1091 lines
28 KiB
Text
1091 lines
28 KiB
Text
head 1.3;
|
||
access ;
|
||
symbols ;
|
||
locks ; strict;
|
||
comment @ * @;
|
||
|
||
|
||
1.3
|
||
date 89.04.04.21.31.02; author gnu; state Exp;
|
||
branches ;
|
||
next 1.2;
|
||
|
||
1.2
|
||
date 89.02.10.01.47.27; author gnu; state Exp;
|
||
branches ;
|
||
next 1.1;
|
||
|
||
1.1
|
||
date 89.02.10.01.46.36; author gnu; state Exp;
|
||
branches ;
|
||
next ;
|
||
|
||
|
||
desc
|
||
@@
|
||
|
||
|
||
1.3
|
||
log
|
||
@Fix handling of annulled branches in single step. "b foo; bcc,a bar"
|
||
annuls the instruction at foo, not just after the bcc,a. Also,
|
||
handle CBcc (coprocessor) annulled branch, and improve doc.
|
||
@
|
||
text
|
||
@/* Machine-dependent code which would otherwise be in inflow.c and core.c,
|
||
for GDB, the GNU debugger.
|
||
Copyright (C) 1986, 1987 Free Software Foundation, Inc.
|
||
This code is for the sparc cpu.
|
||
|
||
GDB is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY. No author or distributor accepts responsibility to anyone
|
||
for the consequences of using it or for whether it serves any
|
||
particular purpose or works at all, unless he says so in writing.
|
||
Refer to the GDB General Public License for full details.
|
||
|
||
Everyone is granted permission to copy, modify and redistribute GDB,
|
||
but only under the conditions described in the GDB General Public
|
||
License. A copy of this license is supposed to have been given to you
|
||
along with GDB so you can know your rights and responsibilities. It
|
||
should be in a file named COPYING. Among other things, the copyright
|
||
notice and this notice must be preserved on all copies.
|
||
|
||
In other words, go ahead and share GDB, but don't try to stop
|
||
anyone else from sharing it farther. Help stamp out software hoarding!
|
||
*/
|
||
|
||
#include "defs.h"
|
||
#include "param.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "obstack.h"
|
||
#include "sparc-opcode.h"
|
||
#include "gdbcore.h"
|
||
|
||
#include <stdio.h>
|
||
#include <sys/param.h>
|
||
#include <sys/dir.h>
|
||
#include <sys/user.h>
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
#include <fcntl.h>
|
||
|
||
#include <sys/ptrace.h>
|
||
#include <machine/reg.h>
|
||
|
||
#include <a.out.h>
|
||
#include <sys/file.h>
|
||
#include <sys/stat.h>
|
||
#include <sys/core.h>
|
||
|
||
extern int errno;
|
||
extern int attach_flag;
|
||
|
||
/* This function simply calls ptrace with the given arguments.
|
||
It exists so that all calls to ptrace are isolated in this
|
||
machine-dependent file. */
|
||
int
|
||
call_ptrace (request, pid, arg3, arg4)
|
||
int request, pid, arg3, arg4;
|
||
{
|
||
return ptrace (request, pid, arg3, arg4);
|
||
}
|
||
|
||
void
|
||
kill_inferior ()
|
||
{
|
||
if (remote_debugging)
|
||
return;
|
||
if (inferior_pid == 0)
|
||
return;
|
||
ptrace (8, inferior_pid, 0, 0);
|
||
wait (0);
|
||
inferior_died ();
|
||
}
|
||
|
||
/* This is used when GDB is exiting. It gives less chance of error.*/
|
||
|
||
void
|
||
kill_inferior_fast ()
|
||
{
|
||
if (remote_debugging)
|
||
return;
|
||
if (inferior_pid == 0)
|
||
return;
|
||
ptrace (8, inferior_pid, 0, 0);
|
||
wait (0);
|
||
}
|
||
|
||
/* Simulate single-step ptrace call for sun4. Code written by Gary
|
||
Beihl (beihl@@mcc.com). */
|
||
|
||
/*
|
||
* Duplicated from breakpoint.c because (at least for now) this is a
|
||
* machine dependent routine.
