_if_in_system_header (input_location);
|
||
|
||
success = get_memmodel (CALL_EXPR_ARG (exp, 4));
|
||
failure = get_memmodel (CALL_EXPR_ARG (exp, 5));
|
||
|
||
if (failure > success)
|
||
{
|
||
warning_at (loc, OPT_Winvalid_memory_model,
|
||
"failure memory model cannot be stronger than success "
|
||
"memory model for %<__atomic_compare_exchange%>");
|
||
success = MEMMODEL_SEQ_CST;
|
||
}
|
||
|
||
if (is_mm_release (failure) || is_mm_acq_rel (failure))
|
||
{
|
||
warning_at (loc, OPT_Winvalid_memory_model,
|
||
"invalid failure memory model for "
|
||
"%<__atomic_compare_exchange%>");
|
||
failure = MEMMODEL_SEQ_CST;
|
||
success = MEMMODEL_SEQ_CST;
|
||
}
|
||
|
||
|
||
if (!flag_inline_atomics)
|
||
return NULL_RTX;
|
||
|
||
/* Expand the operands. */
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
|
||
expect = expand_normal (CALL_EXPR_ARG (exp, 1));
|
||
expect = convert_memory_address (Pmode, expect);
|
||
expect = gen_rtx_MEM (mode, expect);
|
||
desired = expand_expr_force_mode (CALL_EXPR_ARG (exp, 2), mode);
|
||
|
||
weak = CALL_EXPR_ARG (exp, 3);
|
||
is_weak = false;
|
||
if (tree_fits_shwi_p (weak) && tree_to_shwi (weak) != 0)
|
||
is_weak = true;
|
||
|
||
if (target == const0_rtx)
|
||
target = NULL;
|
||
|
||
/* Lest the rtl backend create a race condition with an imporoper store
|
||
to memory, always create a new pseudo for OLDVAL. */
|
||
oldval = NULL;
|
||
|
||
if (!expand_atomic_compare_and_swap (&target, &oldval, mem, expect, desired,
|
||
is_weak, success, failure))
|
||
return NULL_RTX;
|
||
|
||
/* Conditionally store back to EXPECT, lest we create a race condition
|
||
with an improper store to memory. */
|
||
/* ??? With a rearrangement of atomics at the gimple level, we can handle
|
||
the normal case where EXPECT is totally private, i.e. a register. At
|
||
which point the store can be unconditional. */
|
||
label = gen_label_rtx ();
|
||
emit_cmp_and_jump_insns (target, const0_rtx, NE, NULL,
|
||
GET_MODE (target), 1, label);
|
||
emit_move_insn (expect, oldval);
|
||
emit_label (label);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Helper function for expand_ifn_atomic_compare_exchange - expand
|
||
internal ATOMIC_COMPARE_EXCHANGE call into __atomic_compare_exchange_N
|
||
call. The weak parameter must be dropped to match the expected parameter
|
||
list and the expected argument changed from value to pointer to memory
|
||
slot. */
|
||
|
||
static void
|
||
expand_ifn_atomic_compare_exchange_into_call (gcall *call, machine_mode mode)
|
||
{
|
||
unsigned int z;
|
||
vec<tree, va_gc> *vec;
|
||
|
||
vec_alloc (vec, 5);
|
||
vec->quick_push (gimple_call_arg (call, 0));
|
||
tree expected = gimple_call_arg (call, 1);
|
||
rtx x = assign_stack_temp_for_type (mode, GET_MODE_SIZE (mode),
|
||
TREE_TYPE (expected));
|
||
rtx expd = expand_expr (expected, x, mode, EXPAND_NORMAL);
|
||
if (expd != x)
|
||
emit_move_insn (x, expd);
|
||
tree v = make_tree (TREE_TYPE (expected), x);
|
||
vec->quick_push (build1 (ADDR_EXPR,
|
||
build_pointer_type (TREE_TYPE (expected)), v));
|
||
vec->quick_push (gimple_call_arg (call, 2));
|
||
/* Skip the boolean weak parameter. */
|
||
for (z = 4; z < 6; z++)
|
||
vec->quick_push (gimple_call_arg (call, z));
|
||
/* At present we only have BUILT_IN_ATOMIC_COMPARE_EXCHANGE_{1,2,4,8,16}. */
|
||
unsigned int bytes_log2 = exact_log2 (GET_MODE_SIZE (mode).to_constant ());
|
||
gcc_assert (bytes_log2 < 5);
|
||
built_in_function fncode
|
||
= (built_in_function) ((int) BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1
|
||
+ bytes_log2);
|
||
tree fndecl = builtin_decl_explicit (fncode);
|
||
tree fn = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fndecl)),
|
||
fndecl);
|
||
tree exp = build_call_vec (boolean_type_node, fn, vec);
|
||
tree lhs = gimple_call_lhs (call);
|
||
rtx boolret = expand_call (exp, NULL_RTX, lhs == NULL_TREE);
|
||
if (lhs)
|
||
{
|
||
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
||
if (GET_MODE (boolret) != mode)
|
||
boolret = convert_modes (mode, GET_MODE (boolret), boolret, 1);
|
||
x = force_reg (mode, x);
|
||
write_complex_part (target, boolret, true);
|
||
write_complex_part (target, x, false);
|
||
}
|
||
}
|
||
|
||
/* Expand IFN_ATOMIC_COMPARE_EXCHANGE internal function. */
|
||
|
||
void
|
||
expand_ifn_atomic_compare_exchange (gcall *call)
|
||
{
|
||
int size = tree_to_shwi (gimple_call_arg (call, 3)) & 255;
|
||
gcc_assert (size == 1 || size == 2 || size == 4 || size == 8 || size == 16);
|
||
machine_mode mode = int_mode_for_size (BITS_PER_UNIT * size, 0).require ();
|
||
rtx expect, desired, mem, oldval, boolret;
|
||
enum memmodel success, failure;
|
||
tree lhs;
|
||
bool is_weak;
|
||
location_t loc
|
||
= expansion_point_location_if_in_system_header (gimple_location (call));
|
||
|
||
success = get_memmodel (gimple_call_arg (call, 4));
|
||
failure = get_memmodel (gimple_call_arg (call, 5));
|
||
|
||
if (failure > success)
|
||
{
|
||
warning_at (loc, OPT_Winvalid_memory_model,
|
||
"failure memory model cannot be stronger than success "
|
||
"memory model for %<__atomic_compare_exchange%>");
|
||
success = MEMMODEL_SEQ_CST;
|
||
}
|
||
|
||
if (is_mm_release (failure) || is_mm_acq_rel (failure))
|
||
{
|
||
warning_at (loc, OPT_Winvalid_memory_model,
|
||
"invalid failure memory model for "
|
||
"%<__atomic_compare_exchange%>");
|
||
failure = MEMMODEL_SEQ_CST;
|
||
success = MEMMODEL_SEQ_CST;
|
||
}
|
||
|
||
if (!flag_inline_atomics)
|
||
{
|
||
expand_ifn_atomic_compare_exchange_into_call (call, mode);
|
||
return;
|
||
}
|
||
|
||
/* Expand the operands. */
|
||
mem = get_builtin_sync_mem (gimple_call_arg (call, 0), mode);
|
||
|
||
expect = expand_expr_force_mode (gimple_call_arg (call, 1), mode);
|
||
desired = expand_expr_force_mode (gimple_call_arg (call, 2), mode);
|
||
|
||
is_weak = (tree_to_shwi (gimple_call_arg (call, 3)) & 256) != 0;
|
||
|
||
boolret = NULL;
|
||
oldval = NULL;
|
||
|
||
if (!expand_atomic_compare_and_swap (&boolret, &oldval, mem, expect, desired,
|
||
is_weak, success, failure))
|
||
{
|
||
expand_ifn_atomic_compare_exchange_into_call (call, mode);
|
||
return;
|
||
}
|
||
|
||
lhs = gimple_call_lhs (call);
|
||
if (lhs)
|
||
{
|
||
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
||
if (GET_MODE (boolret) != mode)
|
||
boolret = convert_modes (mode, GET_MODE (boolret), boolret, 1);
|
||
write_complex_part (target, boolret, true);
|
||
write_complex_part (target, oldval, false);
|
||
}
|
||
}
|
||
|
||
/* Expand the __atomic_load intrinsic:
|
||
TYPE __atomic_load (TYPE *object, enum memmodel)
|
||
EXP is the CALL_EXPR.
|
||
TARGET is an optional place for us to store the results. */
|
||
|
||
static rtx
|
||
expand_builtin_atomic_load (machine_mode mode, tree exp, rtx target)
|
||
{
|
||
rtx mem;
|
||
enum memmodel model;
|
||
|
||
model = get_memmodel (CALL_EXPR_ARG (exp, 1));
|
||
if (is_mm_release (model) || is_mm_acq_rel (model))
|
||
{
|
||
location_t loc
|
||
= expansion_point_location_if_in_system_header (input_location);
|
||
warning_at (loc, OPT_Winvalid_memory_model,
|
||
"invalid memory model for %<__atomic_load%>");
|
||
model = MEMMODEL_SEQ_CST;
|
||
}
|
||
|
||
if (!flag_inline_atomics)
|
||
return NULL_RTX;
|
||
|
||
/* Expand the operand. */
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
|
||
return expand_atomic_load (target, mem, model);
|
||
}
|
||
|
||
|
||
/* Expand the __atomic_store intrinsic:
|
||
void __atomic_store (TYPE *object, TYPE desired, enum memmodel)
|
||
EXP is the CALL_EXPR.
|
||
TARGET is an optional place for us to store the results. */
|
||
|
||
static rtx
|
||
expand_builtin_atomic_store (machine_mode mode, tree exp)
|
||
{
|
||
rtx mem, val;
|
||
enum memmodel model;
|
||
|
||
model = get_memmodel (CALL_EXPR_ARG (exp, 2));
|
||
if (!(is_mm_relaxed (model) || is_mm_seq_cst (model)
|
||
|| is_mm_release (model)))
|
||
{
|
||
location_t loc
|
||
= expansion_point_location_if_in_system_header (input_location);
|
||
warning_at (loc, OPT_Winvalid_memory_model,
|
||
"invalid memory model for %<__atomic_store%>");
|
||
model = MEMMODEL_SEQ_CST;
|
||
}
|
||
|
||
if (!flag_inline_atomics)
|
||
return NULL_RTX;
|
||
|
||
/* Expand the operands. */
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode);
|
||
|
||
return expand_atomic_store (mem, val, model, false);
|
||
}
|
||
|
||
/* Expand the __atomic_fetch_XXX intrinsic:
|
||
TYPE __atomic_fetch_XXX (TYPE *object, TYPE val, enum memmodel)
|
||
EXP is the CALL_EXPR.
|
||
TARGET is an optional place for us to store the results.
|
||
CODE is the operation, PLUS, MINUS, ADD, XOR, or IOR.
|
||
FETCH_AFTER is true if returning the result of the operation.
|
||
FETCH_AFTER is false if returning the value before the operation.
|
||
IGNORE is true if the result is not used.
|
||
EXT_CALL is the correct builtin for an external call if this cannot be
|
||
resolved to an instruction sequence. */
|
||
|
||
static rtx
|
||
expand_builtin_atomic_fetch_op (machine_mode mode, tree exp, rtx target,
|
||
enum rtx_code code, bool fetch_after,
|
||
bool ignore, enum built_in_function ext_call)
|
||
{
|
||
rtx val, mem, ret;
|
||
enum memmodel model;
|
||
tree fndecl;
|
||
tree addr;
|
||
|
||
model = get_memmodel (CALL_EXPR_ARG (exp, 2));
|
||
|
||
/* Expand the operands. */
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
val = expand_expr_force_mode (CALL_EXPR_ARG (exp, 1), mode);
|
||
|
||
/* Only try generating instructions if inlining is turned on. */
|
||
if (flag_inline_atomics)
|
||
{
|
||
ret = expand_atomic_fetch_op (target, mem, val, code, model, fetch_after);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
/* Return if a different routine isn't needed for the library call. */
|
||
if (ext_call == BUILT_IN_NONE)
|
||
return NULL_RTX;
|
||
|
||
/* Change the call to the specified function. */
|
||
fndecl = get_callee_fndecl (exp);
|
||
addr = CALL_EXPR_FN (exp);
|
||
STRIP_NOPS (addr);
|
||
|
||
gcc_assert (TREE_OPERAND (addr, 0) == fndecl);
|
||
TREE_OPERAND (addr, 0) = builtin_decl_explicit (ext_call);
|
||
|
||
/* If we will emit code after the call, the call cannot be a tail call.
|
||
If it is emitted as a tail call, a barrier is emitted after it, and
|
||
then all trailing code is removed. */
|
||
if (!ignore)
|
||
CALL_EXPR_TAILCALL (exp) = 0;
|
||
|
||
/* Expand the call here so we can emit trailing code. */
|
||
ret = expand_call (exp, target, ignore);
|
||
|
||
/* Replace the original function just in case it matters. */
|
||
TREE_OPERAND (addr, 0) = fndecl;
|
||
|
||
/* Then issue the arithmetic correction to return the right result. */
|
||
if (!ignore)
|
||
{
|
||
if (code == NOT)
|
||
{
|
||
ret = expand_simple_binop (mode, AND, ret, val, NULL_RTX, true,
|
||
OPTAB_LIB_WIDEN);
|
||
ret = expand_simple_unop (mode, NOT, ret, target, true);
|
||
}
|
||
else
|
||
ret = expand_simple_binop (mode, code, ret, val, target, true,
|
||
OPTAB_LIB_WIDEN);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Expand IFN_ATOMIC_BIT_TEST_AND_* internal function. */
|
||
|
||
void
|
||
expand_ifn_atomic_bit_test_and (gcall *call)
|
||
{
|
||
tree ptr = gimple_call_arg (call, 0);
|
||
tree bit = gimple_call_arg (call, 1);
|
||
tree flag = gimple_call_arg (call, 2);
|
||
tree lhs = gimple_call_lhs (call);
|
||
enum memmodel model = MEMMODEL_SYNC_SEQ_CST;
|
||
machine_mode mode = TYPE_MODE (TREE_TYPE (flag));
|
||
enum rtx_code code;
|
||
optab optab;
|
||
class expand_operand ops[5];
|
||
|
||
gcc_assert (flag_inline_atomics);
|
||
|
||
if (gimple_call_num_args (call) == 4)
|
||
model = get_memmodel (gimple_call_arg (call, 3));
|
||
|
||
rtx mem = get_builtin_sync_mem (ptr, mode);
|
||
rtx val = expand_expr_force_mode (bit, mode);
|
||
|
||
switch (gimple_call_internal_fn (call))
|
||
{
|
||
case IFN_ATOMIC_BIT_TEST_AND_SET:
|
||
code = IOR;
|
||
optab = atomic_bit_test_and_set_optab;
|
||
break;
|
||
case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
|
||
code = XOR;
|
||
optab = atomic_bit_test_and_complement_optab;
|
||
break;
|
||
case IFN_ATOMIC_BIT_TEST_AND_RESET:
|
||
code = AND;
|
||
optab = atomic_bit_test_and_reset_optab;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (lhs == NULL_TREE)
|
||
{
|
||
val = expand_simple_binop (mode, ASHIFT, const1_rtx,
|
||
val, NULL_RTX, true, OPTAB_DIRECT);
|
||
if (code == AND)
|
||
val = expand_simple_unop (mode, NOT, val, NULL_RTX, true);
|
||
expand_atomic_fetch_op (const0_rtx, mem, val, code, model, false);
|
||
return;
|
||
}
|
||
|
||
rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
||
enum insn_code icode = direct_optab_handler (optab, mode);
|
||
gcc_assert (icode != CODE_FOR_nothing);
|
||
create_output_operand (&ops[0], target, mode);
|
||
create_fixed_operand (&ops[1], mem);
|
||
create_convert_operand_to (&ops[2], val, mode, true);
|
||
create_integer_operand (&ops[3], model);
|
||
create_integer_operand (&ops[4], integer_onep (flag));
|
||
if (maybe_expand_insn (icode, 5, ops))
|
||
return;
|
||
|
||
rtx bitval = val;
|
||
val = expand_simple_binop (mode, ASHIFT, const1_rtx,
|
||
val, NULL_RTX, true, OPTAB_DIRECT);
|
||
rtx maskval = val;
|
||
if (code == AND)
|
||
val = expand_simple_unop (mode, NOT, val, NULL_RTX, true);
|
||
rtx result = expand_atomic_fetch_op (gen_reg_rtx (mode), mem, val,
|
||
code, model, false);
|
||
if (integer_onep (flag))
|
||
{
|
||
result = expand_simple_binop (mode, ASHIFTRT, result, bitval,
|
||
NULL_RTX, true, OPTAB_DIRECT);
|
||
result = expand_simple_binop (mode, AND, result, const1_rtx, target,
|
||
true, OPTAB_DIRECT);
|
||
}
|
||
else
|
||
result = expand_simple_binop (mode, AND, result, maskval, target, true,
|
||
OPTAB_DIRECT);
|
||
if (result != target)
|
||
emit_move_insn (target, result);
|
||
}
|
||
|
||
/* Expand an atomic clear operation.
|
||
void _atomic_clear (BOOL *obj, enum memmodel)
|
||
EXP is the call expression. */
|
||
|
||
static rtx
|
||
expand_builtin_atomic_clear (tree exp)
|
||
{
|
||
machine_mode mode;
|
||
rtx mem, ret;
|
||
enum memmodel model;
|
||
|
||
mode = int_mode_for_size (BOOL_TYPE_SIZE, 0).require ();
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
model = get_memmodel (CALL_EXPR_ARG (exp, 1));
|
||
|
||
if (is_mm_consume (model) || is_mm_acquire (model) || is_mm_acq_rel (model))
|
||
{
|
||
location_t loc
|
||
= expansion_point_location_if_in_system_header (input_location);
|
||
warning_at (loc, OPT_Winvalid_memory_model,
|
||
"invalid memory model for %<__atomic_store%>");
|
||
model = MEMMODEL_SEQ_CST;
|
||
}
|
||
|
||
/* Try issuing an __atomic_store, and allow fallback to __sync_lock_release.
|
||
Failing that, a store is issued by __atomic_store. The only way this can
|
||
fail is if the bool type is larger than a word size. Unlikely, but
|
||
handle it anyway for completeness. Assume a single threaded model since
|
||
there is no atomic support in this case, and no barriers are required. */
|
||
ret = expand_atomic_store (mem, const0_rtx, model, true);
|
||
if (!ret)
|
||
emit_move_insn (mem, const0_rtx);
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Expand an atomic test_and_set operation.
|
||
bool _atomic_test_and_set (BOOL *obj, enum memmodel)
|
||
EXP is the call expression. */
|
||
|
||
static rtx
|
||
expand_builtin_atomic_test_and_set (tree exp, rtx target)
|
||
{
|
||
rtx mem;
|
||
enum memmodel model;
|
||
machine_mode mode;
|
||
|
||
mode = int_mode_for_size (BOOL_TYPE_SIZE, 0).require ();
|
||
mem = get_builtin_sync_mem (CALL_EXPR_ARG (exp, 0), mode);
|
||
model = get_memmodel (CALL_EXPR_ARG (exp, 1));
|
||
|
||
return expand_atomic_test_and_set (target, mem, model);
|
||
}
|
||
|
||
|
||
/* Return true if (optional) argument ARG1 of size ARG0 is always lock free on
|
||
this architecture. If ARG1 is NULL, use typical alignment for size ARG0. */
|
||
|
||
static tree
|
||
fold_builtin_atomic_always_lock_free (tree arg0, tree arg1)
|
||
{
|
||
int size;
|
||
machine_mode mode;
|
||
unsigned int mode_align, type_align;
|
||
|
||
if (TREE_CODE (arg0) != INTEGER_CST)
|
||
return NULL_TREE;
|
||
|
||
/* We need a corresponding integer mode for the access to be lock-free. */
|
||
size = INTVAL (expand_normal (arg0)) * BITS_PER_UNIT;
|
||
if (!int_mode_for_size (size, 0).exists (&mode))
|
||
return boolean_false_node;
|
||
|
||
mode_align = GET_MODE_ALIGNMENT (mode);
|
||
|
||
if (TREE_CODE (arg1) == INTEGER_CST)
|
||
{
|
||
unsigned HOST_WIDE_INT val = UINTVAL (expand_normal (arg1));
|
||
|
||
/* Either this argument is null, or it's a fake pointer encoding
|
||
the alignment of the object. */
|
||
val = least_bit_hwi (val);
|
||
val *= BITS_PER_UNIT;
|
||
|
||
if (val == 0 || mode_align < val)
|
||
type_align = mode_align;
|
||
else
|
||
type_align = val;
|
||
}
|
||
else
|
||
{
|
||
tree ttype = TREE_TYPE (arg1);
|
||
|
||
/* This function is usually invoked and folded immediately by the front
|
||
end before anything else has a chance to look at it. The pointer
|
||
parameter at this point is usually cast to a void *, so check for that
|
||
and look past the cast. */
|
||
if (CONVERT_EXPR_P (arg1)
|
||
&& POINTER_TYPE_P (ttype)
|
||
&& VOID_TYPE_P (TREE_TYPE (ttype))
|
||
&& POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))))
|
||
arg1 = TREE_OPERAND (arg1, 0);
|
||
|
||
ttype = TREE_TYPE (arg1);
|
||
gcc_assert (POINTER_TYPE_P (ttype));
|
||
|
||
/* Get the underlying type of the object. */
|
||
ttype = TREE_TYPE (ttype);
|
||
type_align = TYPE_ALIGN (ttype);
|
||
}
|
||
|
||
/* If the object has smaller alignment, the lock free routines cannot
|
||
be used. */
|
||
if (type_align < mode_align)
|
||
return boolean_false_node;
|
||
|
||
/* Check if a compare_and_swap pattern exists for the mode which represents
|
||
the required size. The pattern is not allowed to fail, so the existence
|
||
of the pattern indicates support is present. Also require that an
|
||
atomic load exists for the required size. */
|
||
if (can_compare_and_swap_p (mode, true) && can_atomic_load_p (mode))
|
||
return boolean_true_node;
|
||
else
|
||
return boolean_false_node;
|
||
}
|
||
|
||
/* Return true if the parameters to call EXP represent an object which will
|
||
always generate lock free instructions. The first argument represents the
|
||
size of the object, and the second parameter is a pointer to the object
|
||
itself. If NULL is passed for the object, then the result is based on
|
||
typical alignment for an object of the specified size. Otherwise return
|
||
false. */
|
||
|
||
static rtx
|
||
expand_builtin_atomic_always_lock_free (tree exp)
|
||
{
|
||
tree size;
|
||
tree arg0 = CALL_EXPR_ARG (exp, 0);
|
||
tree arg1 = CALL_EXPR_ARG (exp, 1);
|
||
|
||
if (TREE_CODE (arg0) != INTEGER_CST)
|
||
{
|
||
error ("non-constant argument 1 to %qs", "__atomic_always_lock_free");
|
||
return const0_rtx;
|
||
}
|
||
|
||
size = fold_builtin_atomic_always_lock_free (arg0, arg1);
|
||
if (size == boolean_true_node)
|
||
return const1_rtx;
|
||
return const0_rtx;
|
||
}
|
||
|
||
/* Return a one or zero if it can be determined that object ARG1 of size ARG
|
||
is lock free on this architecture. */
|
||
|
||
static tree
|
||
fold_builtin_atomic_is_lock_free (tree arg0, tree arg1)
|
||
{
|
||
if (!flag_inline_atomics)
|
||
return NULL_TREE;
|
||
|
||
/* If it isn't always lock free, don't generate a result. */
|
||
if (fold_builtin_atomic_always_lock_free (arg0, arg1) == boolean_true_node)
|
||
return boolean_true_node;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return true if the parameters to call EXP represent an object which will
|
||
always generate lock free instructions. The first argument represents the
|
||
size of the object, and the second parameter is a pointer to the object
|
||
itself. If NULL is passed for the object, then the result is based on
|
||
typical alignment for an object of the specified size. Otherwise return
|
||
NULL*/
|
||
|
||
static rtx
|
||
expand_builtin_atomic_is_lock_free (tree exp)
|
||
{
|
||
tree size;
|
||
tree arg0 = CALL_EXPR_ARG (exp, 0);
|
||
tree arg1 = CALL_EXPR_ARG (exp, 1);
|
||
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
|
||
{
|
||
error ("non-integer argument 1 to %qs", "__atomic_is_lock_free");
|
||
return NULL_RTX;
|
||
}
|
||
|
||
if (!flag_inline_atomics)
|
||
return NULL_RTX;
|
||
|
||
/* If the value is known at compile time, return the RTX for it. */
|
||
size = fold_builtin_atomic_is_lock_free (arg0, arg1);
|
||
if (size == boolean_true_node)
|
||
return const1_rtx;
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Expand the __atomic_thread_fence intrinsic:
|
||
void __atomic_thread_fence (enum memmodel)
|
||
EXP is the CALL_EXPR. */
|
||
|
||
static void
|
||
expand_builtin_atomic_thread_fence (tree exp)
|
||
{
|
||
enum memmodel model = get_memmodel (CALL_EXPR_ARG (exp, 0));
|
||
expand_mem_thread_fence (model);
|
||
}
|
||
|
||
/* Expand the __atomic_signal_fence intrinsic:
|
||
void __atomic_signal_fence (enum memmodel)
|
||
EXP is the CALL_EXPR. */
|
||
|
||
static void
|
||
expand_builtin_atomic_signal_fence (tree exp)
|
||
{
|
||
enum memmodel model = get_memmodel (CALL_EXPR_ARG (exp, 0));
|
||
expand_mem_signal_fence (model);
|
||
}
|
||
|
||
/* Expand the __sync_synchronize intrinsic. */
|
||
|
||
static void
|
||
expand_builtin_sync_synchronize (void)
|
||
{
|
||
expand_mem_thread_fence (MEMMODEL_SYNC_SEQ_CST);
|
||
}
|
||
|
||
static rtx
|
||
expand_builtin_thread_pointer (tree exp, rtx target)
|
||
{
|
||
enum insn_code icode;
|
||
if (!validate_arglist (exp, VOID_TYPE))
|
||
return const0_rtx;
|
||
icode = direct_optab_handler (get_thread_pointer_optab, Pmode);
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
class expand_operand op;
|
||
/* If the target is not sutitable then create a new target. */
|
||
if (target == NULL_RTX
|
||
|| !REG_P (target)
|
||
|| GET_MODE (target) != Pmode)
|
||
target = gen_reg_rtx (Pmode);
|
||
create_output_operand (&op, target, Pmode);
|
||
expand_insn (icode, 1, &op);
|
||
return target;
|
||
}
|
||
error ("%<__builtin_thread_pointer%> is not supported on this target");
|
||
return const0_rtx;
|
||
}
|
||
|
||
static void
|
||
expand_builtin_set_thread_pointer (tree exp)
|
||
{
|
||
enum insn_code icode;
|
||
if (!validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
|
||
return;
|
||
icode = direct_optab_handler (set_thread_pointer_optab, Pmode);
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
class expand_operand op;
|
||
rtx val = expand_expr (CALL_EXPR_ARG (exp, 0), NULL_RTX,
|
||
Pmode, EXPAND_NORMAL);
|
||
create_input_operand (&op, val, Pmode);
|
||
expand_insn (icode, 1, &op);
|
||
return;
|
||
}
|
||
error ("%<__builtin_set_thread_pointer%> is not supported on this target");
|
||
}
|
||
|
||
|
||
/* Emit code to restore the current value of stack. */
|
||
|
||
static void
|
||
expand_stack_restore (tree var)
|
||
{
|
||
rtx_insn *prev;
|
||
rtx sa = expand_normal (var);
|
||
|
||
sa = convert_memory_address (Pmode, sa);
|
||
|
||
prev = get_last_insn ();
|
||
emit_stack_restore (SAVE_BLOCK, sa);
|
||
|
||
record_new_stack_level ();
|
||
|
||
fixup_args_size_notes (prev, get_last_insn (), 0);
|
||
}
|
||
|
||
/* Emit code to save the current value of stack. */
|
||
|
||
static rtx
|
||
expand_stack_save (void)
|
||
{
|
||
rtx ret = NULL_RTX;
|
||
|
||
emit_stack_save (SAVE_BLOCK, &ret);
|
||
return ret;
|
||
}
|
||
|
||
/* Emit code to get the openacc gang, worker or vector id or size. */
|
||
|
||
static rtx
|
||
expand_builtin_goacc_parlevel_id_size (tree exp, rtx target, int ignore)
|
||
{
|
||
const char *name;
|
||
rtx fallback_retval;
|
||
rtx_insn *(*gen_fn) (rtx, rtx);
|
||
switch (DECL_FUNCTION_CODE (get_callee_fndecl (exp)))
|
||
{
|
||
case BUILT_IN_GOACC_PARLEVEL_ID:
|
||
name = "__builtin_goacc_parlevel_id";
|
||
fallback_retval = const0_rtx;
|
||
gen_fn = targetm.gen_oacc_dim_pos;
|
||
break;
|
||
case BUILT_IN_GOACC_PARLEVEL_SIZE:
|
||
name = "__builtin_goacc_parlevel_size";
|
||
fallback_retval = const1_rtx;
|
||
gen_fn = targetm.gen_oacc_dim_size;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (oacc_get_fn_attrib (current_function_decl) == NULL_TREE)
|
||
{
|
||
error ("%qs only supported in OpenACC code", name);
|
||
return const0_rtx;
|
||
}
|
||
|
||
tree arg = CALL_EXPR_ARG (exp, 0);
|
||
if (TREE_CODE (arg) != INTEGER_CST)
|
||
{
|
||
error ("non-constant argument 0 to %qs", name);
|
||
return const0_rtx;
|
||
}
|
||
|
||
int dim = TREE_INT_CST_LOW (arg);
|
||
switch (dim)
|
||
{
|
||
case GOMP_DIM_GANG:
|
||
case GOMP_DIM_WORKER:
|
||
case GOMP_DIM_VECTOR:
|
||
break;
|
||
default:
|
||
error ("illegal argument 0 to %qs", name);
|
||
return const0_rtx;
|
||
}
|
||
|
||
if (ignore)
|
||
return target;
|
||
|
||
if (target == NULL_RTX)
|
||
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
|
||
|
||
if (!targetm.have_oacc_dim_size ())
|
||
{
|
||
emit_move_insn (target, fallback_retval);
|
||
return target;
|
||
}
|
||
|
||
rtx reg = MEM_P (target) ? gen_reg_rtx (GET_MODE (target)) : target;
|
||
emit_insn (gen_fn (reg, GEN_INT (dim)));
|
||
if (reg != target)
|
||
emit_move_insn (target, reg);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Expand a string compare operation using a sequence of char comparison
|
||
to get rid of the calling overhead, with result going to TARGET if
|
||
that's convenient.
