
gcc/ * tree-pass.h (pass_data): Remove has_execute member. * passes.c (execute_one_pass): Don't check pass->has_execute. * asan.c, auto-inc-dec.c, bb-reorder.c, bt-load.c, cfgcleanup.c, cfgexpand.c, cfgrtl.c, cgraphbuild.c, combine-stack-adj.c, combine.c, compare-elim.c, config/arc/arc.c, config/epiphany/mode-switch-use.c, config/epiphany/resolve-sw-modes.c, config/i386/i386.c, config/mips/mips.c, config/rl78/rl78.c, config/s390/s390.c, config/sh/sh_optimize_sett_clrt.cc, config/sh/sh_treg_combine.cc, config/sparc/sparc.c, cprop.c, cse.c, dce.c, df-core.c, dse.c, dwarf2cfi.c, except.c, final.c, function.c, fwprop.c, gcse.c, gimple-low.c, gimple-ssa-isolate-paths.c, gimple-ssa-strength-reduction.c, graphite.c, ifcvt.c, init-regs.c, ipa-comdats.c, ipa-cp.c, ipa-devirt.c, ipa-inline-analysis.c, ipa-inline.c, ipa-profile.c, ipa-pure-const.c, ipa-reference.c, ipa-split.c, ipa-visibility.c, ipa.c, ira.c, jump.c, loop-init.c, lower-subreg.c, mode-switching.c, modulo-sched.c, omp-low.c, passes.c, postreload-gcse.c, postreload.c, predict.c, recog.c, ree.c, reg-stack.c, regcprop.c, reginfo.c, regrename.c, reorg.c, sched-rgn.c, stack-ptr-mod.c, store-motion.c, tracer.c, trans-mem.c, tree-call-cdce.c, tree-cfg.c, tree-cfgcleanup.c, tree-complex.c, tree-eh.c, tree-emutls.c, tree-if-conv.c, tree-into-ssa.c, tree-loop-distribution.c, tree-nrv.c, tree-object-size.c, tree-parloops.c, tree-pass.h, tree-predcom.c, tree-profile.c, tree-sra.c, tree-ssa-ccp.c, tree-ssa-copy.c, tree-ssa-copyrename.c, tree-ssa-dce.c, tree-ssa-dom.c, tree-ssa-dse.c, tree-ssa-forwprop.c, tree-ssa-ifcombine.c, tree-ssa-loop-ch.c, tree-ssa-loop-im.c, tree-ssa-loop-ivcanon.c, tree-ssa-loop-prefetch.c, tree-ssa-loop-unswitch.c, tree-ssa-loop.c, tree-ssa-math-opts.c, tree-ssa-phiopt.c, tree-ssa-phiprop.c, tree-ssa-pre.c, tree-ssa-reassoc.c, tree-ssa-sink.c, tree-ssa-strlen.c, tree-ssa-structalias.c, tree-ssa-uncprop.c, tree-ssa-uninit.c, tree-ssa.c, tree-ssanames.c, tree-stdarg.c, tree-switch-conversion.c, tree-tailcall.c, tree-vect-generic.c, tree-vectorizer.c, tree-vrp.c, tree.c, tsan.c, ubsan.c, var-tracking.c, vtable-verify.c, web.c: Remove initializer for pass_data::has_execute. From-SVN: r212383
2289 lines
67 KiB
C
2289 lines
67 KiB
C
/* Loop autoparallelization.
|
|
Copyright (C) 2006-2014 Free Software Foundation, Inc.
|
|
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
|
Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tree.h"
|
|
#include "basic-block.h"
|
|
#include "tree-ssa-alias.h"
|
|
#include "internal-fn.h"
|
|
#include "gimple-expr.h"
|
|
#include "is-a.h"
|
|
#include "gimple.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "gimple-walk.h"
|
|
#include "stor-layout.h"
|
|
#include "tree-nested.h"
|
|
#include "gimple-ssa.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-phinodes.h"
|
|
#include "ssa-iterators.h"
|
|
#include "stringpool.h"
|
|
#include "tree-ssanames.h"
|
|
#include "tree-ssa-loop-ivopts.h"
|
|
#include "tree-ssa-loop-manip.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "tree-ssa-loop.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-data-ref.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "tree-pass.h"
|
|
#include "langhooks.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "tree-hasher.h"
|
|
#include "tree-parloops.h"
|
|
#include "omp-low.h"
|
|
#include "tree-nested.h"
|
|
|
|
/* This pass tries to distribute iterations of loops into several threads.
|
|
The implementation is straightforward -- for each loop we test whether its
|
|
iterations are independent, and if it is the case (and some additional
|
|
conditions regarding profitability and correctness are satisfied), we
|
|
add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
|
|
machinery do its job.
|
|
|
|
The most of the complexity is in bringing the code into shape expected
|
|
by the omp expanders:
|
|
-- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
|
|
variable and that the exit test is at the start of the loop body
|
|
-- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
|
|
variables by accesses through pointers, and breaking up ssa chains
|
|
by storing the values incoming to the parallelized loop to a structure
|
|
passed to the new function as an argument (something similar is done
|
|
in omp gimplification, unfortunately only a small part of the code
|
|
can be shared).
|
|
|
|
TODO:
|
|
-- if there are several parallelizable loops in a function, it may be
|
|
possible to generate the threads just once (using synchronization to
|
|
ensure that cross-loop dependences are obeyed).
|
|
-- handling of common reduction patterns for outer loops.
|
|
|
|
More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
|
|
/*
|
|
Reduction handling:
|
|
currently we use vect_force_simple_reduction() to detect reduction patterns.
|
|
The code transformation will be introduced by an example.
|
|
|
|
|
|
parloop
|
|
{
|
|
int sum=1;
|
|
|
|
for (i = 0; i < N; i++)
|
|
{
|
|
x[i] = i + 3;
|
|
sum+=x[i];
|
|
}
|
|
}
|
|
|
|
gimple-like code:
|
|
header_bb:
|
|
|
|
# sum_29 = PHI <sum_11(5), 1(3)>
|
|
# i_28 = PHI <i_12(5), 0(3)>
|
|
D.1795_8 = i_28 + 3;
|
|
x[i_28] = D.1795_8;
|
|
sum_11 = D.1795_8 + sum_29;
|
|
i_12 = i_28 + 1;
|
|
if (N_6(D) > i_12)
|
|
goto header_bb;
|
|
|
|
|
|
exit_bb:
|
|
|
|
# sum_21 = PHI <sum_11(4)>
|
|
printf (&"%d"[0], sum_21);
|
|
|
|
|
|
after reduction transformation (only relevant parts):
|
|
|
|
parloop
|
|
{
|
|
|
|
....
|
|
|
|
|
|
# Storing the initial value given by the user. #
|
|
|
|
.paral_data_store.32.sum.27 = 1;
|
|
|
|
#pragma omp parallel num_threads(4)
|
|
|
|
#pragma omp for schedule(static)
|
|
|
|
# The neutral element corresponding to the particular
|
|
reduction's operation, e.g. 0 for PLUS_EXPR,
|
|
1 for MULT_EXPR, etc. replaces the user's initial value. #
|
|
|
|
# sum.27_29 = PHI <sum.27_11, 0>
|
|
|
|
sum.27_11 = D.1827_8 + sum.27_29;
|
|
|
|
GIMPLE_OMP_CONTINUE
|
|
|
|
# Adding this reduction phi is done at create_phi_for_local_result() #
|
|
# sum.27_56 = PHI <sum.27_11, 0>
|
|
GIMPLE_OMP_RETURN
|
|
|
|
# Creating the atomic operation is done at
|
|
create_call_for_reduction_1() #
|
|
|
|
#pragma omp atomic_load
|
|
D.1839_59 = *&.paral_data_load.33_51->reduction.23;
|
|
D.1840_60 = sum.27_56 + D.1839_59;
|
|
#pragma omp atomic_store (D.1840_60);
|
|
|
|
GIMPLE_OMP_RETURN
|
|
|
|
# collecting the result after the join of the threads is done at
|
|
create_loads_for_reductions().
|
|
The value computed by the threads is loaded from the
|
|
shared struct. #
|
|
|
|
|
|
.paral_data_load.33_52 = &.paral_data_store.32;
|
|
sum_37 = .paral_data_load.33_52->sum.27;
|
|
sum_43 = D.1795_41 + sum_37;
|
|
|
|
exit bb:
|
|
# sum_21 = PHI <sum_43, sum_26>
|
|
printf (&"%d"[0], sum_21);
|
|
|
|
...