|
||
*/
|
||
static char break_insn[] = BREAKPOINT;
|
||
|
||
/* From infrun.c */
|
||
extern int stop_after_trap, stop_after_attach;
|
||
|
||
static CORE_ADDR next_pc, npc4, target;
|
||
static int brknpc4, brktrg;
|
||
typedef char binsn_quantum[sizeof break_insn];
|
||
static binsn_quantum break_mem[3];
|
||
|
||
/* Non-zero if we just simulated a single-step ptrace call. This is
|
||
needed because we cannot remove the breakpoints in the inferior
|
||
process until after the `wait' in `wait_for_inferior'. Used for
|
||
sun4. */
|
||
|
||
int one_stepped;
|
||
|
||
void
|
||
single_step (signal)
|
||
int signal;
|
||
{
|
||
branch_type br, isannulled();
|
||
CORE_ADDR pc;
|
||
|
||
next_pc = read_register (NPC_REGNUM);
|
||
npc4 = next_pc + 4; /* branch not taken */
|
||
|
||
if (!one_stepped)
|
||
{
|
||
/* Always set breakpoint for NPC. */
|
||
read_memory (next_pc, break_mem[0], sizeof break_insn);
|
||
write_memory (next_pc, break_insn, sizeof break_insn);
|
||
/* printf ("set break at %x\n",next_pc); */
|
||
|
||
pc = read_register (PC_REGNUM);
|
||
br = isannulled (pc, &target);
|
||
brknpc4 = brktrg = 0;
|
||
|
||
if (br == bicca)
|
||
{
|
||
/* Conditional annulled branch will either end up at
|
||
npc (if taken) or at npc+4 (if not taken). Trap npc+4. */
|
||
brknpc4 = 1;
|
||
read_memory (npc4, break_mem[1], sizeof break_insn);
|
||
write_memory (npc4, break_insn, sizeof break_insn);
|
||
}
|
||
else if (br == baa && target != next_pc)
|
||
{
|
||
/* Unconditional annulled branch will always end up at
|
||
the target. */
|
||
brktrg = 1;
|
||
read_memory (target, break_mem[2], sizeof break_insn);
|
||
write_memory (target, break_insn, sizeof break_insn);
|
||
}
|
||
|
||
/* Let it go */
|
||
ptrace (7, inferior_pid, 1, signal);
|
||
one_stepped = 1;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
/* Remove breakpoints */
|
||
write_memory (next_pc, break_mem[0], sizeof break_insn);
|
||
|
||
if (brknpc4)
|
||
{
|
||
write_memory (npc4, break_mem[1], sizeof break_insn);
|
||
}
|
||
if (brktrg)
|
||
{
|
||
write_memory (target, break_mem[2], sizeof break_insn);
|
||
}
|
||
one_stepped = 0;
|
||
}
|
||
}
|
||
|
||
/* Resume execution of the inferior process.
|
||
If STEP is nonzero, single-step it.
|
||
If SIGNAL is nonzero, give it that signal. */
|
||
|
||
void
|
||
resume (step, signal)
|
||
int step;
|
||
int signal;
|
||
{
|
||
errno = 0;
|
||
if (remote_debugging)
|
||
remote_resume (step, signal);
|
||
else
|
||
{
|
||
/* Sparc doesn't have single step on ptrace */
|
||
if (step)
|
||
single_step (signal);
|
||
else
|
||
ptrace (7, inferior_pid, 1, signal);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
}
|
||
}
|
||
|
||
#ifdef ATTACH_DETACH
|
||
|
||
/* Start debugging the process whose number is PID. */
|
||
|
||
int
|
||
attach (pid)
|
||
int pid;
|
||
{
|
||
errno = 0;
|
||
ptrace (PTRACE_ATTACH, pid, 0, 0);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 1;
|
||
return pid;
|
||
}
|
||
|
||
/* Stop debugging the process whose number is PID
|
||
and continue it with signal number SIGNAL.
|
||
SIGNAL = 0 means just continue it. */
|
||
|
||
void
|
||
detach (signal)
|
||
int signal;
|
||
{
|
||
errno = 0;
|
||
ptrace (PTRACE_DETACH, inferior_pid, 1, signal);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 0;
|
||
}
|
||
#endif /* ATTACH_DETACH */
|
||
|
||
void
|
||
fetch_inferior_registers ()
|
||
{
|
||
struct regs inferior_registers;
|
||
struct fp_status inferior_fp_registers;
|
||
extern char registers[];
|
||
int cwp;
|
||
struct rwindow local_and_ins;
|
||
|
||
if (remote_debugging)
|
||
remote_fetch_registers (registers);
|
||
else
|
||
{
|
||
ptrace (PTRACE_GETREGS, inferior_pid, &inferior_registers);
