Imported GNU Classpath 0.90
Imported GNU Classpath 0.90 * scripts/makemake.tcl: Set gnu/java/awt/peer/swing to ignore. * gnu/classpath/jdwp/VMFrame.java (SIZE): New constant. * java/lang/VMCompiler.java: Use gnu.java.security.hash.MD5. * java/lang/Math.java: New override file. * java/lang/Character.java: Merged from Classpath. (start, end): Now 'int's. (canonicalName): New field. (CANONICAL_NAME, NO_SPACES_NAME, CONSTANT_NAME): New constants. (UnicodeBlock): Added argument. (of): New overload. (forName): New method. Updated unicode blocks. (sets): Updated. * sources.am: Regenerated. * Makefile.in: Likewise. From-SVN: r111942
This commit is contained in:
parent
27079765d0
commit
8aa540d2f7
1367 changed files with 188789 additions and 22762 deletions
356
libjava/classpath/gnu/java/security/sig/rsa/RSA.java
Normal file
356
libjava/classpath/gnu/java/security/sig/rsa/RSA.java
Normal file
|
@ -0,0 +1,356 @@
|
|||
/* RSA.java --
|
||||
Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
||||
|
||||
This file is a part of GNU Classpath.
|
||||
|
||||
GNU Classpath is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or (at
|
||||
your option) any later version.
|
||||
|
||||
GNU Classpath is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GNU Classpath; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
||||
USA
|
||||
|
||||
Linking this library statically or dynamically with other modules is
|
||||
making a combined work based on this library. Thus, the terms and
|
||||
conditions of the GNU General Public License cover the whole
|
||||
combination.
|
||||
|
||||
As a special exception, the copyright holders of this library give you
|
||||
permission to link this library with independent modules to produce an
|
||||
executable, regardless of the license terms of these independent
|
||||
modules, and to copy and distribute the resulting executable under
|
||||
terms of your choice, provided that you also meet, for each linked
|
||||
independent module, the terms and conditions of the license of that
|
||||
module. An independent module is a module which is not derived from
|
||||
or based on this library. If you modify this library, you may extend
|
||||
this exception to your version of the library, but you are not
|
||||
obligated to do so. If you do not wish to do so, delete this
|
||||
exception statement from your version. */
|
||||
|
||||
|
||||
package gnu.java.security.sig.rsa;
|
||||
|
||||
import gnu.java.security.Properties;
|
||||
import gnu.java.security.util.PRNG;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.security.PrivateKey;
|
||||
import java.security.PublicKey;
|
||||
import java.security.interfaces.RSAPrivateCrtKey;
|
||||
import java.security.interfaces.RSAPrivateKey;
|
||||
import java.security.interfaces.RSAPublicKey;
|
||||
|
||||
/**
|
||||
* <p>Utility methods related to the RSA algorithm.</p>
|
||||
*
|
||||
* <p>References:</p>
|
||||
* <ol>
|
||||
* <li><a href="http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/rsa-pss.zip">
|
||||
* RSA-PSS Signature Scheme with Appendix, part B.</a><br>
|
||||
* Primitive specification and supporting documentation.<br>
|
||||
* Jakob Jonsson and Burt Kaliski.</li>
|
||||
*
|
||||
* <li><a href="http://www.ietf.org/rfc/rfc3447.txt">Public-Key Cryptography
|
||||
* Standards (PKCS) #1:</a><br>
|
||||
* RSA Cryptography Specifications Version 2.1.<br>
|
||||
* Jakob Jonsson and Burt Kaliski.</li>
|
||||
*
|
||||
* <li><a href="http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html">
|
||||
* Remote timing attacks are practical</a><br>
|
||||
* D. Boneh and D. Brumley.</li>
|
||||
* </ol>
|
||||
*/
|
||||
public class RSA
|
||||
{
|
||||
|
||||
// Constants and variables
|
||||
// -------------------------------------------------------------------------
|
||||
|
||||
private static final BigInteger ZERO = BigInteger.ZERO;
|
||||
|
||||
private static final BigInteger ONE = BigInteger.ONE;
|
||||
|
||||
/** Our default source of randomness. */
|
||||
private static final PRNG prng = PRNG.getInstance();
|
||||
|
||||
// Constructor(s)
|
||||
// -------------------------------------------------------------------------
|
||||
|
||||
/** Trivial private constructor to enforce Singleton pattern. */
|
||||
private RSA()
|
||||
{
|
||||
super();
|
||||
}
|
||||
|
||||
// Class methods
|
||||
// -------------------------------------------------------------------------
|
||||
|
||||
// Signature and verification methods --------------------------------------
|
||||
|
||||
/**
|
||||
* <p>An implementation of the <b>RSASP</b> method: Assuming that the
|
||||
* designated RSA private key is a valid one, this method computes a
|
||||
* <i>signature representative</i> for a designated <i>message
|
||||
* representative</i> signed by the holder of the designated RSA private
|
||||
* key.<p>
|
||||
*
|
||||
* @param K the RSA private key.
