
gas/ * config/tc-mips.c (mips_fix_pmc_rm7000): Declare. (options): Add OPTION_FIX_PMC_RM7000 and OPTION_NO_FIX_PMC_RM7000. (md_longopts): Add mfix-pmc-rm7000 and mno-fix-pmc-rm7000. (INSN_DMULT): Define. (INSN_DMULTU): Define. (insns_between): Detect PMC RM7000 errata. (md_parse_option): Supprt OPTION_FIX_PMC_RM7000 and OPTION_NO_FIX_PMC_RM7000. * doc/as.texinfo: Document new options. * doc/c-mips.texi: Likewise. gas/testsuite/ * gas/mips/fix-pmc-rm7000-1.d: New. * gas/mips/fix-pmc-rm7000-1.s: New. * gas/mips/fix-pmc-rm7000-2.d: New. * gas/mips/fix-pmc-rm7000-2.s: New. * gas/mips/micromips@fix-pmc-rm7000-1.d: New. * gas/mips/micromips@fix-pmc-rm7000-2.d: New. * gas/mips/mips.exp: Run new tests.
18251 lines
515 KiB
C
18251 lines
515 KiB
C
/* tc-mips.c -- assemble code for a MIPS chip.
|
||
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
|
||
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
|
||
Free Software Foundation, Inc.
|
||
Contributed by the OSF and Ralph Campbell.
|
||
Written by Keith Knowles and Ralph Campbell, working independently.
|
||
Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
|
||
Support.
|
||
|
||
This file is part of GAS.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "as.h"
|
||
#include "config.h"
|
||
#include "subsegs.h"
|
||
#include "safe-ctype.h"
|
||
|
||
#include "opcode/mips.h"
|
||
#include "itbl-ops.h"
|
||
#include "dwarf2dbg.h"
|
||
#include "dw2gencfi.h"
|
||
|
||
/* Check assumptions made in this file. */
|
||
typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
|
||
typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
|
||
|
||
#ifdef DEBUG
|
||
#define DBG(x) printf x
|
||
#else
|
||
#define DBG(x)
|
||
#endif
|
||
|
||
#define SKIP_SPACE_TABS(S) \
|
||
do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
|
||
|
||
/* Clean up namespace so we can include obj-elf.h too. */
|
||
static int mips_output_flavor (void);
|
||
static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
|
||
#undef OBJ_PROCESS_STAB
|
||
#undef OUTPUT_FLAVOR
|
||
#undef S_GET_ALIGN
|
||
#undef S_GET_SIZE
|
||
#undef S_SET_ALIGN
|
||
#undef S_SET_SIZE
|
||
#undef obj_frob_file
|
||
#undef obj_frob_file_after_relocs
|
||
#undef obj_frob_symbol
|
||
#undef obj_pop_insert
|
||
#undef obj_sec_sym_ok_for_reloc
|
||
#undef OBJ_COPY_SYMBOL_ATTRIBUTES
|
||
|
||
#include "obj-elf.h"
|
||
/* Fix any of them that we actually care about. */
|
||
#undef OUTPUT_FLAVOR
|
||
#define OUTPUT_FLAVOR mips_output_flavor()
|
||
|
||
#include "elf/mips.h"
|
||
|
||
#ifndef ECOFF_DEBUGGING
|
||
#define NO_ECOFF_DEBUGGING
|
||
#define ECOFF_DEBUGGING 0
|
||
#endif
|
||
|
||
int mips_flag_mdebug = -1;
|
||
|
||
/* Control generation of .pdr sections. Off by default on IRIX: the native
|
||
linker doesn't know about and discards them, but relocations against them
|
||
remain, leading to rld crashes. */
|
||
#ifdef TE_IRIX
|
||
int mips_flag_pdr = FALSE;
|
||
#else
|
||
int mips_flag_pdr = TRUE;
|
||
#endif
|
||
|
||
#include "ecoff.h"
|
||
|
||
static char *mips_regmask_frag;
|
||
|
||
#define ZERO 0
|
||
#define ATREG 1
|
||
#define S0 16
|
||
#define S7 23
|
||
#define TREG 24
|
||
#define PIC_CALL_REG 25
|
||
#define KT0 26
|
||
#define KT1 27
|
||
#define GP 28
|
||
#define SP 29
|
||
#define FP 30
|
||
#define RA 31
|
||
|
||
#define ILLEGAL_REG (32)
|
||
|
||
#define AT mips_opts.at
|
||
|
||
extern int target_big_endian;
|
||
|
||
/* The name of the readonly data section. */
|
||
#define RDATA_SECTION_NAME ".rodata"
|
||
|
||
/* Ways in which an instruction can be "appended" to the output. */
|
||
enum append_method {
|
||
/* Just add it normally. */
|
||
APPEND_ADD,
|
||
|
||
/* Add it normally and then add a nop. */
|
||
APPEND_ADD_WITH_NOP,
|
||
|
||
/* Turn an instruction with a delay slot into a "compact" version. */
|
||
APPEND_ADD_COMPACT,
|
||
|
||
/* Insert the instruction before the last one. */
|
||
APPEND_SWAP
|
||
};
|
||
|
||
/* Information about an instruction, including its format, operands
|
||
and fixups. */
|
||
struct mips_cl_insn
|
||
{
|
||
/* The opcode's entry in mips_opcodes or mips16_opcodes. */
|
||
const struct mips_opcode *insn_mo;
|
||
|
||
/* The 16-bit or 32-bit bitstring of the instruction itself. This is
|
||
a copy of INSN_MO->match with the operands filled in. If we have
|
||
decided to use an extended MIPS16 instruction, this includes the
|
||
extension. */
|
||
unsigned long insn_opcode;
|
||
|
||
/* The frag that contains the instruction. */
|
||
struct frag *frag;
|
||
|
||
/* The offset into FRAG of the first instruction byte. */
|
||
long where;
|
||
|
||
/* The relocs associated with the instruction, if any. */
|
||
fixS *fixp[3];
|
||
|
||
/* True if this entry cannot be moved from its current position. */
|
||
unsigned int fixed_p : 1;
|
||
|
||
/* True if this instruction occurred in a .set noreorder block. */
|
||
unsigned int noreorder_p : 1;
|
||
|
||
/* True for mips16 instructions that jump to an absolute address. */
|
||
unsigned int mips16_absolute_jump_p : 1;
|
||
|
||
/* True if this instruction is complete. */
|
||
unsigned int complete_p : 1;
|
||
|
||
/* True if this instruction is cleared from history by unconditional
|
||
branch. */
|
||
unsigned int cleared_p : 1;
|
||
};
|
||
|
||
/* The ABI to use. */
|
||
enum mips_abi_level
|
||
{
|
||
NO_ABI = 0,
|
||
O32_ABI,
|
||
O64_ABI,
|
||
N32_ABI,
|
||
N64_ABI,
|
||
EABI_ABI
|
||
};
|
||
|
||
/* MIPS ABI we are using for this output file. */
|
||
static enum mips_abi_level mips_abi = NO_ABI;
|
||
|
||
/* Whether or not we have code that can call pic code. */
|
||
int mips_abicalls = FALSE;
|
||
|
||
/* Whether or not we have code which can be put into a shared
|
||
library. */
|
||
static bfd_boolean mips_in_shared = TRUE;
|
||
|
||
/* This is the set of options which may be modified by the .set
|
||
pseudo-op. We use a struct so that .set push and .set pop are more
|
||
reliable. */
|
||
|
||
struct mips_set_options
|
||
{
|
||
/* MIPS ISA (Instruction Set Architecture) level. This is set to -1
|
||
if it has not been initialized. Changed by `.set mipsN', and the
|
||
-mipsN command line option, and the default CPU. */
|
||
int isa;
|
||
/* Enabled Application Specific Extensions (ASEs). Changed by `.set
|
||
<asename>', by command line options, and based on the default
|
||
architecture. */
|
||
int ase;
|
||
/* Whether we are assembling for the mips16 processor. 0 if we are
|
||
not, 1 if we are, and -1 if the value has not been initialized.
|
||
Changed by `.set mips16' and `.set nomips16', and the -mips16 and
|
||
-nomips16 command line options, and the default CPU. */
|
||
int mips16;
|
||
/* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
|
||
1 if we are, and -1 if the value has not been initialized. Changed
|
||
by `.set micromips' and `.set nomicromips', and the -mmicromips
|
||
and -mno-micromips command line options, and the default CPU. */
|
||
int micromips;
|
||
/* Non-zero if we should not reorder instructions. Changed by `.set
|
||
reorder' and `.set noreorder'. */
|
||
int noreorder;
|
||
/* Non-zero if we should not permit the register designated "assembler
|
||
temporary" to be used in instructions. The value is the register
|
||
number, normally $at ($1). Changed by `.set at=REG', `.set noat'
|
||
(same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
|
||
unsigned int at;
|
||
/* Non-zero if we should warn when a macro instruction expands into
|
||
more than one machine instruction. Changed by `.set nomacro' and
|
||
`.set macro'. */
|
||
int warn_about_macros;
|
||
/* Non-zero if we should not move instructions. Changed by `.set
|
||
move', `.set volatile', `.set nomove', and `.set novolatile'. */
|
||
int nomove;
|
||
/* Non-zero if we should not optimize branches by moving the target
|
||
of the branch into the delay slot. Actually, we don't perform
|
||
this optimization anyhow. Changed by `.set bopt' and `.set
|
||
nobopt'. */
|
||
int nobopt;
|
||
/* Non-zero if we should not autoextend mips16 instructions.
|
||
Changed by `.set autoextend' and `.set noautoextend'. */
|
||
int noautoextend;
|
||
/* True if we should only emit 32-bit microMIPS instructions.
|
||
Changed by `.set insn32' and `.set noinsn32', and the -minsn32
|
||
and -mno-insn32 command line options. */
|
||
bfd_boolean insn32;
|
||
/* Restrict general purpose registers and floating point registers
|
||
to 32 bit. This is initially determined when -mgp32 or -mfp32
|
||
is passed but can changed if the assembler code uses .set mipsN. */
|
||
int gp32;
|
||
int fp32;
|
||
/* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
|
||
command line option, and the default CPU. */
|
||
int arch;
|
||
/* True if ".set sym32" is in effect. */
|
||
bfd_boolean sym32;
|
||
/* True if floating-point operations are not allowed. Changed by .set
|
||
softfloat or .set hardfloat, by command line options -msoft-float or
|
||
-mhard-float. The default is false. */
|
||
bfd_boolean soft_float;
|
||
|
||
/* True if only single-precision floating-point operations are allowed.
|
||
Changed by .set singlefloat or .set doublefloat, command-line options
|
||
-msingle-float or -mdouble-float. The default is false. */
|
||
bfd_boolean single_float;
|
||
};
|
||
|
||
/* This is the struct we use to hold the current set of options. Note
|
||
that we must set the isa field to ISA_UNKNOWN and the ASE fields to
|
||
-1 to indicate that they have not been initialized. */
|
||
|
||
/* True if -mgp32 was passed. */
|
||
static int file_mips_gp32 = -1;
|
||
|
||
/* True if -mfp32 was passed. */
|
||
static int file_mips_fp32 = -1;
|
||
|
||
/* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
|
||
static int file_mips_soft_float = 0;
|
||
|
||
/* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
|
||
static int file_mips_single_float = 0;
|
||
|
||
/* True if -mnan=2008, false if -mnan=legacy. */
|
||
static bfd_boolean mips_flag_nan2008 = FALSE;
|
||
|
||
static struct mips_set_options mips_opts =
|
||
{
|
||
/* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
|
||
/* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
|
||
/* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
|
||
/* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
|
||
/* soft_float */ FALSE, /* single_float */ FALSE
|
||
};
|
||
|
||
/* The set of ASEs that were selected on the command line, either
|
||
explicitly via ASE options or implicitly through things like -march. */
|
||
static unsigned int file_ase;
|
||
|
||
/* Which bits of file_ase were explicitly set or cleared by ASE options. */
|
||
static unsigned int file_ase_explicit;
|
||
|
||
/* These variables are filled in with the masks of registers used.
