1725 lines
46 KiB
C
1725 lines
46 KiB
C
/* Translation of CLAST (CLooG AST) to Gimple.
|
||
Copyright (C) 2009-2014 Free Software Foundation, Inc.
|
||
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
|
||
#ifdef HAVE_cloog
|
||
#include <isl/set.h>
|
||
#include <isl/map.h>
|
||
#include <isl/union_map.h>
|
||
#include <isl/list.h>
|
||
#include <isl/constraint.h>
|
||
#include <isl/ilp.h>
|
||
#include <isl/aff.h>
|
||
#include <isl/val.h>
|
||
#if defined(__cplusplus)
|
||
extern "C" {
|
||
#endif
|
||
#include <isl/val_gmp.h>
|
||
#if defined(__cplusplus)
|
||
}
|
||
#endif
|
||
#include <cloog/cloog.h>
|
||
#include <cloog/isl/domain.h>
|
||
#endif
|
||
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "diagnostic-core.h"
|
||
#include "tree.h"
|
||
#include "basic-block.h"
|
||
#include "tree-ssa-alias.h"
|
||
#include "internal-fn.h"
|
||
#include "gimple-expr.h"
|
||
#include "is-a.h"
|
||
#include "gimple.h"
|
||
#include "gimple-iterator.h"
|
||
#include "gimplify-me.h"
|
||
#include "gimple-ssa.h"
|
||
#include "tree-ssa-loop-manip.h"
|
||
#include "tree-ssa-loop.h"
|
||
#include "tree-into-ssa.h"
|
||
#include "tree-pass.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-chrec.h"
|
||
#include "tree-data-ref.h"
|
||
#include "tree-scalar-evolution.h"
|
||
#include "sese.h"
|
||
|
||
#ifdef HAVE_cloog
|
||
#include "cloog/cloog.h"
|
||
#include "graphite-poly.h"
|
||
#include "graphite-clast-to-gimple.h"
|
||
#include "graphite-htab.h"
|
||
|
||
typedef const struct clast_expr *clast_name_p;
|
||
|
||
#ifndef CLOOG_LANGUAGE_C
|
||
#define CLOOG_LANGUAGE_C LANGUAGE_C
|
||
#endif
|
||
|
||
|
||
/* Converts a GMP constant VAL to a tree and returns it. */
|
||
|
||
static tree
|
||
gmp_cst_to_tree (tree type, mpz_t val)
|
||
{
|
||
tree t = type ? type : integer_type_node;
|
||
mpz_t tmp;
|
||
|
||
mpz_init (tmp);
|
||
mpz_set (tmp, val);
|
||
wide_int wi = wi::from_mpz (t, tmp, true);
|
||
mpz_clear (tmp);
|
||
|
||
return wide_int_to_tree (t, wi);
|
||
}
|
||
|
||
/* Sets RES to the min of V1 and V2. */
|
||
|
||
static void
|
||
value_min (mpz_t res, mpz_t v1, mpz_t v2)
|
||
{
|
||
if (mpz_cmp (v1, v2) < 0)
|
||
mpz_set (res, v1);
|
||
else
|
||
mpz_set (res, v2);
|
||
}
|
||
|
||
/* Sets RES to the max of V1 and V2. */
|
||
|
||
static void
|
||
value_max (mpz_t res, mpz_t v1, mpz_t v2)
|
||
{
|
||
if (mpz_cmp (v1, v2) < 0)
|
||
mpz_set (res, v2);
|
||
else
|
||
mpz_set (res, v1);
|
||
}
|
||
|
||
|
||
/* This flag is set when an error occurred during the translation of
|
||
CLAST to Gimple. */
|
||
static bool graphite_regenerate_error;
|
||
|
||
/* Verifies properties that GRAPHITE should maintain during translation. */
|
||
|
||
static inline void
|
||
graphite_verify (void)
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
verify_loop_structure ();
|
||
verify_loop_closed_ssa (true);
|
||
#endif
|
||
}
|
||
|
||
/* Stores the INDEX in a vector and the loop nesting LEVEL for a given
|
||
clast NAME. BOUND_ONE and BOUND_TWO represent the exact lower and
|
||
upper bounds that can be inferred from the polyhedral representation. */
|
||
|
||
typedef struct clast_name_index {
|
||
int index;
|
||
int level;
|
||
mpz_t bound_one, bound_two;
|
||
const char *name;
|
||
/* If free_name is set, the content of name was allocated by us and needs
|
||
to be freed. */
|
||
char *free_name;
|
||
} *clast_name_index_p;
|
||
|
||
/* Helper for hashing clast_name_index. */
|
||
|
||
struct clast_index_hasher
|
||
{
|
||
typedef clast_name_index value_type;
|
||
typedef clast_name_index compare_type;
|
||
static inline hashval_t hash (const value_type *);
|
||
static inline bool equal (const value_type *, const compare_type *);
|
||
static inline void remove (value_type *);
|
||
};
|
||
|
||
/* Computes a hash function for database element E. */
|
||
|
||
inline hashval_t
|
||
clast_index_hasher::hash (const value_type *e)
|
||
{
|
||
hashval_t hash = 0;
|
||
|
||
int length = strlen (e->name);
|
||
int i;
|
||
|
||
for (i = 0; i < length; ++i)
|
||
hash = hash | (e->name[i] << (i % 4));
|
||
|
||
return hash;
|
||
}
|
||
|
||
/* Compares database elements ELT1 and ELT2. */
|
||
|
||
inline bool
|
||
clast_index_hasher::equal (const value_type *elt1, const compare_type *elt2)
|
||
{
|
||
return strcmp (elt1->name, elt2->name) == 0;
|
||
}
|
||
|
||
/* Free the memory taken by a clast_name_index struct. */
|
||
|
||
inline void
|
||
clast_index_hasher::remove (value_type *c)
|
||
{
|
||
if (c->free_name)
|
||
free (c->free_name);
|
||
mpz_clear (c->bound_one);
|
||
mpz_clear (c->bound_two);
|
||
free (c);
|
||
}
|
||
|
||
typedef hash_table<clast_index_hasher> clast_index_htab_type;
|
||
|
||
/* Returns a pointer to a new element of type clast_name_index_p built
|
||
from NAME, INDEX, LEVEL, BOUND_ONE, and BOUND_TWO. */
|
||
|
||
static inline clast_name_index_p
|
||
new_clast_name_index (const char *name, int index, int level,
|
||
mpz_t bound_one, mpz_t bound_two)
|
||
{
|
||
clast_name_index_p res = XNEW (struct clast_name_index);
|
||
char *new_name = XNEWVEC (char, strlen (name) + 1);
|
||
strcpy (new_name, name);
|
||
|
||
res->name = new_name;
|
||
res->free_name = new_name;
|
||
res->level = level;
|
||
res->index = index;
|
||
mpz_init (res->bound_one);
|
||
mpz_init (res->bound_two);
|
||
mpz_set (res->bound_one, bound_one);
|
||
mpz_set (res->bound_two, bound_two);
|
||
return res;
|
||
}
|
||
|
||
/* For a given clast NAME, returns -1 if NAME is not in the
|
||
INDEX_TABLE, otherwise returns the loop level for the induction
|
||
variable NAME, or if it is a parameter, the parameter number in the
|
||
vector of parameters. */
|
||
|
||
static inline int
|
||
clast_name_to_level (clast_name_p name, clast_index_htab_type *index_table)
|
||
{
|
||
struct clast_name_index tmp;
|
||
clast_name_index **slot;
|
||
|
||
gcc_assert (name->type == clast_expr_name);
|
||
tmp.name = ((const struct clast_name *) name)->name;
|
||
tmp.free_name = NULL;