|
||
|
||
VAR_STR is the variable string source;
|
||
CONST_STR is the constant string source;
|
||
LENGTH is the number of chars to compare;
|
||
CONST_STR_N indicates which source string is the constant string;
|
||
IS_MEMCMP indicates whether it's a memcmp or strcmp.
|
||
|
||
to: (assume const_str_n is 2, i.e., arg2 is a constant string)
|
||
|
||
target = (int) (unsigned char) var_str[0]
|
||
- (int) (unsigned char) const_str[0];
|
||
if (target != 0)
|
||
goto ne_label;
|
||
...
|
||
target = (int) (unsigned char) var_str[length - 2]
|
||
- (int) (unsigned char) const_str[length - 2];
|
||
if (target != 0)
|
||
goto ne_label;
|
||
target = (int) (unsigned char) var_str[length - 1]
|
||
- (int) (unsigned char) const_str[length - 1];
|
||
ne_label:
|
||
*/
|
||
|
||
static rtx
|
||
inline_string_cmp (rtx target, tree var_str, const char *const_str,
|
||
unsigned HOST_WIDE_INT length,
|
||
int const_str_n, machine_mode mode)
|
||
{
|
||
HOST_WIDE_INT offset = 0;
|
||
rtx var_rtx_array
|
||
= get_memory_rtx (var_str, build_int_cst (unsigned_type_node,length));
|
||
rtx var_rtx = NULL_RTX;
|
||
rtx const_rtx = NULL_RTX;
|
||
rtx result = target ? target : gen_reg_rtx (mode);
|
||
rtx_code_label *ne_label = gen_label_rtx ();
|
||
tree unit_type_node = unsigned_char_type_node;
|
||
scalar_int_mode unit_mode
|
||
= as_a <scalar_int_mode> TYPE_MODE (unit_type_node);
|
||
|
||
start_sequence ();
|
||
|
||
for (unsigned HOST_WIDE_INT i = 0; i < length; i++)
|
||
{
|
||
var_rtx
|
||
= adjust_address (var_rtx_array, TYPE_MODE (unit_type_node), offset);
|
||
const_rtx = c_readstr (const_str + offset, unit_mode);
|
||
rtx op0 = (const_str_n == 1) ? const_rtx : var_rtx;
|
||
rtx op1 = (const_str_n == 1) ? var_rtx : const_rtx;
|
||
|
||
op0 = convert_modes (mode, unit_mode, op0, 1);
|
||
op1 = convert_modes (mode, unit_mode, op1, 1);
|
||
result = expand_simple_binop (mode, MINUS, op0, op1,
|
||
result, 1, OPTAB_WIDEN);
|
||
if (i < length - 1)
|
||
emit_cmp_and_jump_insns (result, CONST0_RTX (mode), NE, NULL_RTX,
|
||
mode, true, ne_label);
|
||
offset += GET_MODE_SIZE (unit_mode);
|
||
}
|
||
|
||
emit_label (ne_label);
|
||
rtx_insn *insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn (insns);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Inline expansion a call to str(n)cmp, with result going to
|
||
TARGET if that's convenient.
|
||
If the call is not been inlined, return NULL_RTX. */
|
||
static rtx
|
||
inline_expand_builtin_string_cmp (tree exp, rtx target)
|
||
{
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
unsigned HOST_WIDE_INT length = 0;
|
||
bool is_ncmp = (fcode == BUILT_IN_STRNCMP || fcode == BUILT_IN_MEMCMP);
|
||
|
||
/* Do NOT apply this inlining expansion when optimizing for size or
|
||
optimization level below 2. */
|
||
if (optimize < 2 || optimize_insn_for_size_p ())
|
||
return NULL_RTX;
|
||
|
||
gcc_checking_assert (fcode == BUILT_IN_STRCMP
|
||
|| fcode == BUILT_IN_STRNCMP
|
||
|| fcode == BUILT_IN_MEMCMP);
|
||
|
||
/* On a target where the type of the call (int) has same or narrower presicion
|
||
than unsigned char, give up the inlining expansion. */
|
||
if (TYPE_PRECISION (unsigned_char_type_node)
|
||
>= TYPE_PRECISION (TREE_TYPE (exp)))
|
||
return NULL_RTX;
|
||
|
||
tree arg1 = CALL_EXPR_ARG (exp, 0);
|
||
tree arg2 = CALL_EXPR_ARG (exp, 1);
|
||
tree len3_tree = is_ncmp ? CALL_EXPR_ARG (exp, 2) : NULL_TREE;
|
||
|
||
unsigned HOST_WIDE_INT len1 = 0;
|
||
unsigned HOST_WIDE_INT len2 = 0;
|
||
unsigned HOST_WIDE_INT len3 = 0;
|
||
|
||
const char *src_str1 = c_getstr (arg1, &len1);
|
||
const char *src_str2 = c_getstr (arg2, &len2);
|
||
|
||
/* If neither strings is constant string, the call is not qualify. */
|
||
if (!src_str1 && !src_str2)
|
||
return NULL_RTX;
|
||
|
||
/* For strncmp, if the length is not a const, not qualify. */
|
||
if (is_ncmp)
|
||
{
|
||
if (!tree_fits_uhwi_p (len3_tree))
|
||
return NULL_RTX;
|
||
else
|
||
len3 = tree_to_uhwi (len3_tree);
|
||
}
|
||
|
||
if (src_str1 != NULL)
|
||
len1 = strnlen (src_str1, len1) + 1;
|
||
|
||
if (src_str2 != NULL)
|
||
len2 = strnlen (src_str2, len2) + 1;
|
||
|
||
int const_str_n = 0;
|
||
if (!len1)
|
||
const_str_n = 2;
|
||
else if (!len2)
|
||
const_str_n = 1;
|
||
else if (len2 > len1)
|
||
const_str_n = 1;
|
||
else
|
||
const_str_n = 2;
|
||
|
||
gcc_checking_assert (const_str_n > 0);
|
||
length = (const_str_n == 1) ? len1 : len2;
|
||
|
||
if (is_ncmp && len3 < length)
|
||
length = len3;
|
||
|
||
/* If the length of the comparision is larger than the threshold,
|
||
do nothing. */
|
||
if (length > (unsigned HOST_WIDE_INT)
|
||
param_builtin_string_cmp_inline_length)
|
||
return NULL_RTX;
|
||
|
||
machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
|
||
|
||
/* Now, start inline expansion the call. */
|
||
return inline_string_cmp (target, (const_str_n == 1) ? arg2 : arg1,
|
||
(const_str_n == 1) ? src_str1 : src_str2, length,
|
||
const_str_n, mode);
|
||
}
|
||
|
||
/* Expand a call to __builtin_speculation_safe_value_<N>. MODE
|
||
represents the size of the first argument to that call, or VOIDmode
|
||
if the argument is a pointer. IGNORE will be true if the result
|
||
isn't used. */
|
||
static rtx
|
||
expand_speculation_safe_value (machine_mode mode, tree exp, rtx target,
|
||
bool ignore)
|
||
{
|
||
rtx val, failsafe;
|
||
unsigned nargs = call_expr_nargs (exp);
|
||
|
||
tree arg0 = CALL_EXPR_ARG (exp, 0);
|
||
|
||
if (mode == VOIDmode)
|
||
{
|
||
mode = TYPE_MODE (TREE_TYPE (arg0));
|
||
gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
|
||
}
|
||
|
||
val = expand_expr (arg0, NULL_RTX, mode, EXPAND_NORMAL);
|
||
|
||
/* An optional second argument can be used as a failsafe value on
|
||
some machines. If it isn't present, then the failsafe value is
|
||
assumed to be 0. */
|
||
if (nargs > 1)
|
||
{
|
||
tree arg1 = CALL_EXPR_ARG (exp, 1);
|
||
failsafe = expand_expr (arg1, NULL_RTX, mode, EXPAND_NORMAL);
|
||
}
|
||
else
|
||
failsafe = const0_rtx;
|
||
|
||
/* If the result isn't used, the behavior is undefined. It would be
|
||
nice to emit a warning here, but path splitting means this might
|
||
happen with legitimate code. So simply drop the builtin
|
||
expansion in that case; we've handled any side-effects above. */
|
||
if (ignore)
|
||
return const0_rtx;
|
||
|
||
/* If we don't have a suitable target, create one to hold the result. */
|
||
if (target == NULL || GET_MODE (target) != mode)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
if (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode)
|
||
val = convert_modes (mode, VOIDmode, val, false);
|
||
|
||
return targetm.speculation_safe_value (mode, target, val, failsafe);
|
||
}
|
||
|
||
/* Expand an expression EXP that calls a built-in function,
|
||
with result going to TARGET if that's convenient
|
||
(and in mode MODE if that's convenient).
|
||
SUBTARGET may be used as the target for computing one of EXP's operands.
|
||
IGNORE is nonzero if the value is to be ignored. */
|
||
|
||
rtx
|
||
expand_builtin (tree exp, rtx target, rtx subtarget, machine_mode mode,
|
||
int ignore)
|
||
{
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
machine_mode target_mode = TYPE_MODE (TREE_TYPE (exp));
|
||
int flags;
|
||
|
||
if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
|
||
return targetm.expand_builtin (exp, target, subtarget, mode, ignore);
|
||
|
||
/* When ASan is enabled, we don't want to expand some memory/string
|
||
builtins and rely on libsanitizer's hooks. This allows us to avoid
|
||
redundant checks and be sure, that possible overflow will be detected
|
||
by ASan. */
|
||
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
if ((flag_sanitize & SANITIZE_ADDRESS) && asan_intercepted_p (fcode))
|
||
return expand_call (exp, target, ignore);
|
||
|
||
/* When not optimizing, generate calls to library functions for a certain
|
||
set of builtins. */
|
||
if (!optimize
|
||
&& !called_as_built_in (fndecl)
|
||
&& fcode != BUILT_IN_FORK
|
||
&& fcode != BUILT_IN_EXECL
|
||
&& fcode != BUILT_IN_EXECV
|
||
&& fcode != BUILT_IN_EXECLP
|
||
&& fcode != BUILT_IN_EXECLE
|
||
&& fcode != BUILT_IN_EXECVP
|
||
&& fcode != BUILT_IN_EXECVE
|
||
&& !ALLOCA_FUNCTION_CODE_P (fcode)
|
||
&& fcode != BUILT_IN_FREE)
|
||
return expand_call (exp, target, ignore);
|
||
|
||
/* The built-in function expanders test for target == const0_rtx
|
||
to determine whether the function's result will be ignored. */
|
||
if (ignore)
|
||
target = const0_rtx;
|
||
|
||
/* If the result of a pure or const built-in function is ignored, and
|
||
none of its arguments are volatile, we can avoid expanding the
|
||
built-in call and just evaluate the arguments for side-effects. */
|
||
if (target == const0_rtx
|
||
&& ((flags = flags_from_decl_or_type (fndecl)) & (ECF_CONST | ECF_PURE))
|
||
&& !(flags & ECF_LOOPING_CONST_OR_PURE))
|
||
{
|
||
bool volatilep = false;
|
||
tree arg;
|
||
call_expr_arg_iterator iter;
|
||
|
||
FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
|
||
if (TREE_THIS_VOLATILE (arg))
|
||
{
|
||
volatilep = true;
|
||
break;
|
||
}
|
||
|
||
if (! volatilep)
|
||
{
|
||
FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
|
||
expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
return const0_rtx;
|
||
}
|
||
}
|
||
|
||
switch (fcode)
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_FABS):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FABS):
|
||
case BUILT_IN_FABSD32:
|
||
case BUILT_IN_FABSD64:
|
||
case BUILT_IN_FABSD128:
|
||
target = expand_builtin_fabs (exp, target, subtarget);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_COPYSIGN):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN):
|
||
target = expand_builtin_copysign (exp, target, subtarget);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
/* Just do a normal library call if we were unable to fold
|
||
the values. */
|
||
CASE_FLT_FN (BUILT_IN_CABS):
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_FMA):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FMA):
|
||
target = expand_builtin_mathfn_ternary (exp, target, subtarget);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_ILOGB):
|
||
if (! flag_unsafe_math_optimizations)
|
||
break;
|
||
gcc_fallthrough ();
|
||
CASE_FLT_FN (BUILT_IN_ISINF):
|
||
CASE_FLT_FN (BUILT_IN_FINITE):
|
||
case BUILT_IN_ISFINITE:
|
||
case BUILT_IN_ISNORMAL:
|
||
target = expand_builtin_interclass_mathfn (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_ICEIL):
|
||
CASE_FLT_FN (BUILT_IN_LCEIL):
|
||
CASE_FLT_FN (BUILT_IN_LLCEIL):
|
||
CASE_FLT_FN (BUILT_IN_LFLOOR):
|
||
CASE_FLT_FN (BUILT_IN_IFLOOR):
|
||
CASE_FLT_FN (BUILT_IN_LLFLOOR):
|
||
target = expand_builtin_int_roundingfn (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_IRINT):
|
||
CASE_FLT_FN (BUILT_IN_LRINT):
|
||
CASE_FLT_FN (BUILT_IN_LLRINT):
|
||
CASE_FLT_FN (BUILT_IN_IROUND):
|
||
CASE_FLT_FN (BUILT_IN_LROUND):
|
||
CASE_FLT_FN (BUILT_IN_LLROUND):
|
||
target = expand_builtin_int_roundingfn_2 (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_POWI):
|
||
target = expand_builtin_powi (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_CEXPI):
|
||
target = expand_builtin_cexpi (exp, target);
|
||
gcc_assert (target);
|
||
return target;
|
||
|
||
CASE_FLT_FN (BUILT_IN_SIN):
|
||
CASE_FLT_FN (BUILT_IN_COS):
|
||
if (! flag_unsafe_math_optimizations)
|
||
break;
|
||
target = expand_builtin_mathfn_3 (exp, target, subtarget);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_SINCOS):
|
||
if (! flag_unsafe_math_optimizations)
|
||
break;
|
||
target = expand_builtin_sincos (exp);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_APPLY_ARGS:
|
||
return expand_builtin_apply_args ();
|
||
|
||
/* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes
|
||
FUNCTION with a copy of the parameters described by
|
||
ARGUMENTS, and ARGSIZE. It returns a block of memory
|
||
allocated on the stack into which is stored all the registers
|
||
that might possibly be used for returning the result of a
|
||
function. ARGUMENTS is the value returned by
|
||
__builtin_apply_args. ARGSIZE is the number of bytes of
|
||
arguments that must be copied. ??? How should this value be
|
||
computed? We'll also need a safe worst case value for varargs
|
||
functions. */
|
||
case BUILT_IN_APPLY:
|
||
if (!validate_arglist (exp, POINTER_TYPE,
|
||
POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)
|
||
&& !validate_arglist (exp, REFERENCE_TYPE,
|
||
POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return const0_rtx;
|
||
else
|
||
{
|
||
rtx ops[3];
|
||
|
||
ops[0] = expand_normal (CALL_EXPR_ARG (exp, 0));
|
||
ops[1] = expand_normal (CALL_EXPR_ARG (exp, 1));
|
||
ops[2] = expand_normal (CALL_EXPR_ARG (exp, 2));
|
||
|
||
return expand_builtin_apply (ops[0], ops[1], ops[2]);
|
||
}
|
||
|
||
/* __builtin_return (RESULT) causes the function to return the
|
||
value described by RESULT. RESULT is address of the block of
|
||
memory returned by __builtin_apply. */
|
||
case BUILT_IN_RETURN:
|
||
if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
|
||
expand_builtin_return (expand_normal (CALL_EXPR_ARG (exp, 0)));
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_SAVEREGS:
|
||
return expand_builtin_saveregs ();
|
||
|
||
case BUILT_IN_VA_ARG_PACK:
|
||
/* All valid uses of __builtin_va_arg_pack () are removed during
|
||
inlining. */
|
||
error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_VA_ARG_PACK_LEN:
|
||
/* All valid uses of __builtin_va_arg_pack_len () are removed during
|
||
inlining. */
|
||
error ("%Kinvalid use of %<__builtin_va_arg_pack_len ()%>", exp);
|
||
return const0_rtx;
|
||
|
||
/* Return the address of the first anonymous stack arg. */
|
||
case BUILT_IN_NEXT_ARG:
|
||
if (fold_builtin_next_arg (exp, false))
|
||
return const0_rtx;
|
||
return expand_builtin_next_arg ();
|
||
|
||
case BUILT_IN_CLEAR_CACHE:
|
||
target = expand_builtin___clear_cache (exp);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_CLASSIFY_TYPE:
|
||
return expand_builtin_classify_type (exp);
|
||
|
||
case BUILT_IN_CONSTANT_P:
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_FRAME_ADDRESS:
|
||
case BUILT_IN_RETURN_ADDRESS:
|
||
return expand_builtin_frame_address (fndecl, exp);
|
||
|
||
/* Returns the address of the area where the structure is returned.
