runtime: copy runtime package time code from Go 1.7
Fix handling of function values for -fgo-c-header to generate FuncVal*, not simply FuncVal. While we're here change runtime.nanotime to use clock_gettime with CLOCK_MONOTONIC, rather than gettimeofday. This is what the gc library does. It provides nanosecond precision and a monotonic clock. Reviewed-on: https://go-review.googlesource.com/31232 From-SVN: r241197
This commit is contained in:
parent
2a0b23da05
commit
35d9424444
12 changed files with 339 additions and 424 deletions
|
@ -1,4 +1,4 @@
|
|||
ec3dc927da71d15cac48a13c0fb0c1f94572d0d2
|
||||
880cb0a45590d992880fc6aabc7484e54c817eeb
|
||||
|
||||
The first line of this file holds the git revision number of the last
|
||||
merge done from the gofrontend repository.
|
||||
|
|
|
@ -5928,7 +5928,7 @@ Struct_type::write_field_to_c_header(std::ostream& os, const std::string& name,
|
|||
break;
|
||||
|
||||
case TYPE_FUNCTION:
|
||||
os << "FuncVal";
|
||||
os << "FuncVal*";
|
||||
break;
|
||||
|
||||
case TYPE_POINTER:
|
||||
|
|
|
@ -519,7 +519,6 @@ runtime_files = \
|
|||
reflect.c \
|
||||
runtime1.c \
|
||||
sigqueue.c \
|
||||
time.c \
|
||||
$(runtime_getncpu_file)
|
||||
|
||||
goc2c.$(OBJEXT): runtime/goc2c.c
|
||||
|
|
|
@ -262,8 +262,7 @@ am__objects_6 = go-append.lo go-assert.lo go-assert-interface.lo \
|
|||
$(am__objects_2) panic.lo parfor.lo print.lo proc.lo \
|
||||
runtime.lo signal_unix.lo thread.lo $(am__objects_3) yield.lo \
|
||||
$(am__objects_4) go-iface.lo lfstack.lo malloc.lo netpoll.lo \
|
||||
rdebug.lo reflect.lo runtime1.lo sigqueue.lo time.lo \
|
||||
$(am__objects_5)
|
||||
rdebug.lo reflect.lo runtime1.lo sigqueue.lo $(am__objects_5)
|
||||
am_libgo_llgo_la_OBJECTS = $(am__objects_6)
|
||||
libgo_llgo_la_OBJECTS = $(am_libgo_llgo_la_OBJECTS)
|
||||
libgo_llgo_la_LINK = $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) \
|
||||
|
@ -918,7 +917,6 @@ runtime_files = \
|
|||
reflect.c \
|
||||
runtime1.c \
|
||||
sigqueue.c \
|
||||
time.c \
|
||||
$(runtime_getncpu_file)
|
||||
|
||||
noinst_DATA = zstdpkglist.go
|
||||
|
@ -1636,7 +1634,6 @@ distclean-compile:
|
|||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/thread-linux.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/thread-sema.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/thread.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/time.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/yield.Plo@am__quote@
|
||||
|
||||
.c.o:
|
||||
|
|
|
@ -196,15 +196,15 @@ func getcallersp(argp unsafe.Pointer) uintptr
|
|||
// argp used in Defer structs when there is no argp.
|
||||
const _NoArgs = ^uintptr(0)
|
||||
|
||||
// //go:linkname time_now time.now
|
||||
// func time_now() (sec int64, nsec int32)
|
||||
//go:linkname time_now time.now
|
||||
func time_now() (sec int64, nsec int32)
|
||||
|
||||
/*
|
||||
// For gccgo, expose this for C callers.
|
||||
//go:linkname unixnanotime runtime.unixnanotime
|
||||
func unixnanotime() int64 {
|
||||
sec, nsec := time_now()
|
||||
return sec*1e9 + int64(nsec)
|
||||
}
|
||||
*/
|
||||
|
||||
// round n up to a multiple of a. a must be a power of 2.
|
||||
func round(n, a uintptr) uintptr {
|
||||
|
|
307
libgo/go/runtime/time.go
Normal file
307
libgo/go/runtime/time.go
Normal file
|
@ -0,0 +1,307 @@
|
|||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Time-related runtime and pieces of package time.
|
||||
|
||||
package runtime
|
||||
|
||||
import "unsafe"
|
||||
|
||||
// Export temporarily for gccgo's C code to call:
|
||||
//go:linkname addtimer runtime.addtimer
|
||||
//go:linkname deltimer runtime.deltimer
|
||||
|
||||
// Package time knows the layout of this structure.
|
||||
// If this struct changes, adjust ../time/sleep.go:/runtimeTimer.
|
||||
// For GOOS=nacl, package syscall knows the layout of this structure.
