natString.cc (init): Handle case where DONT_COPY is true and OFFSET!=0.

* java/lang/natString.cc (init): Handle case where DONT_COPY is
	true and OFFSET!=0.
	* java/lang/String.java (String(char[],int,int,boolean): New
	constructor.
	* java/lang/Long.java: Imported new version from Classpath.
	* java/lang/Number.java: Likewise.
	* java/lang/Integer.java: Likewise.
	* java/lang/Long.java: Likewise.
	* java/lang/Float.java: Likewise.
	* java/lang/Boolean.java: Likewise.
	* java/lang/Double.java: Likewise.
	* java/lang/Void.java: Likewise.

From-SVN: r54595
This commit is contained in:
Tom Tromey 2002-06-13 18:16:26 +00:00 committed by Tom Tromey
parent a8fa30f301
commit 93f7aeea7a
10 changed files with 1874 additions and 1723 deletions

View file

@ -1,4 +1,4 @@
/* java.lang.Float
/* Float.java -- object wrapper for float
Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GNU Classpath.
@ -7,7 +7,7 @@ GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
@ -40,12 +40,6 @@ package java.lang;
import gnu.classpath.Configuration;
/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
* "The Java Language Specification", ISBN 0-201-63451-1
* plus online API docs for JDK 1.2 beta from http://www.javasoft.com.
* Status: Believed complete and correct.
*/
/**
* Instances of class <code>Float</code> represent primitive
* <code>float</code> values.
@ -55,10 +49,17 @@ import gnu.classpath.Configuration;
*
* @author Paul Fisher
* @author Andrew Haley <aph@cygnus.com>
* @since JDK 1.0
* @author Eric Blake <ebb9@email.byu.edu>
* @since 1.0
* @status updated to 1.4
*/
public final class Float extends Number implements Comparable
{
/**
* Compatible with JDK 1.0+.
*/
private static final long serialVersionUID = -2671257302660747028L;
/**
* The maximum positive value a <code>double</code> may represent
* is 3.4028235e+38f.
@ -74,46 +75,50 @@ public final class Float extends Number implements Comparable
/**
* The value of a float representation -1.0/0.0, negative infinity.
*/
public static final float NEGATIVE_INFINITY = -1.0f/0.0f;
public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
/**
* The value of a float representation 1.0/0.0, positive infinity.
*/
public static final float POSITIVE_INFINITY = 1.0f/0.0f;
public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
/**
* All IEEE 754 values of NaN have the same value in Java.
*/
public static final float NaN = 0.0f/0.0f;
public static final float NaN = 0.0f / 0.0f;
/**
* The primitive type <code>float</code> is represented by this
* The primitive type <code>float</code> is represented by this
* <code>Class</code> object.
* @since 1.1
*/
public static final Class TYPE = VMClassLoader.getPrimitiveClass('F');
/**
* The immutable value of this Float.
*
* @serial the wrapped float
*/
private final float value;
private static final long serialVersionUID = -2671257302660747028L;
/**
* Load native routines necessary for this class.
*/
static
{
if (Configuration.INIT_LOAD_LIBRARY)
{
System.loadLibrary ("javalang");
System.loadLibrary("javalang");
}
}
/**
* Create a <code>float</code> from the primitive <code>Float</code>
* Create a <code>Float</code> from the primitive <code>float</code>
* specified.
*
* @param value the <code>Float</code> argument
* @param value the <code>float</code> argument
*/
public Float (float value)
public Float(float value)
{
this.value = value;
}
@ -124,257 +129,134 @@ public final class Float extends Number implements Comparable
*
* @param value the <code>double</code> argument
*/
public Float (double value)
public Float(double value)
{
this.value = (float)value;
this.value = (float) value;
}
/**
* Create a <code>Float</code> from the specified <code>String</code>.
*
* This method calls <code>Float.parseFloat()</code>.
*
* @exception NumberFormatException when the <code>String</code> cannot
* be parsed into a <code>Float</code>.