|
||
|
||
slot = index_table->find_slot (&tmp, NO_INSERT);
|
||
|
||
if (slot && *slot)
|
||
return ((struct clast_name_index *) *slot)->level;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* For a given clast NAME, returns -1 if it does not correspond to any
|
||
parameter, or otherwise, returns the index in the PARAMS or
|
||
SCATTERING_DIMENSIONS vector. */
|
||
|
||
static inline int
|
||
clast_name_to_index (struct clast_name *name, clast_index_htab_type *index_table)
|
||
{
|
||
struct clast_name_index tmp;
|
||
clast_name_index **slot;
|
||
|
||
tmp.name = ((const struct clast_name *) name)->name;
|
||
tmp.free_name = NULL;
|
||
|
||
slot = index_table->find_slot (&tmp, NO_INSERT);
|
||
|
||
if (slot && *slot)
|
||
return (*slot)->index;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* For a given clast NAME, initializes the lower and upper bounds BOUND_ONE
|
||
and BOUND_TWO stored in the INDEX_TABLE. Returns true when NAME has been
|
||
found in the INDEX_TABLE, false otherwise. */
|
||
|
||
static inline bool
|
||
clast_name_to_lb_ub (struct clast_name *name,
|
||
clast_index_htab_type *index_table, mpz_t bound_one,
|
||
mpz_t bound_two)
|
||
{
|
||
struct clast_name_index tmp;
|
||
clast_name_index **slot;
|
||
|
||
tmp.name = name->name;
|
||
tmp.free_name = NULL;
|
||
|
||
slot = index_table->find_slot (&tmp, NO_INSERT);
|
||
|
||
if (slot && *slot)
|
||
{
|
||
mpz_set (bound_one, ((struct clast_name_index *) *slot)->bound_one);
|
||
mpz_set (bound_two, ((struct clast_name_index *) *slot)->bound_two);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Records in INDEX_TABLE the INDEX and LEVEL for NAME. */
|
||
|
||
static inline void
|
||
save_clast_name_index (clast_index_htab_type *index_table, const char *name,
|
||
int index, int level, mpz_t bound_one, mpz_t bound_two)
|
||
{
|
||
struct clast_name_index tmp;
|
||
clast_name_index **slot;
|
||
|
||
tmp.name = name;
|
||
tmp.free_name = NULL;
|
||
slot = index_table->find_slot (&tmp, INSERT);
|
||
|
||
if (slot)
|
||
{
|
||
free (*slot);
|
||
|
||
*slot = new_clast_name_index (name, index, level, bound_one, bound_two);
|
||
}
|
||
}
|
||
|
||
|
||
/* NEWIVS_INDEX binds CLooG's scattering name to the index of the tree
|
||
induction variable in NEWIVS.
|
||
|
||
PARAMS_INDEX binds CLooG's parameter name to the index of the tree
|
||
parameter in PARAMS. */
|
||
|
||
typedef struct ivs_params {
|
||
vec<tree> params, *newivs;
|
||
clast_index_htab_type *newivs_index, *params_index;
|
||
sese region;
|
||
} *ivs_params_p;
|
||
|
||
/* Returns the tree variable from the name NAME that was given in
|
||
Cloog representation. */
|
||
|
||
static tree
|
||
clast_name_to_gcc (struct clast_name *name, ivs_params_p ip)
|
||
{
|
||
int index;
|
||
|
||
if (ip->params.exists () && ip->params_index)
|
||
{
|
||
index = clast_name_to_index (name, ip->params_index);
|
||
|
||
if (index >= 0)
|
||
return ip->params[index];
|
||
}
|
||
|
||
gcc_assert (ip->newivs && ip->newivs_index);
|
||
index = clast_name_to_index (name, ip->newivs_index);
|
||
gcc_assert (index >= 0);
|
||
|
||
return (*ip->newivs)[index];
|
||
}
|
||
|
||
/* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
|
||
|
||
static tree
|
||
max_precision_type (tree type1, tree type2)
|
||
{
|
||
enum machine_mode mode;
|
||
int p1, p2, precision;
|
||
tree type;
|
||
|
||
if (POINTER_TYPE_P (type1))
|
||
return type1;
|
||
|
||
if (POINTER_TYPE_P (type2))
|
||
return type2;
|
||
|
||
if (TYPE_UNSIGNED (type1)
|
||
&& TYPE_UNSIGNED (type2))
|
||
return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
|
||
|
||
p1 = TYPE_PRECISION (type1);
|
||
p2 = TYPE_PRECISION (type2);
|
||
|
||
if (p1 > p2)
|
||
precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
|
||
else
|
||
precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
|
||
|
||
if (precision > BITS_PER_WORD)
|
||
{
|
||
graphite_regenerate_error = true;
|
||
return integer_type_node;
|
||
}
|
||
|
||
mode = smallest_mode_for_size (precision, MODE_INT);
|
||
precision = GET_MODE_PRECISION (mode);
|
||
type = build_nonstandard_integer_type (precision, false);
|
||
|
||
if (!type)
|
||
{
|
||
graphite_regenerate_error = true;
|
||
return integer_type_node;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
static tree
|
||
clast_to_gcc_expression (tree, struct clast_expr *, ivs_params_p);
|
||
|
||
/* Converts a Cloog reduction expression R with reduction operation OP
|
||
to a GCC expression tree of type TYPE. */
|
||
|
||
static tree
|
||
clast_to_gcc_expression_red (tree type, enum tree_code op,
|
||
struct clast_reduction *r, ivs_params_p ip)
|
||
{
|
||
int i;
|
||
tree res = clast_to_gcc_expression (type, r->elts[0], ip);
|
||
tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
|
||
|
||
for (i = 1; i < r->n; i++)
|
||
{
|
||
tree t = clast_to_gcc_expression (operand_type, r->elts[i], ip);
|
||
res = fold_build2 (op, type, res, t);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Converts a Cloog AST expression E back to a GCC expression tree of
|
||
type TYPE. */
|
||
|
||
static tree
|
||
clast_to_gcc_expression (tree type, struct clast_expr *e, ivs_params_p ip)
|
||
{
|
||
switch (e->type)
|
||
{
|
||
case clast_expr_name:
|
||
{
|
||
return clast_name_to_gcc ((struct clast_name *) e, ip);
|
||
}
|
||
case clast_expr_term:
|
||
{
|
||
struct clast_term *t = (struct clast_term *) e;
|
||
|
||
if (t->var)
|
||
{
|
||
if (mpz_cmp_si (t->val, 1) == 0)
|
||
{
|
||
tree name = clast_to_gcc_expression (type, t->var, ip);
|
||
|
||
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
|
||
name = convert_to_ptrofftype (name);
|
||
|
||
name = fold_convert (type, name);
|
||
return name;
|
||
}
|
||
|
||
else if (mpz_cmp_si (t->val, -1) == 0)
|
||
{
|
||
tree name = clast_to_gcc_expression (type, t->var, ip);
|
||
|
||
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
|
||
name = convert_to_ptrofftype (name);
|
||
|
||
name = fold_convert (type, name);
|