|
||||
// If this struct changes, adjust ../syscall/net_nacl.go:/runtimeTimer.
|
||||
type timer struct {
|
||||
i int // heap index
|
||||
|
||||
// Timer wakes up at when, and then at when+period, ... (period > 0 only)
|
||||
// each time calling f(arg, now) in the timer goroutine, so f must be
|
||||
// a well-behaved function and not block.
|
||||
when int64
|
||||
period int64
|
||||
f func(interface{}, uintptr)
|
||||
arg interface{}
|
||||
seq uintptr
|
||||
}
|
||||
|
||||
var timers struct {
|
||||
lock mutex
|
||||
gp *g
|
||||
created bool
|
||||
sleeping bool
|
||||
rescheduling bool
|
||||
waitnote note
|
||||
t []*timer
|
||||
}
|
||||
|
||||
// nacl fake time support - time in nanoseconds since 1970
|
||||
var faketime int64
|
||||
|
||||
// Package time APIs.
|
||||
// Godoc uses the comments in package time, not these.
|
||||
|
||||
// time.now is implemented in assembly.
|
||||
|
||||
// timeSleep puts the current goroutine to sleep for at least ns nanoseconds.
|
||||
//go:linkname timeSleep time.Sleep
|
||||
func timeSleep(ns int64) {
|
||||
if ns <= 0 {
|
||||
return
|
||||
}
|
||||
|
||||
t := new(timer)
|
||||
t.when = nanotime() + ns
|
||||
t.f = goroutineReady
|
||||
t.arg = getg()
|
||||
lock(&timers.lock)
|
||||
addtimerLocked(t)
|
||||
goparkunlock(&timers.lock, "sleep", traceEvGoSleep, 2)
|
||||
}
|
||||
|
||||
// startTimer adds t to the timer heap.
|
||||
//go:linkname startTimer time.startTimer
|
||||
func startTimer(t *timer) {
|
||||
if raceenabled {
|
||||
racerelease(unsafe.Pointer(t))
|
||||
}
|
||||
addtimer(t)
|
||||
}
|
||||
|
||||
// stopTimer removes t from the timer heap if it is there.
|
||||
// It returns true if t was removed, false if t wasn't even there.
|
||||
//go:linkname stopTimer time.stopTimer
|
||||
func stopTimer(t *timer) bool {
|
||||
return deltimer(t)
|
||||
}
|
||||
|
||||
// Go runtime.
|
||||
|
||||
// Ready the goroutine arg.
|
||||
func goroutineReady(arg interface{}, seq uintptr) {
|
||||
goready(arg.(*g), 0)
|
||||
}
|
||||
|
||||
func addtimer(t *timer) {
|
||||
lock(&timers.lock)
|
||||
addtimerLocked(t)
|
||||
unlock(&timers.lock)
|
||||
}
|
||||
|
||||
// Add a timer to the heap and start or kick the timer proc.
|
||||
// If the new timer is earlier than any of the others.
|
||||
// Timers are locked.
|
||||
func addtimerLocked(t *timer) {
|
||||
// when must never be negative; otherwise timerproc will overflow
|
||||
// during its delta calculation and never expire other runtime·timers.
|
||||
if t.when < 0 {
|
||||
t.when = 1<<63 - 1
|
||||
}
|
||||
t.i = len(timers.t)
|
||||
timers.t = append(timers.t, t)
|
||||
siftupTimer(t.i)
|
||||
if t.i == 0 {
|
||||
// siftup moved to top: new earliest deadline.
|
||||
if timers.sleeping {
|
||||
timers.sleeping = false
|
||||
notewakeup(&timers.waitnote)
|
||||
}
|
||||
if timers.rescheduling {
|
||||
timers.rescheduling = false
|
||||
goready(timers.gp, 0)
|
||||
}
|
||||
}
|
||||
if !timers.created {
|
||||
timers.created = true
|
||||
go timerproc()
|
||||
}
|
||||
}
|
||||
|
||||
// Delete timer t from the heap.
|
||||
// Do not need to update the timerproc: if it wakes up early, no big deal.
|
||||
func deltimer(t *timer) bool {
|
||||
// Dereference t so that any panic happens before the lock is held.
|
||||
// Discard result, because t might be moving in the heap.
|
||||
_ = t.i
|
||||
|
||||
lock(&timers.lock)
|
||||
// t may not be registered anymore and may have
|
||||
// a bogus i (typically 0, if generated by Go).
|
||||
// Verify it before proceeding.