* @param s the <code>String</code> to convert
* @see #parseFloat(java.lang.String)
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>float</code>
* @throws NullPointerException if <code>s</code> is null
* @see #parseFloat(String)
*/
public Float (String s) throws NumberFormatException
public Float(String s)
{
this.value = parseFloat (s);
}
/**
* Parse the specified <code>String</code> as a <code>float</code>.
*
* The number is really read as <em>n * 10<sup>exponent</sup></em>. The
* first number is <em>n</em>, and if there is an "<code>E</code>"
* ("<code>e</code>" is also acceptable), then the integer after that is
* the exponent.
* <P>
* Here are the possible forms the number can take:
* <BR>
* <TABLE BORDER=1>
* <TR><TH>Form</TH><TH>Examples</TH></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;[.]</CODE></TD><TD>345., -10, 12</TD></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;</CODE></TD><TD>40.2, 80.00, -12.30</TD></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;[.]E[+-]&lt;number&gt;</CODE></TD><TD>80E12, -12e+7, 4.E-123</TD></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;E[+-]&lt;number&gt;</CODE></TD><TD>6.02e-22, -40.2E+6, 12.3e9</TD></TR>
* </TABLE>
*
* "<code>[+-]</code>" means either a plus or minus sign may go there, or
* neither, in which case + is assumed.
* <BR>
* "<code>[.]</code>" means a dot may be placed here, but is optional.
* <BR>
* "<code>&lt;number&gt;</code>" means a string of digits (0-9), basically
* an integer. "<code>&lt;number&gt;.&lt;number&gt;</code>" is basically
* a real number, a floating-point value.
* <P>
* Remember that a <code>float</code> has a limited range. If the
* number you specify is greater than <code>Float.MAX_VALUE</code> or less
* than <code>-Float.MAX_VALUE</code>, it will be set at
* <code>Float.POSITIVE_INFINITY</code> or
* <code>Float.NEGATIVE_INFINITY</code>, respectively.
* <P>
*
* Note also that <code>float</code> does not have perfect precision. Many
* numbers cannot be precisely represented. The number you specify
* will be rounded to the nearest representable value.
* <code>Float.MIN_VALUE</code> is the margin of error for <code>float</code>
* values.
* <P>
* If an unexpected character is found in the <code>String</code>, a
* <code>NumberFormatException</code> will be thrown. Spaces are not
* allowed and will cause this exception to be thrown.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the <code>String</code> to convert
* @return the value of the <code>String</code> as a <code>float</code>.
* @exception NumberFormatException when the string cannot be parsed to a
* <code>float</code>.
* @since JDK 1.2
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
*/
public static float parseFloat (String s) throws NumberFormatException
{
// The spec says that parseFloat() should work like
// Double.valueOf(). This is equivalent, in our implementation,
// but more efficient.
return (float) Double.parseDouble (s);
}
/**
* Convert the <code>float</code> value of this <code>Float</code>
* to a <code>String</code>. This method calls
* <code>Float.toString(float)</code> to do its dirty work.
*
* @return the <code>String</code> representation of this <code>Float</code>.
* @see #toString(float)
*/
public String toString ()
{
return toString (value);
}
/**
* If the <code>Object</code> is not <code>null</code>, is an
* <code>instanceof</code> <code>Float</code>, and represents
* the same primitive <code>float</code> value return
* <code>true</code>. Otherwise <code>false</code> is returned.
* <p>
* Note that there are two differences between <code>==</code> and
* <code>equals()</code>. <code>0.0f == -0.0f</code> returns <code>true</code>
* but <code>new Float(0.0f).equals(new Float(-0.0f))</code> returns
* <code>false</code>. And <code>Float.NaN == Float.NaN</code> returns
* <code>false</code>, but
* <code>new Float(Float.NaN).equals(new Float(Float.NaN))</code> returns
* <code>true</code>.
*
* @param obj the object to compare to
* @return whether the objects are semantically equal.
*/
public boolean equals (Object obj)
{
if (!(obj instanceof Float))
return false;
float f = ((Float) obj).value;
// GCJ LOCAL: this implementation is probably faster than
// Classpath's, especially once we inline floatToIntBits.
return floatToIntBits (value) == floatToIntBits (f);
// END GCJ LOCAL
}
/**
* Return a hashcode representing this Object.