|
||
The object format code reads them and puts them in the appropriate
|
||
place. */
|
||
unsigned long mips_gprmask;
|
||
unsigned long mips_cprmask[4];
|
||
|
||
/* MIPS ISA we are using for this output file. */
|
||
static int file_mips_isa = ISA_UNKNOWN;
|
||
|
||
/* True if any MIPS16 code was produced. */
|
||
static int file_ase_mips16;
|
||
|
||
#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
|
||
|| mips_opts.isa == ISA_MIPS32R2 \
|
||
|| mips_opts.isa == ISA_MIPS64 \
|
||
|| mips_opts.isa == ISA_MIPS64R2)
|
||
|
||
/* True if any microMIPS code was produced. */
|
||
static int file_ase_micromips;
|
||
|
||
/* True if we want to create R_MIPS_JALR for jalr $25. */
|
||
#ifdef TE_IRIX
|
||
#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
|
||
#else
|
||
/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
|
||
because there's no place for any addend, the only acceptable
|
||
expression is a bare symbol. */
|
||
#define MIPS_JALR_HINT_P(EXPR) \
|
||
(!HAVE_IN_PLACE_ADDENDS \
|
||
|| ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
|
||
#endif
|
||
|
||
/* The argument of the -march= flag. The architecture we are assembling. */
|
||
static int file_mips_arch = CPU_UNKNOWN;
|
||
static const char *mips_arch_string;
|
||
|
||
/* The argument of the -mtune= flag. The architecture for which we
|
||
are optimizing. */
|
||
static int mips_tune = CPU_UNKNOWN;
|
||
static const char *mips_tune_string;
|
||
|
||
/* True when generating 32-bit code for a 64-bit processor. */
|
||
static int mips_32bitmode = 0;
|
||
|
||
/* True if the given ABI requires 32-bit registers. */
|
||
#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
|
||
|
||
/* Likewise 64-bit registers. */
|
||
#define ABI_NEEDS_64BIT_REGS(ABI) \
|
||
((ABI) == N32_ABI \
|
||
|| (ABI) == N64_ABI \
|
||
|| (ABI) == O64_ABI)
|
||
|
||
/* Return true if ISA supports 64 bit wide gp registers. */
|
||
#define ISA_HAS_64BIT_REGS(ISA) \
|
||
((ISA) == ISA_MIPS3 \
|
||
|| (ISA) == ISA_MIPS4 \
|
||
|| (ISA) == ISA_MIPS5 \
|
||
|| (ISA) == ISA_MIPS64 \
|
||
|| (ISA) == ISA_MIPS64R2)
|
||
|
||
/* Return true if ISA supports 64 bit wide float registers. */
|
||
#define ISA_HAS_64BIT_FPRS(ISA) \
|
||
((ISA) == ISA_MIPS3 \
|
||
|| (ISA) == ISA_MIPS4 \
|
||
|| (ISA) == ISA_MIPS5 \
|
||
|| (ISA) == ISA_MIPS32R2 \
|
||
|| (ISA) == ISA_MIPS64 \
|
||
|| (ISA) == ISA_MIPS64R2)
|
||
|
||
/* Return true if ISA supports 64-bit right rotate (dror et al.)
|
||
instructions. */
|
||
#define ISA_HAS_DROR(ISA) \
|
||
((ISA) == ISA_MIPS64R2 \
|
||
|| (mips_opts.micromips \
|
||
&& ISA_HAS_64BIT_REGS (ISA)) \
|
||
)
|
||
|
||
/* Return true if ISA supports 32-bit right rotate (ror et al.)
|
||
instructions. */
|
||
#define ISA_HAS_ROR(ISA) \
|
||
((ISA) == ISA_MIPS32R2 \
|
||
|| (ISA) == ISA_MIPS64R2 \
|
||
|| (mips_opts.ase & ASE_SMARTMIPS) \
|
||
|| mips_opts.micromips \
|
||
)
|
||
|
||
/* Return true if ISA supports single-precision floats in odd registers. */
|
||
#define ISA_HAS_ODD_SINGLE_FPR(ISA) \
|
||
((ISA) == ISA_MIPS32 \
|
||
|| (ISA) == ISA_MIPS32R2 \
|
||
|| (ISA) == ISA_MIPS64 \
|
||
|| (ISA) == ISA_MIPS64R2)
|
||
|
||
/* Return true if ISA supports move to/from high part of a 64-bit
|
||
floating-point register. */
|
||
#define ISA_HAS_MXHC1(ISA) \
|
||
((ISA) == ISA_MIPS32R2 \
|
||
|| (ISA) == ISA_MIPS64R2)
|
||
|
||
#define HAVE_32BIT_GPRS \
|
||
(mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
|
||
|
||
#define HAVE_32BIT_FPRS \
|
||
(mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
|
||
|
||
#define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
|
||
#define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
|
||
|
||
#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
|
||
|
||
#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
|
||
|
||
/* True if relocations are stored in-place. */
|
||
#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
|
||
|
||
/* The ABI-derived address size. */
|
||
#define HAVE_64BIT_ADDRESSES \
|
||
(HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
|
||
#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
|
||
|
||
/* The size of symbolic constants (i.e., expressions of the form
|
||
"SYMBOL" or "SYMBOL + OFFSET"). */
|
||
#define HAVE_32BIT_SYMBOLS \
|
||
(HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
|
||
#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
|
||
|
||
/* Addresses are loaded in different ways, depending on the address size
|
||
in use. The n32 ABI Documentation also mandates the use of additions
|
||
with overflow checking, but existing implementations don't follow it. */
|
||
#define ADDRESS_ADD_INSN \
|
||
(HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
|
||
|
||
#define ADDRESS_ADDI_INSN \
|
||
(HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
|
||
|
||
#define ADDRESS_LOAD_INSN \
|
||
(HAVE_32BIT_ADDRESSES ? "lw" : "ld")
|
||
|
||
#define ADDRESS_STORE_INSN \
|
||
(HAVE_32BIT_ADDRESSES ? "sw" : "sd")
|
||
|
||
/* Return true if the given CPU supports the MIPS16 ASE. */
|
||
#define CPU_HAS_MIPS16(cpu) \
|
||
(strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
|
||
|| strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
|
||
|
||
/* Return true if the given CPU supports the microMIPS ASE. */
|
||
#define CPU_HAS_MICROMIPS(cpu) 0
|
||
|
||
/* True if CPU has a dror instruction. */
|
||
#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
|
||
|
||
/* True if CPU has a ror instruction. */
|
||
#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
|
||
|
||
/* True if CPU is in the Octeon family */
|
||
#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
|
||
|
||
/* True if CPU has seq/sne and seqi/snei instructions. */
|
||
#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
|
||
|
||
/* True, if CPU has support for ldc1 and sdc1. */
|
||
#define CPU_HAS_LDC1_SDC1(CPU) \
|
||
((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
|
||
|
||
/* True if mflo and mfhi can be immediately followed by instructions
|
||
which write to the HI and LO registers.
|
||
|
||
According to MIPS specifications, MIPS ISAs I, II, and III need
|
||
(at least) two instructions between the reads of HI/LO and
|
||
instructions which write them, and later ISAs do not. Contradicting
|
||
the MIPS specifications, some MIPS IV processor user manuals (e.g.
|
||
the UM for the NEC Vr5000) document needing the instructions between
|
||
HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
|
||
MIPS64 and later ISAs to have the interlocks, plus any specific
|
||
earlier-ISA CPUs for which CPU documentation declares that the
|
||
instructions are really interlocked. */
|
||
#define hilo_interlocks \
|
||
(mips_opts.isa == ISA_MIPS32 \
|
||
|| mips_opts.isa == ISA_MIPS32R2 \
|
||
|| mips_opts.isa == ISA_MIPS64 \
|
||
|| mips_opts.isa == ISA_MIPS64R2 \
|
||
|| mips_opts.arch == CPU_R4010 \
|
||
|| mips_opts.arch == CPU_R5900 \
|
||
|| mips_opts.arch == CPU_R10000 \
|
||
|| mips_opts.arch == CPU_R12000 \
|
||
|| mips_opts.arch == CPU_R14000 \
|
||
|| mips_opts.arch == CPU_R16000 \
|
||
|| mips_opts.arch == CPU_RM7000 \
|
||
|| mips_opts.arch == CPU_VR5500 \
|
||
|| mips_opts.micromips \
|
||
)
|
||
|
||
/* Whether the processor uses hardware interlocks to protect reads
|
||
from the GPRs after they are loaded from memory, and thus does not
|
||
require nops to be inserted. This applies to instructions marked
|
||
INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
|
||
level I and microMIPS mode instructions are always interlocked. */
|
||
#define gpr_interlocks \
|
||
(mips_opts.isa != ISA_MIPS1 \
|
||
|| mips_opts.arch == CPU_R3900 \
|
||
|| mips_opts.arch == CPU_R5900 \
|
||
|| mips_opts.micromips \
|
||
)
|
||
|
||
/* Whether the processor uses hardware interlocks to avoid delays
|
||
required by coprocessor instructions, and thus does not require
|
||
nops to be inserted. This applies to instructions marked
|
||
INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
|
||
between instructions marked INSN_WRITE_COND_CODE and ones marked
|
||
INSN_READ_COND_CODE. These nops are only required at MIPS ISA
|
||
levels I, II, and III and microMIPS mode instructions are always
|
||
interlocked. */
|
||
/* Itbl support may require additional care here. */
|
||
#define cop_interlocks \
|
||
((mips_opts.isa != ISA_MIPS1 \
|
||
&& mips_opts.isa != ISA_MIPS2 \
|
||
&& mips_opts.isa != ISA_MIPS3) \
|
||
|| mips_opts.arch == CPU_R4300 \
|
||
|| mips_opts.micromips \
|
||
)
|
||
|
||
/* Whether the processor uses hardware interlocks to protect reads
|
||
from coprocessor registers after they are loaded from memory, and
|
||
thus does not require nops to be inserted. This applies to
|
||
instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
|
||
requires at MIPS ISA level I and microMIPS mode instructions are
|
||
always interlocked. */
|
||
#define cop_mem_interlocks \
|
||
(mips_opts.isa != ISA_MIPS1 \
|
||
|| mips_opts.micromips \
|
||
)
|
||
|
||
/* Is this a mfhi or mflo instruction? */
|
||
#define MF_HILO_INSN(PINFO) \
|
||
((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
|
||
|
||
/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
|
||
has been selected. This implies, in particular, that addresses of text
|
||
labels have their LSB set. */
|
||
#define HAVE_CODE_COMPRESSION \
|
||
((mips_opts.mips16 | mips_opts.micromips) != 0)
|
||
|
||
/* The minimum and maximum signed values that can be stored in a GPR. */
|
||
#define GPR_SMAX ((offsetT) (((valueT) 1 << (HAVE_64BIT_GPRS ? 63 : 31)) - 1))
|
||
#define GPR_SMIN (-GPR_SMAX - 1)
|
||
|
||
/* MIPS PIC level. */
|
||
|
||
enum mips_pic_level mips_pic;
|
||
|
||
/* 1 if we should generate 32 bit offsets from the $gp register in
|
||
SVR4_PIC mode. Currently has no meaning in other modes. */
|
||
static int mips_big_got = 0;
|
||
|
||
/* 1 if trap instructions should used for overflow rather than break
|
||
instructions. */
|
||
static int mips_trap = 0;
|
||
|
||
/* 1 if double width floating point constants should not be constructed
|
||
by assembling two single width halves into two single width floating
|
||
point registers which just happen to alias the double width destination
|
||
register. On some architectures this aliasing can be disabled by a bit
|
||
in the status register, and the setting of this bit cannot be determined
|
||
automatically at assemble time. */
|
||
static int mips_disable_float_construction;
|
||
|
||
/* Non-zero if any .set noreorder directives were used. */
|
||
|
||
static int mips_any_noreorder;
|
||
|
||
/* Non-zero if nops should be inserted when the register referenced in
|
||
an mfhi/mflo instruction is read in the next two instructions. */
|
||
static int mips_7000_hilo_fix;
|
||
|
||
/* The size of objects in the small data section. */
|
||
static unsigned int g_switch_value = 8;
|
||
/* Whether the -G option was used. */
|
||
static int g_switch_seen = 0;
|
||
|
||
#define N_RMASK 0xc4
|
||
#define N_VFP 0xd4
|
||
|
||
/* If we can determine in advance that GP optimization won't be
|
||
possible, we can skip the relaxation stuff that tries to produce
|
||
GP-relative references. This makes delay slot optimization work
|
||
better.