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
/* Minimal number of iterations of a loop that should be executed in each
|
|
thread. */
|
|
#define MIN_PER_THREAD 100
|
|
|
|
/* Element of the hashtable, representing a
|
|
reduction in the current loop. */
|
|
struct reduction_info
|
|
{
|
|
gimple reduc_stmt; /* reduction statement. */
|
|
gimple reduc_phi; /* The phi node defining the reduction. */
|
|
enum tree_code reduction_code;/* code for the reduction operation. */
|
|
unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
|
|
result. */
|
|
gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
|
|
of the reduction variable when existing the loop. */
|
|
tree initial_value; /* The initial value of the reduction var before entering the loop. */
|
|
tree field; /* the name of the field in the parloop data structure intended for reduction. */
|
|
tree init; /* reduction initialization value. */
|
|
gimple new_phi; /* (helper field) Newly created phi node whose result
|
|
will be passed to the atomic operation. Represents
|
|
the local result each thread computed for the reduction
|
|
operation. */
|
|
};
|
|
|
|
/* Reduction info hashtable helpers. */
|
|
|
|
struct reduction_hasher : typed_free_remove <reduction_info>
|
|
{
|
|
typedef reduction_info value_type;
|
|
typedef reduction_info compare_type;
|
|
static inline hashval_t hash (const value_type *);
|
|
static inline bool equal (const value_type *, const compare_type *);
|
|
};
|
|
|
|
/* Equality and hash functions for hashtab code. */
|
|
|
|
inline bool
|
|
reduction_hasher::equal (const value_type *a, const compare_type *b)
|
|
{
|
|
return (a->reduc_phi == b->reduc_phi);
|
|
}
|
|
|
|
inline hashval_t
|
|
reduction_hasher::hash (const value_type *a)
|
|
{
|
|
return a->reduc_version;
|
|
}
|
|
|
|
typedef hash_table<reduction_hasher> reduction_info_table_type;
|
|
|
|
|
|
static struct reduction_info *
|
|
reduction_phi (reduction_info_table_type *reduction_list, gimple phi)
|
|
{
|
|
struct reduction_info tmpred, *red;
|
|
|
|
if (reduction_list->elements () == 0 || phi == NULL)
|
|
return NULL;
|
|
|
|
tmpred.reduc_phi = phi;
|
|
tmpred.reduc_version = gimple_uid (phi);
|
|
red = reduction_list->find (&tmpred);
|
|
|
|
return red;
|
|
}
|
|
|
|
/* Element of hashtable of names to copy. */
|
|
|
|
struct name_to_copy_elt
|
|
{
|
|
unsigned version; /* The version of the name to copy. */
|
|
tree new_name; /* The new name used in the copy. */
|
|
tree field; /* The field of the structure used to pass the
|
|
value. */
|
|
};
|
|
|
|
/* Name copies hashtable helpers. */
|
|
|
|
struct name_to_copy_hasher : typed_free_remove <name_to_copy_elt>
|
|
{
|
|
typedef name_to_copy_elt value_type;
|
|
typedef name_to_copy_elt compare_type;
|
|
static inline hashval_t hash (const value_type *);
|
|
static inline bool equal (const value_type *, const compare_type *);
|
|
};
|
|
|
|
/* Equality and hash functions for hashtab code. */
|
|
|
|
inline bool
|
|
name_to_copy_hasher::equal (const value_type *a, const compare_type *b)
|
|
{
|
|
return a->version == b->version;
|
|
}
|
|
|
|
inline hashval_t
|
|
name_to_copy_hasher::hash (const value_type *a)
|
|
{
|
|
return (hashval_t) a->version;
|
|
}
|
|
|
|
typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
|
|
|
|
/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
|
|
matrix. Rather than use floats, we simply keep a single DENOMINATOR that
|
|
represents the denominator for every element in the matrix. */
|
|
typedef struct lambda_trans_matrix_s
|
|
{
|
|
lambda_matrix matrix;
|
|
int rowsize;
|
|
int colsize;
|
|
int denominator;
|
|
} *lambda_trans_matrix;
|
|
#define LTM_MATRIX(T) ((T)->matrix)
|
|
#define LTM_ROWSIZE(T) ((T)->rowsize)
|
|
#define LTM_COLSIZE(T) ((T)->colsize)
|
|
#define LTM_DENOMINATOR(T) ((T)->denominator)
|
|
|
|
/* Allocate a new transformation matrix. */
|
|
|
|
static lambda_trans_matrix
|
|
lambda_trans_matrix_new (int colsize, int rowsize,
|
|
struct obstack * lambda_obstack)
|
|
{
|
|
lambda_trans_matrix ret;
|
|
|
|
ret = (lambda_trans_matrix)
|
|
obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
|
|
LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
|
|
LTM_ROWSIZE (ret) = rowsize;
|
|
LTM_COLSIZE (ret) = colsize;
|
|
LTM_DENOMINATOR (ret) = 1;
|
|
return ret;
|
|
}
|
|
|
|
/* Multiply a vector VEC by a matrix MAT.
|
|
MAT is an M*N matrix, and VEC is a vector with length N. The result
|
|
is stored in DEST which must be a vector of length M. */
|
|
|
|
static void
|
|
lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
|
|
lambda_vector vec, lambda_vector dest)
|
|
{
|
|
int i, j;
|
|
|
|
lambda_vector_clear (dest, m);
|
|
for (i = 0; i < m; i++)
|
|
for (j = 0; j < n; j++)
|
|
dest[i] += matrix[i][j] * vec[j];
|
|
}
|
|
|
|
/* Return true if TRANS is a legal transformation matrix that respects
|
|
the dependence vectors in DISTS and DIRS. The conservative answer
|
|
is false.
|
|
|
|
"Wolfe proves that a unimodular transformation represented by the
|
|
matrix T is legal when applied to a loop nest with a set of
|
|
lexicographically non-negative distance vectors RDG if and only if
|
|
for each vector d in RDG, (T.d >= 0) is lexicographically positive.
|
|
i.e.: if and only if it transforms the lexicographically positive
|
|
distance vectors to lexicographically positive vectors. Note that
|
|
a unimodular matrix must transform the zero vector (and only it) to
|
|
the zero vector." S.Muchnick. */
|
|
|
|
static bool
|
|
lambda_transform_legal_p (lambda_trans_matrix trans,
|
|
int nb_loops,
|
|
vec<ddr_p> dependence_relations)
|
|
{
|
|
unsigned int i, j;
|
|
lambda_vector distres;
|
|
struct data_dependence_relation *ddr;
|
|
|
|
gcc_assert (LTM_COLSIZE (trans) == nb_loops
|
|
&& LTM_ROWSIZE (trans) == nb_loops);
|
|
|
|
/* When there are no dependences, the transformation is correct. */
|
|
if (dependence_relations.length () == 0)
|
|
return true;
|
|
|
|
ddr = dependence_relations[0];
|
|
if (ddr == NULL)
|
|
return true;
|
|
|
|
/* When there is an unknown relation in the dependence_relations, we
|
|
know that it is no worth looking at this loop nest: give up. */
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
|
return false;
|
|
|
|
distres = lambda_vector_new (nb_loops);
|
|
|
|
/* For each distance vector in the dependence graph. */
|
|
FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
|
|
{
|
|
/* Don't care about relations for which we know that there is no
|
|
dependence, nor about read-read (aka. output-dependences):
|
|
these data accesses can happen in any order. */
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known
|
|
|| (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
|
|
continue;
|
|
|
|
/* Conservatively answer: "this transformation is not valid". */
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
|
return false;
|
|
|
|
/* If the dependence could not be captured by a distance vector,
|
|
conservatively answer that the transform is not valid. */
|
|
if (DDR_NUM_DIST_VECTS (ddr) == 0)
|
|
return false;
|
|
|
|
/* Compute trans.dist_vect */
|
|
for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
|
|
{
|
|
lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
|
|
DDR_DIST_VECT (ddr, j), distres);
|
|
|
|
if (!lambda_vector_lexico_pos (distres, nb_loops))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Data dependency analysis. Returns true if the iterations of LOOP
|
|
are independent on each other (that is, if we can execute them
|
|
in parallel). */
|
|
|
|
static bool
|
|
loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
|
|
{
|
|
vec<ddr_p> dependence_relations;
|
|
vec<data_reference_p> datarefs;
|
|
lambda_trans_matrix trans;
|
|
bool ret = false;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Considering loop %d\n", loop->num);
|
|
if (!loop->inner)
|
|
fprintf (dump_file, "loop is innermost\n");
|
|
else
|
|
fprintf (dump_file, "loop NOT innermost\n");
|
|
}
|
|
|
|
/* Check for problems with dependences. If the loop can be reversed,
|
|
the iterations are independent. */
|
|
auto_vec<loop_p, 3> loop_nest;
|
|
datarefs.create (10);
|
|
dependence_relations.create (100);
|
|
if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
|
|
&dependence_relations))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
|
|
ret = false;
|
|
goto end;
|
|
}
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
dump_data_dependence_relations (dump_file, dependence_relations);
|
|
|
|
trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
|
|
LTM_MATRIX (trans)[0][0] = -1;
|
|
|
|
if (lambda_transform_legal_p (trans, 1, dependence_relations))
|
|
{
|
|
ret = true;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " SUCCESS: may be parallelized\n");
|
|
}
|
|
else if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
" FAILED: data dependencies exist across iterations\n");
|
|
|
|
end:
|
|
free_dependence_relations (dependence_relations);
|
|
free_data_refs (datarefs);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Return true when LOOP contains basic blocks marked with the
|
|
BB_IRREDUCIBLE_LOOP flag. */
|
|
|
|
static inline bool
|
|
loop_has_blocks_with_irreducible_flag (struct loop *loop)
|
|
{
|
|
unsigned i;
|
|
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
|
bool res = true;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
|
|
goto end;
|
|
|
|
res = false;
|
|
end:
|
|
free (bbs);
|
|
return res;
|
|
}
|
|
|
|
/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
|
|
The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
|
|
to their addresses that can be reused. The address of OBJ is known to
|
|
be invariant in the whole function. Other needed statements are placed
|
|
right before GSI. */
|
|
|
|
static tree
|
|
take_address_of (tree obj, tree type, edge entry,
|
|
int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
|
|
{
|
|
int uid;
|
|
tree *var_p, name, addr;
|
|
gimple stmt;
|
|
gimple_seq stmts;
|
|
|
|
/* Since the address of OBJ is invariant, the trees may be shared.
