Support OpenACC 'declare create' with Fortran allocatable arrays, part I [PR106643]

PR libgomp/106643
	libgomp/
	* oacc-mem.c (goacc_enter_data_internal): Support
	OpenACC 'declare create' with Fortran allocatable arrays, part I.
	* testsuite/libgomp.oacc-fortran/declare-allocatable-1-directive.f90:
	New.
	* testsuite/libgomp.oacc-fortran/declare-allocatable-array_descriptor-1-directive.f90:
	New.
This commit is contained in:
Thomas Schwinge 2022-10-27 21:52:07 +02:00
parent abeaf3735f
commit da8e0e1191
3 changed files with 706 additions and 2 deletions

View file

@ -1150,8 +1150,7 @@ goacc_enter_data_internal (struct gomp_device_descr *acc_dev, size_t mapnum,
}
else if (n && groupnum > 1)
{
assert (n->refcount != REFCOUNT_INFINITY
&& n->refcount != REFCOUNT_LINK);
assert (n->refcount != REFCOUNT_LINK);
for (size_t j = i + 1; j <= group_last; j++)
if ((kinds[j] & 0xff) == GOMP_MAP_ATTACH)
@ -1166,6 +1165,31 @@ goacc_enter_data_internal (struct gomp_device_descr *acc_dev, size_t mapnum,
bool processed = false;
struct target_mem_desc *tgt = n->tgt;
/* Arrange so that OpenACC 'declare' code à la PR106643
"[gfortran + OpenACC] Allocate in module causes refcount error"
has a chance to work. */
if ((kinds[i] & 0xff) == GOMP_MAP_TO_PSET
&& tgt->list_count == 0)
{
/* 'declare target'. */
assert (n->refcount == REFCOUNT_INFINITY);
for (size_t k = 1; k < groupnum; k++)
{
/* The only thing we expect to see here. */
assert ((kinds[i + k] & 0xff) == GOMP_MAP_POINTER);
}
/* Given that 'goacc_exit_data_internal'/'goacc_exit_datum_1'
will always see 'n->refcount == REFCOUNT_INFINITY',
there's no need to adjust 'n->dynamic_refcount' here. */
processed = true;
}
else
assert (n->refcount != REFCOUNT_INFINITY);
for (size_t j = 0; j < tgt->list_count; j++)
if (tgt->list[j].key == n)
{

View file

@ -0,0 +1,278 @@
! Test OpenACC 'declare create' with allocatable arrays.
! { dg-do run }
!TODO-OpenACC-declare-allocate
! Missing support for OpenACC "Changes from Version 2.0 to 2.5":
! "The 'declare create' directive with a Fortran 'allocatable' has new behavior".
! Thus, after 'allocate'/before 'deallocate', do
! '!$acc enter data create'/'!$acc exit data delete' manually.
!TODO { dg-additional-options -fno-inline } for stable results regarding OpenACC 'routine'.
! { dg-additional-options -fopt-info-all-omp }
! { dg-additional-options -foffload=-fopt-info-all-omp }
! { dg-additional-options --param=openacc-privatization=noisy }
! { dg-additional-options -foffload=--param=openacc-privatization=noisy }
! Prune a few: uninteresting, and potentially varying depending on GCC configuration (data types):
! { dg-prune-output {note: variable '[Di]\.[0-9]+' declared in block isn't candidate for adjusting OpenACC privatization level: not addressable} }
! { dg-additional-options -Wopenacc-parallelism }
! It's only with Tcl 8.5 (released in 2007) that "the variable 'varName'
! passed to 'incr' may be unset, and in that case, it will be set to [...]",
! so to maintain compatibility with earlier Tcl releases, we manually
! initialize counter variables:
! { dg-line l_dummy[variable c 0] }
! { dg-message dummy {} { target iN-VAl-Id } l_dummy } to avoid
! "WARNING: dg-line var l_dummy defined, but not used".