|
||||
i := t.i
|
||||
last := len(timers.t) - 1
|
||||
if i < 0 || i > last || timers.t[i] != t {
|
||||
unlock(&timers.lock)
|
||||
return false
|
||||
}
|
||||
if i != last {
|
||||
timers.t[i] = timers.t[last]
|
||||
timers.t[i].i = i
|
||||
}
|
||||
timers.t[last] = nil
|
||||
timers.t = timers.t[:last]
|
||||
if i != last {
|
||||
siftupTimer(i)
|
||||
siftdownTimer(i)
|
||||
}
|
||||
unlock(&timers.lock)
|
||||
return true
|
||||
}
|
||||
|
||||
// Timerproc runs the time-driven events.
|
||||
// It sleeps until the next event in the timers heap.
|
||||
// If addtimer inserts a new earlier event, addtimer1 wakes timerproc early.
|
||||
func timerproc() {
|
||||
timers.gp = getg()
|
||||
for {
|
||||
lock(&timers.lock)
|
||||
timers.sleeping = false
|
||||
now := nanotime()
|
||||
delta := int64(-1)
|
||||
for {
|
||||
if len(timers.t) == 0 {
|
||||
delta = -1
|
||||
break
|
||||
}
|
||||
t := timers.t[0]
|
||||
delta = t.when - now
|
||||
if delta > 0 {
|
||||
break
|
||||
}
|
||||
if t.period > 0 {
|
||||
// leave in heap but adjust next time to fire
|
||||
t.when += t.period * (1 + -delta/t.period)
|
||||
siftdownTimer(0)
|
||||
} else {
|
||||
// remove from heap
|
||||
last := len(timers.t) - 1
|
||||
if last > 0 {
|
||||
timers.t[0] = timers.t[last]
|
||||
timers.t[0].i = 0
|
||||
}
|
||||
timers.t[last] = nil
|
||||
timers.t = timers.t[:last]
|
||||
if last > 0 {
|
||||
siftdownTimer(0)
|
||||
}
|
||||
t.i = -1 // mark as removed
|
||||
}
|
||||
f := t.f
|
||||
arg := t.arg
|
||||
seq := t.seq
|
||||
unlock(&timers.lock)
|
||||
if raceenabled {
|
||||
raceacquire(unsafe.Pointer(t))
|
||||
}
|
||||
f(arg, seq)
|
||||
lock(&timers.lock)
|
||||
}
|
||||
if delta < 0 || faketime > 0 {
|
||||
// No timers left - put goroutine to sleep.
|
||||
timers.rescheduling = true
|
||||
goparkunlock(&timers.lock, "timer goroutine (idle)", traceEvGoBlock, 1)
|
||||
continue
|
||||
}
|
||||
// At least one timer pending. Sleep until then.
|
||||
timers.sleeping = true
|
||||
noteclear(&timers.waitnote)
|
||||
unlock(&timers.lock)
|
||||
notetsleepg(&timers.waitnote, delta)
|
||||
}
|
||||
}
|
||||
|
||||
func timejump() *g {
|
||||
if faketime == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
lock(&timers.lock)
|
||||
if !timers.created || len(timers.t) == 0 {
|
||||
unlock(&timers.lock)
|
||||
return nil
|
||||
}
|
||||
|
||||
var gp *g
|
||||
if faketime < timers.t[0].when {
|
||||
faketime = timers.t[0].when
|
||||
if timers.rescheduling {
|
||||
timers.rescheduling = false
|
||||
gp = timers.gp
|
||||
}
|
||||
}
|
||||
unlock(&timers.lock)
|
||||
return gp
|
||||
}
|
||||
|
||||
// Heap maintenance algorithms.
|
||||
|
||||
func siftupTimer(i int) {
|
||||
t := timers.t
|
||||
when := t[i].when
|
||||
tmp := t[i]
|
||||
for i > 0 {
|
||||
p := (i - 1) / 4 // parent
|
||||
if when >= t[p].when {
|
||||
break
|
||||
}
|
||||
t[i] = t[p]
|
||||
t[i].i = i
|
||||
t[p] = tmp
|
||||
t[p].i = p
|
||||
i = p
|
||||
}
|
||||
}
|
||||
|
||||
func siftdownTimer(i int) {
|
||||
t := timers.t
|
||||
n := len(t)
|
||||
when := t[i].when
|
||||
tmp := t[i]
|
||||
for {
|
||||
c := i*4 + 1 // left child
|
||||
c3 := c + 2 // mid child
|
||||
if c >= n {
|
||||
break
|
||||
}
|
||||
w := t[c].when
|
||||
if c+1 < n && t[c+1].when < w {
|
||||
w = t[c+1].when
|
||||
c++
|
||||
}
|
||||
if c3 < n {
|
||||
w3 := t[c3].when
|
||||
if c3+1 < n && t[c3+1].when < w3 {
|
||||
w3 = t[c3+1].when
|
||||
c3++
|
||||
}
|
||||
if w3 < w {
|
||||
w = w3
|
||||
c = c3
|
||||
}
|
||||
}
|
||||
if w >= when {
|
||||
break
|
||||
}
|
||||
t[i] = t[c]
|
||||
t[i].i = i
|
||||
t[c] = tmp
|
||||
t[c].i = c
|
||||
i = c
|
||||
}
|
||||
}
|
||||
|
||||
// Entry points for net, time to call nanotime.