||
|
||
return fold_build1 (NEGATE_EXPR, type, name);
|
||
}
|
||
else
|
||
{
|
||
tree name = clast_to_gcc_expression (type, t->var, ip);
|
||
tree cst = gmp_cst_to_tree (type, t->val);
|
||
|
||
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
|
||
name = convert_to_ptrofftype (name);
|
||
|
||
name = fold_convert (type, name);
|
||
|
||
if (!POINTER_TYPE_P (type))
|
||
return fold_build2 (MULT_EXPR, type, cst, name);
|
||
|
||
graphite_regenerate_error = true;
|
||
return cst;
|
||
}
|
||
}
|
||
else
|
||
return gmp_cst_to_tree (type, t->val);
|
||
}
|
||
|
||
case clast_expr_red:
|
||
{
|
||
struct clast_reduction *r = (struct clast_reduction *) e;
|
||
|
||
switch (r->type)
|
||
{
|
||
case clast_red_sum:
|
||
return clast_to_gcc_expression_red
|
||
(type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
|
||
r, ip);
|
||
|
||
case clast_red_min:
|
||
return clast_to_gcc_expression_red (type, MIN_EXPR, r, ip);
|
||
|
||
case clast_red_max:
|
||
return clast_to_gcc_expression_red (type, MAX_EXPR, r, ip);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
}
|
||
|
||
case clast_expr_bin:
|
||
{
|
||
struct clast_binary *b = (struct clast_binary *) e;
|
||
struct clast_expr *lhs = (struct clast_expr *) b->LHS;
|
||
tree tl = clast_to_gcc_expression (type, lhs, ip);
|
||
tree tr = gmp_cst_to_tree (type, b->RHS);
|
||
|
||
switch (b->type)
|
||
{
|
||
case clast_bin_fdiv:
|
||
return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
|
||
|
||
case clast_bin_cdiv:
|
||
return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
|
||
|
||
case clast_bin_div:
|
||
return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
|
||
|
||
case clast_bin_mod:
|
||
return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return a type that could represent the values between BOUND_ONE and
|
||
BOUND_TWO. */
|
||
|
||
static tree
|
||
type_for_interval (mpz_t bound_one, mpz_t bound_two)
|
||
{
|
||
bool unsigned_p;
|
||
tree type;
|
||
enum machine_mode mode;
|
||
int wider_precision;
|
||
int precision = MAX (mpz_sizeinbase (bound_one, 2),
|
||
mpz_sizeinbase (bound_two, 2));
|
||
|
||
if (precision > BITS_PER_WORD)
|
||
{
|
||
graphite_regenerate_error = true;
|
||
return integer_type_node;
|
||
}
|
||
|
||
if (mpz_cmp (bound_one, bound_two) <= 0)
|
||
unsigned_p = (mpz_sgn (bound_one) >= 0);
|
||
else
|
||
unsigned_p = (mpz_sgn (bound_two) >= 0);
|
||
|
||
mode = smallest_mode_for_size (precision, MODE_INT);
|
||
wider_precision = GET_MODE_PRECISION (mode);
|
||
|
||
/* As we want to generate signed types as much as possible, try to
|
||
fit the interval [bound_one, bound_two] in a signed type. For example,
|
||
supposing that we have the interval [0, 100], instead of
|
||
generating unsigned char, we want to generate a signed char. */
|
||
if (unsigned_p && precision < wider_precision)
|
||
unsigned_p = false;
|
||
|
||
type = build_nonstandard_integer_type (wider_precision, unsigned_p);
|
||
|
||
if (!type)
|
||
{
|
||
graphite_regenerate_error = true;
|
||
return integer_type_node;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Return a type that could represent the integer value VAL, or
|
||
otherwise return NULL_TREE. */
|
||
|
||
static tree
|
||
type_for_value (mpz_t val)
|
||
{
|
||
return type_for_interval (val, val);
|
||
}
|
||
|
||
static tree
|
||
type_for_clast_expr (struct clast_expr *, ivs_params_p, mpz_t, mpz_t);
|
||
|
||
/* Return the type for the clast_term T. Initializes BOUND_ONE and
|
||
BOUND_TWO to the bounds of the term. */
|
||
|
||
static tree
|
||
type_for_clast_term (struct clast_term *t, ivs_params_p ip, mpz_t bound_one,
|
||
mpz_t bound_two)
|
||
{
|
||
tree type;
|
||
gcc_assert (t->expr.type == clast_expr_term);
|
||
|
||
if (!t->var)
|
||
{
|
||
mpz_set (bound_one, t->val);
|
||
mpz_set (bound_two, t->val);
|
||
return type_for_value (t->val);
|
||
}
|
||
|
||
type = type_for_clast_expr (t->var, ip, bound_one, bound_two);
|
||
|
||
mpz_mul (bound_one, bound_one, t->val);
|
||
mpz_mul (bound_two, bound_two, t->val);
|
||
|
||
return max_precision_type (type, type_for_interval (bound_one, bound_two));
|
||
}
|
||
|
||
/* Return the type for the clast_reduction R. Initializes BOUND_ONE
|
||
and BOUND_TWO to the bounds of the reduction expression. */
|
||
|
||
static tree
|
||
type_for_clast_red (struct clast_reduction *r, ivs_params_p ip,
|
||
mpz_t bound_one, mpz_t bound_two)
|
||
{
|
||
int i;
|
||
tree type = type_for_clast_expr (r->elts[0], ip, bound_one, bound_two);
|
||
mpz_t b1, b2, m1, m2;
|
||
|
||
if (r->n == 1)
|
||
return type;
|
||
|
||
mpz_init (b1);
|
||
mpz_init (b2);
|
||
mpz_init (m1);
|
||
mpz_init (m2);
|
||
|
||
for (i = 1; i < r->n; i++)
|
||
{
|
||
tree t = type_for_clast_expr (r->elts[i], ip, b1, b2);
|
||
type = max_precision_type (type, t);
|
||
|
||
switch (r->type)
|
||
{
|
||
case clast_red_sum:
|
||
value_min (m1, bound_one, bound_two);
|
||
value_min (m2, b1, b2);
|
||
mpz_add (bound_one, m1, m2);
|
||
|
||
value_max (m1, bound_one, bound_two);
|
||
value_max (m2, b1, b2);
|
||
mpz_add (bound_two, m1, m2);
|
||
break;
|
||
|
||
case clast_red_min:
|
||
value_min (bound_one, bound_one, bound_two);
|
||
value_min (bound_two, b1, b2);
|
||
break;
|
||
|
||
case clast_red_max:
|
||
value_max (bound_one, bound_one, bound_two);
|
||
value_max (bound_two, b1, b2);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
break;
|
||
}
|
||
}
|
||
|
||
mpz_clear (b1);
|
||
mpz_clear (b2);
|
||
mpz_clear (m1);
|
||
mpz_clear (m2);
|
||
|
||
/* Return a type that can represent the result of the reduction. */
|
||
return max_precision_type (type, type_for_interval (bound_one, bound_two));
|
||
}
|
||
|
||
/* Return the type for the clast_binary B used in STMT. */
|
||
|
||
static tree
|
||
type_for_clast_bin (struct clast_binary *b, ivs_params_p ip, mpz_t bound_one,
|
||
mpz_t bound_two)
|
||
{
|
||
mpz_t one;
|
||
tree l = type_for_clast_expr ((struct clast_expr *) b->LHS, ip,
|
||
bound_one, bound_two);