module vars
implicit none
integer, parameter :: n = 100
real*8, allocatable :: b(:)
!$acc declare create (b)
end module vars
program test
use vars
use openacc
implicit none
real*8 :: a
integer :: i
interface
subroutine sub1
!$acc routine gang
end subroutine sub1
subroutine sub2
end subroutine sub2
real*8 function fun1 (ix)
integer ix
!$acc routine seq
end function fun1
real*8 function fun2 (ix)
integer ix
!$acc routine seq
end function fun2
end interface
if (allocated (b)) error stop
! Test local usage of an allocated declared array.
allocate (b(n))
!$acc enter data create (b)
if (.not.allocated (b)) error stop
if (.not.acc_is_present (b)) error stop
a = 2.0
!$acc parallel loop ! { dg-line l[incr c] }
! { dg-note {variable 'i' in 'private' clause is candidate for adjusting OpenACC privatization level} {} { target *-*-* } l$c }
! { dg-note {variable 'i' ought to be adjusted for OpenACC privatization level: 'vector'} {} { target *-*-* } l$c }
! { dg-note {variable 'i' adjusted for OpenACC privatization level: 'vector'} {} { target { ! openacc_host_selected } } l$c }
! { dg-note {variable 'i\.[0-9]+' in 'private' clause isn't candidate for adjusting OpenACC privatization level: not addressable} {} { target *-*-* } l$c }
! { dg-optimized {assigned OpenACC gang vector loop parallelism} {} { target *-*-* } l$c }
do i = 1, n
b(i) = i * a
end do
if (.not.acc_is_present (b)) error stop
!$acc update host(b)
do i = 1, n
if (b(i) /= i*a) error stop
end do
!$acc exit data delete (b)
deallocate (b)
! Test the usage of an allocated declared array inside an acc
! routine subroutine.
allocate (b(n))
!$acc enter data create (b)
if (.not.allocated (b)) error stop
if (.not.acc_is_present (b)) error stop
!$acc parallel
call sub1 ! { dg-line l[incr c] }
! { dg-optimized {assigned OpenACC gang worker vector loop parallelism} {} { target *-*-* } l$c }
!$acc end parallel
if (.not.acc_is_present (b)) error stop
!$acc update host(b)
do i = 1, n
if (b(i) /= i*2) error stop
end do
!$acc exit data delete (b)
deallocate (b)
! Test the usage of an allocated declared array inside a host
! subroutine.
call sub2
if (.not.acc_is_present (b)) error stop
!$acc update host(b)
do i = 1, n
if (b(i) /= 1.0) error stop
end do
!$acc exit data delete (b)
deallocate (b)
if (allocated (b)) error stop
! Test the usage of an allocated declared array inside an acc
! routine function.
allocate (b(n))
!$acc enter data create (b)
if (.not.allocated (b)) error stop
if (.not.acc_is_present (b)) error stop
!$acc parallel loop ! { dg-line l[incr c] }
! { dg-note {variable 'i' in 'private' clause is candidate for adjusting OpenACC privatization level} {} { target *-*-* } l$c }
! { dg-note {variable 'i' ought to be adjusted for OpenACC privatization level: 'vector'} {} { target *-*-* } l$c }
! { dg-note {variable 'i' adjusted for OpenACC privatization level: 'vector'} {} { target { ! openacc_host_selected } } l$c }
! { dg-note {variable 'i\.[0-9]+' in 'private' clause isn't candidate for adjusting OpenACC privatization level: not addressable} {} { target *-*-* } l$c }
! { dg-optimized {assigned OpenACC gang vector loop parallelism} {} { target *-*-* } l$c }
do i = 1, n
b(i) = 1.0
end do
!$acc parallel loop ! { dg-line l[incr c] }
! { dg-note {variable 'i' in 'private' clause is candidate for adjusting OpenACC privatization level} {} { target *-*-* } l$c }
! { dg-note {variable 'i' ought to be adjusted for OpenACC privatization level: 'vector'} {} { target *-*-* } l$c }
! { dg-note {variable 'i' adjusted for OpenACC privatization level: 'vector'} {} { target { ! openacc_host_selected } } l$c }
! { dg-note {variable 'i\.[0-9]+' in 'private' clause isn't candidate for adjusting OpenACC privatization level: not addressable} {} { target *-*-* } l$c }
! { dg-optimized {assigned OpenACC gang vector loop parallelism} {} { target *-*-* } l$c }
do i = 1, n
b(i) = fun1 (i) ! { dg-line l[incr c] }
! { dg-optimized {assigned OpenACC seq loop parallelism} {} { target *-*-* } l$c }
end do
if (.not.acc_is_present (b)) error stop
!$acc update host(b)
do i = 1, n
if (b(i) /= i) error stop
end do
!$acc exit data delete (b)
deallocate (b)
! Test the usage of an allocated declared array inside a host
! function.