|
||
|
||
This function can only provide a guess, but it seems to work for
|
||
gcc output. It needs to guess right for gcc, otherwise gcc
|
||
will put what it thinks is a GP-relative instruction in a branch
|
||
delay slot.
|
||
|
||
I don't know if a fix is needed for the SVR4_PIC mode. I've only
|
||
fixed it for the non-PIC mode. KR 95/04/07 */
|
||
static int nopic_need_relax (symbolS *, int);
|
||
|
||
/* handle of the OPCODE hash table */
|
||
static struct hash_control *op_hash = NULL;
|
||
|
||
/* The opcode hash table we use for the mips16. */
|
||
static struct hash_control *mips16_op_hash = NULL;
|
||
|
||
/* The opcode hash table we use for the microMIPS ASE. */
|
||
static struct hash_control *micromips_op_hash = NULL;
|
||
|
||
/* This array holds the chars that always start a comment. If the
|
||
pre-processor is disabled, these aren't very useful */
|
||
const char comment_chars[] = "#";
|
||
|
||
/* This array holds the chars that only start a comment at the beginning of
|
||
a line. If the line seems to have the form '# 123 filename'
|
||
.line and .file directives will appear in the pre-processed output */
|
||
/* Note that input_file.c hand checks for '#' at the beginning of the
|
||
first line of the input file. This is because the compiler outputs
|
||
#NO_APP at the beginning of its output. */
|
||
/* Also note that C style comments are always supported. */
|
||
const char line_comment_chars[] = "#";
|
||
|
||
/* This array holds machine specific line separator characters. */
|
||
const char line_separator_chars[] = ";";
|
||
|
||
/* Chars that can be used to separate mant from exp in floating point nums */
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant */
|
||
/* As in 0f12.456 */
|
||
/* or 0d1.2345e12 */
|
||
const char FLT_CHARS[] = "rRsSfFdDxXpP";
|
||
|
||
/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
|
||
changed in read.c . Ideally it shouldn't have to know about it at all,
|
||
but nothing is ideal around here.
|
||
*/
|
||
|
||
/* Types of printf format used for instruction-related error messages.
|
||
"I" means int ("%d") and "S" means string ("%s"). */
|
||
enum mips_insn_error_format {
|
||
ERR_FMT_PLAIN,
|
||
ERR_FMT_I,
|
||
ERR_FMT_SS,
|
||
};
|
||
|
||
/* Information about an error that was found while assembling the current
|
||
instruction. */
|
||
struct mips_insn_error {
|
||
/* We sometimes need to match an instruction against more than one
|
||
opcode table entry. Errors found during this matching are reported
|
||
against a particular syntactic argument rather than against the
|
||
instruction as a whole. We grade these messages so that errors
|
||
against argument N have a greater priority than an error against
|
||
any argument < N, since the former implies that arguments up to N
|
||
were acceptable and that the opcode entry was therefore a closer match.
|
||
If several matches report an error against the same argument,
|
||
we only use that error if it is the same in all cases.
|
||
|
||
min_argnum is the minimum argument number for which an error message
|
||
should be accepted. It is 0 if MSG is against the instruction as
|
||
a whole. */
|
||
int min_argnum;
|
||
|
||
/* The printf()-style message, including its format and arguments. */
|
||
enum mips_insn_error_format format;
|
||
const char *msg;
|
||
union {
|
||
int i;
|
||
const char *ss[2];
|
||
} u;
|
||
};
|
||
|
||
/* The error that should be reported for the current instruction. */
|
||
static struct mips_insn_error insn_error;
|
||
|
||
static int auto_align = 1;
|
||
|
||
/* When outputting SVR4 PIC code, the assembler needs to know the
|
||
offset in the stack frame from which to restore the $gp register.
|
||
This is set by the .cprestore pseudo-op, and saved in this
|
||
variable. */
|
||
static offsetT mips_cprestore_offset = -1;
|
||
|
||
/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
|
||
more optimizations, it can use a register value instead of a memory-saved
|
||
offset and even an other register than $gp as global pointer. */
|
||
static offsetT mips_cpreturn_offset = -1;
|
||
static int mips_cpreturn_register = -1;
|
||
static int mips_gp_register = GP;
|
||
static int mips_gprel_offset = 0;
|
||
|
||
/* Whether mips_cprestore_offset has been set in the current function
|
||
(or whether it has already been warned about, if not). */
|
||
static int mips_cprestore_valid = 0;
|
||
|
||
/* This is the register which holds the stack frame, as set by the
|
||
.frame pseudo-op. This is needed to implement .cprestore. */
|
||
static int mips_frame_reg = SP;
|
||
|
||
/* Whether mips_frame_reg has been set in the current function
|
||
(or whether it has already been warned about, if not). */
|
||
static int mips_frame_reg_valid = 0;
|
||
|
||
/* To output NOP instructions correctly, we need to keep information
|
||
about the previous two instructions. */
|
||
|
||
/* Whether we are optimizing. The default value of 2 means to remove
|
||
unneeded NOPs and swap branch instructions when possible. A value
|
||
of 1 means to not swap branches. A value of 0 means to always
|
||
insert NOPs. */
|
||
static int mips_optimize = 2;
|
||
|
||
/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
|
||
equivalent to seeing no -g option at all. */
|
||
static int mips_debug = 0;
|
||
|
||
/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
|
||
#define MAX_VR4130_NOPS 4
|
||
|
||
/* The maximum number of NOPs needed to fill delay slots. */
|
||
#define MAX_DELAY_NOPS 2
|
||
|
||
/* The maximum number of NOPs needed for any purpose. */
|
||
#define MAX_NOPS 4
|
||
|
||
/* A list of previous instructions, with index 0 being the most recent.
|
||
We need to look back MAX_NOPS instructions when filling delay slots
|
||
or working around processor errata. We need to look back one
|
||
instruction further if we're thinking about using history[0] to
|
||
fill a branch delay slot. */
|
||
static struct mips_cl_insn history[1 + MAX_NOPS];
|
||
|
||
/* Arrays of operands for each instruction. */
|
||
#define MAX_OPERANDS 6
|
||
struct mips_operand_array {
|
||
const struct mips_operand *operand[MAX_OPERANDS];
|
||
};
|
||
static struct mips_operand_array *mips_operands;
|
||
static struct mips_operand_array *mips16_operands;
|
||
static struct mips_operand_array *micromips_operands;
|
||
|
||
/* Nop instructions used by emit_nop. */
|
||
static struct mips_cl_insn nop_insn;
|
||
static struct mips_cl_insn mips16_nop_insn;
|
||
static struct mips_cl_insn micromips_nop16_insn;
|
||
static struct mips_cl_insn micromips_nop32_insn;
|
||
|
||
/* The appropriate nop for the current mode. */
|
||
#define NOP_INSN (mips_opts.mips16 \
|
||
? &mips16_nop_insn \
|
||
: (mips_opts.micromips \
|
||
? (mips_opts.insn32 \
|
||
? µmips_nop32_insn \
|
||
: µmips_nop16_insn) \
|
||
: &nop_insn))
|
||
|
||
/* The size of NOP_INSN in bytes. */
|
||
#define NOP_INSN_SIZE ((mips_opts.mips16 \
|
||
|| (mips_opts.micromips && !mips_opts.insn32)) \
|
||
? 2 : 4)
|
||
|
||
/* If this is set, it points to a frag holding nop instructions which
|
||
were inserted before the start of a noreorder section. If those
|
||
nops turn out to be unnecessary, the size of the frag can be
|
||
decreased. */
|
||
static fragS *prev_nop_frag;
|
||
|
||
/* The number of nop instructions we created in prev_nop_frag. */
|
||
static int prev_nop_frag_holds;
|
||
|
||
/* The number of nop instructions that we know we need in
|
||
prev_nop_frag. */
|
||
static int prev_nop_frag_required;
|
||
|
||
/* The number of instructions we've seen since prev_nop_frag. */
|
||
static int prev_nop_frag_since;
|
||
|
||
/* Relocations against symbols are sometimes done in two parts, with a HI
|
||
relocation and a LO relocation. Each relocation has only 16 bits of
|
||
space to store an addend. This means that in order for the linker to
|
||
handle carries correctly, it must be able to locate both the HI and
|
||
the LO relocation. This means that the relocations must appear in
|
||
order in the relocation table.
|
||
|
||
In order to implement this, we keep track of each unmatched HI
|
||
relocation. We then sort them so that they immediately precede the
|
||
corresponding LO relocation. */
|
||
|
||
struct mips_hi_fixup
|
||
{
|
||
/* Next HI fixup. */
|
||
struct mips_hi_fixup *next;
|
||
/* This fixup. */
|
||
fixS *fixp;
|
||
/* The section this fixup is in. */
|
||
segT seg;
|
||
};
|
||
|
||
/* The list of unmatched HI relocs. */
|
||
|
||
static struct mips_hi_fixup *mips_hi_fixup_list;
|
||
|
||
/* The frag containing the last explicit relocation operator.
