libgo: update to go1.7rc3

Reviewed-on: https://go-review.googlesource.com/25150

From-SVN: r238662
This commit is contained in:
Ian Lance Taylor 2016-07-22 18:15:38 +00:00
parent 9d04a3af4c
commit 22b955cca5
1155 changed files with 51833 additions and 16672 deletions

View file

@ -36,7 +36,6 @@ type bitState struct {
end int
cap []int
input input
jobs []job
visited []uint32
}
@ -146,7 +145,7 @@ func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
// Optimization: rather than push and pop,
// code that is going to Push and continue
// the loop simply updates ip, p, and arg
// and jumps to CheckAndLoop. We have to
// and jumps to CheckAndLoop. We have to
// do the ShouldVisit check that Push
// would have, but we avoid the stack
// manipulation.
@ -254,7 +253,6 @@ func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
}
panic("bad arg in InstCapture")
continue
case syntax.InstEmptyWidth:
if syntax.EmptyOp(inst.Arg)&^i.context(pos) != 0 {
@ -299,7 +297,6 @@ func (m *machine) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
// Otherwise, continue on in hope of a longer match.
continue
}
panic("unreachable")
}
return m.matched

View file

@ -19,7 +19,7 @@ type queue struct {
// A entry is an entry on a queue.
// It holds both the instruction pc and the actual thread.
// Some queue entries are just place holders so that the machine
// knows it has considered that pc. Such entries have t == nil.
// knows it has considered that pc. Such entries have t == nil.
type entry struct {
pc uint32
t *thread
@ -107,14 +107,6 @@ func (m *machine) alloc(i *syntax.Inst) *thread {
return t
}
// free returns t to the free pool.
func (m *machine) free(t *thread) {
m.inputBytes.str = nil
m.inputString.str = ""
m.inputReader.r = nil
m.pool = append(m.pool, t)
}
// match runs the machine over the input starting at pos.
// It reports whether a match was found.
// If so, m.matchcap holds the submatch information.
@ -192,7 +184,6 @@ func (m *machine) match(i input, pos int) bool {
func (m *machine) clear(q *queue) {
for _, d := range q.dense {
if d.t != nil {
// m.free(d.t)
m.pool = append(m.pool, d.t)
}
}
@ -213,7 +204,6 @@ func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond sy
continue
}
if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
// m.free(t)
m.pool = append(m.pool, t)
continue
}
@ -232,7 +222,6 @@ func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond sy
// First-match mode: cut off all lower-priority threads.
for _, d := range runq.dense[j+1:] {
if d.t != nil {
// m.free(d.t)
m.pool = append(m.pool, d.t)
}
}
@ -253,7 +242,6 @@ func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond sy
t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
}
if t != nil {
// m.free(t)
m.pool = append(m.pool, t)
}
}