allocate (b(n))
!$acc enter data create (b)
if (.not.allocated (b)) error stop
if (.not.acc_is_present (b)) error stop
!$acc parallel loop ! { dg-line l[incr c] }
! { dg-note {variable 'i' in 'private' clause is candidate for adjusting OpenACC privatization level} {} { target *-*-* } l$c }
! { dg-note {variable 'i' ought to be adjusted for OpenACC privatization level: 'vector'} {} { target *-*-* } l$c }
! { dg-note {variable 'i' adjusted for OpenACC privatization level: 'vector'} {} { target { ! openacc_host_selected } } l$c }
! { dg-note {variable 'i\.[0-9]+' in 'private' clause isn't candidate for adjusting OpenACC privatization level: not addressable} {} { target *-*-* } l$c }
! { dg-optimized {assigned OpenACC gang vector loop parallelism} {} { target *-*-* } l$c }
do i = 1, n
b(i) = 1.0
end do
!$acc update host(b)
do i = 1, n
b(i) = fun2 (i)
end do
if (.not.acc_is_present (b)) error stop
do i = 1, n
if (b(i) /= i*i) error stop
end do
!$acc exit data delete (b)
deallocate (b)
end program test ! { dg-line l[incr c] }
! { dg-bogus {note: variable 'overflow\.[0-9]+' declared in block isn't candidate for adjusting OpenACC privatization level: not addressable} {TODO n/a} { xfail *-*-* } l$c }
! { dg-bogus {note: variable 'not_prev_allocated\.[0-9]+' declared in block isn't candidate for adjusting OpenACC privatization level: not addressable} {TODO n/a} { xfail *-*-* } l$c }
! { dg-bogus {note: variable 'parm\.[0-9]+' declared in block isn't candidate for adjusting OpenACC privatization level: artificial} {TODO n/a} { xfail *-*-* } l$c }
! Set each element in array 'b' at index i to i*2.
subroutine sub1 ! { dg-line subroutine_sub1 }
use vars
implicit none
integer i
!$acc routine gang
! { dg-bogus {[Ww]arning: region is worker partitioned but does not contain worker partitioned code} {TODO default 'gang' 'vector'} { xfail *-*-* } subroutine_sub1 }
!$acc loop ! { dg-line l[incr c] }
! { dg-note {variable 'i' in 'private' clause isn't candidate for adjusting OpenACC privatization level: not addressable} {} { target *-*-* } l$c }
! { dg-optimized {assigned OpenACC gang vector loop parallelism} {} { target *-*-* } l$c }
do i = 1, n
b(i) = i*2
end do
end subroutine sub1
! Allocate array 'b', and set it to all 1.0.