|
||||
* @param m the <i>message representative</i>: an integer between
|
||||
* <code>0</code> and <code>n - 1</code>, where <code>n</code> is the RSA
|
||||
* <i>modulus</i>.
|
||||
* @return the <i>signature representative</i>, an integer between
|
||||
* <code>0</code> and <code>n - 1</code>, where <code>n</code> is the RSA
|
||||
* <i>modulus</i>.
|
||||
* @throws ClassCastException if <code>K</code> is not an RSA one.
|
||||
* @throws IllegalArgumentException if <code>m</code> (the <i>message
|
||||
* representative</i>) is out of range.
|
||||
*/
|
||||
public static final BigInteger sign(final PrivateKey K, final BigInteger m)
|
||||
{
|
||||
try
|
||||
{
|
||||
return RSADP((RSAPrivateKey) K, m);
|
||||
}
|
||||
catch (IllegalArgumentException x)
|
||||
{
|
||||
throw new IllegalArgumentException(
|
||||
"message representative out of range");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>An implementation of the <b>RSAVP</b> method: Assuming that the
|
||||
* designated RSA public key is a valid one, this method computes a
|
||||
* <i>message representative</i> for the designated <i>signature
|
||||
* representative</i> generated by an RSA private key, for a message
|
||||
* intended for the holder of the designated RSA public key.</p>
|
||||
*
|
||||
* @param K the RSA public key.
|
||||
* @param s the <i>signature representative</i>, an integer between
|
||||
* <code>0</code> and <code>n - 1</code>, where <code>n</code> is the RSA
|
||||
* <i>modulus</i>.
|
||||
* @return a <i>message representative</i>: an integer between <code>0</code>
|
||||
* and <code>n - 1</code>, where <code>n</code> is the RSA <i>modulus</i>.
|
||||
* @throws ClassCastException if <code>K</code> is not an RSA one.
|
||||
* @throws IllegalArgumentException if <code>s</code> (the <i>signature
|
||||
* representative</i>) is out of range.
|
||||
*/
|
||||
public static final BigInteger verify(final PublicKey K, final BigInteger s)
|
||||
{
|
||||
try
|
||||
{
|
||||
return RSAEP((RSAPublicKey) K, s);
|
||||
}
|
||||
catch (IllegalArgumentException x)
|
||||
{
|
||||
throw new IllegalArgumentException(
|
||||
"signature representative out of range");
|
||||
}
|
||||
}
|
||||
|
||||
// Encryption and decryption methods ---------------------------------------
|
||||
|
||||
/**
|
||||
* <p>An implementation of the <code>RSAEP</code> algorithm.</p>
|
||||
*
|
||||
* @param K the recipient's RSA public key.
|
||||
* @param m the message representative as an MPI.
|
||||
* @return the resulting MPI --an MPI between <code>0</code> and
|
||||
* <code>n - 1</code> (<code>n</code> being the public shared modulus)-- that
|
||||
* will eventually be padded with an appropriate framing/padding scheme.
|
||||
* @throws ClassCastException if <code>K</code> is not an RSA one.
|
||||
* @throws IllegalArgumentException if <code>m</code>, the message
|
||||
* representative is not between <code>0</code> and <code>n - 1</code>
|
||||
* (<code>n</code> being the public shared modulus).