|
||||
|
||||
//go:linkname net_runtimeNano net.runtimeNano
|
||||
func net_runtimeNano() int64 {
|
||||
return nanotime()
|
||||
}
|
||||
|
||||
//go:linkname time_runtimeNano time.runtimeNano
|
||||
func time_runtimeNano() int64 {
|
||||
return nanotime()
|
||||
}
|
|
@ -14,8 +14,8 @@ int64 runtime_nanotime (void)
|
|||
int64
|
||||
runtime_nanotime (void)
|
||||
{
|
||||
struct timeval tv;
|
||||
struct timespec ts;
|
||||
|
||||
gettimeofday (&tv, NULL);
|
||||
return (int64) tv.tv_sec * 1000000000 + (int64) tv.tv_usec * 1000;
|
||||
clock_gettime (CLOCK_MONOTONIC, &ts);
|
||||
return (int64) ts.tv_sec * 1000000000 + (int64) ts.tv_nsec;
|
||||
}
|
||||
|
|
|
@ -543,5 +543,4 @@ int32 runtime_setgcpercent(int32);
|
|||
|
||||
struct Workbuf;
|
||||
void runtime_proc_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
|
||||
void runtime_time_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
|
||||
void runtime_netpoll_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
|
||||
|
|
|
@ -1277,7 +1277,6 @@ markroot(ParFor *desc, uint32 i)
|
|||
enqueue1(&wbuf, (Obj){(byte*)&runtime_allp, sizeof runtime_allp, 0});
|
||||
enqueue1(&wbuf, (Obj){(byte*)&work, sizeof work, 0});
|
||||
runtime_proc_scan(&wbuf, enqueue1);
|
||||
runtime_time_scan(&wbuf, enqueue1);
|
||||
runtime_netpoll_scan(&wbuf, enqueue1);
|
||||
break;
|
||||
|
||||
|
|
|
@ -89,11 +89,6 @@ static FuncVal deadlineFn = {(void(*)(void))deadline};
|
|||
static FuncVal readDeadlineFn = {(void(*)(void))readDeadline};
|
||||
static FuncVal writeDeadlineFn = {(void(*)(void))writeDeadline};
|
||||
|
||||
// runtimeNano returns the current value of the runtime clock in nanoseconds.
|
||||
func runtimeNano() (ns int64) {
|
||||
ns = runtime_nanotime();
|
||||
}
|
||||
|
||||
func runtime_pollServerInit() {
|
||||
runtime_netpollinit();
|
||||
}
|
||||
|
@ -176,13 +171,13 @@ func runtime_pollSetDeadline(pd *PollDesc, d int64, mode int) {
|
|||
}
|
||||
pd->seq++; // invalidate current timers
|
||||
// Reset current timers.
|
||||
if(pd->rt.fv) {
|
||||
if(pd->rt.f) {
|
||||
runtime_deltimer(&pd->rt);
|
||||
pd->rt.fv = nil;
|
||||
pd->rt.f = nil;
|
||||
}
|
||||
if(pd->wt.fv) {
|
||||
if(pd->wt.f) {
|
||||
runtime_deltimer(&pd->wt);
|
||||
pd->wt.fv = nil;
|
||||
pd->wt.f = nil;
|
||||
}
|
||||
// Setup new timers.
|
||||
if(d != 0 && d <= runtime_nanotime())
|
||||
|
@ -192,7 +187,7 @@ func runtime_pollSetDeadline(pd *PollDesc, d int64, mode int) {
|
|||
if(mode == 'w' || mode == 'r'+'w')
|
||||
pd->wd = d;
|
||||
if(pd->rd > 0 && pd->rd == pd->wd) {
|
||||
pd->rt.fv = &deadlineFn;
|
||||
pd->rt.f = &deadlineFn;
|
||||
pd->rt.when = pd->rd;
|
||||
// Copy current seq into the timer arg.
|
||||
// Timer func will check the seq against current descriptor seq,
|
||||
|
@ -203,7 +198,7 @@ func runtime_pollSetDeadline(pd *PollDesc, d int64, mode int) {
|
|||
runtime_addtimer(&pd->rt);
|
||||
} else {
|
||||
if(pd->rd > 0) {
|
||||
pd->rt.fv = &readDeadlineFn;
|
||||
pd->rt.f = &readDeadlineFn;
|
||||
pd->rt.when = pd->rd;
|
||||
pd->rt.arg.type = nil; // should be *pollDesc type descriptor.