|
||
ptrace (PTRACE_GETFPREGS, inferior_pid, &inferior_fp_registers);
|
||
|
||
registers[REGISTER_BYTE (0)] = 0;
|
||
bcopy (&inferior_registers.r_g1, ®isters[REGISTER_BYTE (1)], 15 * 4);
|
||
bcopy (&inferior_fp_registers, ®isters[REGISTER_BYTE (FP0_REGNUM)],
|
||
sizeof inferior_fp_registers.fpu_fr);
|
||
*(int *)®isters[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
|
||
*(int *)®isters[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
|
||
*(int *)®isters[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
|
||
*(int *)®isters[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
|
||
/* *(int *)®isters[REGISTER_BYTE (RP_REGNUM)] =
|
||
inferior_registers.r_o7 + 8;
|
||
bcopy (&inferior_fp_registers.Fpu_fsr,
|
||
®isters[REGISTER_BYTE (FPS_REGNUM)],
|
||
sizeof (FPU_FSR_TYPE)); */
|
||
|
||
read_inferior_memory (inferior_registers.r_sp,
|
||
®isters[REGISTER_BYTE (16)],
|
||
16*4);
|
||
}
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
struct regs inferior_registers;
|
||
struct fp_status inferior_fp_registers;
|
||
extern char registers[];
|
||
|
||
if (remote_debugging)
|
||
remote_store_registers (registers);
|
||
else
|
||
{
|
||
int in_regs = 1, in_fpregs = 1, in_fparegs, in_cpregs = 1;
|
||
|
||
if (regno >= 0)
|
||
if (FP0_REGNUM <= regno && regno <= FP0_REGNUM + 32)
|
||
in_regs = 0;
|
||
else
|
||
in_fpregs = 0;
|
||
|
||
if (in_regs)
|
||
{
|
||
bcopy (®isters[REGISTER_BYTE (1)],
|
||
&inferior_registers.r_g1, 15 * 4);
|
||
|
||
inferior_registers.r_ps =
|
||
*(int *)®isters[REGISTER_BYTE (PS_REGNUM)];
|
||
inferior_registers.r_pc =
|
||
*(int *)®isters[REGISTER_BYTE (PC_REGNUM)];
|
||
inferior_registers.r_npc =
|
||
*(int *)®isters[REGISTER_BYTE (NPC_REGNUM)];
|
||
inferior_registers.r_y =
|
||
*(int *)®isters[REGISTER_BYTE (Y_REGNUM)];
|
||
|
||
write_inferior_memory (*(int *)®isters[REGISTER_BYTE (SP_REGNUM)],
|
||
®isters[REGISTER_BYTE (16)],
|
||
16*4);
|
||
}
|
||
if (in_fpregs)
|
||
{
|
||
bcopy (®isters[REGISTER_BYTE (FP0_REGNUM)],
|
||
&inferior_fp_registers,
|
||
sizeof inferior_fp_registers.fpu_fr);
|
||
|
||
/* bcopy (®isters[REGISTER_BYTE (FPS_REGNUM)],
|
||
&inferior_fp_registers.Fpu_fsr,
|
||
sizeof (FPU_FSR_TYPE));
|
||
****/
|
||
}
|
||
|
||
if (in_regs)
|
||
ptrace (PTRACE_SETREGS, inferior_pid, &inferior_registers);
|
||
if (in_fpregs)
|
||
ptrace (PTRACE_SETFPREGS, inferior_pid, &inferior_fp_registers);
|
||
}
|
||
}
|
||
|
||
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
||
in the NEW_SUN_PTRACE case.
|
||
It ought to be straightforward. But it appears that writing did
|
||
not write the data that I specified. I cannot understand where
|
||
it got the data that it actually did write. */
|
||
|
||
/* Copy LEN bytes from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR.
|
||
On failure (cannot read from inferior, usually because address is out
|
||
of bounds) returns the value of errno. */
|
||
|
||
int
|
||
read_inferior_memory (memaddr, myaddr, len)
|
||
CORE_ADDR memaddr;
|
||
char *myaddr;
|
||
int len;
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & - sizeof (int);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
|
||
/* Allocate buffer of that many longwords. */
|
||
register int *buffer = (int *) alloca (count * sizeof (int));
|
||
extern int errno;
|
||
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
if (remote_debugging)
|
||
buffer[i] = remote_fetch_word (addr);
|
||
else
|
||
buffer[i] = ptrace (1, inferior_pid, addr, 0);
|
||
if (errno)
|
||
return errno;
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
|
||
return 0;
|
||
}
|
||
|
||
/* Copy LEN bytes of data from debugger memory at MYADDR
|
||
to inferior's memory at MEMADDR.