|
||
0 otherwise. */
|
||
case BUILT_IN_AGGREGATE_INCOMING_ADDRESS:
|
||
if (call_expr_nargs (exp) != 0
|
||
|| ! AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl)))
|
||
|| !MEM_P (DECL_RTL (DECL_RESULT (current_function_decl))))
|
||
return const0_rtx;
|
||
else
|
||
return XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
|
||
|
||
CASE_BUILT_IN_ALLOCA:
|
||
target = expand_builtin_alloca (exp);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ASAN_ALLOCAS_UNPOISON:
|
||
return expand_asan_emit_allocas_unpoison (exp);
|
||
|
||
case BUILT_IN_STACK_SAVE:
|
||
return expand_stack_save ();
|
||
|
||
case BUILT_IN_STACK_RESTORE:
|
||
expand_stack_restore (CALL_EXPR_ARG (exp, 0));
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_BSWAP16:
|
||
case BUILT_IN_BSWAP32:
|
||
case BUILT_IN_BSWAP64:
|
||
target = expand_builtin_bswap (target_mode, exp, target, subtarget);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_INT_FN (BUILT_IN_FFS):
|
||
target = expand_builtin_unop (target_mode, exp, target,
|
||
subtarget, ffs_optab);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_INT_FN (BUILT_IN_CLZ):
|
||
target = expand_builtin_unop (target_mode, exp, target,
|
||
subtarget, clz_optab);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_INT_FN (BUILT_IN_CTZ):
|
||
target = expand_builtin_unop (target_mode, exp, target,
|
||
subtarget, ctz_optab);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_INT_FN (BUILT_IN_CLRSB):
|
||
target = expand_builtin_unop (target_mode, exp, target,
|
||
subtarget, clrsb_optab);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_INT_FN (BUILT_IN_POPCOUNT):
|
||
target = expand_builtin_unop (target_mode, exp, target,
|
||
subtarget, popcount_optab);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
CASE_INT_FN (BUILT_IN_PARITY):
|
||
target = expand_builtin_unop (target_mode, exp, target,
|
||
subtarget, parity_optab);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_STRLEN:
|
||
target = expand_builtin_strlen (exp, target, target_mode);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_STRNLEN:
|
||
target = expand_builtin_strnlen (exp, target, target_mode);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_STRCAT:
|
||
target = expand_builtin_strcat (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_STRCPY:
|
||
target = expand_builtin_strcpy (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_STRNCAT:
|
||
target = expand_builtin_strncat (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_STRNCPY:
|
||
target = expand_builtin_strncpy (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_STPCPY:
|
||
target = expand_builtin_stpcpy (exp, target, mode);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_STPNCPY:
|
||
target = expand_builtin_stpncpy (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_MEMCHR:
|
||
target = expand_builtin_memchr (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_MEMCPY:
|
||
target = expand_builtin_memcpy (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_MEMMOVE:
|
||
target = expand_builtin_memmove (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_MEMPCPY:
|
||
target = expand_builtin_mempcpy (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_MEMSET:
|
||
target = expand_builtin_memset (exp, target, mode);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_BZERO:
|
||
target = expand_builtin_bzero (exp);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
/* Expand it as BUILT_IN_MEMCMP_EQ first. If not successful, change it
|
||
back to a BUILT_IN_STRCMP. Remember to delete the 3rd paramater
|
||
when changing it to a strcmp call. */
|
||
case BUILT_IN_STRCMP_EQ:
|
||
target = expand_builtin_memcmp (exp, target, true);
|
||
if (target)
|
||
return target;
|
||
|
||
/* Change this call back to a BUILT_IN_STRCMP. */
|
||
TREE_OPERAND (exp, 1)
|
||
= build_fold_addr_expr (builtin_decl_explicit (BUILT_IN_STRCMP));
|
||
|
||
/* Delete the last parameter. */
|
||
unsigned int i;
|
||
vec<tree, va_gc> *arg_vec;
|
||
vec_alloc (arg_vec, 2);
|
||
for (i = 0; i < 2; i++)
|
||
arg_vec->quick_push (CALL_EXPR_ARG (exp, i));
|
||
exp = build_call_vec (TREE_TYPE (exp), CALL_EXPR_FN (exp), arg_vec);
|
||
/* FALLTHROUGH */
|
||
|
||
case BUILT_IN_STRCMP:
|
||
target = expand_builtin_strcmp (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
/* Expand it as BUILT_IN_MEMCMP_EQ first. If not successful, change it
|
||
back to a BUILT_IN_STRNCMP. */
|
||
case BUILT_IN_STRNCMP_EQ:
|
||
target = expand_builtin_memcmp (exp, target, true);
|
||
if (target)
|
||
return target;
|
||
|
||
/* Change it back to a BUILT_IN_STRNCMP. */
|
||
TREE_OPERAND (exp, 1)
|
||
= build_fold_addr_expr (builtin_decl_explicit (BUILT_IN_STRNCMP));
|
||
/* FALLTHROUGH */
|
||
|
||
case BUILT_IN_STRNCMP:
|
||
target = expand_builtin_strncmp (exp, target, mode);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_BCMP:
|
||
case BUILT_IN_MEMCMP:
|
||
case BUILT_IN_MEMCMP_EQ:
|
||
target = expand_builtin_memcmp (exp, target, fcode == BUILT_IN_MEMCMP_EQ);
|
||
if (target)
|
||
return target;
|
||
if (fcode == BUILT_IN_MEMCMP_EQ)
|
||
{
|
||
tree newdecl = builtin_decl_explicit (BUILT_IN_MEMCMP);
|
||
TREE_OPERAND (exp, 1) = build_fold_addr_expr (newdecl);
|
||
}
|
||
break;
|
||
|
||
case BUILT_IN_SETJMP:
|
||
/* This should have been lowered to the builtins below. */
|
||
gcc_unreachable ();
|
||
|
||
case BUILT_IN_SETJMP_SETUP:
|
||
/* __builtin_setjmp_setup is passed a pointer to an array of five words
|
||
and the receiver label. */
|
||
if (validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
|
||
{
|
||
rtx buf_addr = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget,
|
||
VOIDmode, EXPAND_NORMAL);
|
||
tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 1), 0);
|
||
rtx_insn *label_r = label_rtx (label);
|
||
|
||
/* This is copied from the handling of non-local gotos. */
|
||
expand_builtin_setjmp_setup (buf_addr, label_r);
|
||
nonlocal_goto_handler_labels
|
||
= gen_rtx_INSN_LIST (VOIDmode, label_r,
|
||
nonlocal_goto_handler_labels);
|
||
/* ??? Do not let expand_label treat us as such since we would
|
||
not want to be both on the list of non-local labels and on
|
||
the list of forced labels. */
|
||
FORCED_LABEL (label) = 0;
|
||
return const0_rtx;
|
||
}
|
||
break;
|
||
|
||
case BUILT_IN_SETJMP_RECEIVER:
|
||
/* __builtin_setjmp_receiver is passed the receiver label. */
|
||
if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
|
||
{
|
||
tree label = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0);
|
||
rtx_insn *label_r = label_rtx (label);
|
||
|
||
expand_builtin_setjmp_receiver (label_r);
|
||
return const0_rtx;
|
||
}
|
||
break;
|
||
|
||
/* __builtin_longjmp is passed a pointer to an array of five words.
|
||
It's similar to the C library longjmp function but works with
|
||
__builtin_setjmp above. */
|
||
case BUILT_IN_LONGJMP:
|
||
if (validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
{
|
||
rtx buf_addr = expand_expr (CALL_EXPR_ARG (exp, 0), subtarget,
|
||
VOIDmode, EXPAND_NORMAL);
|
||
rtx value = expand_normal (CALL_EXPR_ARG (exp, 1));
|
||
|
||
if (value != const1_rtx)
|
||
{
|
||
error ("%<__builtin_longjmp%> second argument must be 1");
|
||
return const0_rtx;
|
||
}
|
||
|
||
expand_builtin_longjmp (buf_addr, value);
|
||
return const0_rtx;
|
||
}
|
||
break;
|
||
|
||
case BUILT_IN_NONLOCAL_GOTO:
|
||
target = expand_builtin_nonlocal_goto (exp);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
/* This updates the setjmp buffer that is its argument with the value
|
||
of the current stack pointer. */
|
||
case BUILT_IN_UPDATE_SETJMP_BUF:
|
||
if (validate_arglist (exp, POINTER_TYPE, VOID_TYPE))
|
||
{
|
||
rtx buf_addr
|
||
= expand_normal (CALL_EXPR_ARG (exp, 0));
|
||
|
||
expand_builtin_update_setjmp_buf (buf_addr);
|
||
return const0_rtx;
|
||
}
|
||
break;
|
||
|
||
case BUILT_IN_TRAP:
|
||
expand_builtin_trap ();
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_UNREACHABLE:
|
||
expand_builtin_unreachable ();
|
||
return const0_rtx;
|
||
|
||
CASE_FLT_FN (BUILT_IN_SIGNBIT):
|
||
case BUILT_IN_SIGNBITD32:
|
||
case BUILT_IN_SIGNBITD64:
|
||
case BUILT_IN_SIGNBITD128:
|
||
target = expand_builtin_signbit (exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
/* Various hooks for the DWARF 2 __throw routine. */
|
||
case BUILT_IN_UNWIND_INIT:
|
||
expand_builtin_unwind_init ();
|
||
return const0_rtx;
|
||
case BUILT_IN_DWARF_CFA:
|
||
return virtual_cfa_rtx;
|
||
#ifdef DWARF2_UNWIND_INFO
|
||
case BUILT_IN_DWARF_SP_COLUMN:
|
||
return expand_builtin_dwarf_sp_column ();
|
||
case BUILT_IN_INIT_DWARF_REG_SIZES:
|
||
expand_builtin_init_dwarf_reg_sizes (CALL_EXPR_ARG (exp, 0));
|
||
return const0_rtx;
|
||
#endif
|
||
case BUILT_IN_FROB_RETURN_ADDR:
|
||
return expand_builtin_frob_return_addr (CALL_EXPR_ARG (exp, 0));
|
||
case BUILT_IN_EXTRACT_RETURN_ADDR:
|
||
return expand_builtin_extract_return_addr (CALL_EXPR_ARG (exp, 0));
|
||
case BUILT_IN_EH_RETURN:
|
||
expand_builtin_eh_return (CALL_EXPR_ARG (exp, 0),
|
||
CALL_EXPR_ARG (exp, 1));
|
||
return const0_rtx;
|
||
case BUILT_IN_EH_RETURN_DATA_REGNO:
|
||
return expand_builtin_eh_return_data_regno (exp);
|
||
case BUILT_IN_EXTEND_POINTER:
|
||
return expand_builtin_extend_pointer (CALL_EXPR_ARG (exp, 0));
|
||
case BUILT_IN_EH_POINTER:
|
||
return expand_builtin_eh_pointer (exp);
|
||
case BUILT_IN_EH_FILTER:
|
||
return expand_builtin_eh_filter (exp);
|
||
case BUILT_IN_EH_COPY_VALUES:
|
||
return expand_builtin_eh_copy_values (exp);
|
||
|
||
case BUILT_IN_VA_START:
|
||
return expand_builtin_va_start (exp);
|
||
case BUILT_IN_VA_END:
|
||
return expand_builtin_va_end (exp);
|
||
case BUILT_IN_VA_COPY:
|
||
return expand_builtin_va_copy (exp);
|
||
case BUILT_IN_EXPECT:
|
||
return expand_builtin_expect (exp, target);
|
||
case BUILT_IN_EXPECT_WITH_PROBABILITY:
|
||
return expand_builtin_expect_with_probability (exp, target);
|
||
case BUILT_IN_ASSUME_ALIGNED:
|
||
return expand_builtin_assume_aligned (exp, target);
|
||
case BUILT_IN_PREFETCH:
|
||
expand_builtin_prefetch (exp);
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_INIT_TRAMPOLINE:
|
||
return expand_builtin_init_trampoline (exp, true);
|
||
case BUILT_IN_INIT_HEAP_TRAMPOLINE:
|
||
return expand_builtin_init_trampoline (exp, false);
|
||
case BUILT_IN_ADJUST_TRAMPOLINE:
|
||
return expand_builtin_adjust_trampoline (exp);
|
||
|
||
case BUILT_IN_INIT_DESCRIPTOR:
|
||
return expand_builtin_init_descriptor (exp);
|
||
case BUILT_IN_ADJUST_DESCRIPTOR:
|
||
return expand_builtin_adjust_descriptor (exp);
|
||
|
||
case BUILT_IN_FORK:
|
||
case BUILT_IN_EXECL:
|
||
case BUILT_IN_EXECV:
|
||
case BUILT_IN_EXECLP:
|
||
case BUILT_IN_EXECLE:
|
||
case BUILT_IN_EXECVP:
|
||
case BUILT_IN_EXECVE:
|
||
target = expand_builtin_fork_or_exec (fndecl, exp, target, ignore);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_FETCH_AND_ADD_1:
|
||
case BUILT_IN_SYNC_FETCH_AND_ADD_2:
|
||
case BUILT_IN_SYNC_FETCH_AND_ADD_4:
|
||
case BUILT_IN_SYNC_FETCH_AND_ADD_8:
|
||
case BUILT_IN_SYNC_FETCH_AND_ADD_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_ADD_1);
|
||
target = expand_builtin_sync_operation (mode, exp, PLUS, false, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_FETCH_AND_SUB_1:
|
||
case BUILT_IN_SYNC_FETCH_AND_SUB_2:
|
||
case BUILT_IN_SYNC_FETCH_AND_SUB_4:
|
||
case BUILT_IN_SYNC_FETCH_AND_SUB_8:
|
||
case BUILT_IN_SYNC_FETCH_AND_SUB_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_SUB_1);
|
||
target = expand_builtin_sync_operation (mode, exp, MINUS, false, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_FETCH_AND_OR_1:
|
||
case BUILT_IN_SYNC_FETCH_AND_OR_2:
|
||
case BUILT_IN_SYNC_FETCH_AND_OR_4:
|
||
case BUILT_IN_SYNC_FETCH_AND_OR_8:
|
||
case BUILT_IN_SYNC_FETCH_AND_OR_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_OR_1);
|
||
target = expand_builtin_sync_operation (mode, exp, IOR, false, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_FETCH_AND_AND_1:
|
||
case BUILT_IN_SYNC_FETCH_AND_AND_2:
|
||
case BUILT_IN_SYNC_FETCH_AND_AND_4:
|
||
case BUILT_IN_SYNC_FETCH_AND_AND_8:
|
||
case BUILT_IN_SYNC_FETCH_AND_AND_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_AND_1);
|
||
target = expand_builtin_sync_operation (mode, exp, AND, false, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_FETCH_AND_XOR_1:
|
||
case BUILT_IN_SYNC_FETCH_AND_XOR_2:
|
||
case BUILT_IN_SYNC_FETCH_AND_XOR_4:
|
||
case BUILT_IN_SYNC_FETCH_AND_XOR_8:
|
||
case BUILT_IN_SYNC_FETCH_AND_XOR_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_XOR_1);
|
||
target = expand_builtin_sync_operation (mode, exp, XOR, false, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_1:
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_2:
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_4:
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_8:
|
||
case BUILT_IN_SYNC_FETCH_AND_NAND_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_FETCH_AND_NAND_1);
|
||
target = expand_builtin_sync_operation (mode, exp, NOT, false, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_ADD_AND_FETCH_1:
|
||
case BUILT_IN_SYNC_ADD_AND_FETCH_2:
|
||
case BUILT_IN_SYNC_ADD_AND_FETCH_4:
|
||
case BUILT_IN_SYNC_ADD_AND_FETCH_8:
|
||
case BUILT_IN_SYNC_ADD_AND_FETCH_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_ADD_AND_FETCH_1);
|
||
target = expand_builtin_sync_operation (mode, exp, PLUS, true, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_SUB_AND_FETCH_1:
|
||
case BUILT_IN_SYNC_SUB_AND_FETCH_2:
|
||
case BUILT_IN_SYNC_SUB_AND_FETCH_4:
|
||
case BUILT_IN_SYNC_SUB_AND_FETCH_8:
|
||
case BUILT_IN_SYNC_SUB_AND_FETCH_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_SUB_AND_FETCH_1);
|
||
target = expand_builtin_sync_operation (mode, exp, MINUS, true, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_OR_AND_FETCH_1:
|
||
case BUILT_IN_SYNC_OR_AND_FETCH_2:
|
||
case BUILT_IN_SYNC_OR_AND_FETCH_4:
|
||
case BUILT_IN_SYNC_OR_AND_FETCH_8:
|
||
case BUILT_IN_SYNC_OR_AND_FETCH_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_OR_AND_FETCH_1);
|
||
target = expand_builtin_sync_operation (mode, exp, IOR, true, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_AND_AND_FETCH_1:
|
||
case BUILT_IN_SYNC_AND_AND_FETCH_2:
|
||
case BUILT_IN_SYNC_AND_AND_FETCH_4:
|
||
case BUILT_IN_SYNC_AND_AND_FETCH_8:
|
||
case BUILT_IN_SYNC_AND_AND_FETCH_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_AND_AND_FETCH_1);
|
||
target = expand_builtin_sync_operation (mode, exp, AND, true, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_XOR_AND_FETCH_1:
|
||
case BUILT_IN_SYNC_XOR_AND_FETCH_2:
|
||
case BUILT_IN_SYNC_XOR_AND_FETCH_4:
|
||
case BUILT_IN_SYNC_XOR_AND_FETCH_8:
|
||
case BUILT_IN_SYNC_XOR_AND_FETCH_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_XOR_AND_FETCH_1);
|
||
target = expand_builtin_sync_operation (mode, exp, XOR, true, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_1:
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_2:
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_4:
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_8:
|
||
case BUILT_IN_SYNC_NAND_AND_FETCH_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_NAND_AND_FETCH_1);
|
||
target = expand_builtin_sync_operation (mode, exp, NOT, true, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
|
||
if (mode == VOIDmode)
|
||
mode = TYPE_MODE (boolean_type_node);
|
||
if (!target || !register_operand (target, mode))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
mode = get_builtin_sync_mode
|
||
(fcode - BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1);
|
||
target = expand_builtin_compare_and_swap (mode, exp, true, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
|
||
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
|
||
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
|
||
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
|
||
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
|
||
mode = get_builtin_sync_mode
|
||
(fcode - BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1);
|
||
target = expand_builtin_compare_and_swap (mode, exp, false, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
|
||
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
|
||
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
|
||
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
|
||
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_LOCK_TEST_AND_SET_1);
|
||
target = expand_builtin_sync_lock_test_and_set (mode, exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_SYNC_LOCK_RELEASE_1:
|
||
case BUILT_IN_SYNC_LOCK_RELEASE_2:
|
||
case BUILT_IN_SYNC_LOCK_RELEASE_4:
|
||
case BUILT_IN_SYNC_LOCK_RELEASE_8:
|
||
case BUILT_IN_SYNC_LOCK_RELEASE_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SYNC_LOCK_RELEASE_1);
|
||
expand_builtin_sync_lock_release (mode, exp);
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_SYNC_SYNCHRONIZE:
|
||
expand_builtin_sync_synchronize ();
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_ATOMIC_EXCHANGE_1:
|
||
case BUILT_IN_ATOMIC_EXCHANGE_2:
|
||
case BUILT_IN_ATOMIC_EXCHANGE_4:
|
||
case BUILT_IN_ATOMIC_EXCHANGE_8:
|
||
case BUILT_IN_ATOMIC_EXCHANGE_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_EXCHANGE_1);
|
||
target = expand_builtin_atomic_exchange (mode, exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
|
||
{
|
||
unsigned int nargs, z;
|
||
vec<tree, va_gc> *vec;
|
||
|
||
mode =
|
||
get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1);
|
||
target = expand_builtin_atomic_compare_exchange (mode, exp, target);
|
||
if (target)
|
||
return target;
|
||
|
||
/* If this is turned into an external library call, the weak parameter
|
||
must be dropped to match the expected parameter list. */
|
||
nargs = call_expr_nargs (exp);
|
||
vec_alloc (vec, nargs - 1);
|
||
for (z = 0; z < 3; z++)
|
||
vec->quick_push (CALL_EXPR_ARG (exp, z));
|
||
/* Skip the boolean weak parameter. */
|
||
for (z = 4; z < 6; z++)
|
||
vec->quick_push (CALL_EXPR_ARG (exp, z));
|
||
exp = build_call_vec (TREE_TYPE (exp), CALL_EXPR_FN (exp), vec);
|
||
break;
|
||
}
|
||
|
||
case BUILT_IN_ATOMIC_LOAD_1:
|
||
case BUILT_IN_ATOMIC_LOAD_2:
|
||
case BUILT_IN_ATOMIC_LOAD_4:
|
||
case BUILT_IN_ATOMIC_LOAD_8:
|
||
case BUILT_IN_ATOMIC_LOAD_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_LOAD_1);
|
||
target = expand_builtin_atomic_load (mode, exp, target);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_STORE_1:
|
||
case BUILT_IN_ATOMIC_STORE_2:
|
||
case BUILT_IN_ATOMIC_STORE_4:
|
||
case BUILT_IN_ATOMIC_STORE_8:
|
||
case BUILT_IN_ATOMIC_STORE_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_STORE_1);
|
||
target = expand_builtin_atomic_store (mode, exp);
|
||
if (target)
|
||
return const0_rtx;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_ADD_FETCH_1:
|
||
case BUILT_IN_ATOMIC_ADD_FETCH_2:
|
||
case BUILT_IN_ATOMIC_ADD_FETCH_4:
|
||
case BUILT_IN_ATOMIC_ADD_FETCH_8:
|
||
case BUILT_IN_ATOMIC_ADD_FETCH_16:
|
||
{
|
||
enum built_in_function lib;
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_ADD_FETCH_1);
|
||
lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_ADD_1 +
|
||
(fcode - BUILT_IN_ATOMIC_ADD_FETCH_1));
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, PLUS, true,
|
||
ignore, lib);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
}
|
||
case BUILT_IN_ATOMIC_SUB_FETCH_1:
|
||
case BUILT_IN_ATOMIC_SUB_FETCH_2:
|
||
case BUILT_IN_ATOMIC_SUB_FETCH_4:
|
||
case BUILT_IN_ATOMIC_SUB_FETCH_8:
|
||
case BUILT_IN_ATOMIC_SUB_FETCH_16:
|
||
{
|
||
enum built_in_function lib;
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_SUB_FETCH_1);
|
||
lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_SUB_1 +
|
||
(fcode - BUILT_IN_ATOMIC_SUB_FETCH_1));
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, MINUS, true,
|
||
ignore, lib);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
}
|
||
case BUILT_IN_ATOMIC_AND_FETCH_1:
|
||
case BUILT_IN_ATOMIC_AND_FETCH_2:
|
||
case BUILT_IN_ATOMIC_AND_FETCH_4:
|
||
case BUILT_IN_ATOMIC_AND_FETCH_8:
|
||
case BUILT_IN_ATOMIC_AND_FETCH_16:
|
||
{
|
||
enum built_in_function lib;
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_AND_FETCH_1);
|
||
lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_AND_1 +
|
||
(fcode - BUILT_IN_ATOMIC_AND_FETCH_1));
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, AND, true,
|
||
ignore, lib);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
}
|
||
case BUILT_IN_ATOMIC_NAND_FETCH_1:
|
||
case BUILT_IN_ATOMIC_NAND_FETCH_2:
|
||
case BUILT_IN_ATOMIC_NAND_FETCH_4:
|
||
case BUILT_IN_ATOMIC_NAND_FETCH_8:
|
||
case BUILT_IN_ATOMIC_NAND_FETCH_16:
|
||
{
|
||
enum built_in_function lib;
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_NAND_FETCH_1);
|
||
lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_NAND_1 +
|
||
(fcode - BUILT_IN_ATOMIC_NAND_FETCH_1));
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, NOT, true,
|
||
ignore, lib);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
}
|
||
case BUILT_IN_ATOMIC_XOR_FETCH_1:
|
||
case BUILT_IN_ATOMIC_XOR_FETCH_2:
|
||
case BUILT_IN_ATOMIC_XOR_FETCH_4:
|
||
case BUILT_IN_ATOMIC_XOR_FETCH_8:
|
||
case BUILT_IN_ATOMIC_XOR_FETCH_16:
|
||
{
|
||
enum built_in_function lib;
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_XOR_FETCH_1);
|
||
lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_XOR_1 +
|
||
(fcode - BUILT_IN_ATOMIC_XOR_FETCH_1));
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, XOR, true,
|
||
ignore, lib);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
}
|
||
case BUILT_IN_ATOMIC_OR_FETCH_1:
|
||
case BUILT_IN_ATOMIC_OR_FETCH_2:
|
||
case BUILT_IN_ATOMIC_OR_FETCH_4:
|
||
case BUILT_IN_ATOMIC_OR_FETCH_8:
|
||
case BUILT_IN_ATOMIC_OR_FETCH_16:
|
||
{
|
||
enum built_in_function lib;
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_OR_FETCH_1);
|
||
lib = (enum built_in_function)((int)BUILT_IN_ATOMIC_FETCH_OR_1 +
|
||
(fcode - BUILT_IN_ATOMIC_OR_FETCH_1));
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, IOR, true,
|
||
ignore, lib);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
}
|
||
case BUILT_IN_ATOMIC_FETCH_ADD_1:
|
||
case BUILT_IN_ATOMIC_FETCH_ADD_2:
|
||
case BUILT_IN_ATOMIC_FETCH_ADD_4:
|
||
case BUILT_IN_ATOMIC_FETCH_ADD_8:
|
||
case BUILT_IN_ATOMIC_FETCH_ADD_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_ADD_1);
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, PLUS, false,
|
||
ignore, BUILT_IN_NONE);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_FETCH_SUB_1:
|
||
case BUILT_IN_ATOMIC_FETCH_SUB_2:
|
||
case BUILT_IN_ATOMIC_FETCH_SUB_4:
|
||
case BUILT_IN_ATOMIC_FETCH_SUB_8:
|
||
case BUILT_IN_ATOMIC_FETCH_SUB_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_SUB_1);
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, MINUS, false,
|
||
ignore, BUILT_IN_NONE);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_FETCH_AND_1:
|
||
case BUILT_IN_ATOMIC_FETCH_AND_2:
|
||
case BUILT_IN_ATOMIC_FETCH_AND_4:
|
||
case BUILT_IN_ATOMIC_FETCH_AND_8:
|
||
case BUILT_IN_ATOMIC_FETCH_AND_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_AND_1);
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, AND, false,
|
||
ignore, BUILT_IN_NONE);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_FETCH_NAND_1:
|
||
case BUILT_IN_ATOMIC_FETCH_NAND_2:
|
||
case BUILT_IN_ATOMIC_FETCH_NAND_4:
|
||
case BUILT_IN_ATOMIC_FETCH_NAND_8:
|
||
case BUILT_IN_ATOMIC_FETCH_NAND_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_NAND_1);
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, NOT, false,
|
||
ignore, BUILT_IN_NONE);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_FETCH_XOR_1:
|
||
case BUILT_IN_ATOMIC_FETCH_XOR_2:
|
||
case BUILT_IN_ATOMIC_FETCH_XOR_4:
|
||
case BUILT_IN_ATOMIC_FETCH_XOR_8:
|
||
case BUILT_IN_ATOMIC_FETCH_XOR_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_XOR_1);
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, XOR, false,
|
||
ignore, BUILT_IN_NONE);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_FETCH_OR_1:
|
||
case BUILT_IN_ATOMIC_FETCH_OR_2:
|
||
case BUILT_IN_ATOMIC_FETCH_OR_4:
|
||
case BUILT_IN_ATOMIC_FETCH_OR_8:
|
||
case BUILT_IN_ATOMIC_FETCH_OR_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_ATOMIC_FETCH_OR_1);
|
||
target = expand_builtin_atomic_fetch_op (mode, exp, target, IOR, false,
|
||
ignore, BUILT_IN_NONE);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_TEST_AND_SET:
|
||
return expand_builtin_atomic_test_and_set (exp, target);
|
||
|
||
case BUILT_IN_ATOMIC_CLEAR:
|
||
return expand_builtin_atomic_clear (exp);
|
||
|
||
case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE:
|
||
return expand_builtin_atomic_always_lock_free (exp);
|
||
|
||
case BUILT_IN_ATOMIC_IS_LOCK_FREE:
|
||
target = expand_builtin_atomic_is_lock_free (exp);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_ATOMIC_THREAD_FENCE:
|
||
expand_builtin_atomic_thread_fence (exp);
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_ATOMIC_SIGNAL_FENCE:
|
||
expand_builtin_atomic_signal_fence (exp);
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_OBJECT_SIZE:
|
||
return expand_builtin_object_size (exp);
|
||
|
||
case BUILT_IN_MEMCPY_CHK:
|
||
case BUILT_IN_MEMPCPY_CHK:
|
||
case BUILT_IN_MEMMOVE_CHK:
|
||
case BUILT_IN_MEMSET_CHK:
|
||
target = expand_builtin_memory_chk (exp, target, mode, fcode);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_STRCPY_CHK:
|
||
case BUILT_IN_STPCPY_CHK:
|
||
case BUILT_IN_STRNCPY_CHK:
|
||
case BUILT_IN_STPNCPY_CHK:
|
||
case BUILT_IN_STRCAT_CHK:
|
||
case BUILT_IN_STRNCAT_CHK:
|
||
case BUILT_IN_SNPRINTF_CHK:
|
||
case BUILT_IN_VSNPRINTF_CHK:
|
||
maybe_emit_chk_warning (exp, fcode);
|
||
break;
|
||
|
||
case BUILT_IN_SPRINTF_CHK:
|
||
case BUILT_IN_VSPRINTF_CHK:
|
||
maybe_emit_sprintf_chk_warning (exp, fcode);
|
||
break;
|
||
|
||
case BUILT_IN_FREE:
|
||
if (warn_free_nonheap_object)
|
||
maybe_emit_free_warning (exp);
|
||
break;
|
||
|
||
case BUILT_IN_THREAD_POINTER:
|
||
return expand_builtin_thread_pointer (exp, target);
|
||
|
||
case BUILT_IN_SET_THREAD_POINTER:
|
||
expand_builtin_set_thread_pointer (exp);
|
||
return const0_rtx;
|
||
|
||
case BUILT_IN_ACC_ON_DEVICE:
|
||
/* Do library call, if we failed to expand the builtin when
|
||
folding. */
|
||
break;
|
||
|
||
case BUILT_IN_GOACC_PARLEVEL_ID:
|
||
case BUILT_IN_GOACC_PARLEVEL_SIZE:
|
||
return expand_builtin_goacc_parlevel_id_size (exp, target, ignore);
|
||
|
||
case BUILT_IN_SPECULATION_SAFE_VALUE_PTR:
|
||
return expand_speculation_safe_value (VOIDmode, exp, target, ignore);
|
||
|
||
case BUILT_IN_SPECULATION_SAFE_VALUE_1:
|
||
case BUILT_IN_SPECULATION_SAFE_VALUE_2:
|
||
case BUILT_IN_SPECULATION_SAFE_VALUE_4:
|
||
case BUILT_IN_SPECULATION_SAFE_VALUE_8:
|
||
case BUILT_IN_SPECULATION_SAFE_VALUE_16:
|
||
mode = get_builtin_sync_mode (fcode - BUILT_IN_SPECULATION_SAFE_VALUE_1);
|
||
return expand_speculation_safe_value (mode, exp, target, ignore);
|
||
|
||
default: /* just do library call, if unknown builtin */
|
||
break;
|
||
}
|
||
|
||
/* The switch statement above can drop through to cause the function
|
||
to be called normally. */
|
||
return expand_call (exp, target, ignore);
|
||
}
|
||
|
||
/* Determine whether a tree node represents a call to a built-in
|
||
function. If the tree T is a call to a built-in function with
|
||
the right number of arguments of the appropriate types, return
|
||
the DECL_FUNCTION_CODE of the call, e.g. BUILT_IN_SQRT.