|
||
Null if explicit relocations have not been used. */
|
||
|
||
static fragS *prev_reloc_op_frag;
|
||
|
||
/* Map mips16 register numbers to normal MIPS register numbers. */
|
||
|
||
static const unsigned int mips16_to_32_reg_map[] =
|
||
{
|
||
16, 17, 2, 3, 4, 5, 6, 7
|
||
};
|
||
|
||
/* Map microMIPS register numbers to normal MIPS register numbers. */
|
||
|
||
#define micromips_to_32_reg_d_map mips16_to_32_reg_map
|
||
|
||
/* The microMIPS registers with type h. */
|
||
static const unsigned int micromips_to_32_reg_h_map1[] =
|
||
{
|
||
5, 5, 6, 4, 4, 4, 4, 4
|
||
};
|
||
static const unsigned int micromips_to_32_reg_h_map2[] =
|
||
{
|
||
6, 7, 7, 21, 22, 5, 6, 7
|
||
};
|
||
|
||
/* The microMIPS registers with type m. */
|
||
static const unsigned int micromips_to_32_reg_m_map[] =
|
||
{
|
||
0, 17, 2, 3, 16, 18, 19, 20
|
||
};
|
||
|
||
#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
|
||
|
||
/* Classifies the kind of instructions we're interested in when
|
||
implementing -mfix-vr4120. */
|
||
enum fix_vr4120_class
|
||
{
|
||
FIX_VR4120_MACC,
|
||
FIX_VR4120_DMACC,
|
||
FIX_VR4120_MULT,
|
||
FIX_VR4120_DMULT,
|
||
FIX_VR4120_DIV,
|
||
FIX_VR4120_MTHILO,
|
||
NUM_FIX_VR4120_CLASSES
|
||
};
|
||
|
||
/* ...likewise -mfix-loongson2f-jump. */
|
||
static bfd_boolean mips_fix_loongson2f_jump;
|
||
|
||
/* ...likewise -mfix-loongson2f-nop. */
|
||
static bfd_boolean mips_fix_loongson2f_nop;
|
||
|
||
/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
|
||
static bfd_boolean mips_fix_loongson2f;
|
||
|
||
/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
|
||
there must be at least one other instruction between an instruction
|
||
of type X and an instruction of type Y. */
|
||
static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
|
||
|
||
/* True if -mfix-vr4120 is in force. */
|
||
static int mips_fix_vr4120;
|
||
|
||
/* ...likewise -mfix-vr4130. */
|
||
static int mips_fix_vr4130;
|
||
|
||
/* ...likewise -mfix-24k. */
|
||
static int mips_fix_24k;
|
||
|
||
/* ...likewise -mfix-rm7000 */
|
||
static int mips_fix_rm7000;
|
||
|
||
/* ...likewise -mfix-cn63xxp1 */
|
||
static bfd_boolean mips_fix_cn63xxp1;
|
||
|
||
/* We don't relax branches by default, since this causes us to expand
|
||
`la .l2 - .l1' if there's a branch between .l1 and .l2, because we
|
||
fail to compute the offset before expanding the macro to the most
|
||
efficient expansion. */
|
||
|
||
static int mips_relax_branch;
|
||
|
||
/* The expansion of many macros depends on the type of symbol that
|
||
they refer to. For example, when generating position-dependent code,
|
||
a macro that refers to a symbol may have two different expansions,
|
||
one which uses GP-relative addresses and one which uses absolute
|
||
addresses. When generating SVR4-style PIC, a macro may have
|
||
different expansions for local and global symbols.
|
||
|
||
We handle these situations by generating both sequences and putting
|
||
them in variant frags. In position-dependent code, the first sequence
|
||
will be the GP-relative one and the second sequence will be the
|
||
absolute one. In SVR4 PIC, the first sequence will be for global
|
||
symbols and the second will be for local symbols.
|
||
|
||
The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
|
||
SECOND are the lengths of the two sequences in bytes. These fields
|
||
can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
|
||
the subtype has the following flags:
|
||
|
||
RELAX_USE_SECOND
|
||
Set if it has been decided that we should use the second
|
||
sequence instead of the first.
|
||
|
||
RELAX_SECOND_LONGER
|
||
Set in the first variant frag if the macro's second implementation
|
||
is longer than its first. This refers to the macro as a whole,
|
||
not an individual relaxation.
|
||
|
||
RELAX_NOMACRO
|
||
Set in the first variant frag if the macro appeared in a .set nomacro
|
||
block and if one alternative requires a warning but the other does not.
|
||
|
||
RELAX_DELAY_SLOT
|
||
Like RELAX_NOMACRO, but indicates that the macro appears in a branch
|
||
delay slot.
|
||
|
||
RELAX_DELAY_SLOT_16BIT
|
||
Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
|
||
16-bit instruction.
|
||
|
||
RELAX_DELAY_SLOT_SIZE_FIRST
|
||
Like RELAX_DELAY_SLOT, but indicates that the first implementation of
|
||
the macro is of the wrong size for the branch delay slot.
|
||
|
||
RELAX_DELAY_SLOT_SIZE_SECOND
|
||
Like RELAX_DELAY_SLOT, but indicates that the second implementation of
|
||
the macro is of the wrong size for the branch delay slot.
|
||
|
||
The frag's "opcode" points to the first fixup for relaxable code.
|
||
|
||
Relaxable macros are generated using a sequence such as:
|
||
|
||
relax_start (SYMBOL);
|
||
... generate first expansion ...
|
||
relax_switch ();
|
||
... generate second expansion ...
|
||
relax_end ();
|
||
|
||
The code and fixups for the unwanted alternative are discarded
|
||
by md_convert_frag. */
|
||
#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
|
||
|
||
#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
|
||
#define RELAX_SECOND(X) ((X) & 0xff)
|
||
#define RELAX_USE_SECOND 0x10000
|
||
#define RELAX_SECOND_LONGER 0x20000
|
||
#define RELAX_NOMACRO 0x40000
|
||
#define RELAX_DELAY_SLOT 0x80000
|
||
#define RELAX_DELAY_SLOT_16BIT 0x100000
|
||
#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
|
||
#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
|
||
|
||
/* Branch without likely bit. If label is out of range, we turn:
|
||
|
||
beq reg1, reg2, label
|
||
delay slot
|
||
|
||
into
|
||
|
||
bne reg1, reg2, 0f
|
||
nop
|
||
j label
|
||
0: delay slot
|
||
|
||
with the following opcode replacements:
|
||
|
||
beq <-> bne
|
||
blez <-> bgtz
|
||
bltz <-> bgez
|
||
bc1f <-> bc1t
|
||
|
||
bltzal <-> bgezal (with jal label instead of j label)
|
||
|
||
Even though keeping the delay slot instruction in the delay slot of
|
||
the branch would be more efficient, it would be very tricky to do
|
||
correctly, because we'd have to introduce a variable frag *after*
|
||
the delay slot instruction, and expand that instead. Let's do it
|
||
the easy way for now, even if the branch-not-taken case now costs
|
||
one additional instruction. Out-of-range branches are not supposed
|
||
to be common, anyway.
|
||
|
||
Branch likely. If label is out of range, we turn:
|
||
|
||
beql reg1, reg2, label
|
||
delay slot (annulled if branch not taken)
|
||
|
||
into
|
||
|
||
beql reg1, reg2, 1f
|
||
nop
|
||
beql $0, $0, 2f
|
||
nop
|
||
1: j[al] label
|
||
delay slot (executed only if branch taken)
|
||
2:
|
||
|
||
It would be possible to generate a shorter sequence by losing the
|
||
likely bit, generating something like:
|
||
|
||
bne reg1, reg2, 0f
|
||
nop
|
||
j[al] label
|
||
delay slot (executed only if branch taken)
|
||
0:
|
||
|
||
beql -> bne
|
||
bnel -> beq
|
||
blezl -> bgtz
|
||
bgtzl -> blez
|
||
bltzl -> bgez
|
||
bgezl -> bltz
|
||
bc1fl -> bc1t
|
||
bc1tl -> bc1f
|
||
|
||
bltzall -> bgezal (with jal label instead of j label)
|
||
bgezall -> bltzal (ditto)
|
||
|
||
|
||
but it's not clear that it would actually improve performance. */
|
||
#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
|
||
((relax_substateT) \
|
||
(0xc0000000 \
|
||
| ((at) & 0x1f) \
|
||
| ((toofar) ? 0x20 : 0) \
|
||
| ((link) ? 0x40 : 0) \
|
||
| ((likely) ? 0x80 : 0) \
|
||
| ((uncond) ? 0x100 : 0)))
|
||
#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
|
||
#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
|
||
#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
|
||
#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
|
||
#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
|
||
#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
|
||
|
||
/* For mips16 code, we use an entirely different form of relaxation.
|
||
mips16 supports two versions of most instructions which take
|
||
immediate values: a small one which takes some small value, and a
|
||
larger one which takes a 16 bit value. Since branches also follow
|
||
this pattern, relaxing these values is required.
|
||
|
||
We can assemble both mips16 and normal MIPS code in a single
|
||
object. Therefore, we need to support this type of relaxation at
|
||
the same time that we support the relaxation described above. We
|
||
use the high bit of the subtype field to distinguish these cases.
|
||
|
||
The information we store for this type of relaxation is the
|
||
argument code found in the opcode file for this relocation, whether
|
||
the user explicitly requested a small or extended form, and whether
|
||
the relocation is in a jump or jal delay slot. That tells us the
|
||
size of the value, and how it should be stored. We also store
|
||
whether the fragment is considered to be extended or not. We also
|
||
store whether this is known to be a branch to a different section,
|
||
whether we have tried to relax this frag yet, and whether we have
|
||
ever extended a PC relative fragment because of a shift count. */
|
||
#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
|
||
(0x80000000 \
|
||
| ((type) & 0xff) \
|
||
| ((small) ? 0x100 : 0) \
|
||
| ((ext) ? 0x200 : 0) \
|
||
| ((dslot) ? 0x400 : 0) \
|
||
| ((jal_dslot) ? 0x800 : 0))
|
||
#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
|
||
#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
|
||
#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
|
||
#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
|
||
#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
|
||
#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
|
||
#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
|
||
#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
|
||
#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
|
||
#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
|
||
#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
|
||
#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
|
||
|
||
/* For microMIPS code, we use relaxation similar to one we use for
|
||
MIPS16 code. Some instructions that take immediate values support
|
||
two encodings: a small one which takes some small value, and a
|
||
larger one which takes a 16 bit value. As some branches also follow
|
||
this pattern, relaxing these values is required.
|
||
|
||
We can assemble both microMIPS and normal MIPS code in a single
|
||
object. Therefore, we need to support this type of relaxation at
|
||
the same time that we support the relaxation described above. We
|
||
use one of the high bits of the subtype field to distinguish these
|
||
cases.
|
||
|
||
The information we store for this type of relaxation is the argument
|
||
code found in the opcode file for this relocation, the register
|
||
selected as the assembler temporary, whether the branch is
|
||
unconditional, whether it is compact, whether it stores the link
|
||
address implicitly in $ra, whether relaxation of out-of-range 32-bit
|
||
branches to a sequence of instructions is enabled, and whether the
|
||
displacement of a branch is too large to fit as an immediate argument
|
||
of a 16-bit and a 32-bit branch, respectively. */
|
||
#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
|
||
relax32, toofar16, toofar32) \
|
||
(0x40000000 \
|
||
| ((type) & 0xff) \
|
||
| (((at) & 0x1f) << 8) \
|
||
| ((uncond) ? 0x2000 : 0) \
|
||
| ((compact) ? 0x4000 : 0) \
|
||
| ((link) ? 0x8000 : 0) \
|
||
| ((relax32) ? 0x10000 : 0) \
|
||
| ((toofar16) ? 0x20000 : 0) \
|
||
| ((toofar32) ? 0x40000 : 0))
|
||
#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
|
||
#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
|
||
#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
|
||
#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
|
||
#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
|
||
#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
|
||
#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
|
||
|
||
#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
|
||
#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
|
||
#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
|
||
#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
|
||
#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
|
||
#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
|
||
|
||
/* Sign-extend 16-bit value X. */
|
||
#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
|
||
|
||
/* Is the given value a sign-extended 32-bit value? */
|
||
#define IS_SEXT_32BIT_NUM(x) \
|
||
(((x) &~ (offsetT) 0x7fffffff) == 0 \
|
||
|| (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
|
||
|
||
/* Is the given value a sign-extended 16-bit value? */
|
||
#define IS_SEXT_16BIT_NUM(x) \
|
||
(((x) &~ (offsetT) 0x7fff) == 0 \
|
||
|| (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
|
||
|
||
/* Is the given value a sign-extended 12-bit value? */
|
||
#define IS_SEXT_12BIT_NUM(x) \
|
||
(((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
|
||
|
||
/* Is the given value a sign-extended 9-bit value? */
|
||
#define IS_SEXT_9BIT_NUM(x) \
|
||
(((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
|
||
|
||
/* Is the given value a zero-extended 32-bit value? Or a negated one? */
|
||
#define IS_ZEXT_32BIT_NUM(x) \
|
||
(((x) &~ (offsetT) 0xffffffff) == 0 \
|
||
|| (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
|
||
|
||
/* Extract bits MASK << SHIFT from STRUCT and shift them right
|
||
SHIFT places. */
|
||
#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
|
||
(((STRUCT) >> (SHIFT)) & (MASK))
|
||
|
||
/* Extract the operand given by FIELD from mips_cl_insn INSN. */
|
||
#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
|
||
(!(MICROMIPS) \
|
||
? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
|
||
: EXTRACT_BITS ((INSN).insn_opcode, \
|
||
MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
|
||
#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
|
||
EXTRACT_BITS ((INSN).insn_opcode, \
|
||
MIPS16OP_MASK_##FIELD, \
|
||
MIPS16OP_SH_##FIELD)
|
||
|
||
/* The MIPS16 EXTEND opcode, shifted left 16 places. */
|
||
#define MIPS16_EXTEND (0xf000U << 16)
|
||
|
||
/* Whether or not we are emitting a branch-likely macro. */
|
||
static bfd_boolean emit_branch_likely_macro = FALSE;
|
||
|
||
/* Global variables used when generating relaxable macros. See the
|
||
comment above RELAX_ENCODE for more details about how relaxation
|
||
is used. */
|
||
static struct {
|
||
/* 0 if we're not emitting a relaxable macro.