|
||
tree r = type_for_value (b->RHS);
|
||
tree type = max_precision_type (l, r);
|
||
|
||
switch (b->type)
|
||
{
|
||
case clast_bin_fdiv:
|
||
mpz_mdiv (bound_one, bound_one, b->RHS);
|
||
mpz_mdiv (bound_two, bound_two, b->RHS);
|
||
break;
|
||
|
||
case clast_bin_cdiv:
|
||
mpz_mdiv (bound_one, bound_one, b->RHS);
|
||
mpz_mdiv (bound_two, bound_two, b->RHS);
|
||
mpz_init (one);
|
||
mpz_add (bound_one, bound_one, one);
|
||
mpz_add (bound_two, bound_two, one);
|
||
mpz_clear (one);
|
||
break;
|
||
|
||
case clast_bin_div:
|
||
mpz_div (bound_one, bound_one, b->RHS);
|
||
mpz_div (bound_two, bound_two, b->RHS);
|
||
break;
|
||
|
||
case clast_bin_mod:
|
||
mpz_mod (bound_one, bound_one, b->RHS);
|
||
mpz_mod (bound_two, bound_two, b->RHS);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Return a type that can represent the result of the reduction. */
|
||
return max_precision_type (type, type_for_interval (bound_one, bound_two));
|
||
}
|
||
|
||
/* Return the type for the clast_name NAME. Initializes BOUND_ONE and
|
||
BOUND_TWO to the bounds of the term. */
|
||
|
||
static tree
|
||
type_for_clast_name (struct clast_name *name, ivs_params_p ip, mpz_t bound_one,
|
||
mpz_t bound_two)
|
||
{
|
||
bool found = false;
|
||
|
||
if (ip->params.exists () && ip->params_index)
|
||
found = clast_name_to_lb_ub (name, ip->params_index, bound_one, bound_two);
|
||
|
||
if (!found)
|
||
{
|
||
gcc_assert (ip->newivs && ip->newivs_index);
|
||
found = clast_name_to_lb_ub (name, ip->newivs_index, bound_one,
|
||
bound_two);
|
||
gcc_assert (found);
|
||
}
|
||
|
||
return TREE_TYPE (clast_name_to_gcc (name, ip));
|
||
}
|
||
|
||
/* Returns the type for the CLAST expression E when used in statement
|
||
STMT. */
|
||
|
||
static tree
|
||
type_for_clast_expr (struct clast_expr *e, ivs_params_p ip, mpz_t bound_one,
|
||
mpz_t bound_two)
|
||
{
|
||
switch (e->type)
|
||
{
|
||
case clast_expr_term:
|
||
return type_for_clast_term ((struct clast_term *) e, ip,
|
||
bound_one, bound_two);
|
||
|
||
case clast_expr_red:
|
||
return type_for_clast_red ((struct clast_reduction *) e, ip,
|
||
bound_one, bound_two);
|
||
|
||
case clast_expr_bin:
|
||
return type_for_clast_bin ((struct clast_binary *) e, ip,
|
||
bound_one, bound_two);
|
||
|
||
case clast_expr_name:
|
||
return type_for_clast_name ((struct clast_name *) e, ip,
|
||
bound_one, bound_two);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns true if the clast expression E is a constant with VALUE. */
|
||
|
||
static bool
|
||
clast_expr_const_value_p (struct clast_expr *e, int value)
|
||
{
|
||
struct clast_term *t;
|
||
if (e->type != clast_expr_term)
|
||
return false;
|
||
t = (struct clast_term *)e;
|
||
if (t->var)
|
||
return false;
|
||
return 0 == mpz_cmp_si (t->val, value);
|
||
}
|
||
|
||
/* Translates a clast equation CLEQ to a tree. */
|
||
|
||
static tree
|
||
graphite_translate_clast_equation (struct clast_equation *cleq,
|
||
ivs_params_p ip)
|
||
{
|
||
enum tree_code comp;
|
||
tree type, lhs, rhs, ltype, rtype;
|
||
mpz_t bound_one, bound_two;
|
||
struct clast_expr *clhs, *crhs;
|
||
|
||
clhs = cleq->LHS;
|
||
crhs = cleq->RHS;
|
||
if (cleq->sign == 0)
|
||
comp = EQ_EXPR;
|
||
else if (cleq->sign > 0)
|
||
comp = GE_EXPR;
|
||
else
|
||
comp = LE_EXPR;
|
||
|
||
/* Special cases to reduce range of arguments to hopefully
|
||
don't need types with larger precision than the input. */
|
||
if (crhs->type == clast_expr_red
|
||
&& comp != EQ_EXPR)
|
||
{
|
||
struct clast_reduction *r = (struct clast_reduction *) crhs;
|
||
/* X >= A+1 --> X > A and
|
||
X <= A-1 --> X < A */
|
||
if (r->n == 2
|
||
&& r->type == clast_red_sum
|
||
&& clast_expr_const_value_p (r->elts[1], comp == GE_EXPR ? 1 : -1))
|
||
{
|
||
crhs = r->elts[0];
|
||
comp = comp == GE_EXPR ? GT_EXPR : LT_EXPR;
|
||
}
|
||
}
|
||
|
||
mpz_init (bound_one);
|
||
mpz_init (bound_two);
|
||
|
||
ltype = type_for_clast_expr (clhs, ip, bound_one, bound_two);
|
||
rtype = type_for_clast_expr (crhs, ip, bound_one, bound_two);
|
||
|
||
mpz_clear (bound_one);
|
||
mpz_clear (bound_two);
|
||
type = max_precision_type (ltype, rtype);
|
||
|
||
lhs = clast_to_gcc_expression (type, clhs, ip);
|
||
rhs = clast_to_gcc_expression (type, crhs, ip);
|
||
|
||
return fold_build2 (comp, boolean_type_node, lhs, rhs);
|
||
}
|
||
|
||
/* Creates the test for the condition in STMT. */
|
||
|
||
static tree
|
||
graphite_create_guard_cond_expr (struct clast_guard *stmt,
|
||
ivs_params_p ip)
|
||
{
|
||
tree cond = NULL;
|
||
int i;
|
||
|
||
for (i = 0; i < stmt->n; i++)
|
||
{
|
||
tree eq = graphite_translate_clast_equation (&stmt->eq[i], ip);
|
||
|
||
if (cond)
|
||
cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
|
||
else
|
||
cond = eq;
|
||
}
|
||
|
||
return cond;
|
||
}
|
||
|
||
/* Creates a new if region corresponding to Cloog's guard. */
|
||
|
||
static edge
|
||
graphite_create_new_guard (edge entry_edge, struct clast_guard *stmt,
|
||
ivs_params_p ip)
|
||
{
|
||
tree cond_expr = graphite_create_guard_cond_expr (stmt, ip);
|
||
edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
|
||
return exit_edge;
|
||
}
|
||
|
||
/* Compute the lower bound LOW and upper bound UP for the parameter
|
||
PARAM in scop SCOP based on the constraints in the context. */
|
||
|
||
static void
|
||
compute_bounds_for_param (scop_p scop, int param, mpz_t low, mpz_t up)
|
||
{
|
||
isl_val *v;
|
||
isl_aff *aff = isl_aff_zero_on_domain
|
||
(isl_local_space_from_space (isl_set_get_space (scop->context)));
|
||
|
||
aff = isl_aff_add_coefficient_si (aff, isl_dim_param, param, 1);
|
||
|
||
v = isl_set_min_val (scop->context, aff);
|
||
isl_val_get_num_gmp (v, low);
|
||
isl_val_free (v);
|
||
v = isl_set_max_val (scop->context, aff);
|
||
isl_val_get_num_gmp (v, up);
|
||
isl_val_free (v);
|
||
isl_aff_free (aff);
|
||
}
|
||
|
||
/* Compute the lower bound LOW and upper bound UP for the induction
|
||
variable of loop LOOP.