|
||
Otherwise the return value is END_BUILTINS. */
|
||
|
||
enum built_in_function
|
||
builtin_mathfn_code (const_tree t)
|
||
{
|
||
const_tree fndecl, arg, parmlist;
|
||
const_tree argtype, parmtype;
|
||
const_call_expr_arg_iterator iter;
|
||
|
||
if (TREE_CODE (t) != CALL_EXPR)
|
||
return END_BUILTINS;
|
||
|
||
fndecl = get_callee_fndecl (t);
|
||
if (fndecl == NULL_TREE || !fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
|
||
return END_BUILTINS;
|
||
|
||
parmlist = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
||
init_const_call_expr_arg_iterator (t, &iter);
|
||
for (; parmlist; parmlist = TREE_CHAIN (parmlist))
|
||
{
|
||
/* If a function doesn't take a variable number of arguments,
|
||
the last element in the list will have type `void'. */
|
||
parmtype = TREE_VALUE (parmlist);
|
||
if (VOID_TYPE_P (parmtype))
|
||
{
|
||
if (more_const_call_expr_args_p (&iter))
|
||
return END_BUILTINS;
|
||
return DECL_FUNCTION_CODE (fndecl);
|
||
}
|
||
|
||
if (! more_const_call_expr_args_p (&iter))
|
||
return END_BUILTINS;
|
||
|
||
arg = next_const_call_expr_arg (&iter);
|
||
argtype = TREE_TYPE (arg);
|
||
|
||
if (SCALAR_FLOAT_TYPE_P (parmtype))
|
||
{
|
||
if (! SCALAR_FLOAT_TYPE_P (argtype))
|
||
return END_BUILTINS;
|
||
}
|
||
else if (COMPLEX_FLOAT_TYPE_P (parmtype))
|
||
{
|
||
if (! COMPLEX_FLOAT_TYPE_P (argtype))
|
||
return END_BUILTINS;
|
||
}
|
||
else if (POINTER_TYPE_P (parmtype))
|
||
{
|
||
if (! POINTER_TYPE_P (argtype))
|
||
return END_BUILTINS;
|
||
}
|
||
else if (INTEGRAL_TYPE_P (parmtype))
|
||
{
|
||
if (! INTEGRAL_TYPE_P (argtype))
|
||
return END_BUILTINS;
|
||
}
|
||
else
|
||
return END_BUILTINS;
|
||
}
|
||
|
||
/* Variable-length argument list. */
|
||
return DECL_FUNCTION_CODE (fndecl);
|
||
}
|
||
|
||
/* Fold a call to __builtin_constant_p, if we know its argument ARG will
|
||
evaluate to a constant. */
|
||
|
||
static tree
|
||
fold_builtin_constant_p (tree arg)
|
||
{
|
||
/* We return 1 for a numeric type that's known to be a constant
|
||
value at compile-time or for an aggregate type that's a
|
||
literal constant. */
|
||
STRIP_NOPS (arg);
|
||
|
||
/* If we know this is a constant, emit the constant of one. */
|
||
if (CONSTANT_CLASS_P (arg)
|
||
|| (TREE_CODE (arg) == CONSTRUCTOR
|
||
&& TREE_CONSTANT (arg)))
|
||
return integer_one_node;
|
||
if (TREE_CODE (arg) == ADDR_EXPR)
|
||
{
|
||
tree op = TREE_OPERAND (arg, 0);
|
||
if (TREE_CODE (op) == STRING_CST
|
||
|| (TREE_CODE (op) == ARRAY_REF
|
||
&& integer_zerop (TREE_OPERAND (op, 1))
|
||
&& TREE_CODE (TREE_OPERAND (op, 0)) == STRING_CST))
|
||
return integer_one_node;
|
||
}
|
||
|
||
/* If this expression has side effects, show we don't know it to be a
|
||
constant. Likewise if it's a pointer or aggregate type since in
|
||
those case we only want literals, since those are only optimized
|
||
when generating RTL, not later.
|
||
And finally, if we are compiling an initializer, not code, we
|
||
need to return a definite result now; there's not going to be any
|
||
more optimization done. */
|
||
if (TREE_SIDE_EFFECTS (arg)
|
||
|| AGGREGATE_TYPE_P (TREE_TYPE (arg))
|
||
|| POINTER_TYPE_P (TREE_TYPE (arg))
|
||
|| cfun == 0
|
||
|| folding_initializer
|
||
|| force_folding_builtin_constant_p)
|
||
return integer_zero_node;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Create builtin_expect or builtin_expect_with_probability
|
||
with PRED and EXPECTED as its arguments and return it as a truthvalue.
|
||
Fortran FE can also produce builtin_expect with PREDICTOR as third argument.
|
||
builtin_expect_with_probability instead uses third argument as PROBABILITY
|
||
value. */
|
||
|
||
static tree
|
||
build_builtin_expect_predicate (location_t loc, tree pred, tree expected,
|
||
tree predictor, tree probability)
|
||
{
|
||
tree fn, arg_types, pred_type, expected_type, call_expr, ret_type;
|
||
|
||
fn = builtin_decl_explicit (probability == NULL_TREE ? BUILT_IN_EXPECT
|
||
: BUILT_IN_EXPECT_WITH_PROBABILITY);
|
||
arg_types = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
||
ret_type = TREE_TYPE (TREE_TYPE (fn));
|
||
pred_type = TREE_VALUE (arg_types);
|
||
expected_type = TREE_VALUE (TREE_CHAIN (arg_types));
|
||
|
||
pred = fold_convert_loc (loc, pred_type, pred);
|
||
expected = fold_convert_loc (loc, expected_type, expected);
|
||
|
||
if (probability)
|
||
call_expr = build_call_expr_loc (loc, fn, 3, pred, expected, probability);
|
||
else
|
||
call_expr = build_call_expr_loc (loc, fn, predictor ? 3 : 2, pred, expected,
|
||
predictor);
|
||
|
||
return build2 (NE_EXPR, TREE_TYPE (pred), call_expr,
|
||
build_int_cst (ret_type, 0));
|
||
}
|
||
|
||
/* Fold a call to builtin_expect with arguments ARG0, ARG1, ARG2, ARG3. Return
|
||
NULL_TREE if no simplification is possible. */
|
||
|
||
tree
|
||
fold_builtin_expect (location_t loc, tree arg0, tree arg1, tree arg2,
|
||
tree arg3)
|
||
{
|
||
tree inner, fndecl, inner_arg0;
|
||
enum tree_code code;
|
||
|
||
/* Distribute the expected value over short-circuiting operators.
|
||
See through the cast from truthvalue_type_node to long. */
|
||
inner_arg0 = arg0;
|
||
while (CONVERT_EXPR_P (inner_arg0)
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (inner_arg0))
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (inner_arg0, 0))))
|
||
inner_arg0 = TREE_OPERAND (inner_arg0, 0);
|
||
|
||
/* If this is a builtin_expect within a builtin_expect keep the
|
||
inner one. See through a comparison against a constant. It
|
||
might have been added to create a thruthvalue. */
|
||
inner = inner_arg0;
|
||
|
||
if (COMPARISON_CLASS_P (inner)
|
||
&& TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST)
|
||
inner = TREE_OPERAND (inner, 0);
|
||
|
||
if (TREE_CODE (inner) == CALL_EXPR
|
||
&& (fndecl = get_callee_fndecl (inner))
|
||
&& (fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
|
||
|| fndecl_built_in_p (fndecl, BUILT_IN_EXPECT_WITH_PROBABILITY)))
|
||
return arg0;
|
||
|
||
inner = inner_arg0;
|
||
code = TREE_CODE (inner);
|
||
if (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
|
||
{
|
||
tree op0 = TREE_OPERAND (inner, 0);
|
||
tree op1 = TREE_OPERAND (inner, 1);
|
||
arg1 = save_expr (arg1);
|
||
|
||
op0 = build_builtin_expect_predicate (loc, op0, arg1, arg2, arg3);
|
||
op1 = build_builtin_expect_predicate (loc, op1, arg1, arg2, arg3);
|
||
inner = build2 (code, TREE_TYPE (inner), op0, op1);
|
||
|
||
return fold_convert_loc (loc, TREE_TYPE (arg0), inner);
|
||
}
|
||
|
||
/* If the argument isn't invariant then there's nothing else we can do. */
|
||
if (!TREE_CONSTANT (inner_arg0))
|
||
return NULL_TREE;
|
||
|
||
/* If we expect that a comparison against the argument will fold to
|
||
a constant return the constant. In practice, this means a true
|
||
constant or the address of a non-weak symbol. */
|
||
inner = inner_arg0;
|
||
STRIP_NOPS (inner);
|
||
if (TREE_CODE (inner) == ADDR_EXPR)
|
||
{
|
||
do
|
||
{
|
||
inner = TREE_OPERAND (inner, 0);
|
||
}
|
||
while (TREE_CODE (inner) == COMPONENT_REF
|
||
|| TREE_CODE (inner) == ARRAY_REF);
|
||
if (VAR_OR_FUNCTION_DECL_P (inner) && DECL_WEAK (inner))
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Otherwise, ARG0 already has the proper type for the return value. */
|
||
return arg0;
|
||
}
|
||
|
||
/* Fold a call to __builtin_classify_type with argument ARG. */
|
||
|
||
static tree
|
||
fold_builtin_classify_type (tree arg)
|
||
{
|
||
if (arg == 0)
|
||
return build_int_cst (integer_type_node, no_type_class);
|
||
|
||
return build_int_cst (integer_type_node, type_to_class (TREE_TYPE (arg)));
|
||
}
|
||
|
||
/* Fold a call to __builtin_strlen with argument ARG. */
|
||
|
||
static tree
|
||
fold_builtin_strlen (location_t loc, tree type, tree arg)
|
||
{
|
||
if (!validate_arg (arg, POINTER_TYPE))
|
||
return NULL_TREE;
|
||
else
|
||
{
|
||
c_strlen_data lendata = { };
|
||
tree len = c_strlen (arg, 0, &lendata);
|
||
|
||
if (len)
|
||
return fold_convert_loc (loc, type, len);
|
||
|
||
if (!lendata.decl)
|
||
c_strlen (arg, 1, &lendata);
|
||
|
||
if (lendata.decl)
|
||
{
|
||
if (EXPR_HAS_LOCATION (arg))
|
||
loc = EXPR_LOCATION (arg);
|
||
else if (loc == UNKNOWN_LOCATION)
|
||
loc = input_location;
|
||
warn_string_no_nul (loc, "strlen", arg, lendata.decl);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Fold a call to __builtin_inf or __builtin_huge_val. */
|
||
|
||
static tree
|
||
fold_builtin_inf (location_t loc, tree type, int warn)
|
||
{
|
||
REAL_VALUE_TYPE real;
|
||
|
||
/* __builtin_inff is intended to be usable to define INFINITY on all
|
||
targets. If an infinity is not available, INFINITY expands "to a
|
||
positive constant of type float that overflows at translation
|
||
time", footnote "In this case, using INFINITY will violate the
|
||
constraint in 6.4.4 and thus require a diagnostic." (C99 7.12#4).
|
||
Thus we pedwarn to ensure this constraint violation is
|
||
diagnosed. */
|
||
if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) && warn)
|
||
pedwarn (loc, 0, "target format does not support infinity");
|
||
|
||
real_inf (&real);
|
||
return build_real (type, real);
|
||
}
|
||
|
||
/* Fold function call to builtin sincos, sincosf, or sincosl. Return
|
||
NULL_TREE if no simplification can be made. */
|
||
|
||
static tree
|
||
fold_builtin_sincos (location_t loc,
|
||
tree arg0, tree arg1, tree arg2)
|
||
{
|
||
tree type;
|
||
tree fndecl, call = NULL_TREE;
|
||
|
||
if (!validate_arg (arg0, REAL_TYPE)
|
||
|| !validate_arg (arg1, POINTER_TYPE)
|
||
|| !validate_arg (arg2, POINTER_TYPE))
|
||
return NULL_TREE;
|
||
|
||
type = TREE_TYPE (arg0);
|
||
|
||
/* Calculate the result when the argument is a constant. */
|
||
built_in_function fn = mathfn_built_in_2 (type, CFN_BUILT_IN_CEXPI);
|
||
if (fn == END_BUILTINS)
|
||
return NULL_TREE;
|
||
|
||
/* Canonicalize sincos to cexpi. */
|
||
if (TREE_CODE (arg0) == REAL_CST)
|
||
{
|
||
tree complex_type = build_complex_type (type);
|
||
call = fold_const_call (as_combined_fn (fn), complex_type, arg0);
|
||
}
|
||
if (!call)
|
||
{
|
||
if (!targetm.libc_has_function (function_c99_math_complex)
|
||
|| !builtin_decl_implicit_p (fn))
|
||
return NULL_TREE;
|
||
fndecl = builtin_decl_explicit (fn);
|
||
call = build_call_expr_loc (loc, fndecl, 1, arg0);
|
||
call = builtin_save_expr (call);
|
||
}
|
||
|
||
tree ptype = build_pointer_type (type);
|
||
arg1 = fold_convert (ptype, arg1);
|
||
arg2 = fold_convert (ptype, arg2);
|
||
return build2 (COMPOUND_EXPR, void_type_node,
|
||
build2 (MODIFY_EXPR, void_type_node,
|
||
build_fold_indirect_ref_loc (loc, arg1),
|
||
fold_build1_loc (loc, IMAGPART_EXPR, type, call)),
|
||
build2 (MODIFY_EXPR, void_type_node,
|
||
build_fold_indirect_ref_loc (loc, arg2),
|
||
fold_build1_loc (loc, REALPART_EXPR, type, call)));
|
||
}
|
||
|
||
/* Fold function call to builtin memcmp with arguments ARG1 and ARG2.
|
||
Return NULL_TREE if no simplification can be made. */
|
||
|
||
static tree
|
||
fold_builtin_memcmp (location_t loc, tree arg1, tree arg2, tree len)
|
||
{
|
||
if (!validate_arg (arg1, POINTER_TYPE)
|
||
|| !validate_arg (arg2, POINTER_TYPE)
|
||
|| !validate_arg (len, INTEGER_TYPE))
|
||
return NULL_TREE;
|
||
|
||
/* If the LEN parameter is zero, return zero. */
|
||
if (integer_zerop (len))
|
||
return omit_two_operands_loc (loc, integer_type_node, integer_zero_node,
|
||
arg1, arg2);
|
||
|
||
/* If ARG1 and ARG2 are the same (and not volatile), return zero. */
|
||
if (operand_equal_p (arg1, arg2, 0))
|
||
return omit_one_operand_loc (loc, integer_type_node, integer_zero_node, len);
|
||
|
||
/* If len parameter is one, return an expression corresponding to
|
||
(*(const unsigned char*)arg1 - (const unsigned char*)arg2). */
|
||
if (tree_fits_uhwi_p (len) && tree_to_uhwi (len) == 1)
|
||
{
|
||
tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
|
||
tree cst_uchar_ptr_node
|
||
= build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
|
||
|
||
tree ind1
|
||
= fold_convert_loc (loc, integer_type_node,
|
||
build1 (INDIRECT_REF, cst_uchar_node,
|
||
fold_convert_loc (loc,
|
||
cst_uchar_ptr_node,
|
||
arg1)));
|
||
tree ind2
|
||
= fold_convert_loc (loc, integer_type_node,
|
||
build1 (INDIRECT_REF, cst_uchar_node,
|
||
fold_convert_loc (loc,
|
||
cst_uchar_ptr_node,
|
||
arg2)));
|
||
return fold_build2_loc (loc, MINUS_EXPR, integer_type_node, ind1, ind2);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Fold a call to builtin isascii with argument ARG. */
|
||
|
||
static tree
|
||
fold_builtin_isascii (location_t loc, tree arg)
|
||
{
|
||
if (!validate_arg (arg, INTEGER_TYPE))
|
||
return NULL_TREE;
|
||
else
|
||
{
|
||
/* Transform isascii(c) -> ((c & ~0x7f) == 0). */
|
||
arg = fold_build2 (BIT_AND_EXPR, integer_type_node, arg,
|
||
build_int_cst (integer_type_node,
|
||
~ (unsigned HOST_WIDE_INT) 0x7f));
|
||
return fold_build2_loc (loc, EQ_EXPR, integer_type_node,
|
||
arg, integer_zero_node);
|
||
}
|
||
}
|
||
|
||
/* Fold a call to builtin toascii with argument ARG. */
|
||
|
||
static tree
|
||
fold_builtin_toascii (location_t loc, tree arg)
|
||
{
|
||
if (!validate_arg (arg, INTEGER_TYPE))
|
||
return NULL_TREE;
|
||
|
||
/* Transform toascii(c) -> (c & 0x7f). */
|
||
return fold_build2_loc (loc, BIT_AND_EXPR, integer_type_node, arg,
|
||
build_int_cst (integer_type_node, 0x7f));
|
||
}
|
||
|
||
/* Fold a call to builtin isdigit with argument ARG. */
|
||
|
||
static tree
|
||
fold_builtin_isdigit (location_t loc, tree arg)
|
||
{
|
||
if (!validate_arg (arg, INTEGER_TYPE))
|
||
return NULL_TREE;
|
||
else
|
||
{
|
||
/* Transform isdigit(c) -> (unsigned)(c) - '0' <= 9. */
|
||
/* According to the C standard, isdigit is unaffected by locale.