|
||||
pd->rt.arg.data = pd;
|
||||
|
@ -211,7 +206,7 @@ func runtime_pollSetDeadline(pd *PollDesc, d int64, mode int) {
|
|||
runtime_addtimer(&pd->rt);
|
||||
}
|
||||
if(pd->wd > 0) {
|
||||
pd->wt.fv = &writeDeadlineFn;
|
||||
pd->wt.f = &writeDeadlineFn;
|
||||
pd->wt.when = pd->wd;
|
||||
pd->wt.arg.type = nil; // should be *pollDesc type descriptor.
|
||||
pd->wt.arg.data = pd;
|
||||
|
@ -244,13 +239,13 @@ func runtime_pollUnblock(pd *PollDesc) {
|
|||
runtime_atomicstorep(&rg, nil); // full memory barrier between store to closing and read of rg/wg in netpollunblock
|
||||
rg = netpollunblock(pd, 'r', false);
|
||||
wg = netpollunblock(pd, 'w', false);
|
||||
if(pd->rt.fv) {
|
||||
if(pd->rt.f) {
|
||||
runtime_deltimer(&pd->rt);
|
||||
pd->rt.fv = nil;
|
||||
pd->rt.f = nil;
|
||||
}
|
||||
if(pd->wt.fv) {
|
||||
if(pd->wt.f) {
|
||||
runtime_deltimer(&pd->wt);
|
||||
pd->wt.fv = nil;
|
||||
pd->wt.f = nil;
|
||||
}
|
||||
runtime_unlock(pd);
|
||||
if(rg)
|
||||
|
@ -408,17 +403,17 @@ deadlineimpl(Eface arg, uintptr seq, bool read, bool write)
|
|||
return;
|
||||
}
|
||||
if(read) {
|
||||
if(pd->rd <= 0 || pd->rt.fv == nil)
|
||||
if(pd->rd <= 0 || pd->rt.f == nil)
|
||||
runtime_throw("deadlineimpl: inconsistent read deadline");
|
||||
pd->rd = -1;
|
||||
runtime_atomicstorep(&pd->rt.fv, nil); // full memory barrier between store to rd and load of rg in netpollunblock
|
||||
runtime_atomicstorep(&pd->rt.f, nil); // full memory barrier between store to rd and load of rg in netpollunblock
|
||||
rg = netpollunblock(pd, 'r', false);
|
||||
}
|
||||
if(write) {
|
||||
if(pd->wd <= 0 || (pd->wt.fv == nil && !read))
|
||||
if(pd->wd <= 0 || (pd->wt.f == nil && !read))
|
||||
runtime_throw("deadlineimpl: inconsistent write deadline");
|
||||
pd->wd = -1;
|
||||
runtime_atomicstorep(&pd->wt.fv, nil); // full memory barrier between store to wd and load of wg in netpollunblock
|
||||
runtime_atomicstorep(&pd->wt.f, nil); // full memory barrier between store to wd and load of wg in netpollunblock
|
||||
wg = netpollunblock(pd, 'w', false);
|
||||
}
|
||||
runtime_unlock(pd);
|
||||
|
|
|
@ -66,8 +66,7 @@ typedef struct SigTab SigTab;
|
|||
typedef struct mcache MCache;
|
||||
typedef struct FixAlloc FixAlloc;
|
||||
typedef struct hchan Hchan;
|
||||
typedef struct Timers Timers;
|
||||
typedef struct Timer Timer;
|
||||
typedef struct timer Timer;
|
||||
typedef struct gcstats GCStats;
|
||||
typedef struct LFNode LFNode;
|
||||
typedef struct ParFor ParFor;
|
||||
|
@ -181,36 +180,6 @@ enum {
|
|||
};
|
||||
#endif
|
||||
|
||||
struct Timers
|
||||
{
|
||||
Lock;
|
||||
G *timerproc;
|
||||
bool sleeping;
|
||||
bool rescheduling;
|
||||
Note waitnote;
|
||||
Timer **t;
|
||||
int32 len;
|
||||
int32 cap;
|
||||
};
|
||||
|
||||
// Package time knows the layout of this structure.
|
||||
// If this struct changes, adjust ../time/sleep.go:/runtimeTimer.
|
||||
// For GOOS=nacl, package syscall knows the layout of this structure.
|
||||
// If this struct changes, adjust ../syscall/net_nacl.go:/runtimeTimer.
|
||||
struct Timer
|
||||
{
|
||||
intgo i; // heap index
|
||||
|
||||
// Timer wakes up at when, and then at when+period, ... (period > 0 only)
|
||||
// each time calling f(now, arg) in the timer goroutine, so f must be
|
||||
// a well-behaved function and not block.