|
||
On failure (cannot write the inferior)
|
||
returns the value of errno. */
|
||
|
||
int
|
||
write_inferior_memory (memaddr, myaddr, len)
|
||
CORE_ADDR memaddr;
|
||
char *myaddr;
|
||
int len;
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & - sizeof (int);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
|
||
/* Allocate buffer of that many longwords. */
|
||
register int *buffer = (int *) alloca (count * sizeof (int));
|
||
extern int errno;
|
||
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
|
||
if (remote_debugging)
|
||
buffer[0] = remote_fetch_word (addr);
|
||
else
|
||
buffer[0] = ptrace (1, inferior_pid, addr, 0);
|
||
|
||
if (count > 1)
|
||
{
|
||
if (remote_debugging)
|
||
buffer[count - 1]
|
||
= remote_fetch_word (addr + (count - 1) * sizeof (int));
|
||
else
|
||
buffer[count - 1]
|
||
= ptrace (1, inferior_pid,
|
||
addr + (count - 1) * sizeof (int), 0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
|
||
bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
|
||
|
||
/* Write the entire buffer. */
|
||
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
if (remote_debugging)
|
||
remote_store_word (addr, buffer[i]);
|
||
else
|
||
ptrace (4, inferior_pid, addr, buffer[i]);
|
||
if (errno)
|
||
return errno;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Machine-dependent code which would otherwise be in core.c */
|
||
/* Work with core dump and executable files, for GDB. */
|
||
|
||
/* Recognize COFF format systems because a.out.h defines AOUTHDR. */
|
||
#ifdef AOUTHDR
|
||
#define COFF_FORMAT
|
||
#endif
|
||
|
||
#ifndef N_TXTADDR
|
||
#define N_TXTADDR(hdr) 0
|
||
#endif /* no N_TXTADDR */
|
||
|
||
#ifndef N_DATADDR
|
||
#define N_DATADDR(hdr) hdr.a_text
|
||
#endif /* no N_DATADDR */
|
||
|
||
/* Make COFF and non-COFF names for things a little more compatible
|
||
to reduce conditionals later. */
|
||
|
||
#ifdef COFF_FORMAT
|
||
#define a_magic magic
|
||
#endif
|
||
|
||
#ifndef COFF_FORMAT
|
||
#define AOUTHDR struct exec
|
||
#endif
|
||
|
||
extern char *sys_siglist[];
|
||
|
||
/* Hook for `exec_file_command' command to call. */
|
||
|
||
extern void (*exec_file_display_hook) ();
|
||
|
||
#ifdef COFF_FORMAT
|
||
/* various coff data structures */
|
||
|
||
extern FILHDR file_hdr;
|
||
extern SCNHDR text_hdr;
|
||
extern SCNHDR data_hdr;
|
||
|
||
#endif /* not COFF_FORMAT */
|
||
|
||
/* a.out header saved in core file. */
|
||
|
||
extern AOUTHDR core_aouthdr;
|
||
|
||
/* a.out header of exec file. */
|
||
|
||
extern AOUTHDR exec_aouthdr;
|
||
|
||
extern void validate_files ();
|
||
|
||
void
|
||
core_file_command (filename, from_tty)
|
||
char *filename;
|
||
int from_tty;
|
||
{
|
||
int val;
|
||
extern char registers[];
|
||
|
||
/* Discard all vestiges of any previous core file
|
||
and mark data and stack spaces as empty. */
|
||
|
||
if (corefile)
|
||
free (corefile);
|
||
corefile = 0;
|
||
|
||
if (corechan >= 0)
|
||
close (corechan);
|
||
corechan = -1;
|
||
|
||
data_start = 0;
|
||
data_end = 0;
|
||
stack_start = STACK_END_ADDR;
|
||
stack_end = STACK_END_ADDR;
|
||
|
||
/* Now, if a new core file was specified, open it and digest it. */
|
||
|
||
if (filename)
|
||
{
|
||
if (have_inferior_p ())
|
||
error ("To look at a core file, you must kill the inferior with \"kill\".");
|
||
corechan = open (filename, O_RDONLY, 0);
|
||
if (corechan < 0)
|
||
perror_with_name (filename);
|
||
|
||
{
|
||
struct core corestr;
|
||
|
||
val = myread (corechan, &corestr, sizeof corestr);
|
||
if (val < 0)
|
||
perror_with_name (filename);
|
||
if (corestr.c_magic != CORE_MAGIC)
|
||
error ("\"%s\" does not appear to be a core dump file (magic 0x%x, expected 0x%x)",
|
||
filename, corestr.c_magic, (int) CORE_MAGIC);
|
||
else if (sizeof (struct core) != corestr.c_len)
|
||
error ("\"%s\" has an invalid struct core length (%d, expected %d)",
|
||
filename, corestr.c_len, (int) sizeof (struct core));
|
||
|
||
/* Note that data_start and data_end don't depend on the exec file */
|
||
data_start = N_DATADDR (corestr.c_aouthdr);
|
||
data_end = data_start + corestr.c_dsize;
|
||
stack_start = stack_end - corestr.c_ssize;
|
||
data_offset = sizeof corestr;
|
||
stack_offset = sizeof corestr + corestr.c_dsize;
|
||
|
||
/* G0 *always* holds 0. */
|
||
*(int *)®isters[REGISTER_BYTE (0)] = 0;
|
||
/* The globals and output registers. */
|
||
|
||
bcopy (&corestr.c_regs.r_g1, ((int *) registers) + 1, 15 * 4);
|
||
*(int *)®isters[REGISTER_BYTE (PS_REGNUM)] = corestr.c_regs.r_ps;
|
||
*(int *)®isters[REGISTER_BYTE (PC_REGNUM)] = corestr.c_regs.r_pc;
|
||
*(int *)®isters[REGISTER_BYTE (NPC_REGNUM)] = corestr.c_regs.r_npc;
|
||
*(int *)®isters[REGISTER_BYTE (Y_REGNUM)] = corestr.c_regs.r_y;
|
||
|
||
/* My best guess at where to get the locals and input
|
||
registers is exactly where they usually are, right above
|
||
the stack pointer. If the core dump was caused by a bus
|
||
writing off the stack pointer (as is possible) then this
|
||
won't work, but it's worth the try. */
|
||
{
|
||
int sp;
|
||
|
||
sp = *(int *)®isters[REGISTER_BYTE (SP_REGNUM)];
|
||
lseek (corechan, sp - stack_start + stack_offset, L_SET);
|
||
if (16 * 4 != myread (corechan,
|
||
®isters[REGISTER_BYTE (16)],
|
||
16 * 4))
|
||
/* fprintf so user can still use gdb */
|
||
fprintf (stderr, "Couldn't read input and local registers from core file\n");
|
||
}
|
||
|
||
bcopy (corestr.c_fpu.fpu_regs,
|
||
®isters[REGISTER_BYTE (FP0_REGNUM)],
|
||
sizeof corestr.c_fpu.fpu_regs);
|
||
#ifdef FPU
|
||
bcopy (&corestr.c_fpu.fpu_fsr,
|
||
®isters[REGISTER_BYTE (FPS_REGNUM)],
|
||
sizeof (FPU_FSR_TYPE));
|
||
#endif
|
||
|
||
bcopy (&corestr.c_aouthdr, &core_aouthdr, sizeof (struct exec));
|
||
|
||
printf ("Core file is from \"%s\".\n", corestr.c_cmdname);
|
||
if (corestr.c_signo > 0)
|
||
printf ("Program terminated with signal %d, %s.\n",
|
||
corestr.c_signo,
|
||
corestr.c_signo < NSIG
|
||
? sys_siglist[corestr.c_signo]
|
||
: "(undocumented)");
|
||
}
|
||
if (filename[0] == '/')
|
||
corefile = savestring (filename, strlen (filename));
|
||
else
|
||
{
|
||
corefile = concat (current_directory, "/", filename);
|
||
}
|
||
|
||
set_current_frame ( create_new_frame (read_register (FP_REGNUM),
|
||
read_pc ()));
|
||
select_frame (get_current_frame (), 0);
|
||
validate_files ();
|
||
}
|
||
else if (from_tty)
|
||
printf ("No core file now.\n");
|
||
}
|
||
|
||
void
|
||
exec_file_command (filename, from_tty)
|
||
char *filename;
|
||
int from_tty;
|
||
{
|
||
int val;
|
||
|
||
/* Eliminate all traces of old exec file.
|
||
Mark text segment as empty. */
|
||
|
||
if (execfile)
|
||
free (execfile);
|
||
execfile = 0;
|
||
text_start = 0;
|
||
text_end = 0;
|
||
exec_data_start = 0;
|
||
exec_data_end = 0;
|
||
if (execchan >= 0)
|
||
close (execchan);
|
||
execchan = -1;
|
||
|
||
/* Now open and digest the file the user requested, if any. */
|
||
|
||
if (filename)
|
||
{
|
||
execchan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
|
||
&execfile);
|
||
if (execchan < 0)
|
||
perror_with_name (filename);
|
||
|
||
#ifdef COFF_FORMAT
|
||
{
|
||
int aout_hdrsize;
|
||
int num_sections;
|
||
|
||
if (read_file_hdr (execchan, &file_hdr) < 0)
|
||
error ("\"%s\": not in executable format.", execfile);
|
||
|
||
aout_hdrsize = file_hdr.f_opthdr;
|
||
num_sections = file_hdr.f_nscns;
|
||
|
||
if (read_aout_hdr (execchan, &exec_aouthdr, aout_hdrsize) < 0)
|
||
error ("\"%s\": can't read optional aouthdr", execfile);
|
||
|
||
if (read_section_hdr (execchan, _TEXT, &text_hdr, num_sections) < 0)
|
||
error ("\"%s\": can't read text section header", execfile);
|
||
|
||
if (read_section_hdr (execchan, _DATA, &data_hdr, num_sections) < 0)
|
||
error ("\"%s\": can't read data section header", execfile);
|
||
|
||
text_start = exec_aouthdr.text_start;
|
||
text_end = text_start + exec_aouthdr.tsize;
|
||
text_offset = text_hdr.s_scnptr;
|
||
exec_data_start = exec_aouthdr.data_start;
|
||
exec_data_end = exec_data_start + exec_aouthdr.dsize;
|
||
exec_data_offset = data_hdr.s_scnptr;
|
||
exec_mtime = file_hdr.f_timdat;
|
||
}
|
||
#else /* not COFF_FORMAT */
|
||
{
|
||
struct stat st_exec;
|
||
val = myread (execchan, &exec_aouthdr, sizeof (AOUTHDR));
|
||
|
||
if (val < 0)
|
||
perror_with_name (filename);
|
||
|
||
text_start = N_TXTADDR (exec_aouthdr);
|
||
exec_data_start = N_DATADDR (exec_aouthdr);
|
||
text_offset = N_TXTOFF (exec_aouthdr);
|
||
exec_data_offset = N_TXTOFF (exec_aouthdr) + exec_aouthdr.a_text;
|
||
|
||
text_end = text_start + exec_aouthdr.a_text;
|
||
exec_data_end = exec_data_start + exec_aouthdr.a_data;
|
||
|
||
fstat (execchan, &st_exec);
|
||
exec_mtime = st_exec.st_mtime;
|
||
}
|
||
#endif /* not COFF_FORMAT */
|
||
|
||
validate_files ();
|
||
}
|
||
else if (from_tty)
|
||
printf ("No exec file now.\n");
|
||
|
||
/* Tell display code (if any) about the changed file name. */
|
||
if (exec_file_display_hook)
|
||
(*exec_file_display_hook) (filename);
|
||
}
|
||
|
||
/*
|
||
* Find the pc saved in frame FRAME.
|
||
*/
|
||
CORE_ADDR
|
||
frame_saved_pc (frame)
|
||
FRAME frame;
|
||
{
|
||
CORE_ADDR prev_pc;
|
||
|
||
/* If it's at the bottom, the return value's stored in i7/rp */
|
||
if (get_current_frame () == frame)
|
||
prev_pc = GET_RWINDOW_REG (read_register (SP_REGNUM), rw_in[7]);
|
||
else
|
||
/* Wouldn't this always work? This would allow this routine to
|
||
be completely a macro. */
|
||
prev_pc = GET_RWINDOW_REG (frame->bottom, rw_in[7]);
|
||
|
||
return PC_ADJUST (prev_pc);
|
||
}
|
||
|
||
/*
|
||
* Since an individual frame in the frame cache is defined by two
|
||
* arguments (a frame pointer and a stack pointer), we need two
|
||
* arguments to get info for an arbitrary stack frame. This routine
|
||
* takes two arguments and makes the cached frames look as if these
|
||
* two arguments defined a frame on the cache. This allows the rest
|
||
* of info frame to extract the important arguments without
|
||
* difficulty.
|
||
*/
|
||
FRAME
|
||
setup_arbitrary_frame (frame, stack)
|
||
FRAME_ADDR frame, stack;
|
||
{
|
||
struct frame_info *fci;
|
||
FRAME fid = create_new_frame (frame, 0);
|
||
|
||
if (!fid)
|
||
fatal ("internal: create_new_frame returned invalid frame id");
|
||
|
||
fid->bottom = stack;
|
||
|
||
return fid;
|
||
}
|
||
|
||
/* This code was written by Gary Beihl (beihl@@mcc.com).
|
||
It was modified by Michael Tiemann (tiemann@@corto.inria.fr). */
|
||
|
||
struct command_line *get_breakpoint_commands ();
|
||
|
||
/*
|
||
* This routine appears to be passed a size by which to increase the
|
||
* stack. It then executes a save instruction in the inferior to
|
||
* increase the stack by this amount. Only the register window system
|
||
* should be affected by this; the program counter & etc. will not be.
|
||
*
|
||
* This instructions used for this purpose are:
|
||
*
|
||
* sethi %hi(0x0),g1 *
|
||
* add g1,0x1ee0,g1 *
|
||
* save sp,g1,sp
|
||
* sethi %hi(0x0),g1 *
|
||
* add g1,0x1ee0,g1 *
|
||
* t g0,0x1,o0
|
||
* sethi %hi(0x0),g0 (nop)
|
||
*
|
||
* I presume that these set g1 to be the negative of the size, do a
|
||
* save (putting the stack pointer at sp - size) and restore the
|
||
* original contents of g1. A * indicates that the actual value of
|
||
* the instruction is modified below.
|
||
*/
|
||
static int save_insn_opcodes[] = {
|
||
0x03000000, 0x82007ee0, 0x9de38001, 0x03000000,
|
||
0x82007ee0, 0x91d02001, 0x01000000 };
|
||
|
||
/* Neither do_save_insn or do_restore_insn save stack configuration
|
||
(since the stack is in an indeterminate state through the call to
|
||
each of them); that responsibility of the routine which calls them. */
|
||
|
||
void
|
||
do_save_insn (size)
|
||
int size;
|
||
{
|
||
int g1 = read_register (1);
|
||
CORE_ADDR sp = read_register (SP_REGNUM);
|
||
CORE_ADDR pc = read_register (PC_REGNUM);
|
||
CORE_ADDR npc = read_register (NPC_REGNUM);
|
||
CORE_ADDR fake_pc = sp - sizeof (save_insn_opcodes);
|
||
struct inferior_status inf_status;
|
||
|
||
save_inferior_status (&inf_status, 0); /* Don't restore stack info */
|
||
/*
|
||
* See above.
|
||
*/
|
||
save_insn_opcodes[0] = 0x03000000 | ((-size >> 10) & 0x3fffff);
|
||
save_insn_opcodes[1] = 0x82006000 | (-size & 0x3ff);
|
||
save_insn_opcodes[3] = 0x03000000 | ((g1 >> 10) & 0x3fffff);
|
||
save_insn_opcodes[4] = 0x82006000 | (g1 & 0x3ff);
|
||
write_memory (fake_pc, save_insn_opcodes, sizeof (save_insn_opcodes));
|
||
|
||
clear_proceed_status ();
|
||
stop_after_trap = 1;
|
||
proceed (fake_pc, 0, 0);
|
||
|
||
write_register (PC_REGNUM, pc);
|
||
write_register (NPC_REGNUM, npc);
|
||
restore_inferior_status (&inf_status);
|
||
}
|
||
|
||
/*
|
||
* This routine takes a program counter value. It restores the
|
||
* register window system to the frame above the current one, and sets
|
||
* the pc and npc to the correct values.
|
||
*/
|
||
|
||
/* The following insns translate to:
|
||
|
||
restore
|
||
t g0,0x1,o0
|
||
sethi %hi(0x0), g0 */
|
||
|
||
static int restore_insn_opcodes[] = { 0x81e80000, 0x91d02001, 0x01000000 };
|
||
|
||
void
|
||
do_restore_insn (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
CORE_ADDR sp = read_register (SP_REGNUM);
|
||
CORE_ADDR npc = pc + 4;
|
||
CORE_ADDR fake_pc = sp - sizeof (restore_insn_opcodes);
|
||
struct inferior_status inf_status;
|
||
|
||
save_inferior_status (&inf_status, 0); /* Don't restore stack info */
|
||
|
||
if (!pc)
|
||
abort();
|
||
|
||
write_memory (fake_pc, restore_insn_opcodes, sizeof (restore_insn_opcodes));
|
||
|
||
clear_proceed_status ();
|
||
stop_after_trap = 1;
|
||
proceed (fake_pc, 0, 0);
|
||
|
||
write_register (PC_REGNUM, pc);
|
||
write_register (NPC_REGNUM, npc);
|
||
restore_inferior_status (&inf_status);
|
||
}
|
||
|
||
/*
|
||
* This routine should be more specific in it's actions; making sure
|
||
* that it uses the same register in the initial prologue section.
|
||
*/
|
||
CORE_ADDR
|
||
skip_prologue (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
union
|
||
{
|
||
union insn_fmt insn;
|
||
int i;
|
||
} x;
|
||
int dest = -1;
|
||
|
||
x.i = read_memory_integer (pc, 4);
|
||
|
||
/* Recognize sethi insn. Record destination. */
|
||
if (x.insn.sethi.op == 0
|
||
&& x.insn.sethi.op2 == 4)
|
||
{
|
||
dest = x.insn.sethi.rd;
|
||
pc += 4;
|
||
x.i = read_memory_integer (pc, 4);
|
||
}
|
||
|
||
/* Recognizes an add immediate value to register to either %g1 or
|
||
the destination register recorded above. Actually, this might
|
||
well recognize several different arithmetic operations.*/
|
||
if (x.insn.arith_imm.op == 2
|
||
&& x.insn.arith_imm.i == 1
|
||
&& (x.insn.arith_imm.rd == 1
|
||
|| x.insn.arith_imm.rd == dest))
|
||
{
|
||
pc += 4;
|
||
x.i = read_memory_integer (pc, 4);
|
||
}
|
||
|
||
/* This recognizes any SAVE insn. But why do the XOR and then
|
||
the compare? That's identical to comparing against 60 (as long
|
||
as there isn't any sign extension). */
|
||
if (x.insn.arith.op == 2
|
||
&& (x.insn.arith.op3 ^ 32) == 28)
|
||
{
|
||
pc += 4;
|
||
x.i = read_memory_integer (pc, 4);
|
||
}
|
||
|
||
/* Now we need to recognize stores into the frame from the input
|
||
registers. This recognizes all non alternate stores of input
|
||
register, into a location offset from the frame pointer. */
|
||
while (x.insn.arith_imm.op == 3
|
||
&& (x.insn.arith_imm.op3 & 0x3c) == 4 /* Store, non-alt */
|
||
&& (x.insn.arith_imm.rd & 0x18) == 0x18 /* Input register */
|
||
&& x.insn.arith_imm.i == 1 /* Immediate mode */
|
||
&& x.insn.arith_imm.rs1 == 30 /* Off of frame pointer */
|
||
&& x.insn.arith_imm.simm >= 0x44 /* Into reserved */
|
||
&& x.insn.arith_imm.simm < 0x5b) /* stack space. */
|
||
{
|
||
pc += 4;
|
||
x.i = read_memory_integer (pc, 4);
|
||
}
|
||
return pc;
|
||
}
|
||
|
||
/*
|
||
* Check instruction at "addr" to see if it is an annulled branch.
|
||
* All other instructions will go to NPC or will trap.
|
||
*
|
||
* Set *target if we find a candidate branch; set to zero if not.