|
|
Avoid rewriting unrelated parts of the code. */
|
|
obj = unshare_expr (obj);
|
|
for (var_p = &obj;
|
|
handled_component_p (*var_p);
|
|
var_p = &TREE_OPERAND (*var_p, 0))
|
|
continue;
|
|
|
|
/* Canonicalize the access to base on a MEM_REF. */
|
|
if (DECL_P (*var_p))
|
|
*var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
|
|
|
|
/* Assign a canonical SSA name to the address of the base decl used
|
|
in the address and share it for all accesses and addresses based
|
|
on it. */
|
|
uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
|
|
int_tree_map elt;
|
|
elt.uid = uid;
|
|
int_tree_map *slot = decl_address->find_slot (elt, INSERT);
|
|
if (!slot->to)
|
|
{
|
|
if (gsi == NULL)
|
|
return NULL;
|
|
addr = TREE_OPERAND (*var_p, 0);
|
|
const char *obj_name
|
|
= get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
|
|
if (obj_name)
|
|
name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
|
|
else
|
|
name = make_ssa_name (TREE_TYPE (addr), NULL);
|
|
stmt = gimple_build_assign (name, addr);
|
|
gsi_insert_on_edge_immediate (entry, stmt);
|
|
|
|
slot->uid = uid;
|
|
slot->to = name;
|
|
}
|
|
else
|
|
name = slot->to;
|
|
|
|
/* Express the address in terms of the canonical SSA name. */
|
|
TREE_OPERAND (*var_p, 0) = name;
|
|
if (gsi == NULL)
|
|
return build_fold_addr_expr_with_type (obj, type);
|
|
|
|
name = force_gimple_operand (build_addr (obj, current_function_decl),
|
|
&stmts, true, NULL_TREE);
|
|
if (!gimple_seq_empty_p (stmts))
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
|
|
if (!useless_type_conversion_p (type, TREE_TYPE (name)))
|
|
{
|
|
name = force_gimple_operand (fold_convert (type, name), &stmts, true,
|
|
NULL_TREE);
|
|
if (!gimple_seq_empty_p (stmts))
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
|
}
|
|
|
|
return name;
|
|
}
|
|
|
|
/* Callback for htab_traverse. Create the initialization statement
|
|
for reduction described in SLOT, and place it at the preheader of
|
|
the loop described in DATA. */
|
|
|
|
int
|
|
initialize_reductions (reduction_info **slot, struct loop *loop)
|
|
{
|
|
tree init, c;
|
|
tree bvar, type, arg;
|
|
edge e;
|
|
|
|
struct reduction_info *const reduc = *slot;
|
|
|
|
/* Create initialization in preheader:
|
|
reduction_variable = initialization value of reduction. */
|
|
|
|
/* In the phi node at the header, replace the argument coming
|
|
from the preheader with the reduction initialization value. */
|
|
|
|
/* Create a new variable to initialize the reduction. */
|
|
type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
|
|
bvar = create_tmp_var (type, "reduction");
|
|
|
|
c = build_omp_clause (gimple_location (reduc->reduc_stmt),
|
|
OMP_CLAUSE_REDUCTION);
|
|
OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
|
|
OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
|
|
|
|
init = omp_reduction_init (c, TREE_TYPE (bvar));
|
|
reduc->init = init;
|
|
|
|
/* Replace the argument representing the initialization value
|
|
with the initialization value for the reduction (neutral
|
|
element for the particular operation, e.g. 0 for PLUS_EXPR,
|
|
1 for MULT_EXPR, etc).
|
|
Keep the old value in a new variable "reduction_initial",
|
|
that will be taken in consideration after the parallel
|
|
computing is done. */
|
|
|
|
e = loop_preheader_edge (loop);
|
|
arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
|
|
/* Create new variable to hold the initial value. */
|
|
|
|
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
|
|
(reduc->reduc_phi, loop_preheader_edge (loop)), init);
|
|
reduc->initial_value = arg;
|
|
return 1;
|
|
}
|
|
|
|
struct elv_data
|
|
{
|
|
struct walk_stmt_info info;
|
|
edge entry;
|
|
int_tree_htab_type *decl_address;
|
|
gimple_stmt_iterator *gsi;
|
|
bool changed;
|
|
bool reset;
|
|
};
|
|
|
|
/* Eliminates references to local variables in *TP out of the single
|
|
entry single exit region starting at DTA->ENTRY.
|
|
DECL_ADDRESS contains addresses of the references that had their
|
|
address taken already. If the expression is changed, CHANGED is
|
|
set to true. Callback for walk_tree. */
|
|
|
|
static tree
|
|
eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
|
|
{
|
|
struct elv_data *const dta = (struct elv_data *) data;
|
|
tree t = *tp, var, addr, addr_type, type, obj;
|
|
|
|
if (DECL_P (t))
|
|
{
|
|
*walk_subtrees = 0;
|
|
|
|
if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
|
|
return NULL_TREE;
|
|
|
|
type = TREE_TYPE (t);
|
|
addr_type = build_pointer_type (type);
|
|
addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
|
|
dta->gsi);
|
|
if (dta->gsi == NULL && addr == NULL_TREE)
|
|
{
|
|
dta->reset = true;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
*tp = build_simple_mem_ref (addr);
|
|
|
|
dta->changed = true;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
if (TREE_CODE (t) == ADDR_EXPR)
|
|
{
|
|
/* ADDR_EXPR may appear in two contexts:
|
|
-- as a gimple operand, when the address taken is a function invariant
|
|
-- as gimple rhs, when the resulting address in not a function
|
|
invariant
|
|
We do not need to do anything special in the latter case (the base of
|
|
the memory reference whose address is taken may be replaced in the
|
|
DECL_P case). The former case is more complicated, as we need to
|
|
ensure that the new address is still a gimple operand. Thus, it
|
|
is not sufficient to replace just the base of the memory reference --
|
|
we need to move the whole computation of the address out of the
|
|
loop. */
|
|
if (!is_gimple_val (t))
|
|
return NULL_TREE;
|
|
|
|
*walk_subtrees = 0;
|
|
obj = TREE_OPERAND (t, 0);
|
|
var = get_base_address (obj);
|
|
if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
|
|
return NULL_TREE;
|
|
|
|
addr_type = TREE_TYPE (t);
|
|
addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
|
|
dta->gsi);
|
|
if (dta->gsi == NULL && addr == NULL_TREE)
|
|
{
|
|
dta->reset = true;
|
|
return NULL_TREE;
|
|
}
|
|
*tp = addr;
|
|
|
|
dta->changed = true;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
if (!EXPR_P (t))
|
|
*walk_subtrees = 0;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Moves the references to local variables in STMT at *GSI out of the single
|
|
entry single exit region starting at ENTRY. DECL_ADDRESS contains
|
|
addresses of the references that had their address taken
|
|
already. */
|
|
|
|
static void
|
|
eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
|
|
int_tree_htab_type *decl_address)
|
|
{
|
|
struct elv_data dta;
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
|
|
memset (&dta.info, '\0', sizeof (dta.info));
|
|
dta.entry = entry;
|
|
dta.decl_address = decl_address;
|
|
dta.changed = false;
|
|
dta.reset = false;
|
|
|
|
if (gimple_debug_bind_p (stmt))
|
|
{
|
|
dta.gsi = NULL;
|
|
walk_tree (gimple_debug_bind_get_value_ptr (stmt),
|
|
eliminate_local_variables_1, &dta.info, NULL);
|
|
if (dta.reset)
|
|
{
|
|
gimple_debug_bind_reset_value (stmt);
|
|
dta.changed = true;
|
|
}
|
|
}
|
|
else if (gimple_clobber_p (stmt))
|
|
{
|
|
stmt = gimple_build_nop ();
|
|
gsi_replace (gsi, stmt, false);
|
|
dta.changed = true;
|
|
}
|
|
else
|
|
{
|
|
dta.gsi = gsi;
|
|
walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
|
|
}
|
|
|
|
if (dta.changed)
|
|
update_stmt (stmt);
|
|
}
|
|
|
|
/* Eliminates the references to local variables from the single entry
|
|
single exit region between the ENTRY and EXIT edges.
|
|
|
|
This includes:
|
|
1) Taking address of a local variable -- these are moved out of the
|
|
region (and temporary variable is created to hold the address if
|
|
necessary).
|
|
|
|
2) Dereferencing a local variable -- these are replaced with indirect
|
|
references. */
|
|
|
|
static void
|
|
eliminate_local_variables (edge entry, edge exit)
|
|
{
|
|
basic_block bb;
|
|
auto_vec<basic_block, 3> body;
|
|
unsigned i;
|
|
gimple_stmt_iterator gsi;
|
|
bool has_debug_stmt = false;
|
|
int_tree_htab_type decl_address (10);
|
|
basic_block entry_bb = entry->src;
|
|
basic_block exit_bb = exit->dest;
|
|
|
|
gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
|
|
|
|
FOR_EACH_VEC_ELT (body, i, bb)
|
|
if (bb != entry_bb && bb != exit_bb)
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (is_gimple_debug (gsi_stmt (gsi)))
|
|
{
|
|
if (gimple_debug_bind_p (gsi_stmt (gsi)))
|
|
has_debug_stmt = true;
|
|
}
|
|
else
|
|
eliminate_local_variables_stmt (entry, &gsi, &decl_address);
|
|
|
|
if (has_debug_stmt)
|
|
FOR_EACH_VEC_ELT (body, i, bb)
|
|
if (bb != entry_bb && bb != exit_bb)
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (gimple_debug_bind_p (gsi_stmt (gsi)))
|
|
eliminate_local_variables_stmt (entry, &gsi, &decl_address);
|
|
}
|
|
|
|
/* Returns true if expression EXPR is not defined between ENTRY and
|
|
EXIT, i.e. if all its operands are defined outside of the region. */
|
|
|
|
static bool
|
|
expr_invariant_in_region_p (edge entry, edge exit, tree expr)
|
|
{
|
|
basic_block entry_bb = entry->src;
|
|
basic_block exit_bb = exit->dest;
|
|
basic_block def_bb;
|
|
|
|
if (is_gimple_min_invariant (expr))
|
|
return true;
|
|
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
|
{
|
|
def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
|
|
if (def_bb
|
|
&& dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
|
|
&& !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
|
|
The copies are stored to NAME_COPIES, if NAME was already duplicated,
|
|
its duplicate stored in NAME_COPIES is returned.