|
||
|
||
FIXME: This one is not entirely correct, as min/max expressions in the
|
||
calculation can yield to incorrect results. To be completely
|
||
correct, we need to evaluate each subexpression generated by
|
||
CLooG. CLooG does not yet support this, so this is as good as
|
||
it can be. */
|
||
|
||
static void
|
||
compute_bounds_for_loop (struct clast_for *loop, mpz_t low, mpz_t up)
|
||
{
|
||
isl_set *domain;
|
||
isl_aff *dimension;
|
||
isl_local_space *local_space;
|
||
isl_val *isl_value;
|
||
|
||
domain = isl_set_copy (isl_set_from_cloog_domain (loop->domain));
|
||
local_space = isl_local_space_from_space (isl_set_get_space (domain));
|
||
dimension = isl_aff_zero_on_domain (local_space);
|
||
dimension = isl_aff_add_coefficient_si (dimension, isl_dim_in,
|
||
isl_set_dim (domain, isl_dim_set) - 1,
|
||
1);
|
||
|
||
isl_value = isl_set_min_val (domain, dimension);
|
||
isl_val_get_num_gmp (isl_value, low);
|
||
isl_val_free (isl_value);
|
||
isl_value = isl_set_max_val (domain, dimension);
|
||
isl_val_get_num_gmp (isl_value, up);
|
||
isl_val_free (isl_value);
|
||
isl_set_free (domain);
|
||
isl_aff_free (dimension);
|
||
}
|
||
|
||
/* Returns the type for the induction variable for the loop translated
|
||
from STMT_FOR. */
|
||
|
||
static tree
|
||
type_for_clast_for (struct clast_for *stmt_for, ivs_params_p ip)
|
||
{
|
||
mpz_t bound_one, bound_two;
|
||
tree lb_type, ub_type;
|
||
|
||
mpz_init (bound_one);
|
||
mpz_init (bound_two);
|
||
|
||
lb_type = type_for_clast_expr (stmt_for->LB, ip, bound_one, bound_two);
|
||
ub_type = type_for_clast_expr (stmt_for->UB, ip, bound_one, bound_two);
|
||
|
||
mpz_clear (bound_one);
|
||
mpz_clear (bound_two);
|
||
|
||
return max_precision_type (lb_type, ub_type);
|
||
}
|
||
|
||
/* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
|
||
induction variable for the new LOOP. New LOOP is attached to CFG
|
||
starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
|
||
becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
|
||
CLooG's scattering name to the induction variable created for the
|
||
loop of STMT. The new induction variable is inserted in the NEWIVS
|
||
vector and is of type TYPE. */
|
||
|
||
static struct loop *
|
||
graphite_create_new_loop (edge entry_edge, struct clast_for *stmt,
|
||
loop_p outer, tree type, tree lb, tree ub,
|
||
int level, ivs_params_p ip)
|
||
{
|
||
mpz_t low, up;
|
||
|
||
tree stride = gmp_cst_to_tree (type, stmt->stride);
|
||
tree ivvar = create_tmp_var (type, "graphite_IV");
|
||
tree iv, iv_after_increment;
|
||
loop_p loop = create_empty_loop_on_edge
|
||
(entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
|
||
outer ? outer : entry_edge->src->loop_father);
|
||
|
||
mpz_init (low);
|
||
mpz_init (up);
|
||
compute_bounds_for_loop (stmt, low, up);
|
||
save_clast_name_index (ip->newivs_index, stmt->iterator,
|
||
(*ip->newivs).length (), level, low, up);
|
||
mpz_clear (low);
|
||
mpz_clear (up);
|
||
(*ip->newivs).safe_push (iv);
|
||
return loop;
|
||
}
|
||
|
||
/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
|
||
induction variables of the loops around GBB in SESE. */
|
||
|
||
static void
|
||
build_iv_mapping (vec<tree> iv_map, struct clast_user_stmt *user_stmt,
|
||
ivs_params_p ip)
|
||
{
|
||
struct clast_stmt *t;
|
||
int depth = 0;
|
||
CloogStatement *cs = user_stmt->statement;
|
||
poly_bb_p pbb = (poly_bb_p) cs->usr;
|
||
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
||
mpz_t bound_one, bound_two;
|
||
|
||
mpz_init (bound_one);
|
||
mpz_init (bound_two);
|
||
|
||
for (t = user_stmt->substitutions; t; t = t->next, depth++)
|
||
{
|
||
struct clast_expr *expr = (struct clast_expr *)
|
||
((struct clast_assignment *)t)->RHS;
|
||
tree type = type_for_clast_expr (expr, ip, bound_one, bound_two);
|
||
tree new_name = clast_to_gcc_expression (type, expr, ip);
|
||
loop_p old_loop = gbb_loop_at_index (gbb, ip->region, depth);
|
||
|
||
iv_map[old_loop->num] = new_name;
|
||
}
|
||
|
||
mpz_clear (bound_one);
|
||
mpz_clear (bound_two);
|
||
}
|
||
|
||
/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
|
||
|
||
static void
|
||
mark_bb_with_pbb (poly_bb_p pbb, basic_block bb,
|
||
bb_pbb_htab_type *bb_pbb_mapping)
|
||
{
|
||
bool existed;
|
||
poly_bb_p &e = bb_pbb_mapping->get_or_insert (bb, &existed);
|
||
if (!existed)
|
||
e = pbb;
|
||
}
|
||
|
||
/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
|
||
|
||
poly_bb_p
|
||
find_pbb_via_hash (bb_pbb_htab_type *bb_pbb_mapping, basic_block bb)
|
||
{
|
||
poly_bb_p *pbb = bb_pbb_mapping->get (bb);
|
||
if (pbb)
|
||
return *pbb;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the scop of the loop and initialize PBBS the set of
|
||
poly_bb_p that belong to the LOOP. BB_PBB_MAPPING is a map created
|
||
by the CLAST code generator between a generated basic_block and its
|
||
related poly_bb_p. */
|
||
|
||
scop_p
|
||
get_loop_body_pbbs (loop_p loop, bb_pbb_htab_type *bb_pbb_mapping,
|
||
vec<poly_bb_p> *pbbs)
|
||
{
|
||
unsigned i;
|
||
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
||
scop_p scop = NULL;
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
poly_bb_p pbb = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
|
||
|
||
if (pbb == NULL)
|
||
continue;
|
||
|
||
scop = PBB_SCOP (pbb);
|
||
(*pbbs).safe_push (pbb);
|
||
}
|
||
|
||
free (bbs);
|
||
return scop;
|
||
}
|
||
|
||
/* Translates a clast user statement STMT to gimple.
|
||
|
||
- NEXT_E is the edge where new generated code should be attached.
|
||
- CONTEXT_LOOP is the loop in which the generated code will be placed
|
||
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
|
||
|
||
static edge
|
||
translate_clast_user (struct clast_user_stmt *stmt, edge next_e,
|
||
bb_pbb_htab_type *bb_pbb_mapping, ivs_params_p ip)
|
||
{
|
||
int i, nb_loops;
|
||
basic_block new_bb;
|
||
poly_bb_p pbb = (poly_bb_p) stmt->statement->usr;
|
||
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
||
vec<tree> iv_map;
|
||
|
||
if (GBB_BB (gbb) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
return next_e;
|
||
|
||
nb_loops = number_of_loops (cfun);
|
||
iv_map.create (nb_loops);
|
||
for (i = 0; i < nb_loops; i++)
|
||
iv_map.quick_push (NULL_TREE);
|
||
|
||
build_iv_mapping (iv_map, stmt, ip);
|
||
next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), ip->region,
|
||
next_e, iv_map,
|
||
&graphite_regenerate_error);
|
||
iv_map.release ();
|
||
|
||
new_bb = next_e->src;
|
||
mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
|
||
mark_virtual_operands_for_renaming (cfun);
|
||
update_ssa (TODO_update_ssa);
|
||
|
||
return next_e;
|
||
}
|
||
|
||
/* Creates a new if region protecting the loop to be executed, if the execution
|
||
count is zero (lb > ub). */
|
||
|
||
static edge
|
||
graphite_create_new_loop_guard (edge entry_edge, struct clast_for *stmt,
|
||
tree *type, tree *lb, tree *ub,
|
||
ivs_params_p ip)
|
||
{
|
||
tree cond_expr;
|
||
edge exit_edge;
|
||
|
||
*type = type_for_clast_for (stmt, ip);
|
||
*lb = clast_to_gcc_expression (*type, stmt->LB, ip);
|
||
*ub = clast_to_gcc_expression (*type, stmt->UB, ip);
|
||
|
||
/* When ub is simply a constant or a parameter, use lb <= ub. */
|
||
if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME)
|
||
cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub);
|
||
else
|
||
{
|
||
tree one = (POINTER_TYPE_P (*type)
|
||
? convert_to_ptrofftype (integer_one_node)
|
||
: fold_convert (*type, integer_one_node));
|
||
/* Adding +1 and using LT_EXPR helps with loop latches that have a
|
||
loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
|
||
2^k-1 due to integer overflow, and the condition lb <= ub is true,
|
||
even if we do not want this. However lb < ub + 1 is false, as
|
||
expected. */
|
||
tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR
|
||
: PLUS_EXPR, *type, *ub, one);
|
||
|
||
cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one);
|
||
}
|
||
|
||
exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
|
||
|
||
return exit_edge;
|
||
}
|
||
|
||
static edge
|
||
translate_clast (loop_p, struct clast_stmt *, edge, bb_pbb_htab_type *,
|
||
int, ivs_params_p);
|
||
|
||
/* Create the loop for a clast for statement.