View file

@ -22,7 +22,7 @@ import (
// considered during RE2's exhaustive tests, which run all possible
// regexps over a given set of atoms and operators, up to a given
// complexity, over all possible strings over a given alphabet,
// up to a given size. Rather than try to link with RE2, we read a
// up to a given size. Rather than try to link with RE2, we read a
// log file containing the test cases and the expected matches.
// The log file, re2-exhaustive.txt, is generated by running 'make log'
// in the open source RE2 distribution https://github.com/google/re2/.
@ -41,21 +41,21 @@ import (
// -;0-3 0-1 1-2 2-3
//
// The stanza begins by defining a set of strings, quoted
// using Go double-quote syntax, one per line. Then the
// using Go double-quote syntax, one per line. Then the
// regexps section gives a sequence of regexps to run on
// the strings. In the block that follows a regexp, each line
// the strings. In the block that follows a regexp, each line
// gives the semicolon-separated match results of running
// the regexp on the corresponding string.
// Each match result is either a single -, meaning no match, or a
// space-separated sequence of pairs giving the match and
// submatch indices. An unmatched subexpression formats
// submatch indices. An unmatched subexpression formats
// its pair as a single - (not illustrated above). For now
// each regexp run produces two match results, one for a
// ``full match'' that restricts the regexp to matching the entire
// string or nothing, and one for a ``partial match'' that gives
// the leftmost first match found in the string.
//
// Lines beginning with # are comments. Lines beginning with
// Lines beginning with # are comments. Lines beginning with
// a capital letter are test names printed during RE2's test suite
// and are echoed into t but otherwise ignored.
//
@ -155,9 +155,9 @@ func testRE2(t *testing.T, file string) {
if !isSingleBytes(text) && strings.Contains(re.String(), `\B`) {
// RE2's \B considers every byte position,
// so it sees 'not word boundary' in the
// middle of UTF-8 sequences. This package
// middle of UTF-8 sequences. This package
// only considers the positions between runes,
// so it disagrees. Skip those cases.
// so it disagrees. Skip those cases.
continue
}
res := strings.Split(line, ";")
@ -409,7 +409,7 @@ Reading:
// h REG_MULTIREF multiple digit backref
// i REG_ICASE ignore case
// j REG_SPAN . matches \n
// k REG_ESCAPE \ to ecape [...] delimiter
// k REG_ESCAPE \ to escape [...] delimiter
// l REG_LEFT implicit ^...
// m REG_MINIMAL minimal match
// n REG_NEWLINE explicit \n match
@ -658,47 +658,42 @@ func makeText(n int) []byte {
return text
}
func benchmark(b *testing.B, re string, n int) {
r := MustCompile(re)
t := makeText(n)