|
|
|
|
Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
|
|
duplicated, storing the copies in DECL_COPIES. */
|
|
|
|
static tree
|
|
separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
|
|
int_tree_htab_type *decl_copies,
|
|
bool copy_name_p)
|
|
{
|
|
tree copy, var, var_copy;
|
|
unsigned idx, uid, nuid;
|
|
struct int_tree_map ielt;
|
|
struct name_to_copy_elt elt, *nelt;
|
|
name_to_copy_elt **slot;
|
|
int_tree_map *dslot;
|
|
|
|
if (TREE_CODE (name) != SSA_NAME)
|
|
return name;
|
|
|
|
idx = SSA_NAME_VERSION (name);
|
|
elt.version = idx;
|
|
slot = name_copies->find_slot_with_hash (&elt, idx,
|
|
copy_name_p ? INSERT : NO_INSERT);
|
|
if (slot && *slot)
|
|
return (*slot)->new_name;
|
|
|
|
if (copy_name_p)
|
|
{
|
|
copy = duplicate_ssa_name (name, NULL);
|
|
nelt = XNEW (struct name_to_copy_elt);
|
|
nelt->version = idx;
|
|
nelt->new_name = copy;
|
|
nelt->field = NULL_TREE;
|
|
*slot = nelt;
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (!slot);
|
|
copy = name;
|
|
}
|
|
|
|
var = SSA_NAME_VAR (name);
|
|
if (!var)
|
|
return copy;
|
|
|
|
uid = DECL_UID (var);
|
|
ielt.uid = uid;
|
|
dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
|
|
if (!dslot->to)
|
|
{
|
|
var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
|
|
DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
|
|
dslot->uid = uid;
|
|
dslot->to = var_copy;
|
|
|
|
/* Ensure that when we meet this decl next time, we won't duplicate
|
|
it again. */
|
|
nuid = DECL_UID (var_copy);
|
|
ielt.uid = nuid;
|
|
dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
|
|
gcc_assert (!dslot->to);
|
|
dslot->uid = nuid;
|
|
dslot->to = var_copy;
|
|
}
|
|
else
|
|
var_copy = dslot->to;
|
|
|
|
replace_ssa_name_symbol (copy, var_copy);
|
|
return copy;
|
|
}
|
|
|
|
/* Finds the ssa names used in STMT that are defined outside the
|
|
region between ENTRY and EXIT and replaces such ssa names with
|
|
their duplicates. The duplicates are stored to NAME_COPIES. Base
|
|
decls of all ssa names used in STMT (including those defined in
|
|
LOOP) are replaced with the new temporary variables; the
|
|
replacement decls are stored in DECL_COPIES. */
|
|
|
|
static void
|
|
separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
|
|
name_to_copy_table_type *name_copies,
|
|
int_tree_htab_type *decl_copies)
|
|
{
|
|
use_operand_p use;
|
|
def_operand_p def;
|
|
ssa_op_iter oi;
|
|
tree name, copy;
|
|
bool copy_name_p;
|
|
|
|
FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
|
|
{
|
|
name = DEF_FROM_PTR (def);
|
|
gcc_assert (TREE_CODE (name) == SSA_NAME);
|
|
copy = separate_decls_in_region_name (name, name_copies, decl_copies,
|
|
false);
|
|
gcc_assert (copy == name);
|
|
}
|
|
|
|
FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
|
|
{
|
|
name = USE_FROM_PTR (use);
|
|
if (TREE_CODE (name) != SSA_NAME)
|
|
continue;
|
|
|
|
copy_name_p = expr_invariant_in_region_p (entry, exit, name);
|
|
copy = separate_decls_in_region_name (name, name_copies, decl_copies,
|
|
copy_name_p);
|
|
SET_USE (use, copy);
|
|
}
|
|
}
|
|
|
|
/* Finds the ssa names used in STMT that are defined outside the
|
|
region between ENTRY and EXIT and replaces such ssa names with
|
|
their duplicates. The duplicates are stored to NAME_COPIES. Base
|
|
decls of all ssa names used in STMT (including those defined in
|
|
LOOP) are replaced with the new temporary variables; the
|
|
replacement decls are stored in DECL_COPIES. */
|
|
|
|
static bool
|
|
separate_decls_in_region_debug (gimple stmt,
|
|
name_to_copy_table_type *name_copies,
|
|
int_tree_htab_type *decl_copies)
|
|
{
|
|
use_operand_p use;
|
|
ssa_op_iter oi;
|
|
tree var, name;
|
|
struct int_tree_map ielt;
|
|
struct name_to_copy_elt elt;
|
|
name_to_copy_elt **slot;
|
|
int_tree_map *dslot;
|
|
|
|
if (gimple_debug_bind_p (stmt))
|
|
var = gimple_debug_bind_get_var (stmt);
|
|
else if (gimple_debug_source_bind_p (stmt))
|
|
var = gimple_debug_source_bind_get_var (stmt);
|
|
else
|
|
return true;
|
|
if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
|
|
return true;
|
|
gcc_assert (DECL_P (var) && SSA_VAR_P (var));
|
|
ielt.uid = DECL_UID (var);
|
|
dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
|
|
if (!dslot)
|
|
return true;
|
|
if (gimple_debug_bind_p (stmt))
|
|
gimple_debug_bind_set_var (stmt, dslot->to);
|
|
else if (gimple_debug_source_bind_p (stmt))
|
|
gimple_debug_source_bind_set_var (stmt, dslot->to);
|
|
|
|
FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
|
|
{
|
|
name = USE_FROM_PTR (use);
|
|
if (TREE_CODE (name) != SSA_NAME)
|
|
continue;
|
|
|
|
elt.version = SSA_NAME_VERSION (name);
|
|
slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
|
|
if (!slot)
|
|
{
|
|
gimple_debug_bind_reset_value (stmt);
|
|
update_stmt (stmt);
|
|
break;
|
|
}
|
|
|
|
SET_USE (use, (*slot)->new_name);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Callback for htab_traverse. Adds a field corresponding to the reduction
|
|
specified in SLOT. The type is passed in DATA. */
|
|
|
|
int
|
|
add_field_for_reduction (reduction_info **slot, tree type)
|
|
{
|
|
|
|
struct reduction_info *const red = *slot;
|
|
tree var = gimple_assign_lhs (red->reduc_stmt);
|
|
tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
|
|
SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
|
|
|
|
insert_field_into_struct (type, field);
|
|
|
|
red->field = field;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Callback for htab_traverse. Adds a field corresponding to a ssa name
|
|
described in SLOT. The type is passed in DATA. */
|
|
|
|
int
|
|
add_field_for_name (name_to_copy_elt **slot, tree type)
|
|
{
|
|
struct name_to_copy_elt *const elt = *slot;
|
|
tree name = ssa_name (elt->version);
|
|
tree field = build_decl (UNKNOWN_LOCATION,
|
|
FIELD_DECL, SSA_NAME_IDENTIFIER (name),
|
|
TREE_TYPE (name));
|
|
|
|
insert_field_into_struct (type, field);
|
|
elt->field = field;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Callback for htab_traverse. A local result is the intermediate result
|
|
computed by a single
|
|
thread, or the initial value in case no iteration was executed.
|
|
This function creates a phi node reflecting these values.
|
|
The phi's result will be stored in NEW_PHI field of the
|
|
reduction's data structure. */
|
|
|
|
int
|
|
create_phi_for_local_result (reduction_info **slot, struct loop *loop)
|
|
{
|
|
struct reduction_info *const reduc = *slot;
|
|
edge e;
|
|
gimple new_phi;
|
|
basic_block store_bb;
|
|
tree local_res;
|
|
source_location locus;
|
|
|
|
/* STORE_BB is the block where the phi
|
|
should be stored. It is the destination of the loop exit.
|
|
(Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
|
|
store_bb = FALLTHRU_EDGE (loop->latch)->dest;
|
|
|
|
/* STORE_BB has two predecessors. One coming from the loop
|
|
(the reduction's result is computed at the loop),
|
|
and another coming from a block preceding the loop,
|
|
when no iterations
|
|
are executed (the initial value should be taken). */
|
|
if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
|
|
e = EDGE_PRED (store_bb, 1);
|
|
else
|
|
e = EDGE_PRED (store_bb, 0);
|
|
local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt), NULL);
|
|
locus = gimple_location (reduc->reduc_stmt);
|
|
new_phi = create_phi_node (local_res, store_bb);
|
|
add_phi_arg (new_phi, reduc->init, e, locus);
|
|
add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
|
|
FALLTHRU_EDGE (loop->latch), locus);
|
|
reduc->new_phi = new_phi;
|
|
|
|
return 1;
|
|
}
|
|
|
|
struct clsn_data
|
|
{
|
|
tree store;
|
|
tree load;
|
|
|
|
basic_block store_bb;
|
|
basic_block load_bb;
|
|
};
|
|
|
|
/* Callback for htab_traverse. Create an atomic instruction for the
|
|
reduction described in SLOT.