* <code>Float</code>'s hash code is calculated by calling the
* <code>floatToIntBits()</code> function.
* @return this Object's hash code.
* @see java.lang.Float.floatToIntBits(float)
*/
public int hashCode ()
{
return floatToIntBits (value);
}
/**
* Return the value of this <code>Double</code> when cast to an
* <code>int</code>.
*/
public int intValue ()
{
return (int) value;
}
/**
* Return the value of this <code>Double</code> when cast to a
* <code>long</code>.
*/
public long longValue ()
{
return (long) value;
}
/**
* Return the value of this <code>Double</code> when cast to a
* <code>float</code>.
*/
public float floatValue ()
{
return (float) value;
}
/**
* Return the primitive <code>double</code> value represented by this
* <code>Double</code>.
*/
public double doubleValue ()
{
return (double) value;
value = parseFloat(s);
}
/**
* Convert the <code>float</code> to a <code>String</code>.
* <P>
*
* Floating-point string representation is fairly complex: here is a
* rundown of the possible values. "<CODE>[-]</CODE>" indicates that a
* rundown of the possible values. "<code>[-]</code>" indicates that a
* negative sign will be printed if the value (or exponent) is negative.
* "<CODE>&lt;number&gt;</CODE>" means a string of digits (0-9).
* "<CODE>&lt;digit&gt;</CODE>" means a single digit (0-9).
* <P>
* "<code>&lt;number&gt;</code>" means a string of digits ('0' to '9').
* "<code>&lt;digit&gt;</code>" means a single digit ('0' to '9').<br>
*
* <TABLE BORDER=1>
* <TR><TH>Value of Float</TH><TH>String Representation</TH></TR>
* <TR>
* <TD>[+-] 0</TD>
* <TD>[<CODE>-</CODE>]<CODE>0.0</CODE></TD>
* </TR>
* <TR>
* <TD>Between [+-] 10<SUP>-3</SUP> and 10<SUP>7</SUP></TD>
* <TD><CODE>[-]number.number</CODE></TD>
* </TR>
* <TR>
* <TD>Other numeric value</TD>
* <TD><CODE>[-]&lt;digit&gt;.&lt;number&gt;E[-]&lt;number&gt;</CODE></TD>
* </TR>
* <TR>
* <TD>[+-] infinity</TD>
* <TD><CODE>[-]Infinity</CODE></TD>
* </TR>
* <TR>
* <TD>NaN</TD>
* <TD><CODE>NaN</CODE></TD>
* </TR>
* </TABLE>
* <table border=1>
* <tr><th>Value of Float</th><th>String Representation</th></tr>
* <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
* <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
* <td><code>[-]number.number</code></td></tr>
* <tr><td>Other numeric value</td>
* <td><code>[-]&lt;digit&gt;.&lt;number&gt;
* E[-]&lt;number&gt;</code></td></tr>
* <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
* <tr><td>NaN</td> <td><code>NaN</code></td></tr>
* </table>
*
* Yes, negative zero <EM>is</EM> a possible value. Note that there is
* <EM>always</EM> a <CODE>.</CODE> and at least one digit printed after
* it: even if the number is 3, it will be printed as <CODE>3.0</CODE>.
* After the ".", all digits will be printed except trailing zeros. No
* truncation or rounding is done by this function.
* Yes, negative zero <em>is</em> a possible value. Note that there is
* <em>always</em> a <code>.</code> and at least one digit printed after
* it: even if the number is 3, it will be printed as <code>3.0</code>.
* After the ".", all digits will be printed except trailing zeros. The
* result is rounded to the shortest decimal number which will parse back
* to the same float.
*
* <p>To create other output formats, use {@link java.text.NumberFormat}.
*
* @XXX specify where we are not in accord with the spec.
*
* @param f the <code>float</code> to convert
* @return the <code>String</code> representing the <code>float</code>.