b.ResetTimer()
b.SetBytes(int64(n))
for i := 0; i < b.N; i++ {
if r.Match(t) {
b.Fatal("match!")
func BenchmarkMatch(b *testing.B) {
for _, data := range benchData {
r := MustCompile(data.re)
for _, size := range benchSizes {
t := makeText(size.n)
b.Run(data.name+"/"+size.name, func(b *testing.B) {
b.SetBytes(int64(size.n))
for i := 0; i < b.N; i++ {
if r.Match(t) {
b.Fatal("match!")
}
}
})
}
}
}
const (
easy0 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ$"
easy1 = "A[AB]B[BC]C[CD]D[DE]E[EF]F[FG]G[GH]H[HI]I[IJ]J$"
medium = "[XYZ]ABCDEFGHIJKLMNOPQRSTUVWXYZ$"
hard = "[ -~]*ABCDEFGHIJKLMNOPQRSTUVWXYZ$"
parens = "([ -~])*(A)(B)(C)(D)(E)(F)(G)(H)(I)(J)(K)(L)(M)" +
"(N)(O)(P)(Q)(R)(S)(T)(U)(V)(W)(X)(Y)(Z)$"
)
var benchData = []struct{ name, re string }{
{"Easy0", "ABCDEFGHIJKLMNOPQRSTUVWXYZ$"},
{"Easy0i", "(?i)ABCDEFGHIJklmnopqrstuvwxyz$"},
{"Easy1", "A[AB]B[BC]C[CD]D[DE]E[EF]F[FG]G[GH]H[HI]I[IJ]J$"},
{"Medium", "[XYZ]ABCDEFGHIJKLMNOPQRSTUVWXYZ$"},
{"Hard", "[ -~]*ABCDEFGHIJKLMNOPQRSTUVWXYZ$"},
{"Hard1", "ABCD|CDEF|EFGH|GHIJ|IJKL|KLMN|MNOP|OPQR|QRST|STUV|UVWX|WXYZ"},
}
func BenchmarkMatchEasy0_32(b *testing.B) { benchmark(b, easy0, 32<<0) }
func BenchmarkMatchEasy0_1K(b *testing.B) { benchmark(b, easy0, 1<<10) }
func BenchmarkMatchEasy0_32K(b *testing.B) { benchmark(b, easy0, 32<<10) }
func BenchmarkMatchEasy0_1M(b *testing.B) { benchmark(b, easy0, 1<<20) }
func BenchmarkMatchEasy0_32M(b *testing.B) { benchmark(b, easy0, 32<<20) }
func BenchmarkMatchEasy1_32(b *testing.B) { benchmark(b, easy1, 32<<0) }
func BenchmarkMatchEasy1_1K(b *testing.B) { benchmark(b, easy1, 1<<10) }
func BenchmarkMatchEasy1_32K(b *testing.B) { benchmark(b, easy1, 32<<10) }
func BenchmarkMatchEasy1_1M(b *testing.B) { benchmark(b, easy1, 1<<20) }
func BenchmarkMatchEasy1_32M(b *testing.B) { benchmark(b, easy1, 32<<20) }
func BenchmarkMatchMedium_32(b *testing.B) { benchmark(b, medium, 32<<0) }
func BenchmarkMatchMedium_1K(b *testing.B) { benchmark(b, medium, 1<<10) }
func BenchmarkMatchMedium_32K(b *testing.B) { benchmark(b, medium, 32<<10) }
func BenchmarkMatchMedium_1M(b *testing.B) { benchmark(b, medium, 1<<20) }
func BenchmarkMatchMedium_32M(b *testing.B) { benchmark(b, medium, 32<<20) }
func BenchmarkMatchHard_32(b *testing.B) { benchmark(b, hard, 32<<0) }
func BenchmarkMatchHard_1K(b *testing.B) { benchmark(b, hard, 1<<10) }
func BenchmarkMatchHard_32K(b *testing.B) { benchmark(b, hard, 32<<10) }
func BenchmarkMatchHard_1M(b *testing.B) { benchmark(b, hard, 1<<20) }
func BenchmarkMatchHard_32M(b *testing.B) { benchmark(b, hard, 32<<20) }
var benchSizes = []struct {
name string
n int
}{
{"32", 32},
{"1K", 1 << 10},
{"32K", 32 << 10},
{"1M", 1 << 20},
{"32M", 32 << 20},
}
func TestLongest(t *testing.T) {
re, err := Compile(`a(|b)`)