subroutine sub2
use vars
use openacc
implicit none
integer i
allocate (b(n))
!$acc enter data create (b)
if (.not.allocated (b)) error stop
if (.not.acc_is_present (b)) error stop
!$acc parallel loop ! { dg-line l[incr c] }
! { dg-note {variable 'i' in 'private' clause isn't candidate for adjusting OpenACC privatization level: not addressable} {} { target *-*-* } l$c }
! { dg-optimized {assigned OpenACC gang vector loop parallelism} {} { target *-*-* } l$c }
do i = 1, n
b(i) = 1.0
end do
end subroutine sub2
! Return b(i) * i;
real*8 function fun1 (i)
use vars
implicit none
integer i
!$acc routine seq
fun1 = b(i) * i
end function fun1
! Return b(i) * i * i;
real*8 function fun2 (i)
use vars
implicit none
integer i
fun2 = b(i) * i * i
end function fun2

View file

@ -0,0 +1,402 @@
! Test OpenACC 'declare create' with allocatable arrays.
! { dg-do run }
! Note that we're not testing OpenACC semantics here, but rather documenting
! current GCC behavior, specifically, behavior concerning updating of
! host/device array descriptors.
! { dg-skip-if n/a { *-*-* } { -DACC_MEM_SHARED=1 } }
!TODO-OpenACC-declare-allocate
! Missing support for OpenACC "Changes from Version 2.0 to 2.5":
! "The 'declare create' directive with a Fortran 'allocatable' has new behavior".
! Thus, after 'allocate'/before 'deallocate', do
! '!$acc enter data create'/'!$acc exit data delete' manually.
!TODO { dg-additional-options -fno-inline } for stable results regarding OpenACC 'routine'.
!TODO OpenACC 'serial' vs. GCC/nvptx:
!TODO { dg-prune-output {using 'vector_length \(32\)', ignoring 1} }
! { dg-additional-options -fdump-tree-original }
! { dg-additional-options -fdump-tree-gimple }
module vars
implicit none
integer, parameter :: n1_lb = -3
integer, parameter :: n1_ub = 6
integer, parameter :: n2_lb = -9999
integer, parameter :: n2_ub = 22222
integer, allocatable :: b(:)
!$acc declare create (b)
end module vars
program test
use vars
use openacc
implicit none
integer :: i
! Identifiers for purposes of reliable '-fdump-tree-[...]' scanning.
integer :: id1_1, id1_2
interface
subroutine verify_initial
implicit none
!$acc routine seq
end subroutine verify_initial
subroutine verify_n1_allocated
implicit none
!$acc routine seq
end subroutine verify_n1_allocated
subroutine verify_n1_values (addend)
implicit none
!$acc routine gang
integer, value :: addend
end subroutine verify_n1_values
subroutine verify_n1_deallocated (expect_allocated)
implicit none
!$acc routine seq
logical, value :: expect_allocated
end subroutine verify_n1_deallocated
subroutine verify_n2_allocated
implicit none
!$acc routine seq
end subroutine verify_n2_allocated
subroutine verify_n2_values (addend)
implicit none
!$acc routine gang
integer, value :: addend
end subroutine verify_n2_values
subroutine verify_n2_deallocated (expect_allocated)
implicit none
!$acc routine seq
logical, value :: expect_allocated
end subroutine verify_n2_deallocated
end interface
call acc_create (id1_1)
call acc_create (id1_2)
call verify_initial
! It is important here (and similarly, following) that there is no data
! clause for 'b' (explicit or implicit): no 'GOMP_MAP_TO_PSET'.
!$acc serial
call verify_initial
!$acc end serial
allocate (b(n1_lb:n1_ub))
call verify_n1_allocated
if (acc_is_present (b)) error stop
!$acc enter data create (b)
! This is now OpenACC "present":
if (.not.acc_is_present (b)) error stop
! This still has the initial array descriptor:
!$acc serial
call verify_initial
!$acc end serial
do i = n1_lb, n1_ub
b(i) = i - 1
end do
! Verify that host-to-device copy doesn't touch the device-side (still
! initial) array descriptor (but it does copy the array data).
call acc_update_device (b)
!$acc serial
call verify_initial
!$acc end serial
b = 40
! Verify that device-to-host copy doesn't touch the host-side array
! descriptor, doesn't copy out the device-side (still initial) array
! descriptor (but it does copy the array data).
call acc_update_self (b)
call verify_n1_allocated
do i = n1_lb, n1_ub
if (b(i) /= i - 1) error stop
b(i) = b(i) + 2
end do
! The same using the OpenACC 'update' directive.