|
|
DATA annotates the place in memory the atomic operation relates to,
|
|
and the basic block it needs to be generated in. */
|
|
|
|
int
|
|
create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
|
|
{
|
|
struct reduction_info *const reduc = *slot;
|
|
gimple_stmt_iterator gsi;
|
|
tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
|
|
tree load_struct;
|
|
basic_block bb;
|
|
basic_block new_bb;
|
|
edge e;
|
|
tree t, addr, ref, x;
|
|
tree tmp_load, name;
|
|
gimple load;
|
|
|
|
load_struct = build_simple_mem_ref (clsn_data->load);
|
|
t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
|
|
|
|
addr = build_addr (t, current_function_decl);
|
|
|
|
/* Create phi node. */
|
|
bb = clsn_data->load_bb;
|
|
|
|
e = split_block (bb, t);
|
|
new_bb = e->dest;
|
|
|
|
tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
|
|
tmp_load = make_ssa_name (tmp_load, NULL);
|
|
load = gimple_build_omp_atomic_load (tmp_load, addr);
|
|
SSA_NAME_DEF_STMT (tmp_load) = load;
|
|
gsi = gsi_start_bb (new_bb);
|
|
gsi_insert_after (&gsi, load, GSI_NEW_STMT);
|
|
|
|
e = split_block (new_bb, load);
|
|
new_bb = e->dest;
|
|
gsi = gsi_start_bb (new_bb);
|
|
ref = tmp_load;
|
|
x = fold_build2 (reduc->reduction_code,
|
|
TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
|
|
PHI_RESULT (reduc->new_phi));
|
|
|
|
name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
|
|
GSI_CONTINUE_LINKING);
|
|
|
|
gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
|
|
return 1;
|
|
}
|
|
|
|
/* Create the atomic operation at the join point of the threads.
|
|
REDUCTION_LIST describes the reductions in the LOOP.
|
|
LD_ST_DATA describes the shared data structure where
|
|
shared data is stored in and loaded from. */
|
|
static void
|
|
create_call_for_reduction (struct loop *loop,
|
|
reduction_info_table_type *reduction_list,
|
|
struct clsn_data *ld_st_data)
|
|
{
|
|
reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
|
|
/* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
|
|
ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
|
|
reduction_list
|
|
->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
|
|
}
|
|
|
|
/* Callback for htab_traverse. Loads the final reduction value at the
|
|
join point of all threads, and inserts it in the right place. */
|
|
|
|
int
|
|
create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
|
|
{
|
|
struct reduction_info *const red = *slot;
|
|
gimple stmt;
|
|
gimple_stmt_iterator gsi;
|
|
tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
|
|
tree load_struct;
|
|
tree name;
|
|
tree x;
|
|
|
|
gsi = gsi_after_labels (clsn_data->load_bb);
|
|
load_struct = build_simple_mem_ref (clsn_data->load);
|
|
load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
|
|
NULL_TREE);
|
|
|
|
x = load_struct;
|
|
name = PHI_RESULT (red->keep_res);
|
|
stmt = gimple_build_assign (name, x);
|
|
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
|
|
for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (gsi_stmt (gsi) == red->keep_res)
|
|
{
|
|
remove_phi_node (&gsi, false);
|
|
return 1;
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Load the reduction result that was stored in LD_ST_DATA.
|
|
REDUCTION_LIST describes the list of reductions that the
|
|
loads should be generated for. */
|
|
static void
|
|
create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
|
|
struct clsn_data *ld_st_data)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
tree t;
|
|
gimple stmt;
|
|
|
|
gsi = gsi_after_labels (ld_st_data->load_bb);
|
|
t = build_fold_addr_expr (ld_st_data->store);
|
|
stmt = gimple_build_assign (ld_st_data->load, t);
|
|
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
|
|
|
reduction_list
|
|
->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
|
|
|
|
}
|
|
|
|
/* Callback for htab_traverse. Store the neutral value for the
|
|
particular reduction's operation, e.g. 0 for PLUS_EXPR,
|
|
1 for MULT_EXPR, etc. into the reduction field.
|
|
The reduction is specified in SLOT. The store information is
|
|
passed in DATA. */
|
|
|
|
int
|
|
create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
|
|
{
|
|
struct reduction_info *const red = *slot;
|
|
tree t;
|
|
gimple stmt;
|
|
gimple_stmt_iterator gsi;
|
|
tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
|
|
|
|
gsi = gsi_last_bb (clsn_data->store_bb);
|
|
t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
|
|
stmt = gimple_build_assign (t, red->initial_value);
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
|
|
store to a field of STORE in STORE_BB for the ssa name and its duplicate
|
|
specified in SLOT. */
|
|
|
|
int
|
|
create_loads_and_stores_for_name (name_to_copy_elt **slot,
|
|
struct clsn_data *clsn_data)
|
|
{
|
|
struct name_to_copy_elt *const elt = *slot;
|
|
tree t;
|
|
gimple stmt;
|
|
gimple_stmt_iterator gsi;
|
|
tree type = TREE_TYPE (elt->new_name);
|
|
tree load_struct;
|
|
|
|
gsi = gsi_last_bb (clsn_data->store_bb);
|
|
t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
|
|
stmt = gimple_build_assign (t, ssa_name (elt->version));
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
|
|
gsi = gsi_last_bb (clsn_data->load_bb);
|
|
load_struct = build_simple_mem_ref (clsn_data->load);
|
|
t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
|
|
stmt = gimple_build_assign (elt->new_name, t);
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Moves all the variables used in LOOP and defined outside of it (including
|
|
the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
|
|
name) to a structure created for this purpose. The code
|
|
|
|
while (1)
|
|
{
|
|
use (a);
|
|
use (b);
|
|
}
|
|
|
|
is transformed this way:
|
|
|
|
bb0:
|
|
old.a = a;
|
|
old.b = b;
|
|
|
|
bb1:
|
|
a' = new->a;
|
|
b' = new->b;
|
|
while (1)
|
|
{
|
|
use (a');
|
|
use (b');
|
|
}
|
|
|
|
`old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
|
|
pointer `new' is intentionally not initialized (the loop will be split to a
|
|
separate function later, and `new' will be initialized from its arguments).
|
|
LD_ST_DATA holds information about the shared data structure used to pass
|
|
information among the threads. It is initialized here, and
|
|
gen_parallel_loop will pass it to create_call_for_reduction that
|
|
needs this information. REDUCTION_LIST describes the reductions
|
|
in LOOP. */
|
|
|
|
static void
|
|
separate_decls_in_region (edge entry, edge exit,
|
|
reduction_info_table_type *reduction_list,
|
|
tree *arg_struct, tree *new_arg_struct,
|
|
struct clsn_data *ld_st_data)
|
|
|
|
{
|
|
basic_block bb1 = split_edge (entry);
|
|
basic_block bb0 = single_pred (bb1);
|
|
name_to_copy_table_type name_copies (10);
|
|
int_tree_htab_type decl_copies (10);
|
|
unsigned i;
|
|
tree type, type_name, nvar;
|
|
gimple_stmt_iterator gsi;
|
|
struct clsn_data clsn_data;
|
|
auto_vec<basic_block, 3> body;
|
|
basic_block bb;
|
|
basic_block entry_bb = bb1;
|
|
basic_block exit_bb = exit->dest;
|
|
bool has_debug_stmt = false;
|
|
|
|
entry = single_succ_edge (entry_bb);
|
|
gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
|
|
|
|
FOR_EACH_VEC_ELT (body, i, bb)
|
|
{
|
|
if (bb != entry_bb && bb != exit_bb)
|
|
{
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
|
|
&name_copies, &decl_copies);
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
|
|
if (is_gimple_debug (stmt))
|
|
has_debug_stmt = true;
|
|
else
|
|
separate_decls_in_region_stmt (entry, exit, stmt,
|
|
&name_copies, &decl_copies);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now process debug bind stmts. We must not create decls while
|
|
processing debug stmts, so we defer their processing so as to
|
|
make sure we will have debug info for as many variables as
|
|
possible (all of those that were dealt with in the loop above),
|
|
and discard those for which we know there's nothing we can
|
|
do. */
|
|
if (has_debug_stmt)
|
|
FOR_EACH_VEC_ELT (body, i, bb)
|
|
if (bb != entry_bb && bb != exit_bb)
|
|
{
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
|
|
if (is_gimple_debug (stmt))
|
|
{
|
|
if (separate_decls_in_region_debug (stmt, &name_copies,
|
|
&decl_copies))
|
|
{
|
|
gsi_remove (&gsi, true);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
gsi_next (&gsi);
|
|
}
|
|
}
|
|
|
|
if (name_copies.elements () == 0 && reduction_list->elements () == 0)
|
|
{
|
|
/* It may happen that there is nothing to copy (if there are only
|
|
loop carried and external variables in the loop). */
|
|
*arg_struct = NULL;
|
|
*new_arg_struct = NULL;
|
|
}
|
|
else
|
|
{
|
|
/* Create the type for the structure to store the ssa names to. */
|
|
type = lang_hooks.types.make_type (RECORD_TYPE);
|
|
type_name = build_decl (UNKNOWN_LOCATION,
|
|
TYPE_DECL, create_tmp_var_name (".paral_data"),
|
|
type);
|
|
TYPE_NAME (type) = type_name;
|
|
|
|
name_copies.traverse <tree, add_field_for_name> (type);
|
|
if (reduction_list && reduction_list->elements () > 0)
|
|
{
|
|
/* Create the fields for reductions. */
|
|
reduction_list->traverse <tree, add_field_for_reduction> (type);
|
|
}
|
|
layout_type (type);
|
|
|
|
/* Create the loads and stores. */