* @return the <code>String</code> representing the <code>float</code>
*/
public static String toString (float f)
public static String toString(float f)
{
return Double.toString ((double) f, true);
return Double.toString(f, true);
}
/**
* Return the result of calling <code>new Float(java.lang.String)</code>.
* Creates a new <code>Float</code> object using the <code>String</code>.
*
* @param s the <code>String</code> to convert to a <code>Float</code>.
* @return a new <code>Float</code> representing the <code>String</code>'s
* numeric value.
*
* @exception NumberFormatException thrown if <code>String</code> cannot
* be parsed as a <code>double</code>.
* @see #Float(java.lang.String)
* @see #parseFloat(java.lang.String)
* @param s the <code>String</code> to convert
* @return the new <code>Float</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>float</code>
* @throws NullPointerException if <code>s</code> is null
* @see #parseFloat(String)
*/
public static Float valueOf (String s) throws NumberFormatException
public static Float valueOf(String s)
{
return new Float (s);
return new Float(parseFloat(s));
}
/**
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
* @return whether this <code>Float</code> is <code>NaN</code>.
* Parse the specified <code>String</code> as a <code>float</code>. The
* extended BNF grammar is as follows:<br>
* <pre>
* <em>DecodableString</em>:
* ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
* | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
* | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
* [ <code>f</code> | <code>F</code> | <code>d</code>
* | <code>D</code>] )
* <em>FloatingPoint</em>:
* ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
* [ <em>Exponent</em> ] )
* | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
* <em>Exponent</em>:
* ( ( <code>e</code> | <code>E</code> )
* [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
* <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
* </pre>
*
* <p>NaN and infinity are special cases, to allow parsing of the output
* of toString. Otherwise, the result is determined by calculating
* <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
* to the nearest float. Remember that many numbers cannot be precisely
* represented in floating point. In case of overflow, infinity is used,
* and in case of underflow, signed zero is used. Unlike Integer.parseInt,
* this does not accept Unicode digits outside the ASCII range.
*
* <p>If an unexpected character is found in the <code>String</code>, a
* <code>NumberFormatException</code> will be thrown. Leading and trailing
* 'whitespace' is ignored via <code>String.trim()</code>, but spaces
* internal to the actual number are not allowed.
*
* <p>To parse numbers according to another format, consider using
* {@link java.text.NumberFormat}.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the <code>String</code> to convert
* @return the <code>float</code> value of <code>s</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>float</code>
* @throws NullPointerException if <code>s</code> is null
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
* @since 1.2
*/
public boolean isNaN ()
public static float parseFloat(String s)
{
return isNaN (value);
// XXX Rounding parseDouble() causes some errors greater than 1 ulp from
// the infinitely precise decimal.
return (float) Double.parseDouble(s);
}
/**
@ -382,9 +264,9 @@ public final class Float extends Number implements Comparable
* value as <code>NaN</code>, otherwise return <code>false</code>.
*
* @param v the <code>float</code> to compare
* @return whether the argument is <code>NaN</code>.
* @return whether the argument is <code>NaN</code>
*/
public static boolean isNaN (float v)
public static boolean isNaN(float v)
{
// This works since NaN != NaN is the only reflexive inequality
// comparison which returns true.
@ -392,111 +274,250 @@ public final class Float extends Number implements Comparable
}
/**
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Float</code> is (-/+) infinity.
*/
public boolean isInfinite ()
{
return isInfinite (value);
}
/**
* Return <code>true</code> if the <code>float</code> has a value
* equal to either <code>NEGATIVE_INFINITY</code> or
* Return <code>true</code> if the <code>float</code> has a value
* equal to either <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @param v the <code>float</code> to compare
* @return whether the argument is (-/+) infinity.
* @return whether the argument is (-/+) infinity
*/
public static boolean isInfinite (float v)
public static boolean isInfinite(float v)
{
return (v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY);
return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
}
/**
* Return the int bits of the specified <code>float</code>.
* The result of this function can be used as the argument to
* <code>Float.intBitsToFloat(long)</code> to obtain the
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Float</code> is <code>NaN</code>
*/
public boolean isNaN()
{
return isNaN(value);
}
/**
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Float</code> is (-/+) infinity
*/
public boolean isInfinite()
{
return isInfinite(value);
}
/**
* Convert the <code>float</code> value of this <code>Float</code>
* to a <code>String</code>. This method calls
* <code>Float.toString(float)</code> to do its dirty work.