!$acc update device (b) self (id1_1)
! We do have 'GOMP_MAP_TO_PSET' here:
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma acc update map\(force_to:\*\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[pointer assign, bias: 0\]\) map\(force_from:id1_1\);$} 1 original } }
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma omp target oacc_update map\(force_to:MEM <integer\(kind=[0-9]+\)\[0:\]> \[\(integer\(kind=[0-9]+\)\[0:\] \*\)[^\]]+\] \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:b\.data \[pointer assign, bias: 0\]\) map\(force_from:id1_1 \[len: [0-9]+\]\)$} 1 gimple } }
! ..., but it's silently skipped in 'GOACC_update'.
!$acc serial
call verify_initial
!$acc end serial
b = 41
!$acc update self (b) self (id1_2)
! We do have 'GOMP_MAP_TO_PSET' here:
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma acc update map\(force_from:\*\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[pointer assign, bias: 0\]\) map\(force_from:id1_2\);$} 1 original } }
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma omp target oacc_update map\(force_from:MEM <integer\(kind=[0-9]+\)\[0:\]> \[\(integer\(kind=[0-9]+\)\[0:\] \*\)[^\]]+\] \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:b\.data \[pointer assign, bias: 0\]\) map\(force_from:id1_2 \[len: [0-9]+\]\)$} 1 gimple } }
! ..., but it's silently skipped in 'GOACC_update'.
call verify_n1_allocated
do i = n1_lb, n1_ub
if (b(i) /= i + 1) error stop
b(i) = b(i) + 2
end do
! Now install the actual array descriptor, via a data clause for 'b'
! (explicit or implicit): must get a 'GOMP_MAP_TO_PSET', which then in
! 'gomp_map_vars_internal' is handled as 'declare target', and because of
! '*(void **) hostaddrs[i] != NULL', we've got 'has_always_ptrset == true',
! 'always_to_cnt == 1', and therefore 'gomp_map_vars_existing' does update
! the 'GOMP_MAP_TO_PSET'.
!$acc serial present (b) copyin (id1_1)
call verify_initial
id1_1 = 0
!$acc end serial
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma acc serial map\(force_present:\*\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[pointer assign, bias: 0\]\) map\(to:id1_1\)$} 1 original } }
!TODO ..., but without an actual use of 'b', the gimplifier removes the
!TODO 'GOMP_MAP_TO_PSET':
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma omp target oacc_serial map\(force_present:MEM <integer\(kind=[0-9]+\)\[0:\]> \[\(integer\(kind=[0-9]+\)\[0:\] \*\)[^\]]+\] \[len: [^\]]+\]\) map\(alloc:b\.data \[pointer assign, bias: 0\]\) map\(to:id1_1 \[len: [0-9]+\]\)$} 1 gimple } }
!$acc serial present (b) copyin (id1_2)
call verify_n1_allocated
!TODO Use of 'b':
id1_2 = ubound (b, 1)
!$acc end serial
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma acc serial map\(force_present:\*\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[pointer assign, bias: 0\]\) map\(to:id1_2\)$} 1 original } }
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma omp target oacc_serial map\(force_present:MEM <integer\(kind=[0-9]+\)\[0:\]> \[\(integer\(kind=[0-9]+\)\[0:\] \*\)[^\]]+\] \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:b\.data \[pointer assign, bias: 0\]\) map\(to:id1_2 \[len: [0-9]+\]\)$} 1 gimple } }
!$acc parallel copyin (id1_1) ! No data clause for 'b' (explicit or implicit): no 'GOMP_MAP_TO_PSET'.