|
||
However, it definitely is affected by the target character set. */
|
||
unsigned HOST_WIDE_INT target_digit0
|
||
= lang_hooks.to_target_charset ('0');
|
||
|
||
if (target_digit0 == 0)
|
||
return NULL_TREE;
|
||
|
||
arg = fold_convert_loc (loc, unsigned_type_node, arg);
|
||
arg = fold_build2 (MINUS_EXPR, unsigned_type_node, arg,
|
||
build_int_cst (unsigned_type_node, target_digit0));
|
||
return fold_build2_loc (loc, LE_EXPR, integer_type_node, arg,
|
||
build_int_cst (unsigned_type_node, 9));
|
||
}
|
||
}
|
||
|
||
/* Fold a call to fabs, fabsf or fabsl with argument ARG. */
|
||
|
||
static tree
|
||
fold_builtin_fabs (location_t loc, tree arg, tree type)
|
||
{
|
||
if (!validate_arg (arg, REAL_TYPE))
|
||
return NULL_TREE;
|
||
|
||
arg = fold_convert_loc (loc, type, arg);
|
||
return fold_build1_loc (loc, ABS_EXPR, type, arg);
|
||
}
|
||
|
||
/* Fold a call to abs, labs, llabs or imaxabs with argument ARG. */
|
||
|
||
static tree
|
||
fold_builtin_abs (location_t loc, tree arg, tree type)
|
||
{
|
||
if (!validate_arg (arg, INTEGER_TYPE))
|
||
return NULL_TREE;
|
||
|
||
arg = fold_convert_loc (loc, type, arg);
|
||
return fold_build1_loc (loc, ABS_EXPR, type, arg);
|
||
}
|
||
|
||
/* Fold a call to builtin carg(a+bi) -> atan2(b,a). */
|
||
|
||
static tree
|
||
fold_builtin_carg (location_t loc, tree arg, tree type)
|
||
{
|
||
if (validate_arg (arg, COMPLEX_TYPE)
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == REAL_TYPE)
|
||
{
|
||
tree atan2_fn = mathfn_built_in (type, BUILT_IN_ATAN2);
|
||
|
||
if (atan2_fn)
|
||
{
|
||
tree new_arg = builtin_save_expr (arg);
|
||
tree r_arg = fold_build1_loc (loc, REALPART_EXPR, type, new_arg);
|
||
tree i_arg = fold_build1_loc (loc, IMAGPART_EXPR, type, new_arg);
|
||
return build_call_expr_loc (loc, atan2_fn, 2, i_arg, r_arg);
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Fold a call to builtin frexp, we can assume the base is 2. */
|
||
|
||
static tree
|
||
fold_builtin_frexp (location_t loc, tree arg0, tree arg1, tree rettype)
|
||
{
|
||
if (! validate_arg (arg0, REAL_TYPE) || ! validate_arg (arg1, POINTER_TYPE))
|
||
return NULL_TREE;
|
||
|
||
STRIP_NOPS (arg0);
|
||
|
||
if (!(TREE_CODE (arg0) == REAL_CST && ! TREE_OVERFLOW (arg0)))
|
||
return NULL_TREE;
|
||
|
||
arg1 = build_fold_indirect_ref_loc (loc, arg1);
|
||
|
||
/* Proceed if a valid pointer type was passed in. */
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (arg1)) == integer_type_node)
|
||
{
|
||
const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg0);
|
||
tree frac, exp;
|
||
|
||
switch (value->cl)
|
||
{
|
||
case rvc_zero:
|
||
/* For +-0, return (*exp = 0, +-0). */
|
||
exp = integer_zero_node;
|
||
frac = arg0;
|
||
break;
|
||
case rvc_nan:
|
||
case rvc_inf:
|
||
/* For +-NaN or +-Inf, *exp is unspecified, return arg0. */
|
||
return omit_one_operand_loc (loc, rettype, arg0, arg1);
|
||
case rvc_normal:
|
||
{
|
||
/* Since the frexp function always expects base 2, and in
|
||
GCC normalized significands are already in the range
|
||
[0.5, 1.0), we have exactly what frexp wants. */
|
||
REAL_VALUE_TYPE frac_rvt = *value;
|
||
SET_REAL_EXP (&frac_rvt, 0);
|
||
frac = build_real (rettype, frac_rvt);
|
||
exp = build_int_cst (integer_type_node, REAL_EXP (value));
|
||
}
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Create the COMPOUND_EXPR (*arg1 = trunc, frac). */
|
||
arg1 = fold_build2_loc (loc, MODIFY_EXPR, rettype, arg1, exp);
|
||
TREE_SIDE_EFFECTS (arg1) = 1;
|
||
return fold_build2_loc (loc, COMPOUND_EXPR, rettype, arg1, frac);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Fold a call to builtin modf. */
|
||
|
||
static tree
|
||
fold_builtin_modf (location_t loc, tree arg0, tree arg1, tree rettype)
|
||
{
|
||
if (! validate_arg (arg0, REAL_TYPE) || ! validate_arg (arg1, POINTER_TYPE))
|
||
return NULL_TREE;
|
||
|
||
STRIP_NOPS (arg0);
|
||
|
||
if (!(TREE_CODE (arg0) == REAL_CST && ! TREE_OVERFLOW (arg0)))
|
||
return NULL_TREE;
|
||
|
||
arg1 = build_fold_indirect_ref_loc (loc, arg1);
|
||
|
||
/* Proceed if a valid pointer type was passed in. */
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (arg1)) == TYPE_MAIN_VARIANT (rettype))
|
||
{
|
||
const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (arg0);
|
||
REAL_VALUE_TYPE trunc, frac;
|
||
|
||
switch (value->cl)
|
||
{
|
||
case rvc_nan:
|
||
case rvc_zero:
|
||
/* For +-NaN or +-0, return (*arg1 = arg0, arg0). */
|
||
trunc = frac = *value;
|
||
break;
|
||
case rvc_inf:
|
||
/* For +-Inf, return (*arg1 = arg0, +-0). */
|
||
frac = dconst0;
|
||
frac.sign = value->sign;
|
||
trunc = *value;
|
||
break;
|
||
case rvc_normal:
|
||
/* Return (*arg1 = trunc(arg0), arg0-trunc(arg0)). */
|
||
real_trunc (&trunc, VOIDmode, value);
|
||
real_arithmetic (&frac, MINUS_EXPR, value, &trunc);
|
||
/* If the original number was negative and already
|
||
integral, then the fractional part is -0.0. */
|
||
if (value->sign && frac.cl == rvc_zero)
|
||
frac.sign = value->sign;
|
||
break;
|
||
}
|
||
|
||
/* Create the COMPOUND_EXPR (*arg1 = trunc, frac). */
|
||
arg1 = fold_build2_loc (loc, MODIFY_EXPR, rettype, arg1,
|
||
build_real (rettype, trunc));
|
||
TREE_SIDE_EFFECTS (arg1) = 1;
|
||
return fold_build2_loc (loc, COMPOUND_EXPR, rettype, arg1,
|
||
build_real (rettype, frac));
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Given a location LOC, an interclass builtin function decl FNDECL
|
||
and its single argument ARG, return an folded expression computing
|
||
the same, or NULL_TREE if we either couldn't or didn't want to fold
|
||
(the latter happen if there's an RTL instruction available). */
|
||
|
||
static tree
|
||
fold_builtin_interclass_mathfn (location_t loc, tree fndecl, tree arg)
|
||
{
|
||
machine_mode mode;
|
||
|
||
if (!validate_arg (arg, REAL_TYPE))
|
||
return NULL_TREE;
|
||
|
||
if (interclass_mathfn_icode (arg, fndecl) != CODE_FOR_nothing)
|
||
return NULL_TREE;
|
||
|
||
mode = TYPE_MODE (TREE_TYPE (arg));
|
||
|
||
bool is_ibm_extended = MODE_COMPOSITE_P (mode);
|
||
|
||
/* If there is no optab, try generic code. */
|
||
switch (DECL_FUNCTION_CODE (fndecl))
|
||
{
|
||
tree result;
|
||
|
||
CASE_FLT_FN (BUILT_IN_ISINF):
|
||
{
|
||
/* isinf(x) -> isgreater(fabs(x),DBL_MAX). */
|
||
tree const isgr_fn = builtin_decl_explicit (BUILT_IN_ISGREATER);
|
||
tree type = TREE_TYPE (arg);
|
||
REAL_VALUE_TYPE r;
|
||
char buf[128];
|
||
|
||
if (is_ibm_extended)
|
||
{
|
||
/* NaN and Inf are encoded in the high-order double value
|
||
only. The low-order value is not significant. */
|
||
type = double_type_node;
|
||
mode = DFmode;
|
||
arg = fold_build1_loc (loc, NOP_EXPR, type, arg);
|
||
}
|
||
get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf), false);
|
||
real_from_string (&r, buf);
|
||
result = build_call_expr (isgr_fn, 2,
|
||
fold_build1_loc (loc, ABS_EXPR, type, arg),
|
||
build_real (type, r));
|
||
return result;
|
||
}
|
||
CASE_FLT_FN (BUILT_IN_FINITE):
|
||
case BUILT_IN_ISFINITE:
|
||
{
|
||
/* isfinite(x) -> islessequal(fabs(x),DBL_MAX). */
|
||
tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL);
|
||
tree type = TREE_TYPE (arg);
|
||
REAL_VALUE_TYPE r;
|
||
char buf[128];
|
||
|
||
if (is_ibm_extended)
|
||
{
|
||
/* NaN and Inf are encoded in the high-order double value
|
||
only. The low-order value is not significant. */
|
||
type = double_type_node;
|
||
mode = DFmode;
|
||
arg = fold_build1_loc (loc, NOP_EXPR, type, arg);
|
||
}
|
||
get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf), false);
|
||
real_from_string (&r, buf);
|
||
result = build_call_expr (isle_fn, 2,
|
||
fold_build1_loc (loc, ABS_EXPR, type, arg),
|
||
build_real (type, r));
|
||
/*result = fold_build2_loc (loc, UNGT_EXPR,
|
||
TREE_TYPE (TREE_TYPE (fndecl)),
|
||
fold_build1_loc (loc, ABS_EXPR, type, arg),
|
||
build_real (type, r));
|
||
result = fold_build1_loc (loc, TRUTH_NOT_EXPR,
|
||
TREE_TYPE (TREE_TYPE (fndecl)),
|
||
result);*/
|
||
return result;
|
||
}
|
||
case BUILT_IN_ISNORMAL:
|
||
{
|
||
/* isnormal(x) -> isgreaterequal(fabs(x),DBL_MIN) &
|
||
islessequal(fabs(x),DBL_MAX). */
|
||
tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL);
|
||
tree type = TREE_TYPE (arg);
|
||
tree orig_arg, max_exp, min_exp;
|
||
machine_mode orig_mode = mode;
|
||
REAL_VALUE_TYPE rmax, rmin;
|
||
char buf[128];
|
||
|
||
orig_arg = arg = builtin_save_expr (arg);
|
||
if (is_ibm_extended)
|
||
{
|
||
/* Use double to test the normal range of IBM extended
|
||
precision. Emin for IBM extended precision is
|
||
different to emin for IEEE double, being 53 higher
|
||
since the low double exponent is at least 53 lower
|
||
than the high double exponent. */
|
||
type = double_type_node;
|
||
mode = DFmode;
|
||
arg = fold_build1_loc (loc, NOP_EXPR, type, arg);
|
||
}
|
||
arg = fold_build1_loc (loc, ABS_EXPR, type, arg);
|
||
|
||
get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf), false);
|
||
real_from_string (&rmax, buf);
|
||
sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (orig_mode)->emin - 1);
|
||
real_from_string (&rmin, buf);
|
||
max_exp = build_real (type, rmax);
|
||
min_exp = build_real (type, rmin);
|
||
|
||
max_exp = build_call_expr (isle_fn, 2, arg, max_exp);
|
||
if (is_ibm_extended)
|
||
{
|
||
/* Testing the high end of the range is done just using
|
||
the high double, using the same test as isfinite().
|
||
For the subnormal end of the range we first test the
|
||
high double, then if its magnitude is equal to the
|
||
limit of 0x1p-969, we test whether the low double is
|
||
non-zero and opposite sign to the high double. */
|
||
tree const islt_fn = builtin_decl_explicit (BUILT_IN_ISLESS);
|
||
tree const isgt_fn = builtin_decl_explicit (BUILT_IN_ISGREATER);
|
||
tree gt_min = build_call_expr (isgt_fn, 2, arg, min_exp);
|
||
tree eq_min = fold_build2 (EQ_EXPR, integer_type_node,
|
||
arg, min_exp);
|
||
tree as_complex = build1 (VIEW_CONVERT_EXPR,
|
||
complex_double_type_node, orig_arg);
|
||
tree hi_dbl = build1 (REALPART_EXPR, type, as_complex);
|
||
tree lo_dbl = build1 (IMAGPART_EXPR, type, as_complex);
|
||
tree zero = build_real (type, dconst0);
|
||
tree hilt = build_call_expr (islt_fn, 2, hi_dbl, zero);
|
||
tree lolt = build_call_expr (islt_fn, 2, lo_dbl, zero);
|
||
tree logt = build_call_expr (isgt_fn, 2, lo_dbl, zero);
|
||
tree ok_lo = fold_build1 (TRUTH_NOT_EXPR, integer_type_node,
|
||
fold_build3 (COND_EXPR,
|
||
integer_type_node,
|
||
hilt, logt, lolt));
|
||
eq_min = fold_build2 (TRUTH_ANDIF_EXPR, integer_type_node,
|
||
eq_min, ok_lo);
|
||
min_exp = fold_build2 (TRUTH_ORIF_EXPR, integer_type_node,
|
||
gt_min, eq_min);
|
||
}
|
||
else
|
||
{
|
||
tree const isge_fn
|
||
= builtin_decl_explicit (BUILT_IN_ISGREATEREQUAL);
|
||
min_exp = build_call_expr (isge_fn, 2, arg, min_exp);
|
||
}
|
||
result = fold_build2 (BIT_AND_EXPR, integer_type_node,
|
||
max_exp, min_exp);
|
||
return result;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Fold a call to __builtin_isnan(), __builtin_isinf, __builtin_finite.
|
||
ARG is the argument for the call. */
|
||
|
||
static tree
|
||
fold_builtin_classify (location_t loc, tree fndecl, tree arg, int builtin_index)
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (fndecl));
|
||
|
||
if (!validate_arg (arg, REAL_TYPE))
|
||
return NULL_TREE;
|
||
|
||
switch (builtin_index)
|
||
{
|
||
case BUILT_IN_ISINF:
|
||
if (!HONOR_INFINITIES (arg))
|
||
return omit_one_operand_loc (loc, type, integer_zero_node, arg);
|
||
|
||
return NULL_TREE;
|
||
|
||
case BUILT_IN_ISINF_SIGN:
|
||
{
|
||
/* isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0 */
|
||
/* In a boolean context, GCC will fold the inner COND_EXPR to
|
||
1. So e.g. "if (isinf_sign(x))" would be folded to just
|
||
"if (isinf(x) ? 1 : 0)" which becomes "if (isinf(x))". */
|
||
tree signbit_fn = builtin_decl_explicit (BUILT_IN_SIGNBIT);
|
||
tree isinf_fn = builtin_decl_explicit (BUILT_IN_ISINF);
|
||
tree tmp = NULL_TREE;
|
||
|
||
arg = builtin_save_expr (arg);
|
||
|
||
if (signbit_fn && isinf_fn)
|
||
{
|
||
tree signbit_call = build_call_expr_loc (loc, signbit_fn, 1, arg);
|
||
tree isinf_call = build_call_expr_loc (loc, isinf_fn, 1, arg);
|
||
|
||
signbit_call = fold_build2_loc (loc, NE_EXPR, integer_type_node,
|
||
signbit_call, integer_zero_node);
|
||
isinf_call = fold_build2_loc (loc, NE_EXPR, integer_type_node,
|
||
isinf_call, integer_zero_node);
|
||
|
||
tmp = fold_build3_loc (loc, COND_EXPR, integer_type_node, signbit_call,
|
||
integer_minus_one_node, integer_one_node);
|
||
tmp = fold_build3_loc (loc, COND_EXPR, integer_type_node,
|
||
isinf_call, tmp,
|
||
integer_zero_node);
|
||
}
|
||
|
||
return tmp;
|
||
}
|
||
|
||
case BUILT_IN_ISFINITE:
|
||
if (!HONOR_NANS (arg)
|
||
&& !HONOR_INFINITIES (arg))
|
||
return omit_one_operand_loc (loc, type, integer_one_node, arg);
|
||
|
||
return NULL_TREE;
|
||
|
||
case BUILT_IN_ISNAN:
|
||
if (!HONOR_NANS (arg))
|
||
return omit_one_operand_loc (loc, type, integer_zero_node, arg);
|
||
|
||
{
|
||
bool is_ibm_extended = MODE_COMPOSITE_P (TYPE_MODE (TREE_TYPE (arg)));
|
||
if (is_ibm_extended)
|
||
{
|
||
/* NaN and Inf are encoded in the high-order double value
|
||
only. The low-order value is not significant. */
|
||
arg = fold_build1_loc (loc, NOP_EXPR, double_type_node, arg);
|
||
}
|
||
}
|
||
arg = builtin_save_expr (arg);
|
||
return fold_build2_loc (loc, UNORDERED_EXPR, type, arg, arg);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Fold a call to __builtin_fpclassify(int, int, int, int, int, ...).
|
||
This builtin will generate code to return the appropriate floating
|
||
point classification depending on the value of the floating point
|
||
number passed in. The possible return values must be supplied as
|
||
int arguments to the call in the following order: FP_NAN, FP_INFINITE,
|
||
FP_NORMAL, FP_SUBNORMAL and FP_ZERO. The ellipses is for exactly
|
||
one floating point argument which is "type generic". */
|
||
|
||
static tree
|
||
fold_builtin_fpclassify (location_t loc, tree *args, int nargs)
|
||
{
|
||
tree fp_nan, fp_infinite, fp_normal, fp_subnormal, fp_zero,
|
||
arg, type, res, tmp;
|
||
machine_mode mode;
|
||
REAL_VALUE_TYPE r;
|
||
char buf[128];
|
||
|
||
/* Verify the required arguments in the original call. */
|
||
if (nargs != 6
|
||
|| !validate_arg (args[0], INTEGER_TYPE)
|
||
|| !validate_arg (args[1], INTEGER_TYPE)
|
||
|| !validate_arg (args[2], INTEGER_TYPE)
|
||
|| !validate_arg (args[3], INTEGER_TYPE)
|
||
|| !validate_arg (args[4], INTEGER_TYPE)
|
||
|| !validate_arg (args[5], REAL_TYPE))
|
||
return NULL_TREE;
|
||
|
||
fp_nan = args[0];
|
||
fp_infinite = args[1];
|
||
fp_normal = args[2];
|
||
fp_subnormal = args[3];
|
||
fp_zero = args[4];
|
||
arg = args[5];
|
||
type = TREE_TYPE (arg);
|
||
mode = TYPE_MODE (type);
|
||
arg = builtin_save_expr (fold_build1_loc (loc, ABS_EXPR, type, arg));
|
||
|
||
/* fpclassify(x) ->
|
||
isnan(x) ? FP_NAN :
|
||
(fabs(x) == Inf ? FP_INFINITE :
|
||
(fabs(x) >= DBL_MIN ? FP_NORMAL :
|
||
(x == 0 ? FP_ZERO : FP_SUBNORMAL))). */
|
||
|
||
tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg,
|
||
build_real (type, dconst0));
|
||
res = fold_build3_loc (loc, COND_EXPR, integer_type_node,
|
||
tmp, fp_zero, fp_subnormal);
|
||
|
||
sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1);
|
||
real_from_string (&r, buf);
|
||
tmp = fold_build2_loc (loc, GE_EXPR, integer_type_node,
|
||
arg, build_real (type, r));
|
||
res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, fp_normal, res);
|
||
|
||
if (HONOR_INFINITIES (mode))
|
||
{
|
||
real_inf (&r);
|
||
tmp = fold_build2_loc (loc, EQ_EXPR, integer_type_node, arg,
|
||
build_real (type, r));
|
||
res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp,
|
||
fp_infinite, res);
|
||
}
|
||
|
||
if (HONOR_NANS (mode))
|
||
{
|
||
tmp = fold_build2_loc (loc, ORDERED_EXPR, integer_type_node, arg, arg);
|
||
res = fold_build3_loc (loc, COND_EXPR, integer_type_node, tmp, res, fp_nan);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Fold a call to an unordered comparison function such as
|
||
__builtin_isgreater(). FNDECL is the FUNCTION_DECL for the function
|
||
being called and ARG0 and ARG1 are the arguments for the call.
|
||
UNORDERED_CODE and ORDERED_CODE are comparison codes that give
|
||
the opposite of the desired result. UNORDERED_CODE is used
|
||
for modes that can hold NaNs and ORDERED_CODE is used for
|
||
the rest. */
|
||
|
||
static tree
|
||
fold_builtin_unordered_cmp (location_t loc, tree fndecl, tree arg0, tree arg1,
|
||
enum tree_code unordered_code,
|
||
enum tree_code ordered_code)
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (fndecl));
|
||
enum tree_code code;
|
||
tree type0, type1;
|
||
enum tree_code code0, code1;
|
||
tree cmp_type = NULL_TREE;
|
||
|
||
type0 = TREE_TYPE (arg0);
|
||
type1 = TREE_TYPE (arg1);
|
||
|
||
code0 = TREE_CODE (type0);
|
||
code1 = TREE_CODE (type1);
|
||
|
||
if (code0 == REAL_TYPE && code1 == REAL_TYPE)
|
||
/* Choose the wider of two real types. */
|
||
cmp_type = TYPE_PRECISION (type0) >= TYPE_PRECISION (type1)
|
||
? type0 : type1;
|
||
else if (code0 == REAL_TYPE && code1 == INTEGER_TYPE)
|
||
cmp_type = type0;
|
||
else if (code0 == INTEGER_TYPE && code1 == REAL_TYPE)
|
||
cmp_type = type1;
|
||
|
||
arg0 = fold_convert_loc (loc, cmp_type, arg0);
|
||
arg1 = fold_convert_loc (loc, cmp_type, arg1);
|
||
|
||
if (unordered_code == UNORDERED_EXPR)
|
||
{
|
||
if (!HONOR_NANS (arg0))
|
||
return omit_two_operands_loc (loc, type, integer_zero_node, arg0, arg1);
|
||
return fold_build2_loc (loc, UNORDERED_EXPR, type, arg0, arg1);
|
||
}
|
||
|
||
code = HONOR_NANS (arg0) ? unordered_code : ordered_code;
|
||
return fold_build1_loc (loc, TRUTH_NOT_EXPR, type,
|
||
fold_build2_loc (loc, code, type, arg0, arg1));
|
||
}
|
||
|
||
/* Fold __builtin_{,s,u}{add,sub,mul}{,l,ll}_overflow, either into normal
|
||
arithmetics if it can never overflow, or into internal functions that
|
||
return both result of arithmetics and overflowed boolean flag in
|
||
a complex integer result, or some other check for overflow.
|
||
Similarly fold __builtin_{add,sub,mul}_overflow_p to just the overflow
|
||
checking part of that. */
|
||
|
||
static tree
|
||
fold_builtin_arith_overflow (location_t loc, enum built_in_function fcode,
|
||
tree arg0, tree arg1, tree arg2)
|
||
{
|
||
enum internal_fn ifn = IFN_LAST;
|
||
/* The code of the expression corresponding to the built-in. */
|
||
enum tree_code opcode = ERROR_MARK;
|
||
bool ovf_only = false;
|
||
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_ADD_OVERFLOW_P:
|
||
ovf_only = true;
|
||
/* FALLTHRU */
|
||
case BUILT_IN_ADD_OVERFLOW:
|
||
case BUILT_IN_SADD_OVERFLOW:
|
||
case BUILT_IN_SADDL_OVERFLOW:
|
||
case BUILT_IN_SADDLL_OVERFLOW:
|
||
case BUILT_IN_UADD_OVERFLOW:
|
||
case BUILT_IN_UADDL_OVERFLOW:
|
||
case BUILT_IN_UADDLL_OVERFLOW:
|
||
opcode = PLUS_EXPR;
|
||
ifn = IFN_ADD_OVERFLOW;
|
||
break;
|
||
case BUILT_IN_SUB_OVERFLOW_P:
|
||
ovf_only = true;
|
||
/* FALLTHRU */
|
||
case BUILT_IN_SUB_OVERFLOW:
|
||
case BUILT_IN_SSUB_OVERFLOW:
|
||
case BUILT_IN_SSUBL_OVERFLOW:
|
||
case BUILT_IN_SSUBLL_OVERFLOW:
|
||
case BUILT_IN_USUB_OVERFLOW:
|
||
case BUILT_IN_USUBL_OVERFLOW:
|
||
case BUILT_IN_USUBLL_OVERFLOW:
|
||
opcode = MINUS_EXPR;
|
||
ifn = IFN_SUB_OVERFLOW;
|
||
break;
|
||
case BUILT_IN_MUL_OVERFLOW_P:
|
||
ovf_only = true;
|
||
/* FALLTHRU */
|
||
case BUILT_IN_MUL_OVERFLOW:
|
||
case BUILT_IN_SMUL_OVERFLOW:
|
||
case BUILT_IN_SMULL_OVERFLOW:
|
||
case BUILT_IN_SMULLL_OVERFLOW:
|
||
case BUILT_IN_UMUL_OVERFLOW:
|
||
case BUILT_IN_UMULL_OVERFLOW:
|
||
case BUILT_IN_UMULLL_OVERFLOW:
|
||
opcode = MULT_EXPR;
|
||
ifn = IFN_MUL_OVERFLOW;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* For the "generic" overloads, the first two arguments can have different
|
||
types and the last argument determines the target type to use to check
|
||
for overflow. The arguments of the other overloads all have the same
|
||
type. */
|
||
tree type = ovf_only ? TREE_TYPE (arg2) : TREE_TYPE (TREE_TYPE (arg2));
|
||
|
||
/* For the __builtin_{add,sub,mul}_overflow_p builtins, when the first two
|
||
arguments are constant, attempt to fold the built-in call into a constant
|
||
expression indicating whether or not it detected an overflow. */
|
||
if (ovf_only
|
||
&& TREE_CODE (arg0) == INTEGER_CST
|
||
&& TREE_CODE (arg1) == INTEGER_CST)
|
||
/* Perform the computation in the target type and check for overflow. */
|
||
return omit_one_operand_loc (loc, boolean_type_node,
|
||
arith_overflowed_p (opcode, type, arg0, arg1)
|
||
? boolean_true_node : boolean_false_node,
|
||
arg2);
|
||
|
||
tree intres, ovfres;
|
||
if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
|
||
{
|
||
intres = fold_binary_loc (loc, opcode, type,
|
||
fold_convert_loc (loc, type, arg0),
|
||
fold_convert_loc (loc, type, arg1));
|
||
if (TREE_OVERFLOW (intres))
|
||
intres = drop_tree_overflow (intres);
|
||
ovfres = (arith_overflowed_p (opcode, type, arg0, arg1)
|
||
? boolean_true_node : boolean_false_node);
|
||
}
|
||
else
|
||
{
|
||
tree ctype = build_complex_type (type);
|
||
tree call = build_call_expr_internal_loc (loc, ifn, ctype, 2,
|
||
arg0, arg1);
|
||
tree tgt = save_expr (call);
|
||
intres = build1_loc (loc, REALPART_EXPR, type, tgt);
|
||
ovfres = build1_loc (loc, IMAGPART_EXPR, type, tgt);
|
||
ovfres = fold_convert_loc (loc, boolean_type_node, ovfres);
|
||
}
|
||
|
||
if (ovf_only)
|
||
return omit_one_operand_loc (loc, boolean_type_node, ovfres, arg2);
|
||
|
||
tree mem_arg2 = build_fold_indirect_ref_loc (loc, arg2);
|
||
tree store
|
||
= fold_build2_loc (loc, MODIFY_EXPR, void_type_node, mem_arg2, intres);
|
||
return build2_loc (loc, COMPOUND_EXPR, boolean_type_node, store, ovfres);
|
||
}
|
||
|
||
/* Fold a call to __builtin_FILE to a constant string. */
|
||
|
||
static inline tree
|
||
fold_builtin_FILE (location_t loc)
|
||
{
|
||
if (const char *fname = LOCATION_FILE (loc))
|
||
{
|
||
/* The documentation says this builtin is equivalent to the preprocessor
|
||
__FILE__ macro so it appears appropriate to use the same file prefix
|
||
mappings. */
|
||
fname = remap_macro_filename (fname);
|
||
return build_string_literal (strlen (fname) + 1, fname);
|
||
}
|
||
|
||
return build_string_literal (1, "");
|
||
}
|
||
|
||
/* Fold a call to __builtin_FUNCTION to a constant string. */
|
||
|
||
static inline tree
|
||
fold_builtin_FUNCTION ()
|
||
{
|
||
const char *name = "";
|
||
|
||
if (current_function_decl)
|
||
name = lang_hooks.decl_printable_name (current_function_decl, 0);
|
||
|
||
return build_string_literal (strlen (name) + 1, name);
|
||
}
|
||
|
||
/* Fold a call to __builtin_LINE to an integer constant. */
|
||
|
||
static inline tree
|
||
fold_builtin_LINE (location_t loc, tree type)
|
||
{
|
||
return build_int_cst (type, LOCATION_LINE (loc));
|
||
}
|
||
|
||
/* Fold a call to built-in function FNDECL with 0 arguments.
|
||
This function returns NULL_TREE if no simplification was possible. */
|
||
|
||
static tree
|
||
fold_builtin_0 (location_t loc, tree fndecl)
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (fndecl));
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_FILE:
|
||
return fold_builtin_FILE (loc);
|
||
|
||
case BUILT_IN_FUNCTION:
|
||
return fold_builtin_FUNCTION ();
|
||
|
||
case BUILT_IN_LINE:
|
||
return fold_builtin_LINE (loc, type);
|
||
|
||
CASE_FLT_FN (BUILT_IN_INF):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_INF):
|
||
case BUILT_IN_INFD32:
|
||
case BUILT_IN_INFD64:
|
||
case BUILT_IN_INFD128:
|
||
return fold_builtin_inf (loc, type, true);
|
||
|
||
CASE_FLT_FN (BUILT_IN_HUGE_VAL):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_HUGE_VAL):
|
||
return fold_builtin_inf (loc, type, false);
|
||
|
||
case BUILT_IN_CLASSIFY_TYPE:
|
||
return fold_builtin_classify_type (NULL_TREE);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Fold a call to built-in function FNDECL with 1 argument, ARG0.