View file

@ -1,4 +1,4 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -33,7 +33,7 @@ type onePassInst struct {
}
// OnePassPrefix returns a literal string that all matches for the
// regexp must start with. Complete is true if the prefix
// regexp must start with. Complete is true if the prefix
// is the entire match. Pc is the index of the last rune instruction
// in the string. The OnePassPrefix skips over the mandatory
// EmptyBeginText
@ -450,7 +450,7 @@ func makeOnePass(p *onePassProg) *onePassProg {
for !instQueue.empty() {
visitQueue.clear()
pc := instQueue.next()
if !check(uint32(pc), m) {
if !check(pc, m) {
p = notOnePass
break
}

View file

@ -1,4 +1,4 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -133,8 +133,6 @@ func TestMergeRuneSet(t *testing.T) {
}
}
const noStr = `!`
var onePass = &onePassProg{}
var onePassTests = []struct {

View file

@ -22,14 +22,14 @@
// All characters are UTF-8-encoded code points.
//
// There are 16 methods of Regexp that match a regular expression and identify
// the matched text. Their names are matched by this regular expression:
// the matched text. Their names are matched by this regular expression:
//
// Find(All)?(String)?(Submatch)?(Index)?
//
// If 'All' is present, the routine matches successive non-overlapping
// matches of the entire expression. Empty matches abutting a preceding
// match are ignored. The return value is a slice containing the successive
// return values of the corresponding non-'All' routine. These routines take
// matches of the entire expression. Empty matches abutting a preceding
// match are ignored. The return value is a slice containing the successive
// return values of the corresponding non-'All' routine. These routines take
// an extra integer argument, n; if n >= 0, the function returns at most n
// matches/submatches.
//
@ -45,9 +45,9 @@
//
// If 'Index' is present, matches and submatches are identified by byte index
// pairs within the input string: result[2*n:2*n+1] identifies the indexes of
// the nth submatch. The pair for n==0 identifies the match of the entire
// expression. If 'Index' is not present, the match is identified by the
// text of the match/submatch. If an index is negative, it means that
// the nth submatch. The pair for n==0 identifies the match of the entire
// expression. If 'Index' is not present, the match is identified by the
// text of the match/submatch. If an index is negative, it means that
// subexpression did not match any string in the input.
//
// There is also a subset of the methods that can be applied to text read
@ -55,7 +55,7 @@
//
// MatchReader, FindReaderIndex, FindReaderSubmatchIndex
//
// This set may grow. Note that regular expression matches may need to
// This set may grow. Note that regular expression matches may need to
// examine text beyond the text returned by a match, so the methods that
// match text from a RuneReader may read arbitrarily far into the input
// before returning.
@ -75,12 +75,18 @@ import (
"unicode/utf8"
)
var debug = false
// Regexp is the representation of a compiled regular expression.
// A Regexp is safe for concurrent use by multiple goroutines.
type Regexp struct {
// read-only after Compile
regexpRO
// cache of machines for running regexp
mu sync.Mutex
machine []*machine
}
type regexpRO struct {
expr string // as passed to Compile
prog *syntax.Prog // compiled program
onepass *onePassProg // onepass program or nil
@ -93,10 +99,6 @@ type Regexp struct {
numSubexp int
subexpNames []string
longest bool
// cache of machines for running regexp
mu sync.Mutex
machine []*machine
}
// String returns the source text used to compile the regular expression.
@ -109,10 +111,11 @@ func (re *Regexp) String() string {
// When using a Regexp in multiple goroutines, giving each goroutine
// its own copy helps to avoid lock contention.
func (re *Regexp) Copy() *Regexp {
r := *re
r.mu = sync.Mutex{}
r.machine = nil
return &r
// It is not safe to copy Regexp by value
// since it contains a sync.Mutex.
return &Regexp{
regexpRO: re.regexpRO,
}
}
// Compile parses a regular expression and returns, if successful,
@ -174,13 +177,15 @@ func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
return nil, err
}
regexp := &Regexp{
expr: expr,
prog: prog,
onepass: compileOnePass(prog),
numSubexp: maxCap,
subexpNames: capNames,
cond: prog.StartCond(),
longest: longest,
regexpRO: regexpRO{
expr: expr,
prog: prog,
onepass: compileOnePass(prog),
numSubexp: maxCap,
subexpNames: capNames,
cond: prog.StartCond(),
longest: longest,
},
}
if regexp.onepass == notOnePass {
regexp.prefix, regexp.prefixComplete = prog.Prefix()