|
||
|
||
- NEXT_E is the edge where new generated code should be attached.
|
||
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
|
||
|
||
static edge
|
||
translate_clast_for_loop (loop_p context_loop, struct clast_for *stmt,
|
||
edge next_e, bb_pbb_htab_type *bb_pbb_mapping,
|
||
int level, tree type, tree lb, tree ub,
|
||
ivs_params_p ip)
|
||
{
|
||
struct loop *loop = graphite_create_new_loop (next_e, stmt, context_loop,
|
||
type, lb, ub, level, ip);
|
||
edge last_e = single_exit (loop);
|
||
edge to_body = single_succ_edge (loop->header);
|
||
basic_block after = to_body->dest;
|
||
|
||
/* Create a basic block for loop close phi nodes. */
|
||
last_e = single_succ_edge (split_edge (last_e));
|
||
|
||
/* Translate the body of the loop. */
|
||
next_e = translate_clast (loop, stmt->body, to_body, bb_pbb_mapping,
|
||
level + 1, ip);
|
||
redirect_edge_succ_nodup (next_e, after);
|
||
set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
|
||
|
||
isl_set *domain = isl_set_from_cloog_domain (stmt->domain);
|
||
int scheduling_dim = isl_set_n_dim (domain);
|
||
|
||
if (flag_loop_parallelize_all
|
||
&& loop_is_parallel_p (loop, bb_pbb_mapping, scheduling_dim))
|
||
loop->can_be_parallel = true;
|
||
|
||
return last_e;
|
||
}
|
||
|
||
/* Translates a clast for statement STMT to gimple. First a guard is created
|
||
protecting the loop, if it is executed zero times. In this guard we create
|
||
the real loop structure.
|
||
|
||
- NEXT_E is the edge where new generated code should be attached.
|
||
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
|
||
|
||
static edge
|
||
translate_clast_for (loop_p context_loop, struct clast_for *stmt, edge next_e,
|
||
bb_pbb_htab_type *bb_pbb_mapping, int level,
|
||
ivs_params_p ip)
|
||
{
|
||
tree type, lb, ub;
|
||
edge last_e = graphite_create_new_loop_guard (next_e, stmt, &type,
|
||
&lb, &ub, ip);
|
||
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
|
||
|
||
translate_clast_for_loop (context_loop, stmt, true_e, bb_pbb_mapping, level,
|
||
type, lb, ub, ip);
|
||
return last_e;
|
||
}
|
||
|
||
/* Translates a clast assignment STMT to gimple.
|
||
|
||
- NEXT_E is the edge where new generated code should be attached.
|
||
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
|
||
|
||
static edge
|
||
translate_clast_assignment (struct clast_assignment *stmt, edge next_e,
|
||
int level, ivs_params_p ip)
|
||
{
|
||
gimple_seq stmts;
|
||
mpz_t bound_one, bound_two;
|
||
tree type, new_name, var;
|
||
edge res = single_succ_edge (split_edge (next_e));
|
||
struct clast_expr *expr = (struct clast_expr *) stmt->RHS;
|
||
|
||
mpz_init (bound_one);
|
||
mpz_init (bound_two);
|
||
type = type_for_clast_expr (expr, ip, bound_one, bound_two);
|
||
var = create_tmp_var (type, "graphite_var");
|
||
new_name = force_gimple_operand (clast_to_gcc_expression (type, expr, ip),
|
||
&stmts, true, var);
|
||
if (stmts)
|
||
{
|
||
gsi_insert_seq_on_edge (next_e, stmts);
|
||
gsi_commit_edge_inserts ();
|
||
}
|
||
|
||
save_clast_name_index (ip->newivs_index, stmt->LHS,
|
||
(*ip->newivs).length (), level,
|
||
bound_one, bound_two);
|
||
(*ip->newivs).safe_push (new_name);
|
||
|
||
mpz_clear (bound_one);
|
||
mpz_clear (bound_two);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Translates a clast guard statement STMT to gimple.
|
||
|
||
- NEXT_E is the edge where new generated code should be attached.
|
||
- CONTEXT_LOOP is the loop in which the generated code will be placed
|
||
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
|
||
|
||
static edge
|
||
translate_clast_guard (loop_p context_loop, struct clast_guard *stmt,
|
||
edge next_e, bb_pbb_htab_type *bb_pbb_mapping, int level,
|
||
ivs_params_p ip)
|
||
{
|
||
edge last_e = graphite_create_new_guard (next_e, stmt, ip);
|
||
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
|
||
|
||
translate_clast (context_loop, stmt->then, true_e, bb_pbb_mapping, level, ip);
|
||
return last_e;
|
||
}
|
||
|
||
/* Translates a CLAST statement STMT to GCC representation in the
|
||
context of a SESE.
|
||
|
||
- NEXT_E is the edge where new generated code should be attached.