|
||||
int64 when;
|
||||
int64 period;
|
||||
FuncVal *fv;
|
||||
Eface arg;
|
||||
uintptr seq;
|
||||
};
|
||||
|
||||
// Lock-free stack node.
|
||||
struct LFNode
|
||||
{
|
||||
|
@ -403,7 +372,8 @@ bool __go_sigsend(int32 sig);
|
|||
int32 runtime_callers(int32, Location*, int32, bool keep_callers);
|
||||
int64 runtime_nanotime(void) // monotonic time
|
||||
__asm__(GOSYM_PREFIX "runtime.nanotime");
|
||||
int64 runtime_unixnanotime(void); // real time, can skip
|
||||
int64 runtime_unixnanotime(void) // real time, can skip
|
||||
__asm__ (GOSYM_PREFIX "runtime.unixnanotime");
|
||||
void runtime_dopanic(int32) __attribute__ ((noreturn));
|
||||
void runtime_startpanic(void);
|
||||
void runtime_freezetheworld(void);
|
||||
|
@ -422,8 +392,10 @@ int64 runtime_tickspersecond(void)
|
|||
__asm__ (GOSYM_PREFIX "runtime.tickspersecond");
|
||||
void runtime_blockevent(int64, int32);
|
||||
extern int64 runtime_blockprofilerate;
|
||||
void runtime_addtimer(Timer*);
|
||||
bool runtime_deltimer(Timer*);
|
||||
void runtime_addtimer(Timer*)
|
||||
__asm__ (GOSYM_PREFIX "runtime.addtimer");
|
||||
bool runtime_deltimer(Timer*)
|
||||
__asm__ (GOSYM_PREFIX "runtime.deltimer");
|
||||
G* runtime_netpoll(bool);
|
||||
void runtime_netpollinit(void);
|
||||
int32 runtime_netpollopen(uintptr, PollDesc*);
|
||||
|
|
|
@ -1,353 +0,0 @@
|
|||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Time-related runtime and pieces of package time.
|
||||
|
||||
package time
|
||||
|
||||
#include <sys/time.h>
|
||||
|
||||
#include "runtime.h"
|
||||
#include "defs.h"
|
||||
#include "arch.h"
|
||||
#include "malloc.h"
|
||||
|
||||
enum {
|
||||
debug = 0,
|
||||
};
|
||||
|
||||
static Timers timers;
|
||||
static void addtimer(Timer*);
|
||||
static void dumptimers(const char*);
|
||||
|
||||
// nacl fake time support.
|
||||
int64 runtime_timens;
|
||||
|
||||
// Package time APIs.
|
||||
// Godoc uses the comments in package time, not these.
|
||||
|
||||
// time.now is implemented in assembly.
|
||||
|
||||
// runtimeNano returns the current value of the runtime clock in nanoseconds.
|
||||
func runtimeNano() (ns int64) {
|
||||
ns = runtime_nanotime();
|
||||
}
|
||||
|
||||
// Sleep puts the current goroutine to sleep for at least ns nanoseconds.
|
||||
func Sleep(ns int64) {
|
||||
runtime_tsleep(ns, "sleep");
|
||||
}
|
||||
|
||||
// startTimer adds t to the timer heap.
|
||||
func startTimer(t *Timer) {
|
||||
runtime_addtimer(t);
|
||||
}
|
||||
|
||||
// stopTimer removes t from the timer heap if it is there.
|
||||
// It returns true if t was removed, false if t wasn't even there.
|
||||
func stopTimer(t *Timer) (stopped bool) {
|
||||
stopped = runtime_deltimer(t);
|
||||
}
|
||||
|
||||
// C runtime.
|
||||
|
||||
int64 runtime_unixnanotime(void)
|
||||
{
|
||||
struct time_now_ret r;
|
||||
|
||||
r = now();
|
||||
return r.sec*1000000000 + r.nsec;
|
||||
}
|
||||
|
||||
static void timerproc(void*);
|
||||
static void siftup(int32);
|
||||
static void siftdown(int32);
|
||||
|
||||
// Ready the goroutine e.data.
|
||||
static void
|
||||
ready(Eface e, uintptr seq)
|
||||
{
|
||||
USED(seq);
|
||||
|
||||
runtime_ready(e.__object);
|
||||
}
|
||||
|
||||
static FuncVal readyv = {(void(*)(void))ready};
|
||||
|
||||
// Put the current goroutine to sleep for ns nanoseconds.