|
||
1 if we're emitting the first of the two relaxation alternatives.
|
||
2 if we're emitting the second alternative. */
|
||
int sequence;
|
||
|
||
/* The first relaxable fixup in the current frag. (In other words,
|
||
the first fixup that refers to relaxable code.) */
|
||
fixS *first_fixup;
|
||
|
||
/* sizes[0] says how many bytes of the first alternative are stored in
|
||
the current frag. Likewise sizes[1] for the second alternative. */
|
||
unsigned int sizes[2];
|
||
|
||
/* The symbol on which the choice of sequence depends. */
|
||
symbolS *symbol;
|
||
} mips_relax;
|
||
|
||
/* Global variables used to decide whether a macro needs a warning. */
|
||
static struct {
|
||
/* True if the macro is in a branch delay slot. */
|
||
bfd_boolean delay_slot_p;
|
||
|
||
/* Set to the length in bytes required if the macro is in a delay slot
|
||
that requires a specific length of instruction, otherwise zero. */
|
||
unsigned int delay_slot_length;
|
||
|
||
/* For relaxable macros, sizes[0] is the length of the first alternative
|
||
in bytes and sizes[1] is the length of the second alternative.
|
||
For non-relaxable macros, both elements give the length of the
|
||
macro in bytes. */
|
||
unsigned int sizes[2];
|
||
|
||
/* For relaxable macros, first_insn_sizes[0] is the length of the first
|
||
instruction of the first alternative in bytes and first_insn_sizes[1]
|
||
is the length of the first instruction of the second alternative.
|
||
For non-relaxable macros, both elements give the length of the first
|
||
instruction in bytes.
|
||
|
||
Set to zero if we haven't yet seen the first instruction. */
|
||
unsigned int first_insn_sizes[2];
|
||
|
||
/* For relaxable macros, insns[0] is the number of instructions for the
|
||
first alternative and insns[1] is the number of instructions for the
|
||
second alternative.
|
||
|
||
For non-relaxable macros, both elements give the number of
|
||
instructions for the macro. */
|
||
unsigned int insns[2];
|
||
|
||
/* The first variant frag for this macro. */
|
||
fragS *first_frag;
|
||
} mips_macro_warning;
|
||
|
||
/* Prototypes for static functions. */
|
||
|
||
enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
|
||
|
||
static void append_insn
|
||
(struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
|
||
bfd_boolean expansionp);
|
||
static void mips_no_prev_insn (void);
|
||
static void macro_build (expressionS *, const char *, const char *, ...);
|
||
static void mips16_macro_build
|
||
(expressionS *, const char *, const char *, va_list *);
|
||
static void load_register (int, expressionS *, int);
|
||
static void macro_start (void);
|
||
static void macro_end (void);
|
||
static void macro (struct mips_cl_insn *ip, char *str);
|
||
static void mips16_macro (struct mips_cl_insn * ip);
|
||
static void mips_ip (char *str, struct mips_cl_insn * ip);
|
||
static void mips16_ip (char *str, struct mips_cl_insn * ip);
|
||
static void mips16_immed
|
||
(char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
|
||
unsigned int, unsigned long *);
|
||
static size_t my_getSmallExpression
|
||
(expressionS *, bfd_reloc_code_real_type *, char *);
|
||
static void my_getExpression (expressionS *, char *);
|
||
static void s_align (int);
|
||
static void s_change_sec (int);
|
||
static void s_change_section (int);
|
||
static void s_cons (int);
|
||
static void s_float_cons (int);
|
||
static void s_mips_globl (int);
|
||
static void s_option (int);
|
||
static void s_mipsset (int);
|
||
static void s_abicalls (int);
|
||
static void s_cpload (int);
|
||
static void s_cpsetup (int);
|
||
static void s_cplocal (int);
|
||
static void s_cprestore (int);
|
||
static void s_cpreturn (int);
|
||
static void s_dtprelword (int);
|
||
static void s_dtpreldword (int);
|
||
static void s_tprelword (int);
|
||
static void s_tpreldword (int);
|
||
static void s_gpvalue (int);
|
||
static void s_gpword (int);
|
||
static void s_gpdword (int);
|
||
static void s_ehword (int);
|
||
static void s_cpadd (int);
|
||
static void s_insn (int);
|
||
static void s_nan (int);
|
||
static void md_obj_begin (void);
|
||
static void md_obj_end (void);
|
||
static void s_mips_ent (int);
|
||
static void s_mips_end (int);
|
||
static void s_mips_frame (int);
|
||
static void s_mips_mask (int reg_type);
|
||
static void s_mips_stab (int);
|
||
static void s_mips_weakext (int);
|
||
static void s_mips_file (int);
|
||
static void s_mips_loc (int);
|
||
static bfd_boolean pic_need_relax (symbolS *, asection *);
|
||
static int relaxed_branch_length (fragS *, asection *, int);
|
||
static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
|
||
static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
|
||
|
||
/* Table and functions used to map between CPU/ISA names, and
|
||
ISA levels, and CPU numbers. */
|
||
|
||
struct mips_cpu_info
|
||
{
|
||
const char *name; /* CPU or ISA name. */
|
||
int flags; /* MIPS_CPU_* flags. */
|
||
int ase; /* Set of ASEs implemented by the CPU. */
|
||
int isa; /* ISA level. */
|
||
int cpu; /* CPU number (default CPU if ISA). */
|
||
};
|
||
|
||
#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
|
||
|
||
static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
|
||
static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
|
||
static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
|
||
|
||
/* Command-line options. */
|
||
const char *md_shortopts = "O::g::G:";
|
||
|
||
enum options
|
||
{
|
||
OPTION_MARCH = OPTION_MD_BASE,
|
||
OPTION_MTUNE,
|
||
OPTION_MIPS1,
|
||
OPTION_MIPS2,
|
||
OPTION_MIPS3,
|
||
OPTION_MIPS4,
|
||
OPTION_MIPS5,
|
||
OPTION_MIPS32,
|
||
OPTION_MIPS64,
|
||
OPTION_MIPS32R2,
|
||
OPTION_MIPS64R2,
|
||
OPTION_MIPS16,
|
||
OPTION_NO_MIPS16,
|
||
OPTION_MIPS3D,
|
||
OPTION_NO_MIPS3D,
|
||
OPTION_MDMX,
|
||
OPTION_NO_MDMX,
|
||
OPTION_DSP,
|
||
OPTION_NO_DSP,
|
||
OPTION_MT,
|
||
OPTION_NO_MT,
|
||
OPTION_VIRT,
|
||
OPTION_NO_VIRT,
|
||
OPTION_MSA,
|
||
OPTION_NO_MSA,
|
||
OPTION_SMARTMIPS,
|
||
OPTION_NO_SMARTMIPS,
|
||
OPTION_DSPR2,
|
||
OPTION_NO_DSPR2,
|
||
OPTION_EVA,
|
||
OPTION_NO_EVA,
|
||
OPTION_MICROMIPS,
|
||
OPTION_NO_MICROMIPS,
|
||
OPTION_MCU,
|
||
OPTION_NO_MCU,
|
||
OPTION_COMPAT_ARCH_BASE,
|
||
OPTION_M4650,
|
||
OPTION_NO_M4650,
|
||
OPTION_M4010,
|
||
OPTION_NO_M4010,
|
||
OPTION_M4100,
|
||
OPTION_NO_M4100,
|
||
OPTION_M3900,
|
||
OPTION_NO_M3900,
|
||
OPTION_M7000_HILO_FIX,
|
||
OPTION_MNO_7000_HILO_FIX,
|
||
OPTION_FIX_24K,
|
||
OPTION_NO_FIX_24K,
|
||
OPTION_FIX_RM7000,
|
||
OPTION_NO_FIX_RM7000,
|
||
OPTION_FIX_LOONGSON2F_JUMP,
|
||
OPTION_NO_FIX_LOONGSON2F_JUMP,
|
||
OPTION_FIX_LOONGSON2F_NOP,
|
||
OPTION_NO_FIX_LOONGSON2F_NOP,
|
||
OPTION_FIX_VR4120,
|
||
OPTION_NO_FIX_VR4120,
|
||
OPTION_FIX_VR4130,
|
||
OPTION_NO_FIX_VR4130,
|
||
OPTION_FIX_CN63XXP1,
|
||
OPTION_NO_FIX_CN63XXP1,
|
||
OPTION_TRAP,
|
||
OPTION_BREAK,
|
||
OPTION_EB,
|
||
OPTION_EL,
|
||
OPTION_FP32,
|
||
OPTION_GP32,
|
||
OPTION_CONSTRUCT_FLOATS,
|
||
OPTION_NO_CONSTRUCT_FLOATS,
|
||
OPTION_FP64,
|
||
OPTION_GP64,
|
||
OPTION_RELAX_BRANCH,
|
||
OPTION_NO_RELAX_BRANCH,
|
||
OPTION_INSN32,
|
||
OPTION_NO_INSN32,
|
||
OPTION_MSHARED,
|
||
OPTION_MNO_SHARED,
|
||
OPTION_MSYM32,
|
||
OPTION_MNO_SYM32,
|
||
OPTION_SOFT_FLOAT,
|
||
OPTION_HARD_FLOAT,
|
||
OPTION_SINGLE_FLOAT,
|
||
OPTION_DOUBLE_FLOAT,
|
||
OPTION_32,
|
||
OPTION_CALL_SHARED,
|
||
OPTION_CALL_NONPIC,
|
||
OPTION_NON_SHARED,
|
||
OPTION_XGOT,
|
||
OPTION_MABI,
|
||
OPTION_N32,
|
||
OPTION_64,
|
||
OPTION_MDEBUG,
|
||
OPTION_NO_MDEBUG,
|
||
OPTION_PDR,
|
||
OPTION_NO_PDR,
|
||
OPTION_MVXWORKS_PIC,
|
||
OPTION_NAN,
|
||
OPTION_END_OF_ENUM
|
||
};
|
||
|
||
struct option md_longopts[] =
|
||
{
|
||
/* Options which specify architecture. */
|
||
{"march", required_argument, NULL, OPTION_MARCH},
|
||
{"mtune", required_argument, NULL, OPTION_MTUNE},
|
||
{"mips0", no_argument, NULL, OPTION_MIPS1},
|
||
{"mips1", no_argument, NULL, OPTION_MIPS1},
|
||
{"mips2", no_argument, NULL, OPTION_MIPS2},
|
||
{"mips3", no_argument, NULL, OPTION_MIPS3},
|
||
{"mips4", no_argument, NULL, OPTION_MIPS4},
|
||
{"mips5", no_argument, NULL, OPTION_MIPS5},
|
||
{"mips32", no_argument, NULL, OPTION_MIPS32},
|
||
{"mips64", no_argument, NULL, OPTION_MIPS64},
|
||
{"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
|
||
{"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
|
||
|
||
/* Options which specify Application Specific Extensions (ASEs). */
|
||
{"mips16", no_argument, NULL, OPTION_MIPS16},
|
||
{"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
|
||
{"mips3d", no_argument, NULL, OPTION_MIPS3D},
|
||
{"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
|
||
{"mdmx", no_argument, NULL, OPTION_MDMX},
|
||
{"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
|
||
{"mdsp", no_argument, NULL, OPTION_DSP},
|
||
{"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
|
||
{"mmt", no_argument, NULL, OPTION_MT},
|
||
{"mno-mt", no_argument, NULL, OPTION_NO_MT},
|
||
{"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
|
||
{"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
|
||
{"mdspr2", no_argument, NULL, OPTION_DSPR2},
|
||
{"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
|
||
{"meva", no_argument, NULL, OPTION_EVA},
|
||
{"mno-eva", no_argument, NULL, OPTION_NO_EVA},
|
||
{"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
|
||
{"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
|
||
{"mmcu", no_argument, NULL, OPTION_MCU},
|
||
{"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
|
||
{"mvirt", no_argument, NULL, OPTION_VIRT},
|
||
{"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