*
* @return the <code>String</code> representation
* @see #toString(float)
*/
public String toString()
{
return toString(value);
}
/**
* Return the value of this <code>Float</code> as a <code>byte</code>.
*
* @return the byte value
* @since 1.1
*/
public byte byteValue()
{
return (byte) value;
}
/**
* Return the value of this <code>Float</code> as a <code>short</code>.
*
* @return the short value
* @since 1.1
*/
public short shortValue()
{
return (short) value;
}
/**
* Return the value of this <code>Integer</code> as an <code>int</code>.
*
* @return the int value
*/
public int intValue()
{
return (int) value;
}
/**
* Return the value of this <code>Integer</code> as a <code>long</code>.
*
* @return the long value
*/
public long longValue()
{
return (long) value;
}
/**
* Return the value of this <code>Float</code>.
*
* @return the float value
*/
public float floatValue()
{
return value;
}
/**
* Return the value of this <code>Float</code> as a <code>double</code>
*
* @return the double value
*/
public double doubleValue()
{
return value;
}
/**
* Return a hashcode representing this Object. <code>Float</code>'s hash
* code is calculated by calling <code>floatToIntBits(floatValue())</code>.
*
* @return this Object's hash code
* @see #floatToIntBits(float)
*/
public int hashCode()
{
return floatToIntBits(value);
}
/**
* Returns <code>true</code> if <code>obj</code> is an instance of
* <code>Float</code> and represents the same float value. Unlike comparing
* two floats with <code>==</code>, this treats two instances of
* <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
* <code>-0.0</code> as unequal.
*
* <p>Note that <code>f1.equals(f2)<code> is identical to
* <code>floatToIntBits(f1.floatValue()) ==
* floatToIntBits(f2.floatValue())<code>.
*
* @param obj the object to compare
* @return whether the objects are semantically equal
*/
public boolean equals(Object obj)
{
if (! (obj instanceof Float))
return false;
float f = ((Float) obj).value;
// Avoid call to native method. However, some implementations, like gcj,
// are better off using floatToIntBits(value) == floatToIntBits(f).
// Check common case first, then check NaN and 0.
if (value == f)
return (value != 0) || (1 / value == 1 / f);
return isNaN(value) && isNaN(f);
}
/**
* Convert the float to the IEEE 754 floating-point "single format" bit
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
* (masked by 0x7f800000) represent the exponent, and bits 22-0
* (masked by 0x007fffff) are the mantissa. This function collapses all
* versions of NaN to 0x7fc00000. The result of this function can be used
* as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
* original <code>float</code> value.
*
* @param value the <code>float</code> to convert
* @return the bits of the <code>float</code>.
* @return the bits of the <code>float</code>
* @see #intBitsToFloat(int)
*/
public static native int floatToIntBits (float value);
public static native int floatToIntBits(float value);
/**
* Return the int bits of the specified <code>float</code>.
* The result of this function can be used as the argument to
* <code>Float.intBitsToFloat(long)</code> to obtain the
* original <code>float</code> value. The difference between
* this function and <code>floatToIntBits</code> is that this
* function does not collapse NaN values.
* Convert the float to the IEEE 754 floating-point "single format" bit
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
* (masked by 0x7f800000) represent the exponent, and bits 22-0
* (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
* rather than collapsing to a canonical value. The result of this function
* can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
* obtain the original <code>float</code> value.
*
* @param value the <code>float</code> to convert
* @return the bits of the <code>float</code>.
* @return the bits of the <code>float</code>
* @see #intBitsToFloat(int)
*/
public static native int floatToRawIntBits (float value);
public static native int floatToRawIntBits(float value);
/**
* Return the <code>float</code> represented by the long
* bits specified.
* Convert the argument in IEEE 754 floating-point "single format" bit
* layout to the corresponding float. Bit 31 (the most significant) is the
* sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
* bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
* NaN alone, so that you can recover the bit pattern with
* <code>Float.floatToRawIntBits(float)</code>.