|
||||
void
|
||||
runtime_tsleep(int64 ns, const char *reason)
|
||||
{
|
||||
G* g;
|
||||
Timer t;
|
||||
|
||||
g = runtime_g();
|
||||
|
||||
if(ns <= 0)
|
||||
return;
|
||||
|
||||
t.when = runtime_nanotime() + ns;
|
||||
t.period = 0;
|
||||
t.fv = &readyv;
|
||||
t.arg.__object = g;
|
||||
t.seq = 0;
|
||||
runtime_lock(&timers);
|
||||
addtimer(&t);
|
||||
runtime_parkunlock(&timers, reason);
|
||||
}
|
||||
|
||||
void
|
||||
runtime_addtimer(Timer *t)
|
||||
{
|
||||
runtime_lock(&timers);
|
||||
addtimer(t);
|
||||
runtime_unlock(&timers);
|
||||
}
|
||||
|
||||
// Add a timer to the heap and start or kick the timer proc
|
||||
// if the new timer is earlier than any of the others.
|
||||
static void
|
||||
addtimer(Timer *t)
|
||||
{
|
||||
int32 n;
|
||||
Timer **nt;
|
||||
|
||||
// when must never be negative; otherwise timerproc will overflow
|
||||
// during its delta calculation and never expire other timers.
|
||||
if(t->when < 0)
|
||||
t->when = (int64)((1ULL<<63)-1);
|
||||
|
||||
if(timers.len >= timers.cap) {
|
||||
// Grow slice.
|
||||
n = 16;
|
||||
if(n <= timers.cap)
|
||||
n = timers.cap*3 / 2;
|
||||
nt = runtime_malloc(n*sizeof nt[0]);
|
||||
runtime_memmove(nt, timers.t, timers.len*sizeof nt[0]);
|
||||
runtime_free(timers.t);
|
||||
timers.t = nt;
|
||||
timers.cap = n;
|
||||
}
|
||||
t->i = timers.len++;
|
||||
timers.t[t->i] = t;
|
||||
siftup(t->i);
|
||||
if(t->i == 0) {
|
||||
// siftup moved to top: new earliest deadline.
|
||||
if(timers.sleeping) {
|
||||
timers.sleeping = false;
|
||||
runtime_notewakeup(&timers.waitnote);
|
||||
}
|
||||
if(timers.rescheduling) {
|
||||
timers.rescheduling = false;
|
||||
runtime_ready(timers.timerproc);
|
||||
}
|
||||
}
|
||||
if(timers.timerproc == nil) {
|
||||
timers.timerproc = __go_go(timerproc, nil);
|
||||
timers.timerproc->issystem = true;
|
||||
}
|
||||
if(debug)
|
||||
dumptimers("addtimer");
|
||||
}
|
||||
|
||||
// Used to force a dereference before the lock is acquired.
|
||||
static int32 gi;
|
||||
|
||||
// Delete timer t from the heap.
|
||||
// Do not need to update the timerproc:
|
||||
// if it wakes up early, no big deal.
|
||||
bool
|
||||
runtime_deltimer(Timer *t)
|
||||
{
|
||||
int32 i;
|
||||
|
||||
// Dereference t so that any panic happens before the lock is held.
|
||||
// Discard result, because t might be moving in the heap.
|
||||
i = t->i;
|
||||
gi = i;
|
||||
|
||||
runtime_lock(&timers);
|
||||
|
||||
// t may not be registered anymore and may have
|
||||
// a bogus i (typically 0, if generated by Go).
|
||||
// Verify it before proceeding.
|
||||
i = t->i;
|
||||
if(i < 0 || i >= timers.len || timers.t[i] != t) {
|
||||
runtime_unlock(&timers);
|
||||
return false;
|
||||
}
|
||||
|
||||
timers.len--;
|
||||
if(i == timers.len) {
|
||||
timers.t[i] = nil;
|
||||
} else {
|
||||
timers.t[i] = timers.t[timers.len];
|
||||
timers.t[timers.len] = nil;
|
||||
timers.t[i]->i = i;
|
||||
siftup(i);
|
||||
siftdown(i);
|
||||
}
|
||||
if(debug)
|
||||
dumptimers("deltimer");
|
||||
runtime_unlock(&timers);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Timerproc runs the time-driven events.
|
||||
// It sleeps until the next event in the timers heap.
|
||||
// If addtimer inserts a new earlier event, addtimer
|
||||
// wakes timerproc early.