|
||||
*/
|
||||
public static final BigInteger encrypt(final PublicKey K, final BigInteger m)
|
||||
{
|
||||
try
|
||||
{
|
||||
return RSAEP((RSAPublicKey) K, m);
|
||||
}
|
||||
catch (IllegalArgumentException x)
|
||||
{
|
||||
throw new IllegalArgumentException(
|
||||
"message representative out of range");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>An implementation of the <code>RSADP</code> algorithm.</p>
|
||||
*
|
||||
* @param K the recipient's RSA private key.
|
||||
* @param c the ciphertext representative as an MPI.
|
||||
* @return the message representative, an MPI between <code>0</code> and
|
||||
* <code>n - 1</code> (<code>n</code> being the shared public modulus).
|
||||
* @throws ClassCastException if <code>K</code> is not an RSA one.
|
||||
* @throws IllegalArgumentException if <code>c</code>, the ciphertext
|
||||
* representative is not between <code>0</code> and <code>n - 1</code>
|
||||
* (<code>n</code> being the shared public modulus).
|
||||
*/
|
||||
public static final BigInteger decrypt(final PrivateKey K, final BigInteger c)
|
||||
{
|
||||
try
|
||||
{
|
||||
return RSADP((RSAPrivateKey) K, c);
|
||||
}
|
||||
catch (IllegalArgumentException x)
|
||||
{
|
||||
throw new IllegalArgumentException(
|
||||
"ciphertext representative out of range");
|
||||
}
|
||||
}
|
||||
|
||||
// Conversion methods ------------------------------------------------------
|
||||
|
||||
/**
|
||||
* <p>Converts a <i>multi-precision integer</i> (MPI) <code>s</code> into an
|
||||
* octet sequence of length <code>k</code>.</p>
|
||||
*
|
||||
* @param s the multi-precision integer to convert.
|
||||
* @param k the length of the output.
|
||||
* @return the result of the transform.
|
||||
* @exception IllegalArgumentException if the length in octets of meaningful
|
||||
* bytes of <code>s</code> is greater than <code>k</code>.
|
||||
*/
|
||||
public static final byte[] I2OSP(final BigInteger s, final int k)
|
||||
{
|
||||
byte[] result = s.toByteArray();
|
||||
if (result.length < k)
|
||||
{
|
||||
final byte[] newResult = new byte[k];
|
||||
System.arraycopy(result, 0, newResult, k - result.length, result.length);
|
||||
result = newResult;
|
||||
}
|
||||
else if (result.length > k)
|
||||
{ // leftmost extra bytes should all be 0
|
||||
final int limit = result.length - k;
|
||||
for (int i = 0; i < limit; i++)
|
||||
{
|
||||
if (result[i] != 0x00)
|
||||
{
|
||||
throw new IllegalArgumentException("integer too large");
|
||||
}
|
||||
}
|
||||
final byte[] newResult = new byte[k];
|
||||
System.arraycopy(result, limit, newResult, 0, k);
|
||||
result = newResult;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// helper methods ----------------------------------------------------------
|
||||
|
||||
private static final BigInteger RSAEP(final RSAPublicKey K, final BigInteger m)
|
||||
{
|
||||
// 1. If the representative m is not between 0 and n - 1, output
|
||||
// "representative out of range" and stop.
|
||||
final BigInteger n = K.getModulus();
|
||||
if (m.compareTo(ZERO) < 0 || m.compareTo(n.subtract(ONE)) > 0)
|
||||
{
|
||||
throw new IllegalArgumentException();
|
||||
}
|
||||
// 2. Let c = m^e mod n.
|
||||
final BigInteger e = K.getPublicExponent();
|
||||
final BigInteger result = m.modPow(e, n);
|
||||
// 3. Output c.
|
||||
return result;
|
||||
}
|
||||
|
||||
private static final BigInteger RSADP(final RSAPrivateKey K, BigInteger c)
|
||||
{
|
||||
// 1. If the representative c is not between 0 and n - 1, output
|
||||
// "representative out of range" and stop.