call verify_n1_values (1)
id1_1 = 0
!$acc end parallel
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma acc parallel map\(to:id1_1\)$} 1 original } }
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma omp target oacc_parallel map\(to:id1_1 \[len: [0-9]+\]\)$} 1 gimple } }
!$acc parallel copy (b) copyin (id1_2)
! As already present, 'copy (b)' doesn't copy; addend is still '1'.
call verify_n1_values (1)
id1_2 = 0
!$acc end parallel
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma acc parallel map\(tofrom:\*\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[pointer assign, bias: 0\]\) map\(to:id1_2\)$} 1 original } }
!TODO ..., but without an actual use of 'b', the gimplifier removes the
!TODO 'GOMP_MAP_TO_PSET':
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma omp target oacc_parallel map\(tofrom:MEM <integer\(kind=[0-9]+\)\[0:\]> \[\(integer\(kind=[0-9]+\)\[0:\] \*\)[^\]]+\] \[len: [^\]]+\]\) map\(alloc:b\.data \[pointer assign, bias: 0\]\) map\(to:id1_2 \[len: [0-9]+\]\)$} 1 gimple } }
call verify_n1_allocated
if (.not.acc_is_present (b)) error stop
!$acc exit data delete (b)
if (.not.allocated (b)) error stop
if (acc_is_present (b)) error stop
! The device-side array descriptor doesn't get updated, so 'b' still appears
! as "allocated":
!$acc serial
call verify_n1_allocated
!$acc end serial
deallocate (b)
call verify_n1_deallocated (.false.)
! The device-side array descriptor doesn't get updated, so 'b' still appears
! as "allocated":
!$acc serial
call verify_n1_allocated
!$acc end serial
! Now try to install the actual array descriptor, via a data clause for 'b'
! (explicit or implicit): must get a 'GOMP_MAP_TO_PSET', which then in
! 'gomp_map_vars_internal' is handled as 'declare target', but because of
! '*(void **) hostaddrs[i] == NULL', we've got 'has_always_ptrset == false',
! 'always_to_cnt == 0', and therefore 'gomp_map_vars_existing' doesn't update
! the 'GOMP_MAP_TO_PSET'.
! The device-side array descriptor doesn't get updated, so 'b' still appears
! as "allocated":
!TODO Why does 'present (b)' still work here?
!$acc serial present (b) copyout (id1_2)
call verify_n1_deallocated (.true.)
!TODO Use of 'b'.
id1_2 = ubound (b, 1)
!$acc end serial
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma acc serial map\(force_present:\*\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:\(integer\(kind=[0-9]+\)\[0:\] \* restrict\) b\.data \[pointer assign, bias: 0\]\) map\(from:id1_2\)$} 1 original } }
! { dg-final { scan-tree-dump-times {(?n)^ *#pragma omp target oacc_serial map\(force_present:MEM <integer\(kind=[0-9]+\)\[0:\]> \[\(integer\(kind=[0-9]+\)\[0:\] \*\)[^\]]+\] \[len: [^\]]+\]\) map\(to:b \[pointer set, len: [0-9]+\]\) map\(alloc:b\.data \[pointer assign, bias: 0\]\) map\(from:id1_2 \[len: [0-9]+\]\)$} 1 gimple } }
! Restart the procedure, with different array dimensions.
allocate (b(n2_lb:n2_ub))
call verify_n2_allocated
if (acc_is_present (b)) error stop
!$acc enter data create (b)
if (.not.acc_is_present (b)) error stop
! This still has the previous (n1) array descriptor:
!$acc serial
call verify_n1_deallocated (.true.)
!$acc end serial
do i = n2_lb, n2_ub
b(i) = i + 20
end do
call acc_update_device (b)
!$acc serial
call verify_n1_deallocated (.true.)
!$acc end serial
b = -40
call acc_update_self (b)
call verify_n2_allocated
do i = n2_lb, n2_ub
if (b(i) /= i + 20) error stop
b(i) = b(i) - 40
end do
!$acc update device (b)
!$acc serial
call verify_n1_deallocated (.true.)