@ -258,10 +263,10 @@ func (re *Regexp) NumSubexp() int {
}
// SubexpNames returns the names of the parenthesized subexpressions
// in this Regexp. The name for the first sub-expression is names[1],
// in this Regexp. The name for the first sub-expression is names[1],
// so that if m is a match slice, the name for m[i] is SubexpNames()[i].
// Since the Regexp as a whole cannot be named, names[0] is always
// the empty string. The slice should not be modified.
// the empty string. The slice should not be modified.
func (re *Regexp) SubexpNames() []string {
return re.subexpNames
}
@ -394,7 +399,7 @@ func (i *inputReader) context(pos int) syntax.EmptyOp {
}
// LiteralPrefix returns a literal string that must begin any match
// of the regular expression re. It returns the boolean true if the
// of the regular expression re. It returns the boolean true if the
// literal string comprises the entire regular expression.
func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
return re.prefix, re.prefixComplete
@ -417,7 +422,7 @@ func (re *Regexp) Match(b []byte) bool {
}
// MatchReader checks whether a textual regular expression matches the text
// read by the RuneReader. More complicated queries need to use Compile and
// read by the RuneReader. More complicated queries need to use Compile and
// the full Regexp interface.
func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
re, err := Compile(pattern)
@ -428,7 +433,7 @@ func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
}
// MatchString checks whether a textual regular expression
// matches a string. More complicated queries need
// matches a string. More complicated queries need
// to use Compile and the full Regexp interface.
func MatchString(pattern string, s string) (matched bool, err error) {
re, err := Compile(pattern)
@ -439,7 +444,7 @@ func MatchString(pattern string, s string) (matched bool, err error) {
}
// Match checks whether a textual regular expression
// matches a byte slice. More complicated queries need
// matches a byte slice. More complicated queries need
// to use Compile and the full Regexp interface.
func Match(pattern string, b []byte) (matched bool, err error) {
re, err := Compile(pattern)
@ -450,11 +455,11 @@ func Match(pattern string, b []byte) (matched bool, err error) {
}
// ReplaceAllString returns a copy of src, replacing matches of the Regexp
// with the replacement string repl. Inside repl, $ signs are interpreted as
// with the replacement string repl. Inside repl, $ signs are interpreted as
// in Expand, so for instance $1 represents the text of the first submatch.
func (re *Regexp) ReplaceAllString(src, repl string) string {
n := 2
if strings.Index(repl, "$") >= 0 {
if strings.Contains(repl, "$") {
n = 2 * (re.numSubexp + 1)
}
b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
@ -464,7 +469,7 @@ func (re *Regexp) ReplaceAllString(src, repl string) string {
}
// ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
// with the replacement string repl. The replacement repl is substituted directly,
// with the replacement string repl. The replacement repl is substituted directly,
// without using Expand.
func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
@ -474,7 +479,7 @@ func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
// ReplaceAllStringFunc returns a copy of src in which all matches of the
// Regexp have been replaced by the return value of function repl applied
// to the matched substring. The replacement returned by repl is substituted
// to the matched substring. The replacement returned by repl is substituted
// directly, without using Expand.
func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
@ -530,7 +535,7 @@ func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst
searchPos += width
} else if searchPos+1 > a[1] {
// This clause is only needed at the end of the input
// string. In that case, DecodeRuneInString returns width=0.
// string. In that case, DecodeRuneInString returns width=0.
searchPos++
} else {
searchPos = a[1]
@ -548,7 +553,7 @@ func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst
}
// ReplaceAll returns a copy of src, replacing matches of the Regexp
// with the replacement text repl. Inside repl, $ signs are interpreted as
// with the replacement text repl. Inside repl, $ signs are interpreted as
// in Expand, so for instance $1 represents the text of the first submatch.
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
n := 2
@ -566,7 +571,7 @@ func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
}
// ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