|
|
*arg_struct = create_tmp_var (type, ".paral_data_store");
|
|
nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
|
|
*new_arg_struct = make_ssa_name (nvar, NULL);
|
|
|
|
ld_st_data->store = *arg_struct;
|
|
ld_st_data->load = *new_arg_struct;
|
|
ld_st_data->store_bb = bb0;
|
|
ld_st_data->load_bb = bb1;
|
|
|
|
name_copies
|
|
.traverse <struct clsn_data *, create_loads_and_stores_for_name>
|
|
(ld_st_data);
|
|
|
|
/* Load the calculation from memory (after the join of the threads). */
|
|
|
|
if (reduction_list && reduction_list->elements () > 0)
|
|
{
|
|
reduction_list
|
|
->traverse <struct clsn_data *, create_stores_for_reduction>
|
|
(ld_st_data);
|
|
clsn_data.load = make_ssa_name (nvar, NULL);
|
|
clsn_data.load_bb = exit->dest;
|
|
clsn_data.store = ld_st_data->store;
|
|
create_final_loads_for_reduction (reduction_list, &clsn_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Bitmap containing uids of functions created by parallelization. We cannot
|
|
allocate it from the default obstack, as it must live across compilation
|
|
of several functions; we make it gc allocated instead. */
|
|
|
|
static GTY(()) bitmap parallelized_functions;
|
|
|
|
/* Returns true if FN was created by create_loop_fn. */
|
|
|
|
bool
|
|
parallelized_function_p (tree fn)
|
|
{
|
|
if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
|
|
return false;
|
|
|
|
return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
|
|
}
|
|
|
|
/* Creates and returns an empty function that will receive the body of
|
|
a parallelized loop. */
|
|
|
|
static tree
|
|
create_loop_fn (location_t loc)
|
|
{
|
|
char buf[100];
|
|
char *tname;
|
|
tree decl, type, name, t;
|
|
struct function *act_cfun = cfun;
|
|
static unsigned loopfn_num;
|
|
|
|
loc = LOCATION_LOCUS (loc);
|
|
snprintf (buf, 100, "%s.$loopfn", current_function_name ());
|
|
ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
|
|
clean_symbol_name (tname);
|
|
name = get_identifier (tname);
|
|
type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
|
|
|
decl = build_decl (loc, FUNCTION_DECL, name, type);
|
|
if (!parallelized_functions)
|
|
parallelized_functions = BITMAP_GGC_ALLOC ();
|
|
bitmap_set_bit (parallelized_functions, DECL_UID (decl));
|
|
|
|
TREE_STATIC (decl) = 1;
|
|
TREE_USED (decl) = 1;
|
|
DECL_ARTIFICIAL (decl) = 1;
|
|
DECL_IGNORED_P (decl) = 0;
|
|
TREE_PUBLIC (decl) = 0;
|
|
DECL_UNINLINABLE (decl) = 1;
|
|
DECL_EXTERNAL (decl) = 0;
|
|
DECL_CONTEXT (decl) = NULL_TREE;
|
|
DECL_INITIAL (decl) = make_node (BLOCK);
|
|
|
|
t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
|
|
DECL_ARTIFICIAL (t) = 1;
|
|
DECL_IGNORED_P (t) = 1;
|
|
DECL_RESULT (decl) = t;
|
|
|
|
t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
|
|
ptr_type_node);
|
|
DECL_ARTIFICIAL (t) = 1;
|
|
DECL_ARG_TYPE (t) = ptr_type_node;
|
|
DECL_CONTEXT (t) = decl;
|
|
TREE_USED (t) = 1;
|
|
DECL_ARGUMENTS (decl) = t;
|
|
|
|
allocate_struct_function (decl, false);
|
|
|
|
/* The call to allocate_struct_function clobbers CFUN, so we need to restore
|
|
it. */
|
|
set_cfun (act_cfun);
|
|
|
|
return decl;
|
|
}
|
|
|
|
/* Moves the exit condition of LOOP to the beginning of its header, and
|
|
duplicates the part of the last iteration that gets disabled to the
|
|
exit of the loop. NIT is the number of iterations of the loop
|
|
(used to initialize the variables in the duplicated part).
|
|
|
|
TODO: the common case is that latch of the loop is empty and immediately
|
|
follows the loop exit. In this case, it would be better not to copy the
|
|
body of the loop, but only move the entry of the loop directly before the
|
|
exit check and increase the number of iterations of the loop by one.
|
|
This may need some additional preconditioning in case NIT = ~0.
|
|
REDUCTION_LIST describes the reductions in LOOP. */
|
|
|
|
static void
|
|
transform_to_exit_first_loop (struct loop *loop,
|
|
reduction_info_table_type *reduction_list,
|
|
tree nit)
|
|
{
|
|
basic_block *bbs, *nbbs, ex_bb, orig_header;
|
|
unsigned n;
|
|
bool ok;
|
|
edge exit = single_dom_exit (loop), hpred;
|
|
tree control, control_name, res, t;
|
|
gimple phi, nphi, cond_stmt, stmt, cond_nit;
|
|
gimple_stmt_iterator gsi;
|
|
tree nit_1;
|
|
|
|
split_block_after_labels (loop->header);
|
|
orig_header = single_succ (loop->header);
|
|
hpred = single_succ_edge (loop->header);
|
|
|
|
cond_stmt = last_stmt (exit->src);
|
|
control = gimple_cond_lhs (cond_stmt);
|
|
gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
|
|
|
|
/* Make sure that we have phi nodes on exit for all loop header phis
|
|
(create_parallel_loop requires that). */
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
phi = gsi_stmt (gsi);
|
|
res = PHI_RESULT (phi);
|
|
t = copy_ssa_name (res, phi);
|
|
SET_PHI_RESULT (phi, t);
|
|
nphi = create_phi_node (res, orig_header);
|
|
add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
|
|
|
|
if (res == control)
|
|
{
|
|
gimple_cond_set_lhs (cond_stmt, t);
|
|
update_stmt (cond_stmt);
|
|
control = t;
|
|
}
|
|
}
|
|
|
|
bbs = get_loop_body_in_dom_order (loop);
|
|
|
|
for (n = 0; bbs[n] != exit->src; n++)
|
|
continue;
|
|
nbbs = XNEWVEC (basic_block, n);
|
|
ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
|
|
bbs + 1, n, nbbs);
|
|
gcc_assert (ok);
|
|
free (bbs);
|
|
ex_bb = nbbs[0];
|
|
free (nbbs);
|
|
|
|
/* Other than reductions, the only gimple reg that should be copied
|
|
out of the loop is the control variable. */
|
|
exit = single_dom_exit (loop);
|
|
control_name = NULL_TREE;
|
|
for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
|
|
{
|
|
phi = gsi_stmt (gsi);
|
|
res = PHI_RESULT (phi);
|
|
if (virtual_operand_p (res))
|
|
{
|
|
gsi_next (&gsi);
|
|
continue;
|
|
}
|
|
|
|
/* Check if it is a part of reduction. If it is,
|
|
keep the phi at the reduction's keep_res field. The
|
|
PHI_RESULT of this phi is the resulting value of the reduction
|
|
variable when exiting the loop. */
|
|
|
|
if (reduction_list->elements () > 0)
|
|
{
|
|
struct reduction_info *red;
|
|
|
|
tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
|
|
red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
|
|
if (red)
|
|
{
|
|
red->keep_res = phi;
|
|
gsi_next (&gsi);
|
|
continue;
|
|
}
|
|
}
|
|
gcc_assert (control_name == NULL_TREE
|
|
&& SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
|
|
control_name = res;
|
|
remove_phi_node (&gsi, false);
|
|
}
|
|
gcc_assert (control_name != NULL_TREE);
|
|
|
|
/* Initialize the control variable to number of iterations
|
|
according to the rhs of the exit condition. */
|
|
gsi = gsi_after_labels (ex_bb);
|
|
cond_nit = last_stmt (exit->src);
|
|
nit_1 = gimple_cond_rhs (cond_nit);
|
|
nit_1 = force_gimple_operand_gsi (&gsi,
|
|
fold_convert (TREE_TYPE (control_name), nit_1),
|
|
false, NULL_TREE, false, GSI_SAME_STMT);
|
|
stmt = gimple_build_assign (control_name, nit_1);
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
|
}
|
|
|
|
/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
|
|
LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
|
|
NEW_DATA is the variable that should be initialized from the argument
|
|
of LOOP_FN. N_THREADS is the requested number of threads. Returns the
|
|
basic block containing GIMPLE_OMP_PARALLEL tree. */
|
|
|
|
static basic_block
|
|
create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
|
|
tree new_data, unsigned n_threads, location_t loc)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
basic_block bb, paral_bb, for_bb, ex_bb;
|
|
tree t, param;
|
|
gimple stmt, for_stmt, phi, cond_stmt;
|
|
tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
|
|
edge exit, nexit, guard, end, e;
|
|
|
|
/* Prepare the GIMPLE_OMP_PARALLEL statement. */
|
|
bb = loop_preheader_edge (loop)->src;
|
|
paral_bb = single_pred (bb);
|
|
gsi = gsi_last_bb (paral_bb);
|
|
|
|
t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
|
|
OMP_CLAUSE_NUM_THREADS_EXPR (t)
|
|
= build_int_cst (integer_type_node, n_threads);
|
|
stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
|
|
gimple_set_location (stmt, loc);
|
|
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
|
|
/* Initialize NEW_DATA. */
|
|
if (data)
|
|
{
|
|
gsi = gsi_after_labels (bb);
|
|
|
|
param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
|
|
stmt = gimple_build_assign (param, build_fold_addr_expr (data));
|
|
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
|
|
|
stmt = gimple_build_assign (new_data,
|
|
fold_convert (TREE_TYPE (new_data), param));
|
|
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
|
}
|
|
|
|
/* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
|
|
bb = split_loop_exit_edge (single_dom_exit (loop));
|
|
gsi = gsi_last_bb (bb);
|
|
stmt = gimple_build_omp_return (false);
|
|
gimple_set_location (stmt, loc);
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
|
|
/* Extract data for GIMPLE_OMP_FOR. */
|
|
gcc_assert (loop->header == single_dom_exit (loop)->src);
|
|
cond_stmt = last_stmt (loop->header);
|
|
|
|
cvar = gimple_cond_lhs (cond_stmt);
|
|
cvar_base = SSA_NAME_VAR (cvar);
|
|
phi = SSA_NAME_DEF_STMT (cvar);