!$acc end serial
b = -41
!$acc update self (b)
call verify_n2_allocated
do i = n2_lb, n2_ub
if (b(i) /= i - 20) error stop
b(i) = b(i) + 10
end do
!$acc serial present (b) copy (id1_2)
call verify_n2_allocated
!TODO Use of 'b':
id1_2 = ubound (b, 1)
!$acc end serial
!$acc parallel
call verify_n2_values (-20)
!$acc end parallel
!$acc parallel copy (b)
call verify_n2_values (-20)
!$acc end parallel
call verify_n2_allocated
if (.not.acc_is_present (b)) error stop
!$acc exit data delete (b)
if (.not.allocated (b)) error stop
if (acc_is_present (b)) error stop
!$acc serial
call verify_n2_allocated
!$acc end serial
deallocate (b)
call verify_n2_deallocated (.false.)
!$acc serial
call verify_n2_allocated
!$acc end serial
!$acc serial present (b) copy (id1_2)
call verify_n2_deallocated (.true.)
!TODO Use of 'b':
id1_2 = ubound (b, 1)
!$acc end serial
end program test
subroutine verify_initial
use vars
implicit none
!$acc routine seq
if (allocated (b)) error stop "verify_initial allocated"
if (any (lbound (b) /= [0])) error stop "verify_initial lbound"
if (any (ubound (b) /= [0])) error stop "verify_initial ubound"
end subroutine verify_initial
subroutine verify_n1_allocated
use vars
implicit none
!$acc routine seq
if (.not.allocated (b)) error stop "verify_n1_allocated allocated"
if (any (lbound (b) /= [n1_lb])) error stop "verify_n1_allocated lbound"
if (any (ubound (b) /= [n1_ub])) error stop "verify_n1_allocated ubound"
end subroutine verify_n1_allocated
subroutine verify_n1_values (addend)
use vars
implicit none
!$acc routine gang
integer, value :: addend
integer :: i
!$acc loop
do i = n1_lb, n1_ub
if (b(i) /= i + addend) error stop
end do
end subroutine verify_n1_values
subroutine verify_n1_deallocated (expect_allocated)
use vars
implicit none
!$acc routine seq
logical, value :: expect_allocated
if (allocated(b) .neqv. expect_allocated) error stop "verify_n1_deallocated allocated"
! Apparently 'deallocate'ing doesn't unset the bounds.
if (any (lbound (b) /= [n1_lb])) error stop "verify_n1_deallocated lbound"
if (any (ubound (b) /= [n1_ub])) error stop "verify_n1_deallocated ubound"
end subroutine verify_n1_deallocated
subroutine verify_n2_allocated
use vars
implicit none
!$acc routine seq
if (.not.allocated(b)) error stop "verify_n2_allocated allocated"
if (any (lbound (b) /= [n2_lb])) error stop "verify_n2_allocated lbound"
if (any (ubound (b) /= [n2_ub])) error stop "verify_n2_allocated ubound"
end subroutine verify_n2_allocated
subroutine verify_n2_values (addend)
use vars
implicit none
!$acc routine gang
integer, value :: addend
integer :: i
!$acc loop
do i = n2_lb, n2_ub
if (b(i) /= i + addend) error stop
end do
end subroutine verify_n2_values
subroutine verify_n2_deallocated (expect_allocated)
use vars
implicit none
!$acc routine seq
logical, value :: expect_allocated
if (allocated(b) .neqv. expect_allocated) error stop "verify_n2_deallocated allocated"
! Apparently 'deallocate'ing doesn't unset the bounds.
if (any (lbound (b) /= [n2_lb])) error stop "verify_n2_deallocated lbound"
if (any (ubound (b) /= [n2_ub])) error stop "verify_n2_deallocated ubound"
end subroutine verify_n2_deallocated