|
||
- CONTEXT_LOOP is the loop in which the generated code will be placed
|
||
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
|
||
|
||
static edge
|
||
translate_clast (loop_p context_loop, struct clast_stmt *stmt, edge next_e,
|
||
bb_pbb_htab_type *bb_pbb_mapping, int level, ivs_params_p ip)
|
||
{
|
||
if (!stmt)
|
||
return next_e;
|
||
|
||
if (CLAST_STMT_IS_A (stmt, stmt_root))
|
||
; /* Do nothing. */
|
||
|
||
else if (CLAST_STMT_IS_A (stmt, stmt_user))
|
||
next_e = translate_clast_user ((struct clast_user_stmt *) stmt,
|
||
next_e, bb_pbb_mapping, ip);
|
||
|
||
else if (CLAST_STMT_IS_A (stmt, stmt_for))
|
||
next_e = translate_clast_for (context_loop, (struct clast_for *) stmt,
|
||
next_e, bb_pbb_mapping, level, ip);
|
||
|
||
else if (CLAST_STMT_IS_A (stmt, stmt_guard))
|
||
next_e = translate_clast_guard (context_loop, (struct clast_guard *) stmt,
|
||
next_e, bb_pbb_mapping, level, ip);
|
||
|
||
else if (CLAST_STMT_IS_A (stmt, stmt_block))
|
||
next_e = translate_clast (context_loop, ((struct clast_block *) stmt)->body,
|
||
next_e, bb_pbb_mapping, level, ip);
|
||
|
||
else if (CLAST_STMT_IS_A (stmt, stmt_ass))
|
||
next_e = translate_clast_assignment ((struct clast_assignment *) stmt,
|
||
next_e, level, ip);
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
recompute_all_dominators ();
|
||
graphite_verify ();
|
||
|
||
return translate_clast (context_loop, stmt->next, next_e, bb_pbb_mapping,
|
||
level, ip);
|
||
}
|
||
|
||
/* Add parameter and iterator names to the CloogUnionDomain. */
|
||
|
||
static CloogUnionDomain *
|
||
add_names_to_union_domain (scop_p scop, CloogUnionDomain *union_domain,
|
||
int nb_scattering_dims,
|
||
clast_index_htab_type *params_index)
|
||
{
|
||
sese region = SCOP_REGION (scop);
|
||
int i;
|
||
int nb_iterators = scop_max_loop_depth (scop);
|
||
int nb_parameters = SESE_PARAMS (region).length ();
|
||
mpz_t bound_one, bound_two;
|
||
|
||
mpz_init (bound_one);
|
||
mpz_init (bound_two);
|
||
|
||
for (i = 0; i < nb_parameters; i++)
|
||
{
|
||
tree param = SESE_PARAMS (region)[i];
|
||
const char *name = get_name (param);
|
||
int len;
|
||
char *parameter;
|
||
|
||
if (!name)
|
||
name = "T";
|
||
|
||
len = strlen (name);
|
||
len += 17;
|
||
parameter = XNEWVEC (char, len + 1);
|
||
snprintf (parameter, len, "%s_%d", name, SSA_NAME_VERSION (param));
|
||
save_clast_name_index (params_index, parameter, i, i, bound_one,
|
||
bound_two);
|
||
union_domain = cloog_union_domain_set_name (union_domain, CLOOG_PARAM, i,
|
||
parameter);
|
||
compute_bounds_for_param (scop, i, bound_one, bound_two);
|
||
free (parameter);
|
||
}
|
||
|
||
mpz_clear (bound_one);
|
||
mpz_clear (bound_two);
|
||
|
||
for (i = 0; i < nb_iterators; i++)
|
||
{
|
||
int len = 4 + 16;
|
||
char *iterator;
|
||
iterator = XNEWVEC (char, len);
|
||
snprintf (iterator, len, "git_%d", i);
|
||
union_domain = cloog_union_domain_set_name (union_domain, CLOOG_ITER, i,
|
||
iterator);
|
||
free (iterator);
|
||
}
|
||
|
||
for (i = 0; i < nb_scattering_dims; i++)
|
||
{
|
||
int len = 5 + 16;
|
||
char *scattering;
|
||
scattering = XNEWVEC (char, len);
|
||
snprintf (scattering, len, "scat_%d", i);
|
||
union_domain = cloog_union_domain_set_name (union_domain, CLOOG_SCAT, i,
|
||
scattering);
|
||
free (scattering);
|
||
}
|
||
|
||
return union_domain;
|
||
}
|
||
|
||
/* Initialize a CLooG input file. */
|
||
|
||
static FILE *
|
||
init_cloog_input_file (int scop_number)
|
||
{
|
||
FILE *graphite_out_file;
|
||
int len = strlen (dump_base_name);
|
||
char *dumpname = XNEWVEC (char, len + 25);
|
||
char *s_scop_number = XNEWVEC (char, 15);
|
||
|
||
memcpy (dumpname, dump_base_name, len + 1);
|
||
strip_off_ending (dumpname, len);
|
||
sprintf (s_scop_number, ".%d", scop_number);
|
||
strcat (dumpname, s_scop_number);
|
||
strcat (dumpname, ".cloog");
|
||
graphite_out_file = fopen (dumpname, "w+b");
|
||
|
||
if (graphite_out_file == 0)
|
||
fatal_error ("can%'t open %s for writing: %m", dumpname);
|
||
|
||
free (dumpname);
|
||
|
||
return graphite_out_file;
|
||
}
|
||
|
||
/* Extend the scattering to NEW_DIMS scattering dimensions. */
|
||
|
||
static
|
||
isl_map *extend_scattering (isl_map *scattering, int new_dims)
|
||
{
|
||
int old_dims, i;
|
||
isl_space *space;
|
||
isl_basic_map *change_scattering;
|
||
isl_map *change_scattering_map;
|
||
|
||
old_dims = isl_map_dim (scattering, isl_dim_out);
|
||
|
||
space = isl_space_alloc (isl_map_get_ctx (scattering), 0, old_dims, new_dims);
|
||
change_scattering = isl_basic_map_universe (isl_space_copy (space));
|
||
|
||
for (i = 0; i < old_dims; i++)
|
||
{
|
||
isl_constraint *c;
|
||
c = isl_equality_alloc
|
||
(isl_local_space_from_space (isl_space_copy (space)));
|
||
isl_constraint_set_coefficient_si (c, isl_dim_in, i, 1);
|
||
isl_constraint_set_coefficient_si (c, isl_dim_out, i, -1);
|
||
change_scattering = isl_basic_map_add_constraint (change_scattering, c);
|
||
}
|
||
|
||
for (i = old_dims; i < new_dims; i++)
|
||
{
|
||
isl_constraint *c;
|
||
c = isl_equality_alloc
|
||
(isl_local_space_from_space (isl_space_copy (space)));
|
||
isl_constraint_set_coefficient_si (c, isl_dim_out, i, 1);
|
||
change_scattering = isl_basic_map_add_constraint (change_scattering, c);
|
||
}
|
||
|
||
change_scattering_map = isl_map_from_basic_map (change_scattering);
|
||
change_scattering_map = isl_map_align_params (change_scattering_map, space);
|
||
return isl_map_apply_range (scattering, change_scattering_map);
|
||
}
|
||
|
||
/* Build cloog union domain for SCoP. */
|
||
|
||
static CloogUnionDomain *
|
||
build_cloog_union_domain (scop_p scop, int nb_scattering_dims)
|
||
{
|
||
int i;
|
||
poly_bb_p pbb;
|
||
CloogUnionDomain *union_domain =
|
||
cloog_union_domain_alloc (scop_nb_params (scop));
|
||
|
||
FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
|
||
{
|
||
CloogDomain *domain;
|
||
CloogScattering *scattering;
|
||
|
||
/* Dead code elimination: when the domain of a PBB is empty,
|
||
don't generate code for the PBB. */
|
||
if (isl_set_is_empty (pbb->domain))
|
||
continue;
|
||
|
||
domain = cloog_domain_from_isl_set (isl_set_copy (pbb->domain));
|
||
scattering = cloog_scattering_from_isl_map
|
||
(extend_scattering (isl_map_copy (pbb->transformed),
|
||
nb_scattering_dims));
|
||
|
||
union_domain = cloog_union_domain_add_domain (union_domain, "", domain,
|
||
scattering, pbb);
|
||
}
|
||
|
||
return union_domain;
|
||
}
|
||
|
||
/* Return the options that will be used in graphite_regenerate_ast_cloog. */
|
||
|
||
static CloogOptions *
|
||
set_cloog_options (void)
|
||
{
|
||
CloogOptions *options = cloog_options_malloc (cloog_state);
|
||
|
||
/* Change cloog output language to C. If we do use FORTRAN instead, cloog
|
||
will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
|
||
we pass an incomplete program to cloog. */
|
||
options->language = CLOOG_LANGUAGE_C;
|
||
|
||
/* Enable complex equality spreading: removes dummy statements
|
||
(assignments) in the generated code which repeats the
|
||
substitution equations for statements. This is useless for
|
||
graphite_regenerate_ast_cloog. */
|
||
options->esp = 1;
|
||
|
||
/* Silence CLooG to avoid failing tests due to debug output to stderr. */
|
||
options->quiet = 1;
|
||
|
||
/* Allow cloog to build strides with a stride width different to one.
|
||
This example has stride = 4:
|
||
|
||
for (i = 0; i < 20; i += 4)
|
||
A */
|
||
options->strides = 1;
|
||
|
||
/* We want the clast to provide the iteration domains of the executed loops.