|
|
cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
|
initvar = copy_ssa_name (cvar, NULL);
|
|
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
|
|
initvar);
|
|
cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
|
|
|
gsi = gsi_last_nondebug_bb (loop->latch);
|
|
gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
|
|
gsi_remove (&gsi, true);
|
|
|
|
/* Prepare cfg. */
|
|
for_bb = split_edge (loop_preheader_edge (loop));
|
|
ex_bb = split_loop_exit_edge (single_dom_exit (loop));
|
|
extract_true_false_edges_from_block (loop->header, &nexit, &exit);
|
|
gcc_assert (exit == single_dom_exit (loop));
|
|
|
|
guard = make_edge (for_bb, ex_bb, 0);
|
|
single_succ_edge (loop->latch)->flags = 0;
|
|
end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
|
|
for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
source_location locus;
|
|
tree def;
|
|
phi = gsi_stmt (gsi);
|
|
stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
|
|
|
|
def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
|
|
locus = gimple_phi_arg_location_from_edge (stmt,
|
|
loop_preheader_edge (loop));
|
|
add_phi_arg (phi, def, guard, locus);
|
|
|
|
def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
|
|
locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
|
|
add_phi_arg (phi, def, end, locus);
|
|
}
|
|
e = redirect_edge_and_branch (exit, nexit->dest);
|
|
PENDING_STMT (e) = NULL;
|
|
|
|
/* Emit GIMPLE_OMP_FOR. */
|
|
gimple_cond_set_lhs (cond_stmt, cvar_base);
|
|
type = TREE_TYPE (cvar);
|
|
t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
|
|
OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
|
|
|
|
for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
|
|
gimple_set_location (for_stmt, loc);
|
|
gimple_omp_for_set_index (for_stmt, 0, initvar);
|
|
gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
|
|
gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
|
|
gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
|
|
gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
|
|
cvar_base,
|
|
build_int_cst (type, 1)));
|
|
|
|
gsi = gsi_last_bb (for_bb);
|
|
gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
|
|
SSA_NAME_DEF_STMT (initvar) = for_stmt;
|
|
|
|
/* Emit GIMPLE_OMP_CONTINUE. */
|
|
gsi = gsi_last_bb (loop->latch);
|
|
stmt = gimple_build_omp_continue (cvar_next, cvar);
|
|
gimple_set_location (stmt, loc);
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
SSA_NAME_DEF_STMT (cvar_next) = stmt;
|
|
|
|
/* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
|
|
gsi = gsi_last_bb (ex_bb);
|
|
stmt = gimple_build_omp_return (true);
|
|
gimple_set_location (stmt, loc);
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
|
|
|
/* After the above dom info is hosed. Re-compute it. */
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
return paral_bb;
|
|
}
|
|
|
|
/* Generates code to execute the iterations of LOOP in N_THREADS
|
|
threads in parallel.
|
|
|
|
NITER describes number of iterations of LOOP.
|
|
REDUCTION_LIST describes the reductions existent in the LOOP. */
|
|
|
|
static void
|
|
gen_parallel_loop (struct loop *loop,
|
|
reduction_info_table_type *reduction_list,
|
|
unsigned n_threads, struct tree_niter_desc *niter)
|
|
{
|
|
tree many_iterations_cond, type, nit;
|
|
tree arg_struct, new_arg_struct;
|
|
gimple_seq stmts;
|
|
basic_block parallel_head;
|
|
edge entry, exit;
|
|
struct clsn_data clsn_data;
|
|
unsigned prob;
|
|
location_t loc;
|
|
gimple cond_stmt;
|
|
unsigned int m_p_thread=2;
|
|
|
|
/* From
|
|
|
|
---------------------------------------------------------------------
|
|
loop
|
|
{
|
|
IV = phi (INIT, IV + STEP)
|
|
BODY1;
|
|
if (COND)
|
|
break;
|
|
BODY2;
|
|
}
|
|
---------------------------------------------------------------------
|
|
|
|
with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
|
|
we generate the following code:
|
|
|
|
---------------------------------------------------------------------
|
|
|
|
if (MAY_BE_ZERO
|
|
|| NITER < MIN_PER_THREAD * N_THREADS)
|
|
goto original;
|
|
|
|
BODY1;
|
|
store all local loop-invariant variables used in body of the loop to DATA.
|
|
GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
|
|
load the variables from DATA.
|
|
GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
|
|
BODY2;
|
|
BODY1;
|
|
GIMPLE_OMP_CONTINUE;
|
|
GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
|
|
GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
|
|
goto end;
|
|
|
|
original:
|
|
loop
|
|
{
|
|
IV = phi (INIT, IV + STEP)
|
|
BODY1;
|
|
if (COND)
|
|
break;
|
|
BODY2;
|
|
}
|
|
|
|
end:
|
|
|
|
*/
|
|
|
|
/* Create two versions of the loop -- in the old one, we know that the
|
|
number of iterations is large enough, and we will transform it into the
|
|
loop that will be split to loop_fn, the new one will be used for the
|
|
remaining iterations. */
|
|
|
|
/* We should compute a better number-of-iterations value for outer loops.
|
|
That is, if we have
|
|
|
|
for (i = 0; i < n; ++i)
|
|
for (j = 0; j < m; ++j)
|
|
...
|
|
|
|
we should compute nit = n * m, not nit = n.
|
|
Also may_be_zero handling would need to be adjusted. */
|
|
|
|
type = TREE_TYPE (niter->niter);
|
|
nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
|
|
NULL_TREE);
|
|
if (stmts)
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
|
|
if (loop->inner)
|
|
m_p_thread=2;
|
|
else
|
|
m_p_thread=MIN_PER_THREAD;
|
|
|
|
many_iterations_cond =
|
|
fold_build2 (GE_EXPR, boolean_type_node,
|
|
nit, build_int_cst (type, m_p_thread * n_threads));
|
|
|
|
many_iterations_cond
|
|
= fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
|
invert_truthvalue (unshare_expr (niter->may_be_zero)),
|
|
many_iterations_cond);
|
|
many_iterations_cond
|
|
= force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
|
|
if (stmts)
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
if (!is_gimple_condexpr (many_iterations_cond))
|
|
{
|
|
many_iterations_cond
|
|
= force_gimple_operand (many_iterations_cond, &stmts,
|
|
true, NULL_TREE);
|
|
if (stmts)
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
}
|
|
|
|
initialize_original_copy_tables ();
|
|
|
|
/* We assume that the loop usually iterates a lot. */
|
|
prob = 4 * REG_BR_PROB_BASE / 5;
|
|
loop_version (loop, many_iterations_cond, NULL,
|
|
prob, prob, REG_BR_PROB_BASE - prob, true);
|
|
update_ssa (TODO_update_ssa);
|
|
free_original_copy_tables ();
|
|
|
|
/* Base all the induction variables in LOOP on a single control one. */
|
|
canonicalize_loop_ivs (loop, &nit, true);
|
|
|
|
/* Ensure that the exit condition is the first statement in the loop. */
|
|
transform_to_exit_first_loop (loop, reduction_list, nit);
|
|
|
|
/* Generate initializations for reductions. */
|
|
if (reduction_list->elements () > 0)
|
|
reduction_list->traverse <struct loop *, initialize_reductions> (loop);
|
|
|
|
/* Eliminate the references to local variables from the loop. */
|
|
gcc_assert (single_exit (loop));
|
|
entry = loop_preheader_edge (loop);
|
|
exit = single_dom_exit (loop);
|
|
|
|
eliminate_local_variables (entry, exit);
|
|
/* In the old loop, move all variables non-local to the loop to a structure
|
|
and back, and create separate decls for the variables used in loop. */
|
|
separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
|
|
&new_arg_struct, &clsn_data);
|
|
|
|
/* Create the parallel constructs. */
|
|
loc = UNKNOWN_LOCATION;
|
|
cond_stmt = last_stmt (loop->header);
|
|
if (cond_stmt)
|
|
loc = gimple_location (cond_stmt);
|
|
parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
|
|
new_arg_struct, n_threads, loc);
|
|
if (reduction_list->elements () > 0)
|
|
create_call_for_reduction (loop, reduction_list, &clsn_data);
|
|
|
|
scev_reset ();
|
|
|
|
/* Cancel the loop (it is simpler to do it here rather than to teach the
|
|
expander to do it). */
|
|
cancel_loop_tree (loop);
|
|
|
|
/* Free loop bound estimations that could contain references to
|
|
removed statements. */
|
|
FOR_EACH_LOOP (loop, 0)
|
|
free_numbers_of_iterations_estimates_loop (loop);
|
|
|
|
/* Expand the parallel constructs. We do it directly here instead of running
|
|
a separate expand_omp pass, since it is more efficient, and less likely to
|
|
cause troubles with further analyses not being able to deal with the
|
|
OMP trees. */
|
|
|
|
omp_expand_local (parallel_head);
|
|
}
|
|
|
|
/* Returns true when LOOP contains vector phi nodes. */
|
|
|
|
static bool
|
|
loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
|
|
{
|
|
unsigned i;
|
|
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
|
gimple_stmt_iterator gsi;
|
|
bool res = true;
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
|
|
goto end;
|
|
|
|
res = false;
|
|
end:
|
|
free (bbs);
|
|
return res;
|
|
}
|
|
|
|
/* Create a reduction_info struct, initialize it with REDUC_STMT
|
|
and PHI, insert it to the REDUCTION_LIST. */
|
|
|
|
static void
|
|
build_new_reduction (reduction_info_table_type *reduction_list,
|
|
gimple reduc_stmt, gimple phi)
|
|
{
|
|
reduction_info **slot;
|
|
struct reduction_info *new_reduction;