|
||
{"mmsa", no_argument, NULL, OPTION_MSA},
|
||
{"mno-msa", no_argument, NULL, OPTION_NO_MSA},
|
||
|
||
/* Old-style architecture options. Don't add more of these. */
|
||
{"m4650", no_argument, NULL, OPTION_M4650},
|
||
{"no-m4650", no_argument, NULL, OPTION_NO_M4650},
|
||
{"m4010", no_argument, NULL, OPTION_M4010},
|
||
{"no-m4010", no_argument, NULL, OPTION_NO_M4010},
|
||
{"m4100", no_argument, NULL, OPTION_M4100},
|
||
{"no-m4100", no_argument, NULL, OPTION_NO_M4100},
|
||
{"m3900", no_argument, NULL, OPTION_M3900},
|
||
{"no-m3900", no_argument, NULL, OPTION_NO_M3900},
|
||
|
||
/* Options which enable bug fixes. */
|
||
{"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
|
||
{"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
|
||
{"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
|
||
{"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
|
||
{"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
|
||
{"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
|
||
{"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
|
||
{"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
|
||
{"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
|
||
{"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
|
||
{"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
|
||
{"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
|
||
{"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
|
||
{"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
|
||
{"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
|
||
{"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
|
||
{"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
|
||
|
||
/* Miscellaneous options. */
|
||
{"trap", no_argument, NULL, OPTION_TRAP},
|
||
{"no-break", no_argument, NULL, OPTION_TRAP},
|
||
{"break", no_argument, NULL, OPTION_BREAK},
|
||
{"no-trap", no_argument, NULL, OPTION_BREAK},
|
||
{"EB", no_argument, NULL, OPTION_EB},
|
||
{"EL", no_argument, NULL, OPTION_EL},
|
||
{"mfp32", no_argument, NULL, OPTION_FP32},
|
||
{"mgp32", no_argument, NULL, OPTION_GP32},
|
||
{"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
|
||
{"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
|
||
{"mfp64", no_argument, NULL, OPTION_FP64},
|
||
{"mgp64", no_argument, NULL, OPTION_GP64},
|
||
{"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
|
||
{"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
|
||
{"minsn32", no_argument, NULL, OPTION_INSN32},
|
||
{"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
|
||
{"mshared", no_argument, NULL, OPTION_MSHARED},
|
||
{"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
|
||
{"msym32", no_argument, NULL, OPTION_MSYM32},
|
||
{"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
|
||
{"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
|
||
{"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
|
||
{"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
|
||
{"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
|
||
|
||
/* Strictly speaking this next option is ELF specific,
|
||
but we allow it for other ports as well in order to
|
||
make testing easier. */
|
||
{"32", no_argument, NULL, OPTION_32},
|
||
|
||
/* ELF-specific options. */
|
||
{"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
|
||
{"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
|
||
{"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
|
||
{"non_shared", no_argument, NULL, OPTION_NON_SHARED},
|
||
{"xgot", no_argument, NULL, OPTION_XGOT},
|
||
{"mabi", required_argument, NULL, OPTION_MABI},
|
||
{"n32", no_argument, NULL, OPTION_N32},
|
||
{"64", no_argument, NULL, OPTION_64},
|
||
{"mdebug", no_argument, NULL, OPTION_MDEBUG},
|
||
{"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
|
||
{"mpdr", no_argument, NULL, OPTION_PDR},
|
||
{"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
|
||
{"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
|
||
{"mnan", required_argument, NULL, OPTION_NAN},
|
||
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
size_t md_longopts_size = sizeof (md_longopts);
|
||
|
||
/* Information about either an Application Specific Extension or an
|
||
optional architecture feature that, for simplicity, we treat in the
|
||
same way as an ASE. */
|
||
struct mips_ase
|
||
{
|
||
/* The name of the ASE, used in both the command-line and .set options. */
|
||
const char *name;
|
||
|
||
/* The associated ASE_* flags. If the ASE is available on both 32-bit
|
||
and 64-bit architectures, the flags here refer to the subset that
|
||
is available on both. */
|
||
unsigned int flags;
|
||
|
||
/* The ASE_* flag used for instructions that are available on 64-bit
|
||
architectures but that are not included in FLAGS. */
|
||
unsigned int flags64;
|
||
|
||
/* The command-line options that turn the ASE on and off. */
|
||
int option_on;
|
||
int option_off;
|
||
|
||
/* The minimum required architecture revisions for MIPS32, MIPS64,
|
||
microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
|
||
int mips32_rev;
|
||
int mips64_rev;
|
||
int micromips32_rev;
|
||
int micromips64_rev;
|
||
};
|
||
|
||
/* A table of all supported ASEs. */
|
||
static const struct mips_ase mips_ases[] = {
|
||
{ "dsp", ASE_DSP, ASE_DSP64,
|
||
OPTION_DSP, OPTION_NO_DSP,
|
||
2, 2, 2, 2 },
|
||
|
||
{ "dspr2", ASE_DSP | ASE_DSPR2, 0,
|
||
OPTION_DSPR2, OPTION_NO_DSPR2,
|
||
2, 2, 2, 2 },
|
||
|
||
{ "eva", ASE_EVA, 0,
|
||
OPTION_EVA, OPTION_NO_EVA,
|
||
2, 2, 2, 2 },
|
||
|
||
{ "mcu", ASE_MCU, 0,
|
||
OPTION_MCU, OPTION_NO_MCU,
|
||
2, 2, 2, 2 },
|
||
|
||
/* Deprecated in MIPS64r5, but we don't implement that yet. */
|
||
{ "mdmx", ASE_MDMX, 0,
|
||
OPTION_MDMX, OPTION_NO_MDMX,
|
||
-1, 1, -1, -1 },
|
||
|
||
/* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
|
||
{ "mips3d", ASE_MIPS3D, 0,
|
||
OPTION_MIPS3D, OPTION_NO_MIPS3D,
|
||
2, 1, -1, -1 },
|
||
|
||
{ "mt", ASE_MT, 0,
|
||
OPTION_MT, OPTION_NO_MT,
|
||
2, 2, -1, -1 },
|
||
|
||
{ "smartmips", ASE_SMARTMIPS, 0,
|
||
OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
|
||
1, -1, -1, -1 },
|
||
|
||
{ "virt", ASE_VIRT, ASE_VIRT64,
|
||
OPTION_VIRT, OPTION_NO_VIRT,
|
||
2, 2, 2, 2 },
|
||
|
||
{ "msa", ASE_MSA, ASE_MSA64,
|
||
OPTION_MSA, OPTION_NO_MSA,
|
||
2, 2, 2, 2 }
|
||
};
|
||
|
||
/* The set of ASEs that require -mfp64. */
|
||
#define FP64_ASES (ASE_MIPS3D | ASE_MDMX)
|
||
|
||
/* Groups of ASE_* flags that represent different revisions of an ASE. */
|
||
static const unsigned int mips_ase_groups[] = {
|
||
ASE_DSP | ASE_DSPR2
|
||
};
|
||
|
||
/* Pseudo-op table.
|
||
|
||
The following pseudo-ops from the Kane and Heinrich MIPS book
|
||
should be defined here, but are currently unsupported: .alias,
|
||
.galive, .gjaldef, .gjrlive, .livereg, .noalias.
|
||
|
||
The following pseudo-ops from the Kane and Heinrich MIPS book are
|
||
specific to the type of debugging information being generated, and
|
||
should be defined by the object format: .aent, .begin, .bend,
|
||
.bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
|
||
.vreg.
|
||
|
||
The following pseudo-ops from the Kane and Heinrich MIPS book are
|
||
not MIPS CPU specific, but are also not specific to the object file
|
||
format. This file is probably the best place to define them, but
|
||
they are not currently supported: .asm0, .endr, .lab, .struct. */
|
||
|
||
static const pseudo_typeS mips_pseudo_table[] =
|
||
{
|
||
/* MIPS specific pseudo-ops. */
|
||
{"option", s_option, 0},
|
||
{"set", s_mipsset, 0},
|
||
{"rdata", s_change_sec, 'r'},
|
||
{"sdata", s_change_sec, 's'},
|
||
{"livereg", s_ignore, 0},
|
||
{"abicalls", s_abicalls, 0},
|
||
{"cpload", s_cpload, 0},
|
||
{"cpsetup", s_cpsetup, 0},
|
||
{"cplocal", s_cplocal, 0},
|
||
{"cprestore", s_cprestore, 0},
|
||
{"cpreturn", s_cpreturn, 0},
|
||
{"dtprelword", s_dtprelword, 0},
|
||
{"dtpreldword", s_dtpreldword, 0},
|
||
{"tprelword", s_tprelword, 0},
|
||
{"tpreldword", s_tpreldword, 0},
|
||
{"gpvalue", s_gpvalue, 0},
|
||
{"gpword", s_gpword, 0},
|
||
{"gpdword", s_gpdword, 0},
|
||
{"ehword", s_ehword, 0},
|
||
{"cpadd", s_cpadd, 0},
|
||
{"insn", s_insn, 0},
|
||
{"nan", s_nan, 0},
|
||
|
||
/* Relatively generic pseudo-ops that happen to be used on MIPS
|
||
chips. */
|
||
{"asciiz", stringer, 8 + 1},
|
||
{"bss", s_change_sec, 'b'},
|
||
{"err", s_err, 0},
|
||
{"half", s_cons, 1},
|
||
{"dword", s_cons, 3},
|
||
{"weakext", s_mips_weakext, 0},
|
||
{"origin", s_org, 0},
|
||
{"repeat", s_rept, 0},
|
||
|
||
/* For MIPS this is non-standard, but we define it for consistency. */
|
||
{"sbss", s_change_sec, 'B'},
|
||
|
||
/* These pseudo-ops are defined in read.c, but must be overridden
|
||
here for one reason or another. */
|
||
{"align", s_align, 0},
|
||
{"byte", s_cons, 0},
|
||
{"data", s_change_sec, 'd'},
|
||
{"double", s_float_cons, 'd'},
|
||
{"float", s_float_cons, 'f'},
|
||
{"globl", s_mips_globl, 0},
|
||
{"global", s_mips_globl, 0},
|
||
{"hword", s_cons, 1},
|
||
{"int", s_cons, 2},
|
||
{"long", s_cons, 2},
|
||
{"octa", s_cons, 4},
|
||
{"quad", s_cons, 3},
|
||
{"section", s_change_section, 0},
|
||
{"short", s_cons, 1},
|
||
{"single", s_float_cons, 'f'},
|
||
{"stabd", s_mips_stab, 'd'},
|
||
{"stabn", s_mips_stab, 'n'},
|
||
{"stabs", s_mips_stab, 's'},
|
||
{"text", s_change_sec, 't'},
|
||
{"word", s_cons, 2},
|
||
|
||
{ "extern", ecoff_directive_extern, 0},
|
||
|
||
{ NULL, NULL, 0 },
|
||
};
|
||
|
||
static const pseudo_typeS mips_nonecoff_pseudo_table[] =
|
||
{
|
||
/* These pseudo-ops should be defined by the object file format.
|
||
However, a.out doesn't support them, so we have versions here. */
|
||
{"aent", s_mips_ent, 1},
|
||
{"bgnb", s_ignore, 0},
|
||
{"end", s_mips_end, 0},
|
||
{"endb", s_ignore, 0},
|
||
{"ent", s_mips_ent, 0},
|
||
{"file", s_mips_file, 0},
|
||
{"fmask", s_mips_mask, 'F'},
|
||
{"frame", s_mips_frame, 0},
|
||
{"loc", s_mips_loc, 0},
|
||
{"mask", s_mips_mask, 'R'},
|
||
{"verstamp", s_ignore, 0},
|
||
{ NULL, NULL, 0 },
|
||
};
|
||
|
||
/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
|
||
purpose of the `.dc.a' internal pseudo-op. */
|
||
|
||
int
|
||
mips_address_bytes (void)
|
||
{
|
||
return HAVE_64BIT_ADDRESSES ? 8 : 4;
|
||
}
|
||
|
||
extern void pop_insert (const pseudo_typeS *);
|
||
|
||
void
|
||
mips_pop_insert (void)
|
||
{
|
||
pop_insert (mips_pseudo_table);
|
||
if (! ECOFF_DEBUGGING)
|
||
pop_insert (mips_nonecoff_pseudo_table);
|
||
}
|
||
|
||
/* Symbols labelling the current insn. */
|
||
|
||
struct insn_label_list
|
||
{
|
||
struct insn_label_list *next;
|
||
symbolS *label;
|
||
};
|
||
|
||
static struct insn_label_list *free_insn_labels;
|
||
#define label_list tc_segment_info_data.labels
|
||
|
||
static void mips_clear_insn_labels (void);
|
||
static void mips_mark_labels (void);
|
||
static void mips_compressed_mark_labels (void);
|
||
|
||
static inline void
|
||
mips_clear_insn_labels (void)
|
||
{
|
||
register struct insn_label_list **pl;
|
||
segment_info_type *si;
|
||
|
||
if (now_seg)
|
||
{
|
||
for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
|
||
;
|
||
|
||
si = seg_info (now_seg);
|
||
*pl = si->label_list;
|
||
si->label_list = NULL;
|
||
}
|
||
}
|
||
|
||
/* Mark instruction labels in MIPS16/microMIPS mode. */
|
||
|
||
static inline void
|
||
mips_mark_labels (void)
|
||
{
|
||
if (HAVE_CODE_COMPRESSION)
|
||
mips_compressed_mark_labels ();
|
||
}
|
||
|
||
static char *expr_end;
|
||
|
||
/* An expression in a macro instruction. This is set by mips_ip and
|
||
mips16_ip and when populated is always an O_constant. */
|
||
|
||
static expressionS imm_expr;
|
||
|
||
/* The relocatable field in an instruction and the relocs associated
|
||
with it. These variables are used for instructions like LUI and
|
||
JAL as well as true offsets. They are also used for address
|
||
operands in macros. */
|
||
|
||
static expressionS offset_expr;
|
||
static bfd_reloc_code_real_type offset_reloc[3]
|
||
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
|
||
|
||
/* This is set to the resulting size of the instruction to be produced
|
||
by mips16_ip if an explicit extension is used or by mips_ip if an
|
||
explicit size is supplied. */
|
||
|
||
static unsigned int forced_insn_length;
|
||
|
||
/* True if we are assembling an instruction. All dot symbols defined during
|
||
this time should be treated as code labels. */
|
||
|
||
static bfd_boolean mips_assembling_insn;
|
||
|
||
/* The pdr segment for per procedure frame/regmask info. Not used for
|
||
ECOFF debugging. */
|
||
|
||
static segT pdr_seg;
|
||
|
||
/* The default target format to use. */
|
||
|
||
#if defined (TE_FreeBSD)
|
||
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
|
||
#elif defined (TE_TMIPS)
|
||
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
|
||
#else
|
||
#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
|
||
#endif
|
||
|
||
const char *
|
||
mips_target_format (void)
|
||
{
|
||
switch (OUTPUT_FLAVOR)
|
||
{
|
||
case bfd_target_elf_flavour:
|
||
#ifdef TE_VXWORKS
|
||
if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
|
||
return (target_big_endian
|
||
? "elf32-bigmips-vxworks"
|
||
: "elf32-littlemips-vxworks");
|
||
#endif
|
||
return (target_big_endian
|
||
? (HAVE_64BIT_OBJECTS
|
||
? ELF_TARGET ("elf64-", "big")
|
||
: (HAVE_NEWABI
|
||
? ELF_TARGET ("elf32-n", "big")
|
||
: ELF_TARGET ("elf32-", "big")))
|
||
: (HAVE_64BIT_OBJECTS
|
||
? ELF_TARGET ("elf64-", "little")
|
||
: (HAVE_NEWABI
|
||
? ELF_TARGET ("elf32-n", "little")
|
||
: ELF_TARGET ("elf32-", "little"))));
|
||
default:
|
||
abort ();
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Return the ISA revision that is currently in use, or 0 if we are
|
||
generating code for MIPS V or below. */
|
||
|
||
static int
|
||
mips_isa_rev (void)
|
||
{
|
||
if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
|
||
return 2;
|
||
|
||
/* microMIPS implies revision 2 or above. */
|
||
if (mips_opts.micromips)
|
||
return 2;
|
||
|
||
if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the mask of all ASEs that are revisions of those in FLAGS. */
|
||
|
||
static unsigned int
|
||
mips_ase_mask (unsigned int flags)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
|
||
if (flags & mips_ase_groups[i])
|
||
flags |= mips_ase_groups[i];
|
||
return flags;
|
||
}
|
||
|
||
/* Check whether the current ISA supports ASE. Issue a warning if
|
||
appropriate. */
|
||
|
||
static void
|
||
mips_check_isa_supports_ase (const struct mips_ase *ase)
|
||
{
|
||
const char *base;
|
||
int min_rev, size;
|
||
static unsigned int warned_isa;
|
||
static unsigned int warned_fp32;
|
||
|
||
if (ISA_HAS_64BIT_REGS (mips_opts.isa))
|
||
min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
|
||
else
|
||
min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
|
||
if ((min_rev < 0 || mips_isa_rev () < min_rev)
|
||
&& (warned_isa & ase->flags) != ase->flags)
|
||
{
|
||
warned_isa |= ase->flags;
|
||
base = mips_opts.micromips ? "microMIPS" : "MIPS";
|
||
size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
|
||
if (min_rev < 0)
|
||
as_warn (_("the %d-bit %s architecture does not support the"
|
||
" `%s' extension"), size, base, ase->name);
|
||
else
|
||
as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
|
||
ase->name, base, size, min_rev);
|
||
}
|
||
if ((ase->flags & FP64_ASES)
|
||
&& mips_opts.fp32
|
||
&& (warned_fp32 & ase->flags) != ase->flags)
|
||
{
|
||
warned_fp32 |= ase->flags;
|
||
as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
|
||
}
|
||
}
|
||
|
||
/* Check all enabled ASEs to see whether they are supported by the
|
||
chosen architecture. */
|
||
|
||
static void
|
||
mips_check_isa_supports_ases (void)
|
||
{
|
||
unsigned int i, mask;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
|
||
{
|
||
mask = mips_ase_mask (mips_ases[i].flags);
|
||
if ((mips_opts.ase & mask) == mips_ases[i].flags)
|
||
mips_check_isa_supports_ase (&mips_ases[i]);
|
||
}
|
||
}
|
||
|
||
/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
|
||
that were affected. */
|
||
|
||
static unsigned int
|
||
mips_set_ase (const struct mips_ase *ase, bfd_boolean enabled_p)
|
||
{
|
||
unsigned int mask;
|
||
|
||
mask = mips_ase_mask (ase->flags);
|
||
mips_opts.ase &= ~mask;
|
||
if (enabled_p)
|
||
mips_opts.ase |= ase->flags;
|
||
return mask;
|
||
}
|
||
|
||
/* Return the ASE called NAME, or null if none. */
|
||
|
||
static const struct mips_ase *
|
||
mips_lookup_ase (const char *name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
|
||
if (strcmp (name, mips_ases[i].name) == 0)
|
||
return &mips_ases[i];
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the length of a microMIPS instruction in bytes. If bits of
|
||
the mask beyond the low 16 are 0, then it is a 16-bit instruction.