|
||||
final BigInteger n = K.getModulus();
|
||||
if (c.compareTo(ZERO) < 0 || c.compareTo(n.subtract(ONE)) > 0)
|
||||
{
|
||||
throw new IllegalArgumentException();
|
||||
}
|
||||
|
||||
// 2. The representative m is computed as follows.
|
||||
BigInteger result;
|
||||
if (!(K instanceof RSAPrivateCrtKey))
|
||||
{
|
||||
// a. If the first form (n, d) of K is used, let m = c^d mod n.
|
||||
final BigInteger d = K.getPrivateExponent();
|
||||
result = c.modPow(d, n);
|
||||
}
|
||||
else
|
||||
{
|
||||
// from [3] p.13 --see class docs:
|
||||
// The RSA blinding operation calculates x = (r^e) * g mod n before
|
||||
// decryption, where r is random, e is the RSA encryption exponent, and
|
||||
// g is the ciphertext to be decrypted. x is then decrypted as normal,
|
||||
// followed by division by r, i.e. (x^e) / r mod n. Since r is random,
|
||||
// x is random and timing the decryption should not reveal information
|
||||
// about the key. Note that r should be a new random number for every
|
||||
// decryption.
|
||||
final boolean rsaBlinding = Properties.doRSABlinding();
|
||||
BigInteger r = null;
|
||||
BigInteger e = null;
|
||||
if (rsaBlinding)
|
||||
{ // pre-decryption
|
||||
r = newR(n);
|
||||
e = ((RSAPrivateCrtKey) K).getPublicExponent();
|
||||
final BigInteger x = r.modPow(e, n).multiply(c).mod(n);
|
||||
c = x;
|
||||
}
|
||||
|
||||
// b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i)
|
||||
// of K is used, proceed as follows:
|
||||
final BigInteger p = ((RSAPrivateCrtKey) K).getPrimeP();
|
||||
final BigInteger q = ((RSAPrivateCrtKey) K).getPrimeQ();
|
||||
final BigInteger dP = ((RSAPrivateCrtKey) K).getPrimeExponentP();
|
||||
final BigInteger dQ = ((RSAPrivateCrtKey) K).getPrimeExponentQ();
|
||||
final BigInteger qInv = ((RSAPrivateCrtKey) K).getCrtCoefficient();
|
||||
|
||||
// i. Let m_1 = c^dP mod p and m_2 = c^dQ mod q.
|
||||
final BigInteger m_1 = c.modPow(dP, p);
|
||||
final BigInteger m_2 = c.modPow(dQ, q);
|
||||
// ii. If u > 2, let m_i = c^(d_i) mod r_i, i = 3, ..., u.
|
||||
// iii. Let h = (m_1 - m_2) * qInv mod p.
|
||||
final BigInteger h = m_1.subtract(m_2).multiply(qInv).mod(p);
|
||||
// iv. Let m = m_2 + q * h.
|
||||
result = m_2.add(q.multiply(h));
|
||||
|
||||
if (rsaBlinding)
|
||||
{ // post-decryption
|
||||
result = result.multiply(r.modInverse(n)).mod(n);
|
||||
}
|
||||
}
|
||||
|
||||
// 3. Output m
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Returns a random MPI with a random bit-length of the form <code>8b</code>,
|
||||
* where <code>b</code> is in the range <code>[32..64]</code>.</p>
|
||||
*
|
||||
* @return a random MPI whose length in bytes is between 32 and 64 inclusive.
|
||||
*/
|
||||
private static final BigInteger newR(final BigInteger N)
|
||||
{
|
||||
final int upper = (N.bitLength() + 7) / 8;
|
||||
final int lower = upper / 2;
|
||||
final byte[] bl = new byte[1];
|
||||
int b;
|
||||
do
|
||||
{
|
||||
prng.nextBytes(bl);
|
||||
b = bl[0] & 0xFF;
|
||||
}
|
||||
while (b < lower || b > upper);
|
||||
final byte[] buffer = new byte[b]; // 256-bit MPI
|
||||
prng.nextBytes(buffer);
|
||||
return new BigInteger(1, buffer);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue