[multiple changes]

Fri May 28 22:20:03 1999  Anthony Green  <green@cygnus.com>
	* java/lang/fdlibm.h: Don't use __uint32_t.  Include mprec.h.
	* java/lang/e_log.c: Don't use __uint32_t.
1999-05-27  Eric Christopher <echristo@cygnus.com>
	* configure: Rebuilt
	* configure.in: Fixed ISO C9X and namespace collision with __uint32_t
	* acconfig.h: Rebuilt
	* include/config.h.in: Rebuilt
	* java/lang/mprec.h, java/lang/e_acos.c, java/lang/e_asin.c,
 	java/lang/e_atan2.c, java/lang/e_exp.c, java/lang/e_fmod.c,
 	e_log.c, java/lang/e_pow.c, java/lang/e_rem_pio2.c,
 	java/lang/e_remainder.c, java/lang/e_sqrt.c, java/lang/fdlibm.h,
 	k_tan.c, java/lang/mprec.h, java/lang/s_atan.c,
 	java/lang/s_ceil.c, java/lang/s_copysign.c, java/lang/s_fabs.c,
 	s_floor.c, java/lang/s_rint.c, java/lang/sf_rint.c: Fixed ISO C9X
 	and namespace collision with __uint32_t

From-SVN: r27729
This commit is contained in:
Tom Tromey 1999-06-24 20:06:09 +00:00
parent fe574d5d92
commit 0d16618c58
31 changed files with 614 additions and 526 deletions

View file

@ -6,7 +6,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@ -15,25 +15,25 @@
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input k indicates whether tan (if k=1) or
* Input k indicates whether tan (if k=1) or
* -1/tan (if k= -1) is returned.
*
* Algorithm
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
* [0,0.67434]
* 3 27
* tan(x) ~ x + T1*x + ... + T13*x
* where
*
*
* |tan(x) 2 4 26 | -59.2
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
* | x |
*
* | x |
*
* Note: tan(x+y) = tan(x) + tan'(x)*y
* ~ tan(x) + (1+x*x)*y
* Therefore, for better accuracy in computing tan(x+y), let
* Therefore, for better accuracy in computing tan(x+y), let
* 3 2 2 2 2
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
* then
@ -50,9 +50,9 @@
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
static const double
#else
static double
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
@ -81,12 +81,12 @@ T[] = {
#endif
{
double z,r,v,w,s;
__int32_t ix,hx;
int32_t ix,hx;
GET_HIGH_WORD(hx,x);
ix = hx&0x7fffffff; /* high word of |x| */
if(ix<0x3e300000) /* x < 2**-28 */
{if((int)x==0) { /* generate inexact */
__uint32_t low;
uint32_t low;
GET_LOW_WORD(low,x);
if(((ix|low)|(iy+1))==0) return one/fabs(x);
else return (iy==1)? x: -one/x;
@ -115,7 +115,7 @@ T[] = {
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
}
if(iy==1) return w;
else { /* if allow error up to 2 ulp,
else { /* if allow error up to 2 ulp,
simply return -1.0/(x+r) here */
/* compute -1.0/(x+r) accurately */
double a,t;