|
||
This function returns NULL_TREE if no simplification was possible. */
|
||
|
||
static tree
|
||
fold_builtin_1 (location_t loc, tree fndecl, tree arg0)
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (fndecl));
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
|
||
if (TREE_CODE (arg0) == ERROR_MARK)
|
||
return NULL_TREE;
|
||
|
||
if (tree ret = fold_const_call (as_combined_fn (fcode), type, arg0))
|
||
return ret;
|
||
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_CONSTANT_P:
|
||
{
|
||
tree val = fold_builtin_constant_p (arg0);
|
||
|
||
/* Gimplification will pull the CALL_EXPR for the builtin out of
|
||
an if condition. When not optimizing, we'll not CSE it back.
|
||
To avoid link error types of regressions, return false now. */
|
||
if (!val && !optimize)
|
||
val = integer_zero_node;
|
||
|
||
return val;
|
||
}
|
||
|
||
case BUILT_IN_CLASSIFY_TYPE:
|
||
return fold_builtin_classify_type (arg0);
|
||
|
||
case BUILT_IN_STRLEN:
|
||
return fold_builtin_strlen (loc, type, arg0);
|
||
|
||
CASE_FLT_FN (BUILT_IN_FABS):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FABS):
|
||
case BUILT_IN_FABSD32:
|
||
case BUILT_IN_FABSD64:
|
||
case BUILT_IN_FABSD128:
|
||
return fold_builtin_fabs (loc, arg0, type);
|
||
|
||
case BUILT_IN_ABS:
|
||
case BUILT_IN_LABS:
|
||
case BUILT_IN_LLABS:
|
||
case BUILT_IN_IMAXABS:
|
||
return fold_builtin_abs (loc, arg0, type);
|
||
|
||
CASE_FLT_FN (BUILT_IN_CONJ):
|
||
if (validate_arg (arg0, COMPLEX_TYPE)
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
|
||
return fold_build1_loc (loc, CONJ_EXPR, type, arg0);
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_CREAL):
|
||
if (validate_arg (arg0, COMPLEX_TYPE)
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
|
||
return non_lvalue_loc (loc, fold_build1_loc (loc, REALPART_EXPR, type, arg0));
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_CIMAG):
|
||
if (validate_arg (arg0, COMPLEX_TYPE)
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE)
|
||
return non_lvalue_loc (loc, fold_build1_loc (loc, IMAGPART_EXPR, type, arg0));
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_CARG):
|
||
return fold_builtin_carg (loc, arg0, type);
|
||
|
||
case BUILT_IN_ISASCII:
|
||
return fold_builtin_isascii (loc, arg0);
|
||
|
||
case BUILT_IN_TOASCII:
|
||
return fold_builtin_toascii (loc, arg0);
|
||
|
||
case BUILT_IN_ISDIGIT:
|
||
return fold_builtin_isdigit (loc, arg0);
|
||
|
||
CASE_FLT_FN (BUILT_IN_FINITE):
|
||
case BUILT_IN_FINITED32:
|
||
case BUILT_IN_FINITED64:
|
||
case BUILT_IN_FINITED128:
|
||
case BUILT_IN_ISFINITE:
|
||
{
|
||
tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISFINITE);
|
||
if (ret)
|
||
return ret;
|
||
return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
|
||
}
|
||
|
||
CASE_FLT_FN (BUILT_IN_ISINF):
|
||
case BUILT_IN_ISINFD32:
|
||
case BUILT_IN_ISINFD64:
|
||
case BUILT_IN_ISINFD128:
|
||
{
|
||
tree ret = fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF);
|
||
if (ret)
|
||
return ret;
|
||
return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
|
||
}
|
||
|
||
case BUILT_IN_ISNORMAL:
|
||
return fold_builtin_interclass_mathfn (loc, fndecl, arg0);
|
||
|
||
case BUILT_IN_ISINF_SIGN:
|
||
return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISINF_SIGN);
|
||
|
||
CASE_FLT_FN (BUILT_IN_ISNAN):
|
||
case BUILT_IN_ISNAND32:
|
||
case BUILT_IN_ISNAND64:
|
||
case BUILT_IN_ISNAND128:
|
||
return fold_builtin_classify (loc, fndecl, arg0, BUILT_IN_ISNAN);
|
||
|
||
case BUILT_IN_FREE:
|
||
if (integer_zerop (arg0))
|
||
return build_empty_stmt (loc);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
|
||
}
|
||
|
||
/* Fold a call to built-in function FNDECL with 2 arguments, ARG0 and ARG1.
|
||
This function returns NULL_TREE if no simplification was possible. */
|
||
|
||
static tree
|
||
fold_builtin_2 (location_t loc, tree fndecl, tree arg0, tree arg1)
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (fndecl));
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
|
||
if (TREE_CODE (arg0) == ERROR_MARK
|
||
|| TREE_CODE (arg1) == ERROR_MARK)
|
||
return NULL_TREE;
|
||
|
||
if (tree ret = fold_const_call (as_combined_fn (fcode), type, arg0, arg1))
|
||
return ret;
|
||
|
||
switch (fcode)
|
||
{
|
||
CASE_FLT_FN_REENT (BUILT_IN_GAMMA): /* GAMMA_R */
|
||
CASE_FLT_FN_REENT (BUILT_IN_LGAMMA): /* LGAMMA_R */
|
||
if (validate_arg (arg0, REAL_TYPE)
|
||
&& validate_arg (arg1, POINTER_TYPE))
|
||
return do_mpfr_lgamma_r (arg0, arg1, type);
|
||
break;
|
||
|
||
CASE_FLT_FN (BUILT_IN_FREXP):
|
||
return fold_builtin_frexp (loc, arg0, arg1, type);
|
||
|
||
CASE_FLT_FN (BUILT_IN_MODF):
|
||
return fold_builtin_modf (loc, arg0, arg1, type);
|
||
|
||
case BUILT_IN_STRSPN:
|
||
return fold_builtin_strspn (loc, arg0, arg1);
|
||
|
||
case BUILT_IN_STRCSPN:
|
||
return fold_builtin_strcspn (loc, arg0, arg1);
|
||
|
||
case BUILT_IN_STRPBRK:
|
||
return fold_builtin_strpbrk (loc, arg0, arg1, type);
|
||
|
||
case BUILT_IN_EXPECT:
|
||
return fold_builtin_expect (loc, arg0, arg1, NULL_TREE, NULL_TREE);
|
||
|
||
case BUILT_IN_ISGREATER:
|
||
return fold_builtin_unordered_cmp (loc, fndecl,
|
||
arg0, arg1, UNLE_EXPR, LE_EXPR);
|
||
case BUILT_IN_ISGREATEREQUAL:
|
||
return fold_builtin_unordered_cmp (loc, fndecl,
|
||
arg0, arg1, UNLT_EXPR, LT_EXPR);
|
||
case BUILT_IN_ISLESS:
|
||
return fold_builtin_unordered_cmp (loc, fndecl,
|
||
arg0, arg1, UNGE_EXPR, GE_EXPR);
|
||
case BUILT_IN_ISLESSEQUAL:
|
||
return fold_builtin_unordered_cmp (loc, fndecl,
|
||
arg0, arg1, UNGT_EXPR, GT_EXPR);
|
||
case BUILT_IN_ISLESSGREATER:
|
||
return fold_builtin_unordered_cmp (loc, fndecl,
|
||
arg0, arg1, UNEQ_EXPR, EQ_EXPR);
|
||
case BUILT_IN_ISUNORDERED:
|
||
return fold_builtin_unordered_cmp (loc, fndecl,
|
||
arg0, arg1, UNORDERED_EXPR,
|
||
NOP_EXPR);
|
||
|
||
/* We do the folding for va_start in the expander. */
|
||
case BUILT_IN_VA_START:
|
||
break;
|
||
|
||
case BUILT_IN_OBJECT_SIZE:
|
||
return fold_builtin_object_size (arg0, arg1);
|
||
|
||
case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE:
|
||
return fold_builtin_atomic_always_lock_free (arg0, arg1);
|
||
|
||
case BUILT_IN_ATOMIC_IS_LOCK_FREE:
|
||
return fold_builtin_atomic_is_lock_free (arg0, arg1);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Fold a call to built-in function FNDECL with 3 arguments, ARG0, ARG1,
|
||
and ARG2.
|
||
This function returns NULL_TREE if no simplification was possible. */
|
||
|
||
static tree
|
||
fold_builtin_3 (location_t loc, tree fndecl,
|
||
tree arg0, tree arg1, tree arg2)
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (fndecl));
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
|
||
if (TREE_CODE (arg0) == ERROR_MARK
|
||
|| TREE_CODE (arg1) == ERROR_MARK
|
||
|| TREE_CODE (arg2) == ERROR_MARK)
|
||
return NULL_TREE;
|
||
|
||
if (tree ret = fold_const_call (as_combined_fn (fcode), type,
|
||
arg0, arg1, arg2))
|
||
return ret;
|
||
|
||
switch (fcode)
|
||
{
|
||
|
||
CASE_FLT_FN (BUILT_IN_SINCOS):
|
||
return fold_builtin_sincos (loc, arg0, arg1, arg2);
|
||
|
||
CASE_FLT_FN (BUILT_IN_REMQUO):
|
||
if (validate_arg (arg0, REAL_TYPE)
|
||
&& validate_arg (arg1, REAL_TYPE)
|
||
&& validate_arg (arg2, POINTER_TYPE))
|
||
return do_mpfr_remquo (arg0, arg1, arg2);
|
||
break;
|
||
|
||
case BUILT_IN_MEMCMP:
|
||
return fold_builtin_memcmp (loc, arg0, arg1, arg2);
|
||
|
||
case BUILT_IN_EXPECT:
|
||
return fold_builtin_expect (loc, arg0, arg1, arg2, NULL_TREE);
|
||
|
||
case BUILT_IN_EXPECT_WITH_PROBABILITY:
|
||
return fold_builtin_expect (loc, arg0, arg1, NULL_TREE, arg2);
|
||
|
||
case BUILT_IN_ADD_OVERFLOW:
|
||
case BUILT_IN_SUB_OVERFLOW:
|
||
case BUILT_IN_MUL_OVERFLOW:
|
||
case BUILT_IN_ADD_OVERFLOW_P:
|
||
case BUILT_IN_SUB_OVERFLOW_P:
|
||
case BUILT_IN_MUL_OVERFLOW_P:
|
||
case BUILT_IN_SADD_OVERFLOW:
|
||
case BUILT_IN_SADDL_OVERFLOW:
|
||
case BUILT_IN_SADDLL_OVERFLOW:
|
||
case BUILT_IN_SSUB_OVERFLOW:
|
||
case BUILT_IN_SSUBL_OVERFLOW:
|
||
case BUILT_IN_SSUBLL_OVERFLOW:
|
||
case BUILT_IN_SMUL_OVERFLOW:
|
||
case BUILT_IN_SMULL_OVERFLOW:
|
||
case BUILT_IN_SMULLL_OVERFLOW:
|
||
case BUILT_IN_UADD_OVERFLOW:
|
||
case BUILT_IN_UADDL_OVERFLOW:
|
||
case BUILT_IN_UADDLL_OVERFLOW:
|
||
case BUILT_IN_USUB_OVERFLOW:
|
||
case BUILT_IN_USUBL_OVERFLOW:
|
||
case BUILT_IN_USUBLL_OVERFLOW:
|
||
case BUILT_IN_UMUL_OVERFLOW:
|
||
case BUILT_IN_UMULL_OVERFLOW:
|
||
case BUILT_IN_UMULLL_OVERFLOW:
|
||
return fold_builtin_arith_overflow (loc, fcode, arg0, arg1, arg2);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Fold a call to built-in function FNDECL. ARGS is an array of NARGS
|
||
arguments. IGNORE is true if the result of the
|
||
function call is ignored. This function returns NULL_TREE if no
|
||
simplification was possible. */
|
||
|
||
tree
|
||
fold_builtin_n (location_t loc, tree fndecl, tree *args, int nargs, bool)
|
||
{
|
||
tree ret = NULL_TREE;
|
||
|
||
switch (nargs)
|
||
{
|
||
case 0:
|
||
ret = fold_builtin_0 (loc, fndecl);
|
||
break;
|
||
case 1:
|
||
ret = fold_builtin_1 (loc, fndecl, args[0]);
|
||
break;
|
||
case 2:
|
||
ret = fold_builtin_2 (loc, fndecl, args[0], args[1]);
|
||
break;
|
||
case 3:
|
||
ret = fold_builtin_3 (loc, fndecl, args[0], args[1], args[2]);
|
||
break;
|
||
default:
|
||
ret = fold_builtin_varargs (loc, fndecl, args, nargs);
|
||
break;
|
||
}
|
||
if (ret)
|
||
{
|
||
ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
|
||
SET_EXPR_LOCATION (ret, loc);
|
||
return ret;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Construct a new CALL_EXPR to FNDECL using the tail of the argument
|
||
list ARGS along with N new arguments in NEWARGS. SKIP is the number
|
||
of arguments in ARGS to be omitted. OLDNARGS is the number of
|
||
elements in ARGS. */
|
||
|
||
static tree
|
||
rewrite_call_expr_valist (location_t loc, int oldnargs, tree *args,
|
||
int skip, tree fndecl, int n, va_list newargs)
|
||
{
|
||
int nargs = oldnargs - skip + n;
|
||
tree *buffer;
|
||
|
||
if (n > 0)
|
||
{
|
||
int i, j;
|
||
|
||
buffer = XALLOCAVEC (tree, nargs);
|
||
for (i = 0; i < n; i++)
|
||
buffer[i] = va_arg (newargs, tree);
|
||
for (j = skip; j < oldnargs; j++, i++)
|
||
buffer[i] = args[j];
|
||
}
|
||
else
|
||
buffer = args + skip;
|
||
|
||
return build_call_expr_loc_array (loc, fndecl, nargs, buffer);
|
||
}
|
||
|
||
/* Return true if FNDECL shouldn't be folded right now.
|
||
If a built-in function has an inline attribute always_inline
|
||
wrapper, defer folding it after always_inline functions have
|
||
been inlined, otherwise e.g. -D_FORTIFY_SOURCE checking
|
||
might not be performed. */
|
||
|
||
bool
|
||
avoid_folding_inline_builtin (tree fndecl)
|
||
{
|
||
return (DECL_DECLARED_INLINE_P (fndecl)
|
||
&& DECL_DISREGARD_INLINE_LIMITS (fndecl)
|
||
&& cfun
|
||
&& !cfun->always_inline_functions_inlined
|
||
&& lookup_attribute ("always_inline", DECL_ATTRIBUTES (fndecl)));
|
||
}
|
||
|
||
/* A wrapper function for builtin folding that prevents warnings for
|
||
"statement without effect" and the like, caused by removing the
|
||
call node earlier than the warning is generated. */
|
||
|
||
tree
|
||
fold_call_expr (location_t loc, tree exp, bool ignore)
|
||
{
|
||
tree ret = NULL_TREE;
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
if (fndecl && fndecl_built_in_p (fndecl)
|
||
/* If CALL_EXPR_VA_ARG_PACK is set, the arguments aren't finalized
|
||
yet. Defer folding until we see all the arguments
|
||
(after inlining). */
|
||
&& !CALL_EXPR_VA_ARG_PACK (exp))
|
||
{
|
||
int nargs = call_expr_nargs (exp);
|
||
|
||
/* Before gimplification CALL_EXPR_VA_ARG_PACK is not set, but
|
||
instead last argument is __builtin_va_arg_pack (). Defer folding
|
||
even in that case, until arguments are finalized. */
|
||
if (nargs && TREE_CODE (CALL_EXPR_ARG (exp, nargs - 1)) == CALL_EXPR)
|
||
{
|
||
tree fndecl2 = get_callee_fndecl (CALL_EXPR_ARG (exp, nargs - 1));
|
||
if (fndecl2 && fndecl_built_in_p (fndecl2, BUILT_IN_VA_ARG_PACK))
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (avoid_folding_inline_builtin (fndecl))
|
||
return NULL_TREE;
|
||
|
||
if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
|
||
return targetm.fold_builtin (fndecl, call_expr_nargs (exp),
|
||
CALL_EXPR_ARGP (exp), ignore);
|
||
else
|
||
{
|
||
tree *args = CALL_EXPR_ARGP (exp);
|
||
ret = fold_builtin_n (loc, fndecl, args, nargs, ignore);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Fold a CALL_EXPR with type TYPE with FN as the function expression.
|
||
N arguments are passed in the array ARGARRAY. Return a folded
|
||
expression or NULL_TREE if no simplification was possible. */
|
||
|
||
tree
|
||
fold_builtin_call_array (location_t loc, tree,
|
||
tree fn,
|
||
int n,
|
||
tree *argarray)
|
||
{
|
||
if (TREE_CODE (fn) != ADDR_EXPR)
|
||
return NULL_TREE;
|
||
|
||
tree fndecl = TREE_OPERAND (fn, 0);
|
||
if (TREE_CODE (fndecl) == FUNCTION_DECL
|
||
&& fndecl_built_in_p (fndecl))
|
||
{
|
||
/* If last argument is __builtin_va_arg_pack (), arguments to this
|
||
function are not finalized yet. Defer folding until they are. */
|
||
if (n && TREE_CODE (argarray[n - 1]) == CALL_EXPR)
|
||
{
|
||
tree fndecl2 = get_callee_fndecl (argarray[n - 1]);
|
||
if (fndecl2 && fndecl_built_in_p (fndecl2, BUILT_IN_VA_ARG_PACK))
|
||
return NULL_TREE;
|
||
}
|
||
if (avoid_folding_inline_builtin (fndecl))
|
||
return NULL_TREE;
|
||
if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
|
||
return targetm.fold_builtin (fndecl, n, argarray, false);
|
||
else
|
||
return fold_builtin_n (loc, fndecl, argarray, n, false);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Construct a new CALL_EXPR using the tail of the argument list of EXP
|
||
along with N new arguments specified as the "..." parameters. SKIP
|
||
is the number of arguments in EXP to be omitted. This function is used
|
||
to do varargs-to-varargs transformations. */
|
||
|
||
static tree
|
||
rewrite_call_expr (location_t loc, tree exp, int skip, tree fndecl, int n, ...)
|
||
{
|
||
va_list ap;
|
||
tree t;
|
||
|
||
va_start (ap, n);
|
||
t = rewrite_call_expr_valist (loc, call_expr_nargs (exp),
|
||
CALL_EXPR_ARGP (exp), skip, fndecl, n, ap);
|
||
va_end (ap);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Validate a single argument ARG against a tree code CODE representing
|
||
a type. Return true when argument is valid. */
|
||
|
||
static bool
|
||
validate_arg (const_tree arg, enum tree_code code)
|
||
{
|
||
if (!arg)
|
||
return false;
|
||
else if (code == POINTER_TYPE)
|
||
return POINTER_TYPE_P (TREE_TYPE (arg));
|
||
else if (code == INTEGER_TYPE)
|
||
return INTEGRAL_TYPE_P (TREE_TYPE (arg));
|
||
return code == TREE_CODE (TREE_TYPE (arg));
|
||
}
|
||
|
||
/* This function validates the types of a function call argument list
|
||
against a specified list of tree_codes. If the last specifier is a 0,
|
||
that represents an ellipses, otherwise the last specifier must be a
|
||
VOID_TYPE.
|
||
|
||
This is the GIMPLE version of validate_arglist. Eventually we want to
|
||
completely convert builtins.c to work from GIMPLEs and the tree based
|
||
validate_arglist will then be removed. */
|
||
|
||
bool
|
||
validate_gimple_arglist (const gcall *call, ...)
|
||
{
|
||
enum tree_code code;
|
||
bool res = 0;
|
||
va_list ap;
|
||
const_tree arg;
|
||
size_t i;
|
||
|
||
va_start (ap, call);
|
||
i = 0;
|
||
|
||
do
|
||
{
|
||
code = (enum tree_code) va_arg (ap, int);
|
||
switch (code)
|
||
{
|
||
case 0:
|
||
/* This signifies an ellipses, any further arguments are all ok. */
|
||
res = true;
|
||
goto end;
|
||
case VOID_TYPE:
|
||
/* This signifies an endlink, if no arguments remain, return
|
||
true, otherwise return false. */
|
||
res = (i == gimple_call_num_args (call));
|
||
goto end;
|
||
default:
|
||
/* If no parameters remain or the parameter's code does not
|
||
match the specified code, return false. Otherwise continue
|
||
checking any remaining arguments. */
|
||
arg = gimple_call_arg (call, i++);
|
||
if (!validate_arg (arg, code))
|
||
goto end;
|
||
break;
|
||
}
|
||
}
|
||
while (1);
|
||
|
||
/* We need gotos here since we can only have one VA_CLOSE in a
|
||
function. */
|
||
end: ;
|
||
va_end (ap);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Default target-specific builtin expander that does nothing. */
|
||
|
||
rtx
|
||
default_expand_builtin (tree exp ATTRIBUTE_UNUSED,
|
||
rtx target ATTRIBUTE_UNUSED,
|
||
rtx subtarget ATTRIBUTE_UNUSED,
|
||
machine_mode mode ATTRIBUTE_UNUSED,
|
||
int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Returns true is EXP represents data that would potentially reside
|
||
in a readonly section. */
|
||
|
||
bool
|
||
readonly_data_expr (tree exp)
|
||
{
|
||
STRIP_NOPS (exp);
|
||
|
||
if (TREE_CODE (exp) != ADDR_EXPR)
|
||
return false;
|
||
|
||
exp = get_base_address (TREE_OPERAND (exp, 0));
|
||
if (!exp)
|
||
return false;
|
||
|
||
/* Make sure we call decl_readonly_section only for trees it
|
||
can handle (since it returns true for everything it doesn't
|
||
understand). */
|
||
if (TREE_CODE (exp) == STRING_CST
|
||
|| TREE_CODE (exp) == CONSTRUCTOR
|
||
|| (VAR_P (exp) && TREE_STATIC (exp)))
|
||
return decl_readonly_section (exp, 0);
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Simplify a call to the strpbrk builtin. S1 and S2 are the arguments
|
||
to the call, and TYPE is its return type.
|
||
|
||
Return NULL_TREE if no simplification was possible, otherwise return the
|
||
simplified form of the call as a tree.
|
||
|
||
The simplified form may be a constant or other expression which
|
||
computes the same value, but in a more efficient manner (including
|
||
calls to other builtin functions).
|
||
|
||
The call may contain arguments which need to be evaluated, but
|
||
which are not useful to determine the result of the call. In
|
||
this case we return a chain of COMPOUND_EXPRs. The LHS of each
|
||
COMPOUND_EXPR will be an argument which must be evaluated.
|
||
COMPOUND_EXPRs are chained through their RHS. The RHS of the last
|
||
COMPOUND_EXPR in the chain will contain the tree for the simplified
|
||
form of the builtin function call. */
|
||
|
||
static tree
|
||
fold_builtin_strpbrk (location_t loc, tree s1, tree s2, tree type)
|
||
{
|
||
if (!validate_arg (s1, POINTER_TYPE)
|
||
|| !validate_arg (s2, POINTER_TYPE))
|
||
return NULL_TREE;
|
||
else
|
||
{
|
||
tree fn;
|
||
const char *p1, *p2;
|
||
|
||
p2 = c_getstr (s2);
|
||
if (p2 == NULL)
|
||
return NULL_TREE;
|
||
|
||
p1 = c_getstr (s1);
|
||
if (p1 != NULL)
|
||
{
|
||
const char *r = strpbrk (p1, p2);
|
||
tree tem;
|
||
|
||
if (r == NULL)
|
||
return build_int_cst (TREE_TYPE (s1), 0);
|
||
|
||
/* Return an offset into the constant string argument. */
|
||
tem = fold_build_pointer_plus_hwi_loc (loc, s1, r - p1);
|
||
return fold_convert_loc (loc, type, tem);
|
||
}
|
||
|
||
if (p2[0] == '\0')
|
||
/* strpbrk(x, "") == NULL.
|
||
Evaluate and ignore s1 in case it had side-effects. */
|
||
return omit_one_operand_loc (loc, type, integer_zero_node, s1);
|
||
|
||
if (p2[1] != '\0')
|
||
return NULL_TREE; /* Really call strpbrk. */
|
||
|
||
fn = builtin_decl_implicit (BUILT_IN_STRCHR);
|
||
if (!fn)
|
||
return NULL_TREE;
|
||
|
||
/* New argument list transforming strpbrk(s1, s2) to
|
||
strchr(s1, s2[0]). */
|
||
return build_call_expr_loc (loc, fn, 2, s1,
|
||
build_int_cst (integer_type_node, p2[0]));
|
||
}
|
||
}
|
||
|
||
/* Simplify a call to the strspn builtin. S1 and S2 are the arguments
|
||
to the call.
|
||
|
||
Return NULL_TREE if no simplification was possible, otherwise return the
|
||
simplified form of the call as a tree.
|
||
|
||
The simplified form may be a constant or other expression which
|
||
computes the same value, but in a more efficient manner (including
|
||
calls to other builtin functions).
