Fix usage of analyze_brprob.py script.

2018-01-19  Martin Liska  <mliska@suse.cz>

	* analyze_brprob.py: Support new format that can be easily
	parsed. Add new column to report.
2018-01-19  Martin Liska  <mliska@suse.cz>

	* predict.c (dump_prediction): Add new format for
	analyze_brprob.py script which is enabled with -details
	suboption.
	* profile-count.h (precise_p): New function.

From-SVN: r256886
This commit is contained in:
Martin Liska 2018-01-19 13:03:24 +01:00 committed by Martin Liska
parent 09a7858b2c
commit d1b9a5724b
5 changed files with 102 additions and 31 deletions

View file

@ -1,3 +1,8 @@
2018-01-19 Martin Liska <mliska@suse.cz>
* analyze_brprob.py: Support new format that can be easily
parsed. Add new column to report.
2018-01-03 Jakub Jelinek <jakub@redhat.com>
* update-copyright.py: Skip pdt-5.f03 in gfortran.dg subdir.

View file

@ -71,6 +71,7 @@ from math import *
counter_aggregates = set(['combined', 'first match', 'DS theory',
'no prediction'])
hot_threshold = 10
def percentage(a, b):
return 100.0 * a / b
@ -131,47 +132,87 @@ class PredictDefFile:
with open(self.path, 'w+') as f:
for l in modified_lines:
f.write(l + '\n')
class Heuristics:
def __init__(self, count, hits, fits):
self.count = count
self.hits = hits
self.fits = fits
class Summary:
def __init__(self, name):
self.name = name
self.branches = 0
self.successfull_branches = 0
self.count = 0
self.hits = 0
self.fits = 0
self.edges= []
def branches(self):
return len(self.edges)
def hits(self):
return sum([x.hits for x in self.edges])
def fits(self):
return sum([x.fits for x in self.edges])
def count(self):
return sum([x.count for x in self.edges])
def successfull_branches(self):
return len([x for x in self.edges if 2 * x.hits >= x.count])
def get_hitrate(self):
return 100.0 * self.hits / self.count
return 100.0 * self.hits() / self.count()
def get_branch_hitrate(self):
return 100.0 * self.successfull_branches / self.branches
return 100.0 * self.successfull_branches() / self.branches()
def count_formatted(self):
v = self.count
v = self.count()
for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']:
if v < 1000:
return "%3.2f%s" % (v, unit)
v /= 1000.0
return "%.1f%s" % (v, 'Y')
def count(self):
return sum([x.count for x in self.edges])
def print(self, branches_max, count_max, predict_def):
# filter out most hot edges (if requested)
self.edges = sorted(self.edges, reverse = True, key = lambda x: x.count)
if args.coverage_threshold != None:
threshold = args.coverage_threshold * self.count() / 100
edges = [x for x in self.edges if x.count < threshold]
if len(edges) != 0:
self.edges = edges
predicted_as = None
if predict_def != None and self.name in predict_def.predictors:
predicted_as = predict_def.predictors[self.name]
print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' %
(self.name, self.branches,
percentage(self.branches, branches_max),
(self.name, self.branches(),
percentage(self.branches(), branches_max),
self.get_branch_hitrate(),
self.get_hitrate(),
percentage(self.fits, self.count),
self.count, self.count_formatted(),
percentage(self.count, count_max)), end = '')
percentage(self.fits(), self.count()),
self.count(), self.count_formatted(),
percentage(self.count(), count_max)), end = '')
if predicted_as != None:
print('%12i%% %5.1f%%' % (predicted_as,
self.get_hitrate() - predicted_as), end = '')
else:
print(' ' * 20, end = '')
# print details about the most important edges
if args.coverage_threshold == None:
edges = [x for x in self.edges[:100] if x.count * hot_threshold > self.count()]
if args.verbose:
for c in edges:
r = 100.0 * c.count / self.count()
print(' %.0f%%:%d' % (r, c.count), end = '')
elif len(edges) > 0:
print(' %0.0f%%:%d' % (100.0 * sum([x.count for x in edges]) / self.count(), len(edges)), end = '')
print()
class Profile:
@ -185,33 +226,29 @@ class Profile:
self.heuristics[name] = Summary(name)
s = self.heuristics[name]
s.branches += 1
s.count += count
if prediction < 50:
hits = count - hits
remaining = count - hits
if hits >= remaining:
s.successfull_branches += 1
fits = max(hits, remaining)
s.hits += hits
s.fits += max(hits, remaining)
s.edges.append(Heuristics(count, hits, fits))
def add_loop_niter(self, niter):
if niter > 0:
self.niter_vector.append(niter)
def branches_max(self):
return max([v.branches for k, v in self.heuristics.items()])
return max([v.branches() for k, v in self.heuristics.items()])
def count_max(self):
return max([v.count for k, v in self.heuristics.items()])
return max([v.count() for k, v in self.heuristics.items()])
def print_group(self, sorting, group_name, heuristics, predict_def):
count_max = self.count_max()
branches_max = self.branches_max()
sorter = lambda x: x.branches
sorter = lambda x: x.branches()
if sorting == 'branch-hitrate':
sorter = lambda x: x.get_branch_hitrate()
elif sorting == 'hitrate':
@ -221,10 +258,10 @@ class Profile:
elif sorting == 'name':
sorter = lambda x: x.name.lower()
print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s' %
print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s %s' %
('HEURISTICS', 'BRANCHES', '(REL)',
'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)',
'predict.def', '(REL)'))
'predict.def', '(REL)', 'HOT branches (>%d%%)' % hot_threshold))
for h in sorted(heuristics, key = sorter):
h.print(branches_max, count_max, predict_def)
@ -266,19 +303,23 @@ parser.add_argument('-s', '--sorting', dest = 'sorting',
parser.add_argument('-d', '--def-file', help = 'path to predict.def')
parser.add_argument('-w', '--write-def-file', action = 'store_true',
help = 'Modify predict.def file in order to set new numbers')
parser.add_argument('-c', '--coverage-threshold', type = int,
help = 'Ignore edges that have percentage coverage >= coverage-threshold')
parser.add_argument('-v', '--verbose', action = 'store_true', help = 'Print verbose informations')
args = parser.parse_args()
profile = Profile(args.dump_file)
r = re.compile(' (.*) heuristics( of edge [0-9]*->[0-9]*)?( \\(.*\\))?: (.*)%.*exec ([0-9]*) hit ([0-9]*)')
loop_niter_str = ';; profile-based iteration count: '
for l in open(args.dump_file):
m = r.match(l)
if m != None and m.group(3) == None:
name = m.group(1)
prediction = float(m.group(4))
count = int(m.group(5))
hits = int(m.group(6))
if l.startswith(';;heuristics;'):
parts = l.strip().split(';')
assert len(parts) == 8
name = parts[3]
prediction = float(parts[6])
count = int(parts[4])
hits = int(parts[5])
profile.add(name, prediction, count, hits)
elif l.startswith(loop_niter_str):

