linux_threads.c (return_free_lists): Clear fl[i] unconditionally.
* linux_threads.c (return_free_lists): Clear fl[i] unconditionally. (GC_local_gcj_malloc): Add assertion. (start_mark_threads): Fix abort message. * mark.c (GC_mark_from): Generalize assertion. * reclaim.c (GC_clear_fl_links): New function. (GC_start_reclaim): Must clear some freelist links. * include/private/specific.h, specific.c: Add assertions. Safer definition for INVALID_QTID, quick_thread_id. Fix/add comments. Rearrange tse fields. From-SVN: r51582
This commit is contained in:
parent
02a566dcf0
commit
4d6ac5424e
5 changed files with 78 additions and 19 deletions
|
@ -27,16 +27,22 @@
|
|||
#define TS_HASH_SIZE 1024
|
||||
#define HASH(n) (((((long)n) >> 8) ^ (long)n) & (TS_HASH_SIZE - 1))
|
||||
|
||||
/* An entry describing a thread-specific value for a given thread. */
|
||||
/* All such accessible structures preserve the invariant that if either */
|
||||
/* thread is a valid pthread id or qtid is a valid "quick tread id" */
|
||||
/* for a thread, then value holds the corresponding thread specific */
|
||||
/* value. This invariant must be preserved at ALL times, since */
|
||||
/* asynchronous reads are allowed. */
|
||||
typedef struct thread_specific_entry {
|
||||
unsigned long qtid; /* quick thread id, only for cache */
|
||||
void * value;
|
||||
pthread_t thread;
|
||||
struct thread_specific_entry *next;
|
||||
pthread_t thread;
|
||||
} tse;
|
||||
|
||||
|
||||
/* We represent each thread-specific datum as two tables. The first is */
|
||||
/* a cache, index by a "quick thread identifier". The "quick" thread */
|
||||
/* a cache, indexed by a "quick thread identifier". The "quick" thread */
|
||||
/* identifier is an easy to compute value, which is guaranteed to */
|
||||
/* determine the thread, though a thread may correspond to more than */
|
||||
/* one value. We typically use the address of a page in the stack. */
|
||||
|
@ -45,12 +51,15 @@ typedef struct thread_specific_entry {
|
|||
|
||||
/* Return the "quick thread id". Default version. Assumes page size, */
|
||||
/* or at least thread stack separation, is at least 4K. */
|
||||
static __inline__ long quick_thread_id() {
|
||||
/* Must be defined so that it never returns 0. (Page 0 can't really */
|
||||
/* be part of any stack, since that would make 0 a valid stack pointer.)*/
|
||||
static __inline__ unsigned long quick_thread_id() {
|
||||
int dummy;
|
||||
return (long)(&dummy) >> 12;
|
||||
return (unsigned long)(&dummy) >> 12;
|
||||
}
|
||||
|
||||
#define INVALID_QTID ((unsigned long)(-1))
|
||||
#define INVALID_QTID ((unsigned long)0)
|
||||
#define INVALID_THREADID ((pthread_t)0)
|
||||
|
||||
typedef struct thread_specific_data {
|
||||
tse * volatile cache[TS_CACHE_SIZE];
|
||||
|
@ -76,7 +85,10 @@ static __inline__ void * PREFIXED(getspecific) (tsd * key) {
|
|||
unsigned hash_val = CACHE_HASH(qtid);
|
||||
tse * volatile * entry_ptr = key -> cache + hash_val;
|
||||
tse * entry = *entry_ptr; /* Must be loaded only once. */
|
||||
if (entry -> qtid == qtid) return entry -> value;
|
||||
if (entry -> qtid == qtid) {
|
||||
GC_ASSERT(entry -> thread == pthread_self());