|
||
|
||
The call may contain arguments which need to be evaluated, but
|
||
which are not useful to determine the result of the call. In
|
||
this case we return a chain of COMPOUND_EXPRs. The LHS of each
|
||
COMPOUND_EXPR will be an argument which must be evaluated.
|
||
COMPOUND_EXPRs are chained through their RHS. The RHS of the last
|
||
COMPOUND_EXPR in the chain will contain the tree for the simplified
|
||
form of the builtin function call. */
|
||
|
||
static tree
|
||
fold_builtin_strspn (location_t loc, tree s1, tree s2)
|
||
{
|
||
if (!validate_arg (s1, POINTER_TYPE)
|
||
|| !validate_arg (s2, POINTER_TYPE))
|
||
return NULL_TREE;
|
||
else
|
||
{
|
||
const char *p1 = c_getstr (s1), *p2 = c_getstr (s2);
|
||
|
||
/* If either argument is "", return NULL_TREE. */
|
||
if ((p1 && *p1 == '\0') || (p2 && *p2 == '\0'))
|
||
/* Evaluate and ignore both arguments in case either one has
|
||
side-effects. */
|
||
return omit_two_operands_loc (loc, size_type_node, size_zero_node,
|
||
s1, s2);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Simplify a call to the strcspn builtin. S1 and S2 are the arguments
|
||
to the call.
|
||
|
||
Return NULL_TREE if no simplification was possible, otherwise return the
|
||
simplified form of the call as a tree.
|
||
|
||
The simplified form may be a constant or other expression which
|
||
computes the same value, but in a more efficient manner (including
|
||
calls to other builtin functions).
|
||
|
||
The call may contain arguments which need to be evaluated, but
|
||
which are not useful to determine the result of the call. In
|
||
this case we return a chain of COMPOUND_EXPRs. The LHS of each
|
||
COMPOUND_EXPR will be an argument which must be evaluated.
|
||
COMPOUND_EXPRs are chained through their RHS. The RHS of the last
|
||
COMPOUND_EXPR in the chain will contain the tree for the simplified
|
||
form of the builtin function call. */
|
||
|
||
static tree
|
||
fold_builtin_strcspn (location_t loc, tree s1, tree s2)
|
||
{
|
||
if (!validate_arg (s1, POINTER_TYPE)
|
||
|| !validate_arg (s2, POINTER_TYPE))
|
||
return NULL_TREE;
|
||
else
|
||
{
|
||
/* If the first argument is "", return NULL_TREE. */
|
||
const char *p1 = c_getstr (s1);
|
||
if (p1 && *p1 == '\0')
|
||
{
|
||
/* Evaluate and ignore argument s2 in case it has
|
||
side-effects. */
|
||
return omit_one_operand_loc (loc, size_type_node,
|
||
size_zero_node, s2);
|
||
}
|
||
|
||
/* If the second argument is "", return __builtin_strlen(s1). */
|
||
const char *p2 = c_getstr (s2);
|
||
if (p2 && *p2 == '\0')
|
||
{
|
||
tree fn = builtin_decl_implicit (BUILT_IN_STRLEN);
|
||
|
||
/* If the replacement _DECL isn't initialized, don't do the
|
||
transformation. */
|
||
if (!fn)
|
||
return NULL_TREE;
|
||
|
||
return build_call_expr_loc (loc, fn, 1, s1);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Fold the next_arg or va_start call EXP. Returns true if there was an error
|
||
produced. False otherwise. This is done so that we don't output the error
|
||
or warning twice or three times. */
|
||
|
||
bool
|
||
fold_builtin_next_arg (tree exp, bool va_start_p)
|
||
{
|
||
tree fntype = TREE_TYPE (current_function_decl);
|
||
int nargs = call_expr_nargs (exp);
|
||
tree arg;
|
||
/* There is good chance the current input_location points inside the
|
||
definition of the va_start macro (perhaps on the token for
|
||
builtin) in a system header, so warnings will not be emitted.
|
||
Use the location in real source code. */
|
||
location_t current_location =
|
||
linemap_unwind_to_first_non_reserved_loc (line_table, input_location,
|
||
NULL);
|
||
|
||
if (!stdarg_p (fntype))
|
||
{
|
||
error ("%<va_start%> used in function with fixed arguments");
|
||
return true;
|
||
}
|
||
|
||
if (va_start_p)
|
||
{
|
||
if (va_start_p && (nargs != 2))
|
||
{
|
||
error ("wrong number of arguments to function %<va_start%>");
|
||
return true;
|
||
}
|
||
arg = CALL_EXPR_ARG (exp, 1);
|
||
}
|
||
/* We use __builtin_va_start (ap, 0, 0) or __builtin_next_arg (0, 0)
|
||
when we checked the arguments and if needed issued a warning. */
|
||
else
|
||
{
|
||
if (nargs == 0)
|
||
{
|
||
/* Evidently an out of date version of <stdarg.h>; can't validate
|
||
va_start's second argument, but can still work as intended. */
|
||
warning_at (current_location,
|
||
OPT_Wvarargs,
|
||
"%<__builtin_next_arg%> called without an argument");
|
||
return true;
|
||
}
|
||
else if (nargs > 1)
|
||
{
|
||
error ("wrong number of arguments to function %<__builtin_next_arg%>");
|
||
return true;
|
||
}
|
||
arg = CALL_EXPR_ARG (exp, 0);
|
||
}
|
||
|
||
if (TREE_CODE (arg) == SSA_NAME)
|
||
arg = SSA_NAME_VAR (arg);
|
||
|
||
/* We destructively modify the call to be __builtin_va_start (ap, 0)
|
||
or __builtin_next_arg (0) the first time we see it, after checking
|
||
the arguments and if needed issuing a warning. */
|
||
if (!integer_zerop (arg))
|
||
{
|
||
tree last_parm = tree_last (DECL_ARGUMENTS (current_function_decl));
|
||
|
||
/* Strip off all nops for the sake of the comparison. This
|
||
is not quite the same as STRIP_NOPS. It does more.
|
||
We must also strip off INDIRECT_EXPR for C++ reference
|
||
parameters. */
|
||
while (CONVERT_EXPR_P (arg)
|
||
|| TREE_CODE (arg) == INDIRECT_REF)
|
||
arg = TREE_OPERAND (arg, 0);
|
||
if (arg != last_parm)
|
||
{
|
||
/* FIXME: Sometimes with the tree optimizers we can get the
|
||
not the last argument even though the user used the last
|
||
argument. We just warn and set the arg to be the last
|
||
argument so that we will get wrong-code because of
|
||
it. */
|
||
warning_at (current_location,
|
||
OPT_Wvarargs,
|
||
"second parameter of %<va_start%> not last named argument");
|
||
}
|
||
|
||
/* Undefined by C99 7.15.1.4p4 (va_start):
|
||
"If the parameter parmN is declared with the register storage
|
||
class, with a function or array type, or with a type that is
|
||
not compatible with the type that results after application of
|
||
the default argument promotions, the behavior is undefined."
|
||
*/
|
||
else if (DECL_REGISTER (arg))
|
||
{
|
||
warning_at (current_location,
|
||
OPT_Wvarargs,
|
||
"undefined behavior when second parameter of "
|
||
"%<va_start%> is declared with %<register%> storage");
|
||
}
|
||
|
||
/* We want to verify the second parameter just once before the tree
|
||
optimizers are run and then avoid keeping it in the tree,
|
||
as otherwise we could warn even for correct code like:
|
||
void foo (int i, ...)
|
||
{ va_list ap; i++; va_start (ap, i); va_end (ap); } */
|
||
if (va_start_p)
|
||
CALL_EXPR_ARG (exp, 1) = integer_zero_node;
|
||
else
|
||
CALL_EXPR_ARG (exp, 0) = integer_zero_node;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Expand a call EXP to __builtin_object_size. */
|
||
|
||
static rtx
|
||
expand_builtin_object_size (tree exp)
|
||
{
|
||
tree ost;
|
||
int object_size_type;
|
||
tree fndecl = get_callee_fndecl (exp);
|
||
|
||
if (!validate_arglist (exp, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
{
|
||
error ("%Kfirst argument of %qD must be a pointer, second integer constant",
|
||
exp, fndecl);
|
||
expand_builtin_trap ();
|
||
return const0_rtx;
|
||
}
|
||
|
||
ost = CALL_EXPR_ARG (exp, 1);
|
||
STRIP_NOPS (ost);
|
||
|
||
if (TREE_CODE (ost) != INTEGER_CST
|
||
|| tree_int_cst_sgn (ost) < 0
|
||
|| compare_tree_int (ost, 3) > 0)
|
||
{
|
||
error ("%Klast argument of %qD is not integer constant between 0 and 3",
|
||
exp, fndecl);
|
||
expand_builtin_trap ();
|
||
return const0_rtx;
|
||
}
|
||
|
||
object_size_type = tree_to_shwi (ost);
|
||
|
||
return object_size_type < 2 ? constm1_rtx : const0_rtx;
|
||
}
|
||
|
||
/* Expand EXP, a call to the __mem{cpy,pcpy,move,set}_chk builtin.
|
||
FCODE is the BUILT_IN_* to use.
|
||
Return NULL_RTX if we failed; the caller should emit a normal call,
|
||
otherwise try to get the result in TARGET, if convenient (and in
|
||
mode MODE if that's convenient). */
|
||
|
||
static rtx
|
||
expand_builtin_memory_chk (tree exp, rtx target, machine_mode mode,
|
||
enum built_in_function fcode)
|
||
{
|
||
if (!validate_arglist (exp,
|
||
POINTER_TYPE,
|
||
fcode == BUILT_IN_MEMSET_CHK
|
||
? INTEGER_TYPE : POINTER_TYPE,
|
||
INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
|
||
return NULL_RTX;
|
||
|
||
tree dest = CALL_EXPR_ARG (exp, 0);
|
||
tree src = CALL_EXPR_ARG (exp, 1);
|
||
tree len = CALL_EXPR_ARG (exp, 2);
|
||
tree size = CALL_EXPR_ARG (exp, 3);
|
||
|
||
bool sizes_ok = check_access (exp, dest, src, len, /*maxread=*/NULL_TREE,
|
||
/*str=*/NULL_TREE, size);
|
||
|
||
if (!tree_fits_uhwi_p (size))
|
||
return NULL_RTX;
|
||
|
||
if (tree_fits_uhwi_p (len) || integer_all_onesp (size))
|
||
{
|
||
/* Avoid transforming the checking call to an ordinary one when
|
||
an overflow has been detected or when the call couldn't be
|
||
validated because the size is not constant. */
|
||
if (!sizes_ok && !integer_all_onesp (size) && tree_int_cst_lt (size, len))
|
||
return NULL_RTX;
|
||
|
||
tree fn = NULL_TREE;
|
||
/* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
|
||
mem{cpy,pcpy,move,set} is available. */
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_MEMCPY_CHK:
|
||
fn = builtin_decl_explicit (BUILT_IN_MEMCPY);
|
||
break;
|
||
case BUILT_IN_MEMPCPY_CHK:
|
||
fn = builtin_decl_explicit (BUILT_IN_MEMPCPY);
|
||
break;
|
||
case BUILT_IN_MEMMOVE_CHK:
|
||
fn = builtin_decl_explicit (BUILT_IN_MEMMOVE);
|
||
break;
|
||
case BUILT_IN_MEMSET_CHK:
|
||
fn = builtin_decl_explicit (BUILT_IN_MEMSET);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (! fn)
|
||
return NULL_RTX;
|
||
|
||
fn = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 3, dest, src, len);
|
||
gcc_assert (TREE_CODE (fn) == CALL_EXPR);
|
||
CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
|
||
return expand_expr (fn, target, mode, EXPAND_NORMAL);
|
||
}
|
||
else if (fcode == BUILT_IN_MEMSET_CHK)
|
||
return NULL_RTX;
|
||
else
|
||
{
|
||
unsigned int dest_align = get_pointer_alignment (dest);
|
||
|
||
/* If DEST is not a pointer type, call the normal function. */
|
||
if (dest_align == 0)
|
||
return NULL_RTX;
|
||
|
||
/* If SRC and DEST are the same (and not volatile), do nothing. */
|
||
if (operand_equal_p (src, dest, 0))
|
||
{
|
||
tree expr;
|
||
|
||
if (fcode != BUILT_IN_MEMPCPY_CHK)
|
||
{
|
||
/* Evaluate and ignore LEN in case it has side-effects. */
|
||
expand_expr (len, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
return expand_expr (dest, target, mode, EXPAND_NORMAL);
|
||
}
|
||
|
||
expr = fold_build_pointer_plus (dest, len);
|
||
return expand_expr (expr, target, mode, EXPAND_NORMAL);
|
||
}
|
||
|
||
/* __memmove_chk special case. */
|
||
if (fcode == BUILT_IN_MEMMOVE_CHK)
|
||
{
|
||
unsigned int src_align = get_pointer_alignment (src);
|
||
|
||
if (src_align == 0)
|
||
return NULL_RTX;
|
||
|
||
/* If src is categorized for a readonly section we can use
|
||
normal __memcpy_chk. */
|
||
if (readonly_data_expr (src))
|
||
{
|
||
tree fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK);
|
||
if (!fn)
|
||
return NULL_RTX;
|
||
fn = build_call_nofold_loc (EXPR_LOCATION (exp), fn, 4,
|
||
dest, src, len, size);
|
||
gcc_assert (TREE_CODE (fn) == CALL_EXPR);
|
||
CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
|
||
return expand_expr (fn, target, mode, EXPAND_NORMAL);
|
||
}
|
||
}
|
||
return NULL_RTX;
|
||
}
|
||
}
|
||
|
||
/* Emit warning if a buffer overflow is detected at compile time. */
|
||
|
||
static void
|
||
maybe_emit_chk_warning (tree exp, enum built_in_function fcode)
|
||
{
|
||
/* The source string. */
|
||
tree srcstr = NULL_TREE;
|
||
/* The size of the destination object. */
|
||
tree objsize = NULL_TREE;
|
||
/* The string that is being concatenated with (as in __strcat_chk)
|
||
or null if it isn't. */
|
||
tree catstr = NULL_TREE;
|
||
/* The maximum length of the source sequence in a bounded operation
|
||
(such as __strncat_chk) or null if the operation isn't bounded
|
||
(such as __strcat_chk). */
|
||
tree maxread = NULL_TREE;
|
||
/* The exact size of the access (such as in __strncpy_chk). */
|
||
tree size = NULL_TREE;
|
||
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_STRCPY_CHK:
|
||
case BUILT_IN_STPCPY_CHK:
|
||
srcstr = CALL_EXPR_ARG (exp, 1);
|
||
objsize = CALL_EXPR_ARG (exp, 2);
|
||
break;
|
||
|
||
case BUILT_IN_STRCAT_CHK:
|
||
/* For __strcat_chk the warning will be emitted only if overflowing
|
||
by at least strlen (dest) + 1 bytes. */
|
||
catstr = CALL_EXPR_ARG (exp, 0);
|
||
srcstr = CALL_EXPR_ARG (exp, 1);
|
||
objsize = CALL_EXPR_ARG (exp, 2);
|
||
break;
|
||
|
||
case BUILT_IN_STRNCAT_CHK:
|
||
catstr = CALL_EXPR_ARG (exp, 0);
|
||
srcstr = CALL_EXPR_ARG (exp, 1);
|
||
maxread = CALL_EXPR_ARG (exp, 2);
|
||
objsize = CALL_EXPR_ARG (exp, 3);
|
||
break;
|
||
|
||
case BUILT_IN_STRNCPY_CHK:
|
||
case BUILT_IN_STPNCPY_CHK:
|
||
srcstr = CALL_EXPR_ARG (exp, 1);
|
||
size = CALL_EXPR_ARG (exp, 2);
|
||
objsize = CALL_EXPR_ARG (exp, 3);
|
||
break;
|
||
|
||
case BUILT_IN_SNPRINTF_CHK:
|
||
case BUILT_IN_VSNPRINTF_CHK:
|
||
maxread = CALL_EXPR_ARG (exp, 1);
|
||
objsize = CALL_EXPR_ARG (exp, 3);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (catstr && maxread)
|
||
{
|
||
/* Check __strncat_chk. There is no way to determine the length
|
||
of the string to which the source string is being appended so
|
||
just warn when the length of the source string is not known. */
|
||
check_strncat_sizes (exp, objsize);
|
||
return;
|
||
}
|
||
|
||
/* The destination argument is the first one for all built-ins above. */
|
||
tree dst = CALL_EXPR_ARG (exp, 0);
|
||
|
||
check_access (exp, dst, srcstr, size, maxread, srcstr, objsize);
|
||
}
|
||
|
||
/* Emit warning if a buffer overflow is detected at compile time
|
||
in __sprintf_chk/__vsprintf_chk calls. */
|
||
|
||
static void
|
||
maybe_emit_sprintf_chk_warning (tree exp, enum built_in_function fcode)
|
||
{
|
||
tree size, len, fmt;
|
||
const char *fmt_str;
|
||
int nargs = call_expr_nargs (exp);
|
||
|
||
/* Verify the required arguments in the original call. */
|
||
|
||
if (nargs < 4)
|
||
return;
|
||
size = CALL_EXPR_ARG (exp, 2);
|
||
fmt = CALL_EXPR_ARG (exp, 3);
|
||
|
||
if (! tree_fits_uhwi_p (size) || integer_all_onesp (size))
|
||
return;
|
||
|
||
/* Check whether the format is a literal string constant. */
|
||
fmt_str = c_getstr (fmt);
|
||
if (fmt_str == NULL)
|
||
return;
|
||
|
||
if (!init_target_chars ())
|
||
return;
|
||
|
||
/* If the format doesn't contain % args or %%, we know its size. */
|
||
if (strchr (fmt_str, target_percent) == 0)
|
||
len = build_int_cstu (size_type_node, strlen (fmt_str));
|
||
/* If the format is "%s" and first ... argument is a string literal,
|
||
we know it too. */
|
||
else if (fcode == BUILT_IN_SPRINTF_CHK
|
||
&& strcmp (fmt_str, target_percent_s) == 0)
|
||
{
|
||
tree arg;
|
||
|
||
if (nargs < 5)
|
||
return;
|
||
arg = CALL_EXPR_ARG (exp, 4);
|
||
if (! POINTER_TYPE_P (TREE_TYPE (arg)))
|
||
return;
|
||
|
||
len = c_strlen (arg, 1);
|
||
if (!len || ! tree_fits_uhwi_p (len))
|
||
return;
|
||
}
|
||
else
|
||
return;
|
||
|
||
/* Add one for the terminating nul. */
|
||
len = fold_build2 (PLUS_EXPR, TREE_TYPE (len), len, size_one_node);
|
||
|
||
check_access (exp, /*dst=*/NULL_TREE, /*src=*/NULL_TREE, /*size=*/NULL_TREE,
|
||
/*maxread=*/NULL_TREE, len, size);
|
||
}
|
||
|
||
/* Emit warning if a free is called with address of a variable. */
|
||
|
||
static void
|
||
maybe_emit_free_warning (tree exp)
|
||
{
|
||
if (call_expr_nargs (exp) != 1)
|
||
return;
|
||
|
||
tree arg = CALL_EXPR_ARG (exp, 0);
|
||
|
||
STRIP_NOPS (arg);
|
||
if (TREE_CODE (arg) != ADDR_EXPR)
|
||
return;
|
||
|
||
arg = get_base_address (TREE_OPERAND (arg, 0));
|
||
if (arg == NULL || INDIRECT_REF_P (arg) || TREE_CODE (arg) == MEM_REF)
|
||
return;
|
||
|
||
if (SSA_VAR_P (arg))
|
||
warning_at (tree_nonartificial_location (exp), OPT_Wfree_nonheap_object,
|
||
"%Kattempt to free a non-heap object %qD", exp, arg);
|
||
else
|
||
warning_at (tree_nonartificial_location (exp), OPT_Wfree_nonheap_object,
|
||
"%Kattempt to free a non-heap object", exp);
|
||
}
|
||
|
||
/* Fold a call to __builtin_object_size with arguments PTR and OST,
|
||
if possible. */
|
||
|
||
static tree
|
||
fold_builtin_object_size (tree ptr, tree ost)
|
||
{
|
||
unsigned HOST_WIDE_INT bytes;
|
||
int object_size_type;
|
||
|
||
if (!validate_arg (ptr, POINTER_TYPE)
|
||
|| !validate_arg (ost, INTEGER_TYPE))
|
||
return NULL_TREE;
|
||
|
||
STRIP_NOPS (ost);
|
||
|
||
if (TREE_CODE (ost) != INTEGER_CST
|
||
|| tree_int_cst_sgn (ost) < 0
|
||
|| compare_tree_int (ost, 3) > 0)
|
||
return NULL_TREE;
|
||
|
||
object_size_type = tree_to_shwi (ost);
|
||
|
||
/* __builtin_object_size doesn't evaluate side-effects in its arguments;
|
||
if there are any side-effects, it returns (size_t) -1 for types 0 and 1
|
||
and (size_t) 0 for types 2 and 3. */
|
||
if (TREE_SIDE_EFFECTS (ptr))
|
||
return build_int_cst_type (size_type_node, object_size_type < 2 ? -1 : 0);
|
||
|
||
if (TREE_CODE (ptr) == ADDR_EXPR)
|
||
{
|
||
compute_builtin_object_size (ptr, object_size_type, &bytes);
|
||
if (wi::fits_to_tree_p (bytes, size_type_node))
|
||
return build_int_cstu (size_type_node, bytes);
|
||
}
|
||
else if (TREE_CODE (ptr) == SSA_NAME)
|
||
{
|
||
/* If object size is not known yet, delay folding until
|
||
later. Maybe subsequent passes will help determining
|
||
it. */
|
||
if (compute_builtin_object_size (ptr, object_size_type, &bytes)
|
||
&& wi::fits_to_tree_p (bytes, size_type_node))
|
||
return build_int_cstu (size_type_node, bytes);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Builtins with folding operations that operate on "..." arguments
|
||
need special handling; we need to store the arguments in a convenient
|
||
data structure before attempting any folding. Fortunately there are
|
||
only a few builtins that fall into this category. FNDECL is the
|
||
function, EXP is the CALL_EXPR for the call. */
|
||
|
||
static tree
|
||
fold_builtin_varargs (location_t loc, tree fndecl, tree *args, int nargs)
|
||
{
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
tree ret = NULL_TREE;
|
||
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_FPCLASSIFY:
|
||
ret = fold_builtin_fpclassify (loc, args, nargs);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
if (ret)
|
||
{
|
||
ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
|
||
SET_EXPR_LOCATION (ret, loc);
|
||
TREE_NO_WARNING (ret) = 1;
|
||
return ret;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Initialize format string characters in the target charset. */
|
||
|
||
bool
|
||
init_target_chars (void)
|
||
{
|
||
static bool init;
|
||
if (!init)
|
||
{
|
||
target_newline = lang_hooks.to_target_charset ('\n');
|
||
target_percent = lang_hooks.to_target_charset ('%');
|
||
target_c = lang_hooks.to_target_charset ('c');
|
||
target_s = lang_hooks.to_target_charset ('s');
|
||
if (target_newline == 0 || target_percent == 0 || target_c == 0
|
||
|| target_s == 0)
|
||
return false;
|
||
|
||
target_percent_c[0] = target_percent;
|
||
target_percent_c[1] = target_c;
|
||
target_percent_c[2] = '\0';
|
||
|
||
target_percent_s[0] = target_percent;
|
||
target_percent_s[1] = target_s;
|
||
target_percent_s[2] = '\0';
|
||
|
||
target_percent_s_newline[0] = target_percent;
|
||
target_percent_s_newline[1] = target_s;
|
||
target_percent_s_newline[2] = target_newline;
|
||
target_percent_s_newline[3] = '\0';
|
||
|
||
init = true;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Helper function for do_mpfr_arg*(). Ensure M is a normal number
|
||
and no overflow/underflow occurred. INEXACT is true if M was not
|
||
exactly calculated. TYPE is the tree type for the result. This
|
||
function assumes that you cleared the MPFR flags and then
|
||
calculated M to see if anything subsequently set a flag prior to
|
||
entering this function. Return NULL_TREE if any checks fail. */
|
||
|
||
static tree
|
||
do_mpfr_ckconv (mpfr_srcptr m, tree type, int inexact)
|
||
{
|
||
/* Proceed iff we get a normal number, i.e. not NaN or Inf and no
|
||
overflow/underflow occurred. If -frounding-math, proceed iff the
|
||
result of calling FUNC was exact. */
|
||
if (mpfr_number_p (m) && !mpfr_overflow_p () && !mpfr_underflow_p ()
|
||
&& (!flag_rounding_math || !inexact))
|
||
{
|
||
REAL_VALUE_TYPE rr;
|
||
|
||
real_from_mpfr (&rr, m, type, GMP_RNDN);
|
||
/* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR value,
|
||
check for overflow/underflow. If the REAL_VALUE_TYPE is zero
|
||
but the mpft_t is not, then we underflowed in the
|
||
conversion. */
|
||
if (real_isfinite (&rr)
|
||
&& (rr.cl == rvc_zero) == (mpfr_zero_p (m) != 0))
|
||
{
|
||
REAL_VALUE_TYPE rmode;
|
||
|
||
real_convert (&rmode, TYPE_MODE (type), &rr);
|
||
/* Proceed iff the specified mode can hold the value. */
|
||
if (real_identical (&rmode, &rr))
|
||
return build_real (type, rmode);
|
||
}
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Helper function for do_mpc_arg*(). Ensure M is a normal complex
|
||
number and no overflow/underflow occurred. INEXACT is true if M
|
||
was not exactly calculated. TYPE is the tree type for the result.
