handle missing isl_ast_expr

From ISL's documentation, isl_ast_op_zdiv_r is equal to zero iff the remainder
on integer division is zero.  Code generate a modulo operation for that.

	* graphite-isl-ast-to-gimple.c (binary_op_to_tree): Handle isl_ast_op_zdiv_r.
        (gcc_expression_from_isl_expr_op): Same.

	* gcc.dg/graphite/id-28.c: New.

Co-Authored-By: Sebastian Pop <s.pop@samsung.com>

From-SVN: r231212
This commit is contained in:
Aditya Kumar 2015-12-02 23:06:29 +00:00 committed by Sebastian Pop
parent 1a67d2cd3c
commit 49ed2fa429
4 changed files with 85 additions and 0 deletions

View file

@ -1,3 +1,9 @@
2015-12-02 Aditya Kumar <aditya.k7@samsung.com>
Sebastian Pop <s.pop@samsung.com>
* graphite-isl-ast-to-gimple.c (binary_op_to_tree): Handle isl_ast_op_zdiv_r.
(gcc_expression_from_isl_expr_op): Same.
2015-12-02 Aditya Kumar <aditya.k7@samsung.com>
Sebastian Pop <s.pop@samsung.com>

View file

@ -588,6 +588,7 @@ binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
}
return fold_build2 (TRUNC_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_zdiv_r:
case isl_ast_op_pdiv_r:
/* As ISL operates on arbitrary precision numbers, we may end up with
division by 2^64 that is folded to 0. */
@ -758,6 +759,7 @@ gcc_expression_from_isl_expr_op (tree type, __isl_take isl_ast_expr *expr,
case isl_ast_op_pdiv_q:
case isl_ast_op_pdiv_r:
case isl_ast_op_fdiv_q:
case isl_ast_op_zdiv_r:
case isl_ast_op_and:
case isl_ast_op_or:
case isl_ast_op_eq:

View file

@ -1,3 +1,8 @@
2015-12-02 Aditya Kumar <aditya.k7@samsung.com>
Sebastian Pop <s.pop@samsung.com>
* gcc.dg/graphite/id-28.c: New.
2015-12-02 Aditya Kumar <aditya.k7@samsung.com>
Sebastian Pop <s.pop@samsung.com>

View file

@ -0,0 +1,72 @@
/* { dg-options "-fcilkplus -floop-nest-optimize -O3" } */
#if HAVE_IO
#include <stdio.h>
#endif
#include <math.h>
#define NUMBER 5
int func1 (int *a1, int *a2)
{
return __sec_reduce_add (a1[0:NUMBER] * a2[0:NUMBER:1]);
}
int func2 (int *a1, int *a2)
{
return (__sec_reduce_add (a1[0:NUMBER] * a2[0:NUMBER]) +
__sec_reduce_mul (a1[0:NUMBER] + a2[0:NUMBER]));
}
int func3 (int *a1, int *a2)
{
return (int) sqrt ((double)(__sec_reduce_add (a1[0:NUMBER] * a2[0:NUMBER]) +
a2[0] + a2[1] + a2[3]));
}
int func4 (int *a1, int *a2)
{
return a1[NUMBER-1] * (__sec_reduce_add (a1[0:NUMBER] * a2[0:NUMBER]) + a2[0] + a2[1] + a2[3])/a1[NUMBER-2];
}
int main(void)
{
int array[NUMBER], array2[NUMBER];
int return_value = 0;
int ii = 0;
int argc = 1;
__asm volatile ("" : "+r" (argc));
for (ii = 0; ii < NUMBER; ii++)
{
array[ii] = argc; /* This should calculate to 1. */
array2[ii] = argc * argc + argc; /* This should calculate to 2. */
}
return_value = func1 (array, array2);
#if HAVE_IO
printf("Return_value = %d\n", return_value);
#endif
if (return_value != (2+2+2+2+2))
return 1;
return_value = func2 (array2, array);
#if HAVE_IO
printf("Return_value = %d\n", return_value);
#endif
if (return_value != (3*3*3*3*3) + (2+2+2+2+2))
return 2;
return_value = func3 (array, array2);
#if HAVE_IO
printf("Return_value = %d\n", return_value);
#endif
if (return_value != 4)
return 3;
return_value = func4 (array, array2);
#if HAVE_IO
printf("Return_value = %d\n", return_value);
#endif
if (return_value != 16)
return 4;
return 0;
}