*
* @param bits the long bits representing a <code>double</code>
* @return the <code>float</code> represented by the bits.
* @param bits the bits to convert
* @return the <code>float</code> represented by the bits
* @see #floatToIntBits(float)
* @see #floatToRawIntBits(float)
*/
public static native float intBitsToFloat (int bits);
public static native float intBitsToFloat(int bits);
/**
* Returns 0 if the <code>float</code> value of the argument is
* equal to the value of this <code>Float</code>. Returns a number
* less than zero if the value of this <code>Float</code> is less
* than the <code>Float</code> value of the argument, and returns a
* number greater than zero if the value of this <code>Float</code>
* is greater than the <code>float</code> value of the argument.
* <br>
* <code>Float.NaN</code> is greater than any number other than itself,
* even <code>Float.POSITIVE_INFINITY</code>.
* <br>
* <code>0.0</code> is greater than <code>-0.0</code>.
*
* @param f the Float to compare to.
* @return 0 if the <code>Float</code>s are the same, &lt; 0 if this
* <code>Float</code> is less than the <code>Float</code> in
* in question, or &gt; 0 if it is greater.
* Compare two Floats numerically by comparing their <code>float</code>
* values. The result is positive if the first is greater, negative if the
* second is greater, and 0 if the two are equal. However, this special
* cases NaN and signed zero as follows: NaN is considered greater than
* all other floats, including <code>POSITIVE_INFINITY</code>, and positive
* zero is considered greater than negative zero.
*
* @param f the Float to compare
* @return the comparison
* @since 1.2
*/
public int compareTo (Float f)
public int compareTo(Float f)
{
return compare (value, f.value);
return compare(value, f.value);
}
/**
* Returns 0 if the first argument is equal to the second argument.
* Returns a number less than zero if the first argument is less than the
* second argument, and returns a number greater than zero if the first
* argument is greater than the second argument.
* <br>
* <code>Float.NaN</code> is greater than any number other than itself,
* even <code>Float.POSITIVE_INFINITY</code>.
* <br>
* <code>0.0</code> is greater than <code>-0.0</code>.
* Behaves like <code>compareTo(Float)</code> unless the Object
* is not an <code>Float</code>.
*
* @param x the first float to compare.
* @param y the second float to compare.
* @return 0 if the arguments are the same, &lt; 0 if the
* first argument is less than the second argument in
* in question, or &gt; 0 if it is greater.
* @param o the object to compare
* @return the comparison
* @throws ClassCastException if the argument is not a <code>Float</code>
* @see #compareTo(Float)
* @see Comparable
* @since 1.2
*/
public int compareTo(Object o)
{
return compare(value, ((Float) o).value);
}
/**
* Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
* other words this compares two floats, special casing NaN and zero,
* without the overhead of objects.
*
* @param x the first float to compare
* @param y the second float to compare
* @return the comparison
* @since 1.4
*/
public static int compare (float x, float y)
public static int compare(float x, float y)
{
if (isNaN (x))
return isNaN (y) ? 0 : 1;
if (isNaN (y))
if (isNaN(x))
return isNaN(y) ? 0 : 1;
if (isNaN(y))
return -1;
// recall that 0.0 == -0.0, so we convert to infinities and try again
if (x == 0 && y == 0)
@ -506,23 +527,4 @@ public final class Float extends Number implements Comparable
return x > y ? 1 : -1;
}
/**
* Compares the specified <code>Object</code> to this <code>Float</code>
* if and only if the <code>Object</code> is an instanceof
* <code>Float</code>.
* Otherwise it throws a <code>ClassCastException</code>
*
* @param o the Object to compare to.
* @return 0 if the <code>Float</code>s are the same, &lt; 0 if this
* <code>Float</code> is less than the <code>Float</code> in
* in question, or &gt; 0 if it is greater.
* @throws ClassCastException if the argument is not a <code>Float</code>
*
* @since 1.2
*/
public int compareTo (Object o)
{
return compareTo ((Float) o);
}
}