|
||
This function assumes that you cleared the MPFR flags and then
|
||
calculated M to see if anything subsequently set a flag prior to
|
||
entering this function. Return NULL_TREE if any checks fail, if
|
||
FORCE_CONVERT is true, then bypass the checks. */
|
||
|
||
static tree
|
||
do_mpc_ckconv (mpc_srcptr m, tree type, int inexact, int force_convert)
|
||
{
|
||
/* Proceed iff we get a normal number, i.e. not NaN or Inf and no
|
||
overflow/underflow occurred. If -frounding-math, proceed iff the
|
||
result of calling FUNC was exact. */
|
||
if (force_convert
|
||
|| (mpfr_number_p (mpc_realref (m)) && mpfr_number_p (mpc_imagref (m))
|
||
&& !mpfr_overflow_p () && !mpfr_underflow_p ()
|
||
&& (!flag_rounding_math || !inexact)))
|
||
{
|
||
REAL_VALUE_TYPE re, im;
|
||
|
||
real_from_mpfr (&re, mpc_realref (m), TREE_TYPE (type), GMP_RNDN);
|
||
real_from_mpfr (&im, mpc_imagref (m), TREE_TYPE (type), GMP_RNDN);
|
||
/* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values,
|
||
check for overflow/underflow. If the REAL_VALUE_TYPE is zero
|
||
but the mpft_t is not, then we underflowed in the
|
||
conversion. */
|
||
if (force_convert
|
||
|| (real_isfinite (&re) && real_isfinite (&im)
|
||
&& (re.cl == rvc_zero) == (mpfr_zero_p (mpc_realref (m)) != 0)
|
||
&& (im.cl == rvc_zero) == (mpfr_zero_p (mpc_imagref (m)) != 0)))
|
||
{
|
||
REAL_VALUE_TYPE re_mode, im_mode;
|
||
|
||
real_convert (&re_mode, TYPE_MODE (TREE_TYPE (type)), &re);
|
||
real_convert (&im_mode, TYPE_MODE (TREE_TYPE (type)), &im);
|
||
/* Proceed iff the specified mode can hold the value. */
|
||
if (force_convert
|
||
|| (real_identical (&re_mode, &re)
|
||
&& real_identical (&im_mode, &im)))
|
||
return build_complex (type, build_real (TREE_TYPE (type), re_mode),
|
||
build_real (TREE_TYPE (type), im_mode));
|
||
}
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* If arguments ARG0 and ARG1 are REAL_CSTs, call mpfr_remquo() to set
|
||
the pointer *(ARG_QUO) and return the result. The type is taken
|
||
from the type of ARG0 and is used for setting the precision of the
|
||
calculation and results. */
|
||
|
||
static tree
|
||
do_mpfr_remquo (tree arg0, tree arg1, tree arg_quo)
|
||
{
|
||
tree const type = TREE_TYPE (arg0);
|
||
tree result = NULL_TREE;
|
||
|
||
STRIP_NOPS (arg0);
|
||
STRIP_NOPS (arg1);
|
||
|
||
/* To proceed, MPFR must exactly represent the target floating point
|
||
format, which only happens when the target base equals two. */
|
||
if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
|
||
&& TREE_CODE (arg0) == REAL_CST && !TREE_OVERFLOW (arg0)
|
||
&& TREE_CODE (arg1) == REAL_CST && !TREE_OVERFLOW (arg1))
|
||
{
|
||
const REAL_VALUE_TYPE *const ra0 = TREE_REAL_CST_PTR (arg0);
|
||
const REAL_VALUE_TYPE *const ra1 = TREE_REAL_CST_PTR (arg1);
|
||
|
||
if (real_isfinite (ra0) && real_isfinite (ra1))
|
||
{
|
||
const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
|
||
const int prec = fmt->p;
|
||
const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
|
||
tree result_rem;
|
||
long integer_quo;
|
||
mpfr_t m0, m1;
|
||
|
||
mpfr_inits2 (prec, m0, m1, NULL);
|
||
mpfr_from_real (m0, ra0, GMP_RNDN);
|
||
mpfr_from_real (m1, ra1, GMP_RNDN);
|
||
mpfr_clear_flags ();
|
||
mpfr_remquo (m0, &integer_quo, m0, m1, rnd);
|
||
/* Remquo is independent of the rounding mode, so pass
|
||
inexact=0 to do_mpfr_ckconv(). */
|
||
result_rem = do_mpfr_ckconv (m0, type, /*inexact=*/ 0);
|
||
mpfr_clears (m0, m1, NULL);
|
||
if (result_rem)
|
||
{
|
||
/* MPFR calculates quo in the host's long so it may
|
||
return more bits in quo than the target int can hold
|
||
if sizeof(host long) > sizeof(target int). This can
|
||
happen even for native compilers in LP64 mode. In
|
||
these cases, modulo the quo value with the largest
|
||
number that the target int can hold while leaving one
|
||
bit for the sign. */
|
||
if (sizeof (integer_quo) * CHAR_BIT > INT_TYPE_SIZE)
|
||
integer_quo %= (long)(1UL << (INT_TYPE_SIZE - 1));
|
||
|
||
/* Dereference the quo pointer argument. */
|
||
arg_quo = build_fold_indirect_ref (arg_quo);
|
||
/* Proceed iff a valid pointer type was passed in. */
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (arg_quo)) == integer_type_node)
|
||
{
|
||
/* Set the value. */
|
||
tree result_quo
|
||
= fold_build2 (MODIFY_EXPR, TREE_TYPE (arg_quo), arg_quo,
|
||
build_int_cst (TREE_TYPE (arg_quo),
|
||
integer_quo));
|
||
TREE_SIDE_EFFECTS (result_quo) = 1;
|
||
/* Combine the quo assignment with the rem. */
|
||
result = non_lvalue (fold_build2 (COMPOUND_EXPR, type,
|
||
result_quo, result_rem));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* If ARG is a REAL_CST, call mpfr_lgamma() on it and return the
|
||
resulting value as a tree with type TYPE. The mpfr precision is
|
||
set to the precision of TYPE. We assume that this mpfr function
|
||
returns zero if the result could be calculated exactly within the
|
||
requested precision. In addition, the integer pointer represented
|
||
by ARG_SG will be dereferenced and set to the appropriate signgam
|
||
(-1,1) value. */
|
||
|
||
static tree
|
||
do_mpfr_lgamma_r (tree arg, tree arg_sg, tree type)
|
||
{
|
||
tree result = NULL_TREE;
|
||
|
||
STRIP_NOPS (arg);
|
||
|
||
/* To proceed, MPFR must exactly represent the target floating point
|
||
format, which only happens when the target base equals two. Also
|
||
verify ARG is a constant and that ARG_SG is an int pointer. */
|
||
if (REAL_MODE_FORMAT (TYPE_MODE (type))->b == 2
|
||
&& TREE_CODE (arg) == REAL_CST && !TREE_OVERFLOW (arg)
|
||
&& TREE_CODE (TREE_TYPE (arg_sg)) == POINTER_TYPE
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (arg_sg))) == integer_type_node)
|
||
{
|
||
const REAL_VALUE_TYPE *const ra = TREE_REAL_CST_PTR (arg);
|
||
|
||
/* In addition to NaN and Inf, the argument cannot be zero or a
|
||
negative integer. */
|
||
if (real_isfinite (ra)
|
||
&& ra->cl != rvc_zero
|
||
&& !(real_isneg (ra) && real_isinteger (ra, TYPE_MODE (type))))
|
||
{
|
||
const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
|
||
const int prec = fmt->p;
|
||
const mp_rnd_t rnd = fmt->round_towards_zero? GMP_RNDZ : GMP_RNDN;
|
||
int inexact, sg;
|
||
mpfr_t m;
|
||
tree result_lg;
|
||
|
||
mpfr_init2 (m, prec);
|
||
mpfr_from_real (m, ra, GMP_RNDN);
|
||
mpfr_clear_flags ();
|
||
inexact = mpfr_lgamma (m, &sg, m, rnd);
|
||
result_lg = do_mpfr_ckconv (m, type, inexact);
|
||
mpfr_clear (m);
|
||
if (result_lg)
|
||
{
|
||
tree result_sg;
|
||
|
||
/* Dereference the arg_sg pointer argument. */
|
||
arg_sg = build_fold_indirect_ref (arg_sg);
|
||
/* Assign the signgam value into *arg_sg. */
|
||
result_sg = fold_build2 (MODIFY_EXPR,
|
||
TREE_TYPE (arg_sg), arg_sg,
|
||
build_int_cst (TREE_TYPE (arg_sg), sg));
|
||
TREE_SIDE_EFFECTS (result_sg) = 1;
|
||
/* Combine the signgam assignment with the lgamma result. */
|
||
result = non_lvalue (fold_build2 (COMPOUND_EXPR, type,
|
||
result_sg, result_lg));
|
||
}
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* If arguments ARG0 and ARG1 are a COMPLEX_CST, call the two-argument
|
||
mpc function FUNC on it and return the resulting value as a tree
|
||
with type TYPE. The mpfr precision is set to the precision of
|
||
TYPE. We assume that function FUNC returns zero if the result
|
||
could be calculated exactly within the requested precision. If
|
||
DO_NONFINITE is true, then fold expressions containing Inf or NaN
|
||
in the arguments and/or results. */
|
||
|
||
tree
|
||
do_mpc_arg2 (tree arg0, tree arg1, tree type, int do_nonfinite,
|
||
int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t))
|
||
{
|
||
tree result = NULL_TREE;
|
||
|
||
STRIP_NOPS (arg0);
|
||
STRIP_NOPS (arg1);
|
||
|
||
/* To proceed, MPFR must exactly represent the target floating point
|
||
format, which only happens when the target base equals two. */
|
||
if (TREE_CODE (arg0) == COMPLEX_CST && !TREE_OVERFLOW (arg0)
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) == REAL_TYPE
|
||
&& TREE_CODE (arg1) == COMPLEX_CST && !TREE_OVERFLOW (arg1)
|
||
&& TREE_CODE (TREE_TYPE (TREE_TYPE (arg1))) == REAL_TYPE
|
||
&& REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))))->b == 2)
|
||
{
|
||
const REAL_VALUE_TYPE *const re0 = TREE_REAL_CST_PTR (TREE_REALPART (arg0));
|
||
const REAL_VALUE_TYPE *const im0 = TREE_REAL_CST_PTR (TREE_IMAGPART (arg0));
|
||
const REAL_VALUE_TYPE *const re1 = TREE_REAL_CST_PTR (TREE_REALPART (arg1));
|
||
const REAL_VALUE_TYPE *const im1 = TREE_REAL_CST_PTR (TREE_IMAGPART (arg1));
|
||
|
||
if (do_nonfinite
|
||
|| (real_isfinite (re0) && real_isfinite (im0)
|
||
&& real_isfinite (re1) && real_isfinite (im1)))
|
||
{
|
||
const struct real_format *const fmt =
|
||
REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (type)));
|
||
const int prec = fmt->p;
|
||
const mp_rnd_t rnd = fmt->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
|
||
const mpc_rnd_t crnd = fmt->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
|
||
int inexact;
|
||
mpc_t m0, m1;
|
||
|
||
mpc_init2 (m0, prec);
|
||
mpc_init2 (m1, prec);
|
||
mpfr_from_real (mpc_realref (m0), re0, rnd);
|
||
mpfr_from_real (mpc_imagref (m0), im0, rnd);
|
||
mpfr_from_real (mpc_realref (m1), re1, rnd);
|
||
mpfr_from_real (mpc_imagref (m1), im1, rnd);
|
||
mpfr_clear_flags ();
|
||
inexact = func (m0, m0, m1, crnd);
|
||
result = do_mpc_ckconv (m0, type, inexact, do_nonfinite);
|
||
mpc_clear (m0);
|
||
mpc_clear (m1);
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* A wrapper function for builtin folding that prevents warnings for
|
||
"statement without effect" and the like, caused by removing the
|
||
call node earlier than the warning is generated. */
|
||
|
||
tree
|
||
fold_call_stmt (gcall *stmt, bool ignore)
|
||
{
|
||
tree ret = NULL_TREE;
|
||
tree fndecl = gimple_call_fndecl (stmt);
|
||
location_t loc = gimple_location (stmt);
|
||
if (fndecl && fndecl_built_in_p (fndecl)
|
||
&& !gimple_call_va_arg_pack_p (stmt))
|
||
{
|
||
int nargs = gimple_call_num_args (stmt);
|
||
tree *args = (nargs > 0
|
||
? gimple_call_arg_ptr (stmt, 0)
|
||
: &error_mark_node);
|
||
|
||
if (avoid_folding_inline_builtin (fndecl))
|
||
return NULL_TREE;
|
||
if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
|
||
{
|
||
return targetm.fold_builtin (fndecl, nargs, args, ignore);
|
||
}
|
||
else
|
||
{
|
||
ret = fold_builtin_n (loc, fndecl, args, nargs, ignore);
|
||
if (ret)
|
||
{
|
||
/* Propagate location information from original call to
|
||
expansion of builtin. Otherwise things like
|
||
maybe_emit_chk_warning, that operate on the expansion
|
||
of a builtin, will use the wrong location information. */
|
||
if (gimple_has_location (stmt))
|
||
{
|
||
tree realret = ret;
|
||
if (TREE_CODE (ret) == NOP_EXPR)
|
||
realret = TREE_OPERAND (ret, 0);
|
||
if (CAN_HAVE_LOCATION_P (realret)
|
||
&& !EXPR_HAS_LOCATION (realret))
|
||
SET_EXPR_LOCATION (realret, loc);
|
||
return realret;
|
||
}
|
||
return ret;
|
||
}
|
||
}
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Look up the function in builtin_decl that corresponds to DECL
|
||
and set ASMSPEC as its user assembler name. DECL must be a
|
||
function decl that declares a builtin. */
|
||
|
||
void
|
||
set_builtin_user_assembler_name (tree decl, const char *asmspec)
|
||
{
|
||
gcc_assert (fndecl_built_in_p (decl, BUILT_IN_NORMAL)
|
||
&& asmspec != 0);
|
||
|
||
tree builtin = builtin_decl_explicit (DECL_FUNCTION_CODE (decl));
|
||
set_user_assembler_name (builtin, asmspec);
|
||
|
||
if (DECL_FUNCTION_CODE (decl) == BUILT_IN_FFS
|
||
&& INT_TYPE_SIZE < BITS_PER_WORD)
|
||
{
|
||
scalar_int_mode mode = int_mode_for_size (INT_TYPE_SIZE, 0).require ();
|
||
set_user_assembler_libfunc ("ffs", asmspec);
|
||
set_optab_libfunc (ffs_optab, mode, "ffs");
|
||
}
|
||
}
|
||
|
||
/* Return true if DECL is a builtin that expands to a constant or similarly
|
||
simple code. */
|
||
bool
|
||
is_simple_builtin (tree decl)
|
||
{
|
||
if (decl && fndecl_built_in_p (decl, BUILT_IN_NORMAL))
|
||
switch (DECL_FUNCTION_CODE (decl))
|
||
{
|
||
/* Builtins that expand to constants. */
|
||
case BUILT_IN_CONSTANT_P:
|
||
case BUILT_IN_EXPECT:
|
||
case BUILT_IN_OBJECT_SIZE:
|
||
case BUILT_IN_UNREACHABLE:
|
||
/* Simple register moves or loads from stack. */
|
||
case BUILT_IN_ASSUME_ALIGNED:
|
||
case BUILT_IN_RETURN_ADDRESS:
|
||
case BUILT_IN_EXTRACT_RETURN_ADDR:
|
||
case BUILT_IN_FROB_RETURN_ADDR:
|
||
case BUILT_IN_RETURN:
|
||
case BUILT_IN_AGGREGATE_INCOMING_ADDRESS:
|
||
case BUILT_IN_FRAME_ADDRESS:
|
||
case BUILT_IN_VA_END:
|
||
case BUILT_IN_STACK_SAVE:
|
||
case BUILT_IN_STACK_RESTORE:
|
||
/* Exception state returns or moves registers around. */
|
||
case BUILT_IN_EH_FILTER:
|
||
case BUILT_IN_EH_POINTER:
|
||
case BUILT_IN_EH_COPY_VALUES:
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if DECL is a builtin that is not expensive, i.e., they are
|
||
most probably expanded inline into reasonably simple code. This is a
|
||
superset of is_simple_builtin. */
|
||
bool
|
||
is_inexpensive_builtin (tree decl)
|
||
{
|
||
if (!decl)
|
||
return false;
|
||
else if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_MD)
|
||
return true;
|
||
else if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
|
||
switch (DECL_FUNCTION_CODE (decl))
|
||
{
|
||
case BUILT_IN_ABS:
|
||
CASE_BUILT_IN_ALLOCA:
|
||
case BUILT_IN_BSWAP16:
|
||
case BUILT_IN_BSWAP32:
|
||
case BUILT_IN_BSWAP64:
|
||
case BUILT_IN_CLZ:
|
||
case BUILT_IN_CLZIMAX:
|
||
case BUILT_IN_CLZL:
|
||
case BUILT_IN_CLZLL:
|
||
case BUILT_IN_CTZ:
|
||
case BUILT_IN_CTZIMAX:
|
||
case BUILT_IN_CTZL:
|
||
case BUILT_IN_CTZLL:
|
||
case BUILT_IN_FFS:
|
||
case BUILT_IN_FFSIMAX:
|
||
case BUILT_IN_FFSL:
|
||
case BUILT_IN_FFSLL:
|
||
case BUILT_IN_IMAXABS:
|
||
case BUILT_IN_FINITE:
|
||
case BUILT_IN_FINITEF:
|
||
case BUILT_IN_FINITEL:
|
||
case BUILT_IN_FINITED32:
|
||
case BUILT_IN_FINITED64:
|
||
case BUILT_IN_FINITED128:
|
||
case BUILT_IN_FPCLASSIFY:
|
||
case BUILT_IN_ISFINITE:
|
||
case BUILT_IN_ISINF_SIGN:
|
||
case BUILT_IN_ISINF:
|
||
case BUILT_IN_ISINFF:
|
||
case BUILT_IN_ISINFL:
|
||
case BUILT_IN_ISINFD32:
|
||
case BUILT_IN_ISINFD64:
|
||
case BUILT_IN_ISINFD128:
|
||
case BUILT_IN_ISNAN:
|
||
case BUILT_IN_ISNANF:
|
||
case BUILT_IN_ISNANL:
|
||
case BUILT_IN_ISNAND32:
|
||
case BUILT_IN_ISNAND64:
|
||
case BUILT_IN_ISNAND128:
|
||
case BUILT_IN_ISNORMAL:
|
||
case BUILT_IN_ISGREATER:
|
||
case BUILT_IN_ISGREATEREQUAL:
|
||
case BUILT_IN_ISLESS:
|
||
case BUILT_IN_ISLESSEQUAL:
|
||
case BUILT_IN_ISLESSGREATER:
|
||
case BUILT_IN_ISUNORDERED:
|
||
case BUILT_IN_VA_ARG_PACK:
|
||
case BUILT_IN_VA_ARG_PACK_LEN:
|
||
case BUILT_IN_VA_COPY:
|
||
case BUILT_IN_TRAP:
|
||
case BUILT_IN_SAVEREGS:
|
||
case BUILT_IN_POPCOUNTL:
|
||
case BUILT_IN_POPCOUNTLL:
|
||
case BUILT_IN_POPCOUNTIMAX:
|
||
case BUILT_IN_POPCOUNT:
|
||
case BUILT_IN_PARITYL:
|
||
case BUILT_IN_PARITYLL:
|
||
case BUILT_IN_PARITYIMAX:
|
||
case BUILT_IN_PARITY:
|
||
case BUILT_IN_LABS:
|
||
case BUILT_IN_LLABS:
|
||
case BUILT_IN_PREFETCH:
|
||
case BUILT_IN_ACC_ON_DEVICE:
|
||
return true;
|
||
|
||
default:
|
||
return is_simple_builtin (decl);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if T is a constant and the value cast to a target char
|
||
can be represented by a host char.
|
||
Store the casted char constant in *P if so. */
|
||
|
||
bool
|
||
target_char_cst_p (tree t, char *p)
|
||
{
|
||
if (!tree_fits_uhwi_p (t) || CHAR_TYPE_SIZE != HOST_BITS_PER_CHAR)
|
||
return false;
|
||
|
||
*p = (char)tree_to_uhwi (t);
|
||
return true;
|
||
}
|
||
|
||
/* Return true if the builtin DECL is implemented in a standard library.
|
||
Otherwise returns false which doesn't guarantee it is not (thus the list of
|
||
handled builtins below may be incomplete). */
|
||
|
||
bool
|
||
builtin_with_linkage_p (tree decl)
|
||
{
|
||
if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
|
||
switch (DECL_FUNCTION_CODE (decl))
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_ACOS):
|
||
CASE_FLT_FN (BUILT_IN_ACOSH):
|
||
CASE_FLT_FN (BUILT_IN_ASIN):
|
||
CASE_FLT_FN (BUILT_IN_ASINH):
|
||
CASE_FLT_FN (BUILT_IN_ATAN):
|
||
CASE_FLT_FN (BUILT_IN_ATANH):
|
||
CASE_FLT_FN (BUILT_IN_ATAN2):
|
||
CASE_FLT_FN (BUILT_IN_CBRT):
|
||
CASE_FLT_FN (BUILT_IN_CEIL):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_CEIL):
|
||
CASE_FLT_FN (BUILT_IN_COPYSIGN):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN):
|
||
CASE_FLT_FN (BUILT_IN_COS):
|
||
CASE_FLT_FN (BUILT_IN_COSH):
|
||
CASE_FLT_FN (BUILT_IN_ERF):
|
||
CASE_FLT_FN (BUILT_IN_ERFC):
|
||
CASE_FLT_FN (BUILT_IN_EXP):
|
||
CASE_FLT_FN (BUILT_IN_EXP2):
|
||
CASE_FLT_FN (BUILT_IN_EXPM1):
|
||
CASE_FLT_FN (BUILT_IN_FABS):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FABS):
|
||
CASE_FLT_FN (BUILT_IN_FDIM):
|
||
CASE_FLT_FN (BUILT_IN_FLOOR):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FLOOR):
|
||
CASE_FLT_FN (BUILT_IN_FMA):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FMA):
|
||
CASE_FLT_FN (BUILT_IN_FMAX):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FMAX):
|
||
CASE_FLT_FN (BUILT_IN_FMIN):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FMIN):
|
||
CASE_FLT_FN (BUILT_IN_FMOD):
|
||
CASE_FLT_FN (BUILT_IN_FREXP):
|
||
CASE_FLT_FN (BUILT_IN_HYPOT):
|
||
CASE_FLT_FN (BUILT_IN_ILOGB):
|
||
CASE_FLT_FN (BUILT_IN_LDEXP):
|
||
CASE_FLT_FN (BUILT_IN_LGAMMA):
|
||
CASE_FLT_FN (BUILT_IN_LLRINT):
|
||
CASE_FLT_FN (BUILT_IN_LLROUND):
|
||
CASE_FLT_FN (BUILT_IN_LOG):
|
||
CASE_FLT_FN (BUILT_IN_LOG10):
|
||
CASE_FLT_FN (BUILT_IN_LOG1P):
|
||
CASE_FLT_FN (BUILT_IN_LOG2):
|
||
CASE_FLT_FN (BUILT_IN_LOGB):
|
||
CASE_FLT_FN (BUILT_IN_LRINT):
|
||
CASE_FLT_FN (BUILT_IN_LROUND):
|
||
CASE_FLT_FN (BUILT_IN_MODF):
|
||
CASE_FLT_FN (BUILT_IN_NAN):
|
||
CASE_FLT_FN (BUILT_IN_NEARBYINT):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_NEARBYINT):
|
||
CASE_FLT_FN (BUILT_IN_NEXTAFTER):
|
||
CASE_FLT_FN (BUILT_IN_NEXTTOWARD):
|
||
CASE_FLT_FN (BUILT_IN_POW):
|
||
CASE_FLT_FN (BUILT_IN_REMAINDER):
|
||
CASE_FLT_FN (BUILT_IN_REMQUO):
|
||
CASE_FLT_FN (BUILT_IN_RINT):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_RINT):
|
||
CASE_FLT_FN (BUILT_IN_ROUND):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_ROUND):
|
||
CASE_FLT_FN (BUILT_IN_SCALBLN):
|
||
CASE_FLT_FN (BUILT_IN_SCALBN):
|
||
CASE_FLT_FN (BUILT_IN_SIN):
|
||
CASE_FLT_FN (BUILT_IN_SINH):
|
||
CASE_FLT_FN (BUILT_IN_SINCOS):
|
||
CASE_FLT_FN (BUILT_IN_SQRT):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_SQRT):
|
||
CASE_FLT_FN (BUILT_IN_TAN):
|
||
CASE_FLT_FN (BUILT_IN_TANH):
|
||
CASE_FLT_FN (BUILT_IN_TGAMMA):
|
||
CASE_FLT_FN (BUILT_IN_TRUNC):
|
||
CASE_FLT_FN_FLOATN_NX (BUILT_IN_TRUNC):
|
||
return true;
|
||
default:
|
||
break;
|
||
}
|
||
return false;
|
||
}
|