|
||||
static void
|
||||
timerproc(void* dummy __attribute__ ((unused)))
|
||||
{
|
||||
int64 delta, now;
|
||||
Timer *t;
|
||||
FuncVal *fv;
|
||||
void (*f)(Eface, uintptr);
|
||||
Eface arg;
|
||||
uintptr seq;
|
||||
|
||||
for(;;) {
|
||||
runtime_lock(&timers);
|
||||
timers.sleeping = false;
|
||||
now = runtime_nanotime();
|
||||
for(;;) {
|
||||
if(timers.len == 0) {
|
||||
delta = -1;
|
||||
break;
|
||||
}
|
||||
t = timers.t[0];
|
||||
delta = t->when - now;
|
||||
if(delta > 0)
|
||||
break;
|
||||
if(t->period > 0) {
|
||||
// leave in heap but adjust next time to fire
|
||||
t->when += t->period * (1 + -delta/t->period);
|
||||
siftdown(0);
|
||||
} else {
|
||||
// remove from heap
|
||||
timers.t[0] = timers.t[--timers.len];
|
||||
timers.t[0]->i = 0;
|
||||
siftdown(0);
|
||||
t->i = -1; // mark as removed
|
||||
}
|
||||
fv = t->fv;
|
||||
f = (void*)t->fv->fn;
|
||||
arg = t->arg;
|
||||
seq = t->seq;
|
||||
runtime_unlock(&timers);
|
||||
__builtin_call_with_static_chain(f(arg, seq), fv);
|
||||
|
||||
// clear f and arg to avoid leak while sleeping for next timer
|
||||
f = nil;
|
||||
USED(f);
|
||||
arg.__type_descriptor = nil;
|
||||
arg.__object = nil;
|
||||
USED(&arg);
|
||||
|
||||
runtime_lock(&timers);
|
||||
}
|
||||
if(delta < 0) {
|
||||
// No timers left - put goroutine to sleep.
|
||||
timers.rescheduling = true;
|
||||
runtime_g()->isbackground = true;
|
||||
runtime_parkunlock(&timers, "timer goroutine (idle)");
|
||||
runtime_g()->isbackground = false;
|
||||
continue;
|
||||
}
|
||||
// At least one timer pending. Sleep until then.
|
||||
timers.sleeping = true;
|
||||
runtime_noteclear(&timers.waitnote);
|
||||
runtime_unlock(&timers);
|
||||
runtime_notetsleepg(&timers.waitnote, delta);
|
||||
}
|
||||
}
|
||||
|
||||
// heap maintenance algorithms.
|
||||
|
||||
static void
|
||||
siftup(int32 i)
|
||||
{
|
||||
int32 p;
|
||||
int64 when;
|
||||
Timer **t, *tmp;
|
||||
|
||||
t = timers.t;
|
||||
when = t[i]->when;
|
||||
tmp = t[i];
|
||||
while(i > 0) {
|
||||
p = (i-1)/4; // parent
|
||||
if(when >= t[p]->when)
|
||||
break;
|
||||
t[i] = t[p];
|
||||
t[i]->i = i;
|
||||
t[p] = tmp;
|
||||
tmp->i = p;
|
||||
i = p;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
siftdown(int32 i)
|
||||
{
|
||||
int32 c, c3, len;
|
||||
int64 when, w, w3;
|
||||
Timer **t, *tmp;
|
||||
|
||||
t = timers.t;
|
||||
len = timers.len;
|
||||
when = t[i]->when;
|
||||
tmp = t[i];
|
||||
for(;;) {
|
||||
c = i*4 + 1; // left child
|
||||
c3 = c + 2; // mid child
|
||||
if(c >= len) {
|
||||
break;
|
||||
}
|
||||
w = t[c]->when;
|
||||
if(c+1 < len && t[c+1]->when < w) {
|
||||
w = t[c+1]->when;
|
||||
c++;
|
||||
}
|
||||
if(c3 < len) {
|
||||
w3 = t[c3]->when;
|
||||
if(c3+1 < len && t[c3+1]->when < w3) {
|
||||
w3 = t[c3+1]->when;
|
||||
c3++;
|
||||
}
|
||||
if(w3 < w) {
|
||||
w = w3;
|
||||
c = c3;
|
||||
}
|
||||
}
|
||||
if(w >= when)
|
||||
break;
|
||||
t[i] = t[c];
|
||||
t[i]->i = i;
|
||||
t[c] = tmp;
|
||||
tmp->i = c;
|
||||
i = c;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
dumptimers(const char *msg)
|
||||
{
|
||||
Timer *t;
|
||||
int32 i;
|
||||
|
||||
runtime_printf("timers: %s\n", msg);
|
||||
for(i = 0; i < timers.len; i++) {
|
||||
t = timers.t[i];
|
||||
runtime_printf("\t%d\t%p:\ti %d when %D period %D fn %p\n",
|
||||
i, t, t->i, t->when, t->period, t->fv->fn);
|
||||
}
|
||||
runtime_printf("\n");
|
||||
}
|
||||
|
||||
void
|
||||
runtime_time_scan(struct Workbuf** wbufp, void (*enqueue1)(struct Workbuf**, Obj))
|
||||
{
|
||||
enqueue1(wbufp, (Obj){(byte*)&timers, sizeof timers, 0});
|
||||
}
|
Loading…
Add table
Reference in a new issue