// with the replacement bytes repl. The replacement repl is substituted directly,
// with the replacement bytes repl. The replacement repl is substituted directly,
// without using Expand.
func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
@ -576,7 +581,7 @@ func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
// ReplaceAllFunc returns a copy of src in which all matches of the
// Regexp have been replaced by the return value of function repl applied
// to the matched byte slice. The replacement returned by repl is substituted
// to the matched byte slice. The replacement returned by repl is substituted
// directly, without using Expand.
func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
@ -592,7 +597,7 @@ func special(b byte) bool {
// QuoteMeta returns a string that quotes all regular expression metacharacters
// inside the argument text; the returned string is a regular expression matching
// the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
// the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
func QuoteMeta(s string) string {
b := make([]byte, 2*len(s))
@ -684,7 +689,7 @@ func (re *Regexp) Find(b []byte) []byte {
}
// FindIndex returns a two-element slice of integers defining the location of
// the leftmost match in b of the regular expression. The match itself is at
// the leftmost match in b of the regular expression. The match itself is at
// b[loc[0]:loc[1]].
// A return value of nil indicates no match.
func (re *Regexp) FindIndex(b []byte) (loc []int) {
@ -696,9 +701,9 @@ func (re *Regexp) FindIndex(b []byte) (loc []int) {
}
// FindString returns a string holding the text of the leftmost match in s of the regular
// expression. If there is no match, the return value is an empty string,
// expression. If there is no match, the return value is an empty string,
// but it will also be empty if the regular expression successfully matches
// an empty string. Use FindStringIndex or FindStringSubmatch if it is
// an empty string. Use FindStringIndex or FindStringSubmatch if it is
// necessary to distinguish these cases.
func (re *Regexp) FindString(s string) string {
a := re.doExecute(nil, nil, s, 0, 2)
@ -709,7 +714,7 @@ func (re *Regexp) FindString(s string) string {
}
// FindStringIndex returns a two-element slice of integers defining the
// location of the leftmost match in s of the regular expression. The match
// location of the leftmost match in s of the regular expression. The match
// itself is at s[loc[0]:loc[1]].
// A return value of nil indicates no match.
func (re *Regexp) FindStringIndex(s string) (loc []int) {
@ -722,7 +727,7 @@ func (re *Regexp) FindStringIndex(s string) (loc []int) {
// FindReaderIndex returns a two-element slice of integers defining the
// location of the leftmost match of the regular expression in text read from
// the RuneReader. The match text was found in the input stream at
// the RuneReader. The match text was found in the input stream at
// byte offset loc[0] through loc[1]-1.
// A return value of nil indicates no match.
func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
@ -754,14 +759,14 @@ func (re *Regexp) FindSubmatch(b []byte) [][]byte {
// Expand appends template to dst and returns the result; during the
// append, Expand replaces variables in the template with corresponding
// matches drawn from src. The match slice should have been returned by
// matches drawn from src. The match slice should have been returned by
// FindSubmatchIndex.
//
// In the template, a variable is denoted by a substring of the form
// $name or ${name}, where name is a non-empty sequence of letters,
// digits, and underscores. A purely numeric name like $1 refers to
// digits, and underscores. A purely numeric name like $1 refers to
// the submatch with the corresponding index; other names refer to
// capturing parentheses named with the (?P<name>...) syntax. A
// capturing parentheses named with the (?P<name>...) syntax. A
// reference to an out of range or unmatched index or a name that is not
// present in the regular expression is replaced with an empty slice.
//
@ -920,7 +925,7 @@ func (re *Regexp) FindStringSubmatchIndex(s string) []int {
// FindReaderSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression of text read by
// the RuneReader, and the matches, if any, of its subexpressions, as defined
// by the 'Submatch' and 'Index' descriptions in the package comment. A
// by the 'Submatch' and 'Index' descriptions in the package comment. A
// return value of nil indicates no match.
func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap))