|
||||
return entry -> value;
|
||||
}
|
||||
return PREFIXED(slow_getspecific) (key, qtid, entry_ptr);
|
||||
}
|
||||
|
||||
|
|
|
@ -231,15 +231,16 @@ static void return_freelists(ptr_t *fl, ptr_t *gfl)
|
|||
nwords = i * (GRANULARITY/sizeof(word));
|
||||
qptr = fl + i;
|
||||
q = *qptr;
|
||||
if ((word)q < HBLKSIZE) continue;
|
||||
if (gfl[nwords] == 0) {
|
||||
if ((word)q >= HBLKSIZE) {
|
||||
if (gfl[nwords] == 0) {
|
||||
gfl[nwords] = q;
|
||||
} else {
|
||||
} else {
|
||||
/* Concatenate: */
|
||||
for (; (word)q >= HBLKSIZE; qptr = &(obj_link(q)), q = *qptr);
|
||||
GC_ASSERT(0 == q);
|
||||
*qptr = gfl[nwords];
|
||||
gfl[nwords] = fl[i];
|
||||
}
|
||||
}
|
||||
/* Clear fl[i], since the thread structure may hang around. */
|
||||
/* Do it in a way that is likely to trap if we access it. */
|
||||
|
@ -412,6 +413,7 @@ GC_PTR GC_local_gcj_malloc(size_t bytes,
|
|||
/* A memory barrier is probably never needed, since the */
|
||||
/* action of stopping this thread will cause prior writes */
|
||||
/* to complete. */
|
||||
GC_ASSERT(((void * volatile *)result)[1] == 0);
|
||||
*(void * volatile *)result = ptr_to_struct_containing_descr;
|
||||
return result;
|
||||
} else if ((word)my_entry - 1 < DIRECT_GRANULES) {
|
||||
|
@ -544,7 +546,7 @@ static void start_mark_threads()
|
|||
ABORT("pthread_attr_getstacksize failed\n");
|
||||
if (old_size < MIN_STACK_SIZE) {
|
||||
if (pthread_attr_setstacksize(&attr, MIN_STACK_SIZE) != 0)
|
||||
ABORT("pthread_attr_getstacksize failed\n");
|
||||
ABORT("pthread_attr_setstacksize failed\n");
|
||||
}
|
||||
}
|
||||
# endif /* HPUX */
|
||||
|
|
|
@ -546,13 +546,13 @@ mse * mark_stack_limit;
|
|||
/* Large length. */
|
||||
/* Process part of the range to avoid pushing too much on the */
|
||||
/* stack. */
|
||||
GC_ASSERT(descr < GC_greatest_plausible_heap_addr
|
||||
- GC_least_plausible_heap_addr);
|
||||
# ifdef PARALLEL_MARK
|
||||
# define SHARE_BYTES 2048
|
||||
if (descr > SHARE_BYTES && GC_parallel
|
||||
&& mark_stack_top < mark_stack_limit - 1) {
|
||||
int new_size = (descr/2) & ~(sizeof(word)-1);
|
||||
GC_ASSERT(descr < GC_greatest_plausible_heap_addr
|
||||
- GC_least_plausible_heap_addr);
|
||||
mark_stack_top -> mse_start = current_p;
|
||||
mark_stack_top -> mse_descr = new_size + sizeof(word);
|
||||
/* makes sure we handle */
|
||||
|
|
|
@ -861,6 +861,25 @@ void GC_print_block_list()
|
|||
|
||||
#endif /* NO_DEBUGGING */
|
||||
|
||||
/*
|
||||
* Clear all obj_link pointers in the list of free objects *flp.
|
||||
* Clear *flp.
|
||||
* This must be done before dropping a list of free gcj-style objects,
|
||||
* since may otherwise end up with dangling "descriptor" pointers.
|
||||
* It may help for other pointer-containg objects.
|
||||
*/
|
||||
void GC_clear_fl_links(flp)
|
||||
ptr_t *flp;
|
||||
{
|
||||
ptr_t next = *flp;
|
||||
|
||||
while (0 != next) {
|
||||
*flp = 0;
|
||||
flp = &(obj_link(next));
|
||||
next = *flp;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform GC_reclaim_block on the entire heap, after first clearing
|
||||
* small object free lists (if we are not just looking for leaks).