|
|
|
|
gcc_assert (reduc_stmt);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Detected reduction. reduction stmt is: \n");
|
|
print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
new_reduction = XCNEW (struct reduction_info);
|
|
|
|
new_reduction->reduc_stmt = reduc_stmt;
|
|
new_reduction->reduc_phi = phi;
|
|
new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
|
|
new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
|
|
slot = reduction_list->find_slot (new_reduction, INSERT);
|
|
*slot = new_reduction;
|
|
}
|
|
|
|
/* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
|
|
|
|
int
|
|
set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
struct reduction_info *const red = *slot;
|
|
gimple_set_uid (red->reduc_phi, red->reduc_version);
|
|
return 1;
|
|
}
|
|
|
|
/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
|
|
|
|
static void
|
|
gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
loop_vec_info simple_loop_info;
|
|
|
|
simple_loop_info = vect_analyze_loop_form (loop);
|
|
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
affine_iv iv;
|
|
tree res = PHI_RESULT (phi);
|
|
bool double_reduc;
|
|
|
|
if (virtual_operand_p (res))
|
|
continue;
|
|
|
|
if (!simple_iv (loop, loop, res, &iv, true)
|
|
&& simple_loop_info)
|
|
{
|
|
gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
|
|
phi, true,
|
|
&double_reduc);
|
|
if (reduc_stmt && !double_reduc)
|
|
build_new_reduction (reduction_list, reduc_stmt, phi);
|
|
}
|
|
}
|
|
destroy_loop_vec_info (simple_loop_info, true);
|
|
|
|
/* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
|
|
and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
|
|
only now. */
|
|
reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
|
|
}
|
|
|
|
/* Try to initialize NITER for code generation part. */
|
|
|
|
static bool
|
|
try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
|
|
{
|
|
edge exit = single_dom_exit (loop);
|
|
|
|
gcc_assert (exit);
|
|
|
|
/* We need to know # of iterations, and there should be no uses of values
|
|
defined inside loop outside of it, unless the values are invariants of
|
|
the loop. */
|
|
if (!number_of_iterations_exit (loop, exit, niter, false))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " FAILED: number of iterations not known\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Try to initialize REDUCTION_LIST for code generation part.
|
|
REDUCTION_LIST describes the reductions. */
|
|
|
|
static bool
|
|
try_create_reduction_list (loop_p loop,
|
|
reduction_info_table_type *reduction_list)
|
|
{
|
|
edge exit = single_dom_exit (loop);
|
|
gimple_stmt_iterator gsi;
|
|
|
|
gcc_assert (exit);
|
|
|
|
gather_scalar_reductions (loop, reduction_list);
|
|
|
|
|
|
for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
struct reduction_info *red;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple reduc_phi;
|
|
tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
|
|
|
|
if (!virtual_operand_p (val))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "phi is ");
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
|
fprintf (dump_file, "arg of phi to exit: value ");
|
|
print_generic_expr (dump_file, val, 0);
|
|
fprintf (dump_file, " used outside loop\n");
|
|
fprintf (dump_file,
|
|
" checking if it a part of reduction pattern: \n");
|
|
}
|
|
if (reduction_list->elements () == 0)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
" FAILED: it is not a part of reduction.\n");
|
|
return false;
|
|
}
|
|
reduc_phi = NULL;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
|
|
{
|
|
if (!gimple_debug_bind_p (USE_STMT (use_p))
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
|
{
|
|
reduc_phi = USE_STMT (use_p);
|
|
break;
|
|
}
|
|
}
|
|
red = reduction_phi (reduction_list, reduc_phi);
|
|
if (red == NULL)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
" FAILED: it is not a part of reduction.\n");
|
|
return false;
|
|
}
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "reduction phi is ");
|
|
print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
|
|
fprintf (dump_file, "reduction stmt is ");
|
|
print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The iterations of the loop may communicate only through bivs whose
|
|
iteration space can be distributed efficiently. */
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
tree def = PHI_RESULT (phi);
|
|
affine_iv iv;
|
|
|
|
if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
|
|
{
|
|
struct reduction_info *red;
|
|
|
|
red = reduction_phi (reduction_list, phi);
|
|
if (red == NULL)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
" FAILED: scalar dependency between iterations\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Detect parallel loops and generate parallel code using libgomp
|
|
primitives. Returns true if some loop was parallelized, false
|
|
otherwise. */
|
|
|
|
bool
|
|
parallelize_loops (void)
|
|
{
|
|
unsigned n_threads = flag_tree_parallelize_loops;
|
|
bool changed = false;
|
|
struct loop *loop;
|
|
struct tree_niter_desc niter_desc;
|
|
struct obstack parloop_obstack;
|
|
HOST_WIDE_INT estimated;
|
|
source_location loop_loc;
|
|
|
|
/* Do not parallelize loops in the functions created by parallelization. */
|
|
if (parallelized_function_p (cfun->decl))
|
|
return false;
|
|
if (cfun->has_nonlocal_label)
|
|
return false;
|
|
|
|
gcc_obstack_init (&parloop_obstack);
|
|
reduction_info_table_type reduction_list (10);
|
|
init_stmt_vec_info_vec ();
|
|
|
|
FOR_EACH_LOOP (loop, 0)
|
|
{
|
|
reduction_list.empty ();
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
|
|
if (loop->inner)
|
|
fprintf (dump_file, "loop %d is not innermost\n",loop->num);
|
|
else
|
|
fprintf (dump_file, "loop %d is innermost\n",loop->num);
|
|
}
|
|
|
|
/* If we use autopar in graphite pass, we use its marked dependency
|
|
checking results. */
|
|
if (flag_loop_parallelize_all && !loop->can_be_parallel)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "loop is not parallel according to graphite\n");
|
|
continue;
|
|
}
|
|
|
|
if (!single_dom_exit (loop))
|
|
{
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "loop is !single_dom_exit\n");
|
|
|
|
continue;
|
|
}
|
|
|
|
if (/* And of course, the loop must be parallelizable. */
|
|
!can_duplicate_loop_p (loop)
|
|
|| loop_has_blocks_with_irreducible_flag (loop)
|
|
|| (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
|
|
/* FIXME: the check for vector phi nodes could be removed. */
|
|
|| loop_has_vector_phi_nodes (loop))
|
|
continue;
|
|
|
|
estimated = estimated_stmt_executions_int (loop);
|
|
if (estimated == -1)
|
|
estimated = max_stmt_executions_int (loop);
|
|
/* FIXME: Bypass this check as graphite doesn't update the
|
|
count and frequency correctly now. */
|
|
if (!flag_loop_parallelize_all
|
|
&& ((estimated != -1
|
|
&& estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
|
|
/* Do not bother with loops in cold areas. */
|
|
|| optimize_loop_nest_for_size_p (loop)))
|
|
continue;
|
|
|
|
if (!try_get_loop_niter (loop, &niter_desc))
|
|
continue;
|
|
|
|
if (!try_create_reduction_list (loop, &reduction_list))
|
|
continue;
|
|
|
|
if (!flag_loop_parallelize_all
|
|
&& !loop_parallel_p (loop, &parloop_obstack))
|
|
continue;
|
|
|
|
changed = true;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (loop->inner)
|
|
fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
|
|
else
|
|
fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
|
|
loop_loc = find_loop_location (loop);
|
|
if (loop_loc != UNKNOWN_LOCATION)
|
|
fprintf (dump_file, "\nloop at %s:%d: ",
|
|
LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
|
|
}
|
|
gen_parallel_loop (loop, &reduction_list,
|
|
n_threads, &niter_desc);
|
|
}
|
|
|
|
free_stmt_vec_info_vec ();
|
|
obstack_free (&parloop_obstack, NULL);
|
|
|
|
/* Parallelization will cause new function calls to be inserted through
|
|
which local variables will escape. Reset the points-to solution
|
|
for ESCAPED. */
|
|
if (changed)
|
|
pt_solution_reset (&cfun->gimple_df->escaped);
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Parallelization. */
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_parallelize_loops =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"parloops", /* name */
|
|
OPTGROUP_LOOP, /* optinfo_flags */
|
|
TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_parallelize_loops : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_parallelize_loops (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_parallelize_loops, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; }
|
|
virtual unsigned int execute (function *);
|
|
|
|
}; // class pass_parallelize_loops
|
|
|
|
unsigned
|
|
pass_parallelize_loops::execute (function *fun)
|
|
{
|
|
if (number_of_loops (fun) <= 1)
|
|
return 0;
|
|
|
|
if (parallelize_loops ())
|
|
return TODO_cleanup_cfg | TODO_rebuild_alias;
|
|
return 0;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_parallelize_loops (gcc::context *ctxt)
|
|
{
|
|
return new pass_parallelize_loops (ctxt);
|
|
}
|
|
|
|
|
|
#include "gt-tree-parloops.h"
|