View file

@ -8,11 +8,11 @@ import "unicode"
// A patchList is a list of instruction pointers that need to be filled in (patched).
// Because the pointers haven't been filled in yet, we can reuse their storage
// to hold the list. It's kind of sleazy, but works well in practice.
// to hold the list. It's kind of sleazy, but works well in practice.
// See http://swtch.com/~rsc/regexp/regexp1.html for inspiration.
//
// These aren't really pointers: they're integers, so we can reinterpret them
// this way without using package unsafe. A value l denotes
// this way without using package unsafe. A value l denotes
// p.inst[l>>1].Out (l&1==0) or .Arg (l&1==1).
// l == 0 denotes the empty list, okay because we start every program
// with a fail instruction, so we'll never want to point at its output link.

View file

@ -1,4 +1,4 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -66,7 +66,7 @@ Grouping:
Empty strings:
^ at beginning of text or line (flag m=true)
$ at end of text (like \z not \Z) or line (flag m=true)
$ at end of text (like \z not Perl's \Z) or line (flag m=true)
\A at beginning of text
\b at ASCII word boundary (\w on one side and \W, \A, or \z on the other)
\B not at ASCII word boundary

View file

@ -1,4 +1,4 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -141,9 +141,9 @@ func (p *parser) push(re *Regexp) *Regexp {
}
// maybeConcat implements incremental concatenation
// of literal runes into string nodes. The parser calls this
// of literal runes into string nodes. The parser calls this
// before each push, so only the top fragment of the stack
// might need processing. Since this is called before a push,
// might need processing. Since this is called before a push,
// the topmost literal is no longer subject to operators like *
// (Otherwise ab* would turn into (ab)*.)
// If r >= 0 and there's a node left over, maybeConcat uses it
@ -600,7 +600,7 @@ func (p *parser) leadingString(re *Regexp) ([]rune, Flags) {
}
// removeLeadingString removes the first n leading runes
// from the beginning of re. It returns the replacement for re.
// from the beginning of re. It returns the replacement for re.
func (p *parser) removeLeadingString(re *Regexp, n int) *Regexp {
if re.Op == OpConcat && len(re.Sub) > 0 {
// Removing a leading string in a concatenation
@ -957,11 +957,11 @@ func (p *parser) parsePerlFlags(s string) (rest string, err error) {
// Perl 5.10 gave in and implemented the Python version too,
// but they claim that the last two are the preferred forms.
// PCRE and languages based on it (specifically, PHP and Ruby)
// support all three as well. EcmaScript 4 uses only the Python form.
// support all three as well. EcmaScript 4 uses only the Python form.
//
// In both the open source world (via Code Search) and the
// Google source tree, (?P<expr>name) is the dominant form,
// so that's the one we implement. One is enough.
// so that's the one we implement. One is enough.
if len(t) > 4 && t[2] == 'P' && t[3] == '<' {
// Pull out name.
end := strings.IndexRune(t, '>')
@ -989,7 +989,7 @@ func (p *parser) parsePerlFlags(s string) (rest string, err error) {
return t[end+1:], nil
}
// Non-capturing group. Might also twiddle Perl flags.
// Non-capturing group. Might also twiddle Perl flags.
var c rune
t = t[2:] // skip (?
flags := p.flags
@ -1257,7 +1257,7 @@ Switch:
if c < utf8.RuneSelf && !isalnum(c) {
// Escaped non-word characters are always themselves.
// PCRE is not quite so rigorous: it accepts things like
// \q, but we don't. We once rejected \_, but too many
// \q, but we don't. We once rejected \_, but too many
// programs and people insist on using it, so allow \_.
return c, t, nil
}
@ -1292,7 +1292,7 @@ Switch:
if c == '{' {
// Any number of digits in braces.
// Perl accepts any text at all; it ignores all text
// after the first non-hex digit. We require only hex digits,
// after the first non-hex digit. We require only hex digits,
// and at least one.
nhex := 0
r = 0
@ -1333,10 +1333,10 @@ Switch:
}
return x*16 + y, t, nil
// C escapes. There is no case 'b', to avoid misparsing
// C escapes. There is no case 'b', to avoid misparsing
// the Perl word-boundary \b as the C backspace \b
// when in POSIX mode. In Perl, /\b/ means word-boundary
// but /[\b]/ means backspace. We don't support that.
// when in POSIX mode. In Perl, /\b/ means word-boundary
// but /[\b]/ means backspace. We don't support that.
// If you want a backspace, embed a literal backspace
// character or use \x08.
case 'a':
@ -1377,7 +1377,7 @@ type charGroup struct {
}
// parsePerlClassEscape parses a leading Perl character class escape like \d
// from the beginning of s. If one is present, it appends the characters to r
// from the beginning of s. If one is present, it appends the characters to r
// and returns the new slice r and the remainder of the string.
func (p *parser) parsePerlClassEscape(s string, r []rune) (out []rune, rest string) {
if p.flags&PerlX == 0 || len(s) < 2 || s[0] != '\\' {
@ -1391,7 +1391,7 @@ func (p *parser) parsePerlClassEscape(s string, r []rune) (out []rune, rest stri
}
// parseNamedClass parses a leading POSIX named character class like [:alnum:]
// from the beginning of s. If one is present, it appends the characters to r
// from the beginning of s. If one is present, it appends the characters to r
// and returns the new slice r and the remainder of the string.
func (p *parser) parseNamedClass(s string, r []rune) (out []rune, rest string, err error) {
if len(s) < 2 || s[0] != '[' || s[1] != ':' {
@ -1454,7 +1454,7 @@ func unicodeTable(name string) (*unicode.RangeTable, *unicode.RangeTable) {
}
// parseUnicodeClass parses a leading Unicode character class like \p{Han}
// from the beginning of s. If one is present, it appends the characters to r
// from the beginning of s. If one is present, it appends the characters to r
// and returns the new slice r and the remainder of the string.
func (p *parser) parseUnicodeClass(s string, r []rune) (out []rune, rest string, err error) {
if p.flags&UnicodeGroups == 0 || len(s) < 2 || s[0] != '\\' || s[1] != 'p' && s[1] != 'P' {
@ -1692,7 +1692,7 @@ const (
// minimum and maximum runes involved in folding.
// checked during test.
minFold = 0x0041
maxFold = 0x118df
maxFold = 0x1e943
)
// appendFoldedRange returns the result of appending the range lo-hi
@ -1718,7 +1718,7 @@ func appendFoldedRange(r []rune, lo, hi rune) []rune {
hi = maxFold
}
// Brute force. Depend on appendRange to coalesce ranges on the fly.
// Brute force. Depend on appendRange to coalesce ranges on the fly.
for c := lo; c <= hi; c++ {
r = appendRange(r, c, c)
f := unicode.SimpleFold(c)

