
sqrt should be 0.5ulp precise, but the current implementation is less precise than that. The following patch uses the soft-fp code (like e.g. glibc for x86) for it if possible. I didn't want to replicate the libgcc infrastructure for choosing the right sfp-machine.h, so the patch just uses a single generic implementation. As the code is used solely for the finite positive arguments, it shouldn't generate NaNs (so the exact form of canonical QNaN/SNaN is irrelevant), and sqrt for these shouldn't produce underflows/overflows either, for < 1.0 arguments it always returns larger values than the argument and for > 1.0 smaller values than the argument. 2024-04-09 Jakub Jelinek <jakub@redhat.com> PR libquadmath/114623 * sfp-machine.h: New file. * math/sqrtq.c: Include from libgcc/soft-fp also soft-fp.h and quad.h if possible. (USE_SOFT_FP): Define in that case. (sqrtq): Use soft-fp based implementation for the finite positive arguments if possible.
86 lines
1.7 KiB
C
86 lines
1.7 KiB
C
#include "quadmath-imp.h"
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#if __has_include("../../libgcc/soft-fp/soft-fp.h") \
|
|
&& __has_include("../../libgcc/soft-fp/quad.h") \
|
|
&& defined(FE_TONEAREST) \
|
|
&& defined(FE_UPWARD) \
|
|
&& defined(FE_DOWNWARD) \
|
|
&& defined(FE_TOWARDZERO) \
|
|
&& defined(FE_INEXACT)
|
|
#define USE_SOFT_FP 1
|
|
#include "../../libgcc/soft-fp/soft-fp.h"
|
|
#include "../../libgcc/soft-fp/quad.h"
|
|
#endif
|
|
|
|
__float128
|
|
sqrtq (const __float128 x)
|
|
{
|
|
__float128 y;
|
|
int exp;
|
|
|
|
if (isnanq (x) || (isinfq (x) && x > 0))
|
|
return x;
|
|
|
|
if (x == 0)
|
|
return x;
|
|
|
|
if (x < 0)
|
|
{
|
|
/* Return NaN with invalid signal. */
|
|
return (x - x) / (x - x);
|
|
}
|
|
|
|
#if USE_SOFT_FP
|
|
FP_DECL_EX;
|
|
FP_DECL_Q (X);
|
|
FP_DECL_Q (Y);
|
|
|
|
FP_INIT_ROUNDMODE;
|
|
FP_UNPACK_Q (X, x);
|
|
FP_SQRT_Q (Y, X);
|
|
FP_PACK_Q (y, Y);
|
|
FP_HANDLE_EXCEPTIONS;
|
|
return y;
|
|
#else
|
|
if (x <= DBL_MAX && x >= DBL_MIN)
|
|
{
|
|
/* Use double result as starting point. */
|
|
y = sqrt ((double) x);
|
|
|
|
/* Two Newton iterations. */
|
|
y -= 0.5q * (y - x / y);
|
|
y -= 0.5q * (y - x / y);
|
|
return y;
|
|
}
|
|
|
|
#ifdef HAVE_SQRTL
|
|
{
|
|
long double xl = (long double) x;
|
|
if (xl <= LDBL_MAX && xl >= LDBL_MIN)
|
|
{
|
|
/* Use long double result as starting point. */
|
|
y = (__float128) sqrtl (xl);
|
|
|
|
/* One Newton iteration. */
|
|
y -= 0.5q * (y - x / y);
|
|
return y;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* If we're outside of the range of C types, we have to compute
|
|
the initial guess the hard way. */
|
|
y = frexpq (x, &exp);
|
|
if (exp % 2)
|
|
y *= 2, exp--;
|
|
|
|
y = sqrt (y);
|
|
y = scalbnq (y, exp / 2);
|
|
|
|
/* Two Newton iterations. */
|
|
y -= 0.5q * (y - x / y);
|
|
y -= 0.5q * (y - x / y);
|
|
return y;
|
|
#endif
|
|
}
|