View file

@ -1,3 +1,10 @@
2018-01-19 Martin Liska <mliska@suse.cz>
* predict.c (dump_prediction): Add new format for
analyze_brprob.py script which is enabled with -details
suboption.
* profile-count.h (precise_p): New function.
2018-01-19 Richard Sandiford <richard.sandiford@linaro.org>
PR tree-optimization/83922

View file

@ -747,6 +747,19 @@ dump_prediction (FILE *file, enum br_predictor predictor, int probability,
}
fprintf (file, "\n");
/* Print output that be easily read by analyze_brprob.py script. We are
interested only in counts that are read from GCDA files. */
if (dump_file && (dump_flags & TDF_DETAILS)
&& bb->count.precise_p ()
&& reason == REASON_NONE)
{
gcc_assert (e->count ().precise_p ());
fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
predictor_info[predictor].name,
bb->count.to_gcov_type (), e->count ().to_gcov_type (),
probability * 100.0 / REG_BR_PROB_BASE);
}
}
/* Return true if STMT is known to be unlikely executed. */

View file

@ -691,6 +691,11 @@ public:
{
return !initialized_p () || m_quality >= profile_guessed_global0;
}
/* Return true if quality of profile is precise. */
bool precise_p () const
{
return m_quality == profile_precise;
}
/* When merging basic blocks, the two different profile counts are unified.
Return true if this can be done without losing info about profile.