View file

@ -1,4 +1,4 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

View file

@ -144,7 +144,7 @@ func (i *Inst) op() InstOp {
}
// Prefix returns a literal string that all matches for the
// regexp must start with. Complete is true if the prefix
// regexp must start with. Complete is true if the prefix
// is the entire match.
func (p *Prog) Prefix() (prefix string, complete bool) {
i, _ := p.skipNop(uint32(p.Start))
@ -164,7 +164,7 @@ func (p *Prog) Prefix() (prefix string, complete bool) {
}
// StartCond returns the leading empty-width conditions that must
// be true in any match. It returns ^EmptyOp(0) if no matches are possible.
// be true in any match. It returns ^EmptyOp(0) if no matches are possible.
func (p *Prog) StartCond() EmptyOp {
var flag EmptyOp
pc := uint32(p.Start)

View file

@ -1,4 +1,4 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -139,7 +139,7 @@ func writeRegexp(b *bytes.Buffer, re *Regexp) {
if len(re.Rune) == 0 {
b.WriteString(`^\x00-\x{10FFFF}`)
} else if re.Rune[0] == 0 && re.Rune[len(re.Rune)-1] == unicode.MaxRune {
// Contains 0 and MaxRune. Probably a negated class.
// Contains 0 and MaxRune. Probably a negated class.
// Print the gaps.
b.WriteRune('^')
for i := 1; i < len(re.Rune)-1; i += 2 {
@ -252,7 +252,7 @@ const meta = `\.+*?()|[]{}^$`
func escape(b *bytes.Buffer, r rune, force bool) {
if unicode.IsPrint(r) {
if strings.IndexRune(meta, r) >= 0 || force {
if strings.ContainsRune(meta, r) || force {
b.WriteRune('\\')
}
b.WriteRune(r)

View file

@ -1,4 +1,4 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -8,7 +8,7 @@ package syntax
// and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/.
// The resulting regexp will execute correctly but its string representation
// will not produce the same parse tree, because capturing parentheses
// may have been duplicated or removed. For example, the simplified form
// may have been duplicated or removed. For example, the simplified form
// for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1.
// The returned regexp may share structure with or be the original.
func (re *Regexp) Simplify() *Regexp {
@ -117,13 +117,13 @@ func (re *Regexp) Simplify() *Regexp {
}
// simplify1 implements Simplify for the unary OpStar,
// OpPlus, and OpQuest operators. It returns the simple regexp
// OpPlus, and OpQuest operators. It returns the simple regexp
// equivalent to
//
// Regexp{Op: op, Flags: flags, Sub: {sub}}
//
// under the assumption that sub is already simple, and
// without first allocating that structure. If the regexp
// without first allocating that structure. If the regexp
// to be returned turns out to be equivalent to re, simplify1
// returns re instead.
//

View file

@ -1,4 +1,4 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
@ -59,7 +59,7 @@ var simplifyTests = []struct {
{`a{0,1}`, `a?`},
// The next three are illegible because Simplify inserts (?:)
// parens instead of () parens to avoid creating extra
// captured subexpressions. The comments show a version with fewer parens.
// captured subexpressions. The comments show a version with fewer parens.
{`(a){0,2}`, `(?:(a)(a)?)?`}, // (aa?)?
{`(a){0,4}`, `(?:(a)(?:(a)(?:(a)(a)?)?)?)?`}, // (a(a(aa?)?)?)?
{`(a){2,6}`, `(a)(a)(?:(a)(?:(a)(?:(a)(a)?)?)?)?`}, // aa(a(a(aa?)?)?)?
@ -117,7 +117,7 @@ var simplifyTests = []struct {
// Empty string as a regular expression.
// The empty string must be preserved inside parens in order
// to make submatches work right, so these tests are less
// interesting than they might otherwise be. String inserts
// interesting than they might otherwise be. String inserts
// explicit (?:) in place of non-parenthesized empty strings,
// to make them easier to spot for other parsers.
{`(a|b|)`, `([a-b]|(?:))`},