|
||||
|
@ -875,17 +894,24 @@ int report_if_found; /* Abort if a GC_reclaimable object is found */
|
|||
# endif
|
||||
/* Clear reclaim- and free-lists */
|
||||
for (kind = 0; kind < GC_n_kinds; kind++) {
|
||||
register ptr_t *fop;
|
||||
register ptr_t *lim;
|
||||
register struct hblk ** rlp;
|
||||
register struct hblk ** rlim;
|
||||
register struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;
|
||||
ptr_t *fop;
|
||||
ptr_t *lim;
|
||||
struct hblk ** rlp;
|
||||
struct hblk ** rlim;
|
||||
struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;
|
||||
GC_bool should_clobber = (GC_obj_kinds[kind].ok_descriptor != 0);
|
||||
|
||||
if (rlist == 0) continue; /* This kind not used. */
|
||||
if (!report_if_found) {
|
||||
lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJSZ+1]);
|
||||
for( fop = GC_obj_kinds[kind].ok_freelist; fop < lim; fop++ ) {
|
||||
*fop = 0;
|
||||
if (*fop != 0) {
|
||||
if (should_clobber) {
|
||||
GC_clear_fl_links(fop);
|
||||
} else {
|
||||
*fop = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
} /* otherwise free list objects are marked, */
|
||||
/* and its safe to leave them */
|
||||
|
|
|
@ -16,17 +16,27 @@
|
|||
#include "private/gc_priv.h" /* For GC_compare_and_exchange, GC_memory_barrier */
|
||||
#include "private/specific.h"
|
||||
|
||||
static tse invalid_tse; /* 0 qtid is guaranteed to be invalid */
|
||||
static tse invalid_tse = {INVALID_QTID, 0, 0, INVALID_THREADID};
|
||||
/* A thread-specific data entry which will never */
|
||||
/* appear valid to a reader. Used to fill in empty */
|
||||
/* cache entries to avoid a check for 0. */
|
||||
|
||||
int PREFIXED(key_create) (tsd ** key_ptr, void (* destructor)(void *)) {
|
||||
int i;
|
||||
tsd * result = (tsd *)MALLOC_CLEAR(sizeof (tsd));
|
||||
|
||||
/* A quick alignment check, since we need atomic stores */
|
||||
GC_ASSERT((unsigned long)(&invalid_tse.next) % sizeof(tse *) == 0);
|
||||
if (0 == result) return ENOMEM;
|
||||
pthread_mutex_init(&(result -> lock), NULL);
|
||||
for (i = 0; i < TS_CACHE_SIZE; ++i) {
|
||||
result -> cache[i] = &invalid_tse;
|
||||
}
|
||||
# ifdef GC_ASSERTIONS
|
||||
for (i = 0; i < TS_HASH_SIZE; ++i) {
|
||||
GC_ASSERT(result -> hash[i] == 0);
|
||||
}
|
||||
# endif
|
||||
*key_ptr = result;
|
||||
return 0;
|
||||
}
|
||||
|
@ -36,12 +46,14 @@ int PREFIXED(setspecific) (tsd * key, void * value) {
|
|||
int hash_val = HASH(self);
|
||||
volatile tse * entry = (volatile tse *)MALLOC_CLEAR(sizeof (tse));
|
||||
|
||||
GC_ASSERT(self != INVALID_THREADID);
|
||||
if (0 == entry) return ENOMEM;
|
||||
pthread_mutex_lock(&(key -> lock));
|
||||
/* Could easily check for an existing entry here. */
|
||||
entry -> next = key -> hash[hash_val];
|
||||
entry -> thread = self;
|
||||
entry -> value = value;
|
||||
GC_ASSERT(entry -> qtid == INVALID_QTID);
|
||||
/* There can only be one writer at a time, but this needs to be */
|
||||
/* atomic with respect to concurrent readers. */
|
||||
*(volatile tse **)(key -> hash + hash_val) = entry;
|
||||
|
@ -70,6 +82,10 @@ void PREFIXED(remove_specific) (tsd * key) {
|
|||
*link = entry -> next;
|
||||
/* Atomic! concurrent accesses still work. */
|
||||
/* They must, since readers don't lock. */
|
||||
/* We shouldn't need a volatile access here, */
|
||||
/* since both this and the preceding write */
|
||||
/* should become visible no later than */
|
||||
/* the pthread_mutex_unlock() call. */
|
||||
}
|
||||
/* If we wanted to deallocate the entry, we'd first have to clear */
|
||||
/* any cache entries pointing to it. That probably requires */
|
||||
|
@ -91,6 +107,7 @@ void * PREFIXED(slow_getspecific) (tsd * key, unsigned long qtid,
|
|||
unsigned hash_val = HASH(self);
|
||||
tse *entry = key -> hash[hash_val];
|
||||
|
||||
GC_ASSERT(qtid != INVALID_QTID);
|
||||
while (entry != NULL && entry -> thread != self) {
|
||||
entry = entry -> next;
|
||||
}
|
||||
|
@ -99,6 +116,8 @@ void * PREFIXED(slow_getspecific) (tsd * key, unsigned long qtid,
|
|||
entry -> qtid = qtid;
|
||||
/* It's safe to do this asynchronously. Either value */
|
||||
/* is safe, though may produce spurious misses. */
|
||||
/* We're replacing one qtid with another one for the */
|
||||
/* same thread. */
|
||||
*cache_ptr = entry;
|
||||
/* Again this is safe since pointer assignments are */
|
||||
/* presumed atomic, and either pointer is valid. */
|
||||
|
|
Loading…
Add table
Reference in a new issue