|
||
This allows us to derive minimal/maximal values for the induction
|
||
variables. */
|
||
options->save_domains = 1;
|
||
|
||
/* Do not remove scalar dimensions. CLooG by default removes scalar
|
||
dimensions very early from the input schedule. However, they are
|
||
necessary to correctly derive from the saved domains
|
||
(options->save_domains) the relationship between the generated loops
|
||
and the schedule dimensions they are generated from. */
|
||
options->noscalars = 1;
|
||
|
||
/* Disable optimizations and make cloog generate source code closer to the
|
||
input. This is useful for debugging, but later we want the optimized
|
||
code.
|
||
|
||
XXX: We can not disable optimizations, as loop blocking is not working
|
||
without them. */
|
||
if (0)
|
||
{
|
||
options->f = -1;
|
||
options->l = INT_MAX;
|
||
}
|
||
|
||
return options;
|
||
}
|
||
|
||
/* Prints STMT to STDERR. */
|
||
|
||
void
|
||
print_clast_stmt (FILE *file, struct clast_stmt *stmt)
|
||
{
|
||
CloogOptions *options = set_cloog_options ();
|
||
|
||
clast_pprint (file, stmt, 0, options);
|
||
cloog_options_free (options);
|
||
}
|
||
|
||
/* Prints STMT to STDERR. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_clast_stmt (struct clast_stmt *stmt)
|
||
{
|
||
print_clast_stmt (stderr, stmt);
|
||
}
|
||
|
||
/* Get the maximal number of scattering dimensions in the scop SCOP. */
|
||
|
||
static
|
||
int get_max_scattering_dimensions (scop_p scop)
|
||
{
|
||
int i;
|
||
poly_bb_p pbb;
|
||
int scattering_dims = 0;
|
||
|
||
FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
|
||
{
|
||
int pbb_scatt_dims = isl_map_dim (pbb->transformed, isl_dim_out);
|
||
if (pbb_scatt_dims > scattering_dims)
|
||
scattering_dims = pbb_scatt_dims;
|
||
}
|
||
|
||
return scattering_dims;
|
||
}
|
||
|
||
static CloogInput *
|
||
generate_cloog_input (scop_p scop, clast_index_htab_type *params_index)
|
||
{
|
||
CloogUnionDomain *union_domain;
|
||
CloogInput *cloog_input;
|
||
CloogDomain *context;
|
||
int nb_scattering_dims = get_max_scattering_dimensions (scop);
|
||
|
||
union_domain = build_cloog_union_domain (scop, nb_scattering_dims);
|
||
union_domain = add_names_to_union_domain (scop, union_domain,
|
||
nb_scattering_dims,
|
||
params_index);
|
||
context = cloog_domain_from_isl_set (isl_set_copy (scop->context));
|
||
|
||
cloog_input = cloog_input_alloc (context, union_domain);
|
||
|
||
return cloog_input;
|
||
}
|
||
|
||
/* Translate SCOP to a CLooG program and clast. These two
|
||
representations should be freed together: a clast cannot be used
|
||
without a program. */
|
||
|
||
static struct clast_stmt *
|
||
scop_to_clast (scop_p scop, clast_index_htab_type *params_index)
|
||
{
|
||
CloogInput *cloog_input;
|
||
struct clast_stmt *clast;
|
||
CloogOptions *options = set_cloog_options ();
|
||
|
||
cloog_input = generate_cloog_input (scop, params_index);
|
||
|
||
/* Dump a .cloog input file, if requested. This feature is only
|
||
enabled in the Graphite branch. */
|
||
if (0)
|
||
{
|
||
static size_t file_scop_number = 0;
|
||
FILE *cloog_file = init_cloog_input_file (file_scop_number);
|
||
cloog_input_dump_cloog (cloog_file, cloog_input, options);
|
||
}
|
||
|
||
clast = cloog_clast_create_from_input (cloog_input, options);
|
||
|
||
cloog_options_free (options);
|
||
return clast;
|
||
}
|
||
|
||
/* Prints to FILE the code generated by CLooG for SCOP. */
|
||
|
||
void
|
||
print_generated_program (FILE *file, scop_p scop)
|
||
{
|
||
CloogOptions *options = set_cloog_options ();
|
||
clast_index_htab_type *params_index = new clast_index_htab_type (10);
|
||
struct clast_stmt *clast;
|
||
|
||
clast = scop_to_clast (scop, params_index);
|
||
|
||
fprintf (file, " (clast: \n");
|
||
clast_pprint (file, clast, 0, options);
|
||
fprintf (file, " )\n");
|
||
|
||
cloog_options_free (options);
|
||
cloog_clast_free (clast);
|
||
}
|
||
|
||
/* Prints to STDERR the code generated by CLooG for SCOP. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_generated_program (scop_p scop)
|
||
{
|
||
print_generated_program (stderr, scop);
|
||
}
|
||
|
||
/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
|
||
the given SCOP. Return true if code generation succeeded.
|
||
BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
|
||
*/
|
||
|
||
bool
|
||
graphite_regenerate_ast_cloog (scop_p scop, bb_pbb_htab_type *bb_pbb_mapping)
|
||
{
|
||
auto_vec<tree, 10> newivs;
|
||
loop_p context_loop;
|
||
sese region = SCOP_REGION (scop);
|
||
ifsese if_region = NULL;
|
||
clast_index_htab_type *newivs_index, *params_index;
|
||
struct clast_stmt *clast;
|
||
struct ivs_params ip;
|
||
|
||
timevar_push (TV_GRAPHITE_CODE_GEN);
|
||
graphite_regenerate_error = false;
|
||
|
||
params_index = new clast_index_htab_type (10);
|
||
|
||
clast = scop_to_clast (scop, params_index);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "\nCLAST generated by CLooG: \n");
|
||
print_clast_stmt (dump_file, clast);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
recompute_all_dominators ();
|
||
graphite_verify ();
|
||
|
||
if_region = move_sese_in_condition (region);
|
||
sese_insert_phis_for_liveouts (region,
|
||
if_region->region->exit->src,
|
||
if_region->false_region->exit,
|
||
if_region->true_region->exit);
|
||
recompute_all_dominators ();
|
||
graphite_verify ();
|
||
|
||
context_loop = SESE_ENTRY (region)->src->loop_father;
|
||
newivs_index= new clast_index_htab_type (10);
|
||
|
||
ip.newivs = &newivs;
|
||
ip.newivs_index = newivs_index;
|
||
ip.params = SESE_PARAMS (region);
|
||
ip.params_index = params_index;
|
||
ip.region = region;
|
||
|
||
translate_clast (context_loop, clast, if_region->true_region->entry,
|
||
bb_pbb_mapping, 0, &ip);
|
||
graphite_verify ();
|
||
scev_reset ();
|
||
recompute_all_dominators ();
|
||
graphite_verify ();
|
||
|
||
if (graphite_regenerate_error)
|
||
set_ifsese_condition (if_region, integer_zero_node);
|
||
|
||
free (if_region->true_region);
|
||
free (if_region->region);
|
||
free (if_region);
|
||
|
||
delete newivs_index;
|
||
newivs_index = NULL;
|
||
delete params_index;
|
||
params_index = NULL;
|
||
cloog_clast_free (clast);
|
||
timevar_pop (TV_GRAPHITE_CODE_GEN);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
loop_p loop;
|
||
int num_no_dependency = 0;
|
||
|
||
FOR_EACH_LOOP (loop, 0)
|
||
if (loop->can_be_parallel)
|
||
num_no_dependency++;
|
||
|
||
fprintf (dump_file, "\n%d loops carried no dependency.\n",
|
||
num_no_dependency);
|
||
}
|
||
|
||
return !graphite_regenerate_error;
|
||
}
|
||
#endif
|