|
||
*/
|
||
|
||
branch_type
|
||
isannulled (addr, target)
|
||
CORE_ADDR addr, *target;
|
||
{
|
||
union insn_fmt instr;
|
||
branch_type val = not_branch;
|
||
long offset; /* Must be signed for sign-extend */
|
||
|
||
*target = 0;
|
||
instr.intval = read_memory_integer (addr, 4);
|
||
/* printf("intval = %x\n",instr.intval); */
|
||
switch (instr.op1.op1)
|
||
{
|
||
case 0: /* Format 2 */
|
||
switch(instr.op2.op2)
|
||
{
|
||
case 2: case 6: case 7: /* Bcc, FBcc, CBcc */
|
||
if (instr.branch.cond == 8)
|
||
val = instr.branch.a ? baa : ba;
|
||
else
|
||
val = instr.branch.a ? bicca : bicc;
|
||
/* 22 bits, sign extended */
|
||
offset = 4 * ((int) (instr.branch.disp << 10) >> 10);
|
||
*target = addr + offset;
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
/*printf("isannulled ret: %d\n",val); */
|
||
return val;
|
||
}
|
||
@
|
||
|
||
|
||
1.2
|
||
log
|
||
@ * Use gdbcore.h rather than a bunch of externs.
|
||
* Avoid dependency on "exec file" when figuring out data_start and data_end
|
||
of core file.
|
||
@
|
||
text
|
||
@d97 2
|
||
a98 2
|
||
static CORE_ADDR next_pc, pc8, target;
|
||
static int brkpc8, brktrg;
|
||
d113 2
|
||
a114 1
|
||
branch_type br, isabranch();
|
||
d117 1
|
||
a117 1
|
||
pc8 = read_register (PC_REGNUM) + 8; /* branch not taken */
|
||
d124 1
|
||
d126 3
|
||
a128 3
|
||
/* printf ("set break at %x\n",next_pc); */
|
||
br = isabranch (pc8 - 8, &target);
|
||
brkpc8 = brktrg = 0;
|
||
d130 7
|
||
a136 6
|
||
if (br == bicca && pc8 != next_pc)
|
||
{
|
||
/* Handle branches with care */
|
||
brkpc8 = 1;
|
||
read_memory (pc8, break_mem[1], sizeof break_insn);
|
||
write_memory (pc8, break_insn, sizeof break_insn);
|
||
d140 2
|
||
d157 1
|
||
a157 1
|
||
if (brkpc8)
|
||
d159 1
|
||
a159 1
|
||
write_memory (pc8, break_mem[1], sizeof break_insn);
|
||
d895 6
|
||
a900 1
|
||
/* Set *target if we find a branch. */
|
||
d903 1
|
||
a903 1
|
||
isabranch (addr, target)
|
||
d918 1
|
||
a918 1
|
||
case 2: case 6: /* BICC & FBCC */
|
||
d930 1
|
||
a930 1
|
||
/*printf("isabranch ret: %d\n",val); */
|
||
@
|
||
|
||
|
||
1.1
|
||
log
|
||
@Initial revision
|
||
@
|
||
text
|
||
@d29 1
|
||
a453 49
|
||
/* File names of core file and executable file. */
|
||
|
||
extern char *corefile;
|
||
extern char *execfile;
|
||
|
||
/* Descriptors on which core file and executable file are open.
|
||
Note that the execchan is closed when an inferior is created
|
||
and reopened if the inferior dies or is killed. */
|
||
|
||
extern int corechan;
|
||
extern int execchan;
|
||
|
||
/* Last modification time of executable file.
|
||
Also used in source.c to compare against mtime of a source file. */
|
||
|
||
extern int exec_mtime;
|
||
|
||
/* Virtual addresses of bounds of the two areas of memory in the core file. */
|
||
|
||
extern CORE_ADDR data_start;
|
||
extern CORE_ADDR data_end;
|
||
extern CORE_ADDR stack_start;
|
||
extern CORE_ADDR stack_end;
|
||
|
||
/* Virtual addresses of bounds of two areas of memory in the exec file.
|
||
Note that the data area in the exec file is used only when there is no core file. */
|
||
|
||
extern CORE_ADDR text_start;
|
||
extern CORE_ADDR text_end;
|
||
|
||
extern CORE_ADDR exec_data_start;
|
||
extern CORE_ADDR exec_data_end;
|
||
|
||
/* Address in executable file of start of text area data. */
|
||
|
||
extern int text_offset;
|
||
|
||
/* Address in executable file of start of data area data. */
|
||
|
||
extern int exec_data_offset;
|
||
|
||
/* Address in core file of start of data area data. */
|
||
|
||
extern int data_offset;
|
||
|
||
/* Address in core file of start of stack area data. */
|
||
|
||
extern int stack_offset;
|
||
|
||
d520 2
|
||
a521 1
|
||
data_start = exec_data_start;
|
||
a601 2
|
||
data_start = 0;
|
||
data_end -= exec_data_start;
|
||
a644 2
|
||
data_start = exec_data_start;
|
||
data_end += exec_data_start;
|
||
a661 2
|
||
data_start = exec_data_start;
|
||
data_end += exec_data_start;
|
||
@
|