|
||
Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
|
||
major opcode) will require further modifications to the opcode
|
||
table. */
|
||
|
||
static inline unsigned int
|
||
micromips_insn_length (const struct mips_opcode *mo)
|
||
{
|
||
return (mo->mask >> 16) == 0 ? 2 : 4;
|
||
}
|
||
|
||
/* Return the length of MIPS16 instruction OPCODE. */
|
||
|
||
static inline unsigned int
|
||
mips16_opcode_length (unsigned long opcode)
|
||
{
|
||
return (opcode >> 16) == 0 ? 2 : 4;
|
||
}
|
||
|
||
/* Return the length of instruction INSN. */
|
||
|
||
static inline unsigned int
|
||
insn_length (const struct mips_cl_insn *insn)
|
||
{
|
||
if (mips_opts.micromips)
|
||
return micromips_insn_length (insn->insn_mo);
|
||
else if (mips_opts.mips16)
|
||
return mips16_opcode_length (insn->insn_opcode);
|
||
else
|
||
return 4;
|
||
}
|
||
|
||
/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
|
||
|
||
static void
|
||
create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
|
||
{
|
||
size_t i;
|
||
|
||
insn->insn_mo = mo;
|
||
insn->insn_opcode = mo->match;
|
||
insn->frag = NULL;
|
||
insn->where = 0;
|
||
for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
|
||
insn->fixp[i] = NULL;
|
||
insn->fixed_p = (mips_opts.noreorder > 0);
|
||
insn->noreorder_p = (mips_opts.noreorder > 0);
|
||
insn->mips16_absolute_jump_p = 0;
|
||
insn->complete_p = 0;
|
||
insn->cleared_p = 0;
|
||
}
|
||
|
||
/* Get a list of all the operands in INSN. */
|
||
|
||
static const struct mips_operand_array *
|
||
insn_operands (const struct mips_cl_insn *insn)
|
||
{
|
||
if (insn->insn_mo >= &mips_opcodes[0]
|
||
&& insn->insn_mo < &mips_opcodes[NUMOPCODES])
|
||
return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
|
||
|
||
if (insn->insn_mo >= &mips16_opcodes[0]
|
||
&& insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
|
||
return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
|
||
|
||
if (insn->insn_mo >= µmips_opcodes[0]
|
||
&& insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes])
|
||
return µmips_operands[insn->insn_mo - µmips_opcodes[0]];
|
||
|
||
abort ();
|
||
}
|
||
|
||
/* Get a description of operand OPNO of INSN. */
|
||
|
||
static const struct mips_operand *
|
||
insn_opno (const struct mips_cl_insn *insn, unsigned opno)
|
||
{
|
||
const struct mips_operand_array *operands;
|
||
|
||
operands = insn_operands (insn);
|
||
if (opno >= MAX_OPERANDS || !operands->operand[opno])
|
||
abort ();
|
||
return operands->operand[opno];
|
||
}
|
||
|
||
/* Install UVAL as the value of OPERAND in INSN. */
|
||
|
||
static inline void
|
||
insn_insert_operand (struct mips_cl_insn *insn,
|
||
const struct mips_operand *operand, unsigned int uval)
|
||
{
|
||
insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
|
||
}
|
||
|
||
/* Extract the value of OPERAND from INSN. */
|
||
|
||
static inline unsigned
|
||
insn_extract_operand (const struct mips_cl_insn *insn,
|
||
const struct mips_operand *operand)
|
||
{
|
||
return mips_extract_operand (operand, insn->insn_opcode);
|
||
}
|
||
|
||
/* Record the current MIPS16/microMIPS mode in now_seg. */
|
||
|
||
static void
|
||
mips_record_compressed_mode (void)
|
||
{
|
||
segment_info_type *si;
|
||
|
||
si = seg_info (now_seg);
|
||
if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
|
||
si->tc_segment_info_data.mips16 = mips_opts.mips16;
|
||
if (si->tc_segment_info_data.micromips != mips_opts.micromips)
|
||
si->tc_segment_info_data.micromips = mips_opts.micromips;
|
||
}
|
||
|
||
/* Read a standard MIPS instruction from BUF. */
|
||
|
||
static unsigned long
|
||
read_insn (char *buf)
|
||
{
|
||
if (target_big_endian)
|
||
return bfd_getb32 ((bfd_byte *) buf);
|
||
else
|
||
return bfd_getl32 ((bfd_byte *) buf);
|
||
}
|
||
|
||
/* Write standard MIPS instruction INSN to BUF. Return a pointer to
|
||
the next byte. */
|
||
|
||
static char *
|
||
write_insn (char *buf, unsigned int insn)
|
||
{
|
||
md_number_to_chars (buf, insn, 4);
|
||
return buf + 4;
|
||
}
|
||
|
||
/* Read a microMIPS or MIPS16 opcode from BUF, given that it
|
||
has length LENGTH. */
|
||
|
||
static unsigned long
|
||
read_compressed_insn (char *buf, unsigned int length)
|
||
{
|
||
unsigned long insn;
|
||
unsigned int i;
|
||
|
||
insn = 0;
|
||
for (i = 0; i < length; i += 2)
|
||
{
|
||
insn <<= 16;
|
||
if (target_big_endian)
|
||
insn |= bfd_getb16 ((char *) buf);
|
||
else
|
||
insn |= bfd_getl16 ((char *) buf);
|
||
buf += 2;
|
||
}
|
||
return insn;
|
||
}
|
||
|
||
/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
|
||
instruction is LENGTH bytes long. Return a pointer to the next byte. */
|
||
|
||
static char *
|
||
write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < length; i += 2)
|
||
md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
|
||
return buf + length;
|
||
}
|
||
|
||
/* Install INSN at the location specified by its "frag" and "where" fields. */
|
||
|
||
static void
|
||
install_insn (const struct mips_cl_insn *insn)
|
||
{
|
||
char *f = insn->frag->fr_literal + insn->where;
|
||
if (HAVE_CODE_COMPRESSION)
|
||
write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
|
||
else
|
||
write_insn (f, insn->insn_opcode);
|
||
mips_record_compressed_mode ();
|
||
}
|
||
|
||
/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
|
||
and install the opcode in the new location. */
|
||
|
||
static void
|
||
move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
|
||
{
|
||
size_t i;
|
||
|
||
insn->frag = frag;
|
||
insn->where = where;
|
||
for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
|
||
if (insn->fixp[i] != NULL)
|
||
{
|
||
insn->fixp[i]->fx_frag = frag;
|
||
insn->fixp[i]->fx_where = where;
|
||
}
|
||
install_insn (insn);
|
||
}
|
||
|
||
/* Add INSN to the end of the output. */
|
||
|
||
static void
|
||
add_fixed_insn (struct mips_cl_insn *insn)
|
||
{
|
||
char *f = frag_more (insn_length (insn));
|
||
move_insn (insn, frag_now, f - frag_now->fr_literal);
|
||
}
|
||
|
||
/* Start a variant frag and move INSN to the start of the variant part,
|
||
marking it as fixed. The other arguments are as for frag_var. */
|
||
|
||
static void
|
||
add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
|
||
relax_substateT subtype, symbolS *symbol, offsetT offset)
|
||
{
|
||
frag_grow (max_chars);
|
||
move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
|
||
insn->fixed_p = 1;
|
||
frag_var (rs_machine_dependent, max_chars, var,
|
||
subtype, symbol, offset, NULL);
|
||
}
|
||
|
||
/* Insert N copies of INSN into the history buffer, starting at
|
||
position FIRST. Neither FIRST nor N need to be clipped. */
|
||
|
||
static void
|
||
insert_into_history (unsigned int first, unsigned int n,
|
||
const struct mips_cl_insn *insn)
|
||
{
|
||
if (mips_relax.sequence != 2)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = ARRAY_SIZE (history); i-- > first;)
|
||
if (i >= first + n)
|
||
history[i] = history[i - n];
|
||
else
|
||
history[i] = *insn;
|
||
}
|
||
}
|
||
|
||
/* Clear the error in insn_error. */
|
||
|
||
static void
|
||
clear_insn_error (void)
|
||
{
|
||
memset (&insn_error, 0, sizeof (insn_error));
|
||
}
|
||
|
||
/* Possibly record error message MSG for the current instruction.
|
||
If the error is about a particular argument, ARGNUM is the 1-based
|
||
number of that argument, otherwise it is 0. FORMAT is the format
|
||
of MSG. Return true if MSG was used, false if the current message
|
||
was kept. */
|
||
|
||
static bfd_boolean
|
||
set_insn_error_format (int argnum, enum mips_insn_error_format format,
|
||
const char *msg)
|
||
{
|
||
if (argnum == 0)
|
||
{
|
||
/* Give priority to errors against specific arguments, and to
|
||
the first whole-instruction message. */
|
||
if (insn_error.msg)
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
/* Keep insn_error if it is against a later argument. */
|
||
if (argnum < insn_error.min_argnum)
|
||
return FALSE;
|
||
|
||
/* If both errors are against the same argument but are different,
|
||
give up on reporting a specific error for this argument.
|
||
See the comment about mips_insn_error for details. */
|
||
if (argnum == insn_error.min_argnum
|
||
&& insn_error.msg
|
||
&& strcmp (insn_error.msg, msg) != 0)
|
||
{
|
||
insn_error.msg = 0;
|
||
insn_error.min_argnum += 1;
|
||
return FALSE;
|
||
}
|
||
}
|
||
insn_error.min_argnum = argnum;
|
||
insn_error.format = format;
|
||
insn_error.msg = msg;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Record an instruction error with no % format fields. ARGNUM and MSG are
|
||
as for set_insn_error_format. */
|
||
|
||
static void
|
||
set_insn_error (int argnum, const char *msg)
|
||
{
|
||
set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
|
||
}
|
||
|
||
/* Record an instruction error with one %d field I. ARGNUM and MSG are
|
||
as for set_insn_error_format. */
|
||
|
||
static void
|
||
set_insn_error_i (int argnum, const char *msg, int i)
|
||
{
|
||
if (set_insn_error_format (argnum, ERR_FMT_I, msg))
|
||
insn_error.u.i = i;
|
||
}
|
||
|
||
/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
|
||
are as for set_insn_error_format. */
|
||
|
||
static void
|
||
set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
|
||
{
|
||
if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
|
||
{
|
||
insn_error.u.ss[0] = s1;
|
||
insn_error.u.ss[1] = s2;
|
||
}
|
||
}
|
||
|
||
/* Report the error in insn_error, which is against assembly code STR. */
|
||
|
||
static void
|
||
report_insn_error (const char *str)
|
||
{
|
||
const char *msg;
|
||
|
||
msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
|
||
switch (insn_error.format)
|
||
{
|
||
case ERR_FMT_PLAIN:
|
||
as_bad (msg, str);
|
||
break;
|
||
|
||
case ERR_FMT_I:
|
||
as_bad (msg, insn_error.u.i, str);
|
||
break;
|
||
|
||
case ERR_FMT_SS:
|
||
as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Initialize vr4120_conflicts. There is a bit of duplication here:
|
||
the idea is to make it obvious at a glance that each errata is
|
||
included. */
|
||
|
||
static void
|
||
init_vr4120_conflicts (void)
|
||
{
|
||
#define CONFLICT(FIRST, SECOND) \
|
||
vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
|
||
|
||
/* Errata 21 - [D]DIV[U] after [D]MACC */
|
||
CONFLICT (MACC, DIV);
|
||
CONFLICT (DMACC, DIV);
|
||
|
||
/* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
|
||
CONFLICT (DMULT, DMULT);
|
||
CONFLICT (DMULT, DMACC);
|
||
CONFLICT (DMACC, DMULT);
|
||
CONFLICT (DMACC, DMACC);
|
||
|
||
/* Errata 24 - MT{LO,HI} after [D]MACC */
|
||
CONFLICT (MACC, MTHILO);
|
||
CONFLICT (DMACC, MTHILO);
|
||
|
||
/* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
|
||
instruction is executed immediately after a MACC or DMACC
|
||
instruction, the result of [either instruction] is incorrect." */
|
||
CONFLICT (MACC, MULT);
|
||
CONFLICT (MACC, DMULT);
|
||
CONFLICT (DMACC, MULT);
|
||
CONFLICT (DMACC, DMULT);
|
||
|
||
/* VR4181A errata MD(4): "If a MACC or DMACC instruction is
|
||
executed immediately after a DMULT, DMULTU, DIV, DIVU,
|
||
DDIV or DDIVU instruction, the result of the MACC or
|
||
DMACC instruction is incorrect.". */
|
||
CONFLICT (DMULT, MACC);
|
||
CONFLICT (DMULT, DMACC);
|
||
CONFLICT (DIV, MACC);
|
||
CONFLICT (DIV, DMACC);
|
||
|
||
#undef CONFLICT
|
||
}
|
||
|
||
struct regname {
|
||
const char *name;
|
||
unsigned int num;
|
||
};
|
||
|
||
#define RNUM_MASK 0x00000ff
|
||
#define RTYPE_MASK 0x0ffff00
|
||
#define RTYPE_NUM 0x0000100
|
||
#define RTYPE_FPU 0x0000200
|
||
#define RTYPE_FCC 0x0000400
|
||
#define RTYPE_VEC 0x0000800
|
||
#define RTYPE_GP 0x0001000
|
||
#define RTYPE_CP0 0x0002000
|
||
#define RTYPE_PC 0x0004000
|
||
#define RTYPE_ACC 0x0008000
|
||
#define RTYPE_CCC 0x0010000
|
||
#define RTYPE_VI 0x0020000
|
||
#define RTYPE_VF 0x0040000
|
||
#define RTYPE_R5900_I 0x0080000
|
||
#define RTYPE_R5900_Q 0x0100000
|
||
#define RTYPE_R5900_R 0x0200000
|
||
#define RTYPE_R5900_ACC 0x0400000
|
||
#define RTYPE_MSA 0x0800000
|
||
#define RWARN 0x8000000
|
||
|
||
#define GENERIC_REGISTER_NUMBERS \
|
||
{"$0", RTYPE_NUM | 0}, \
|
||
{"$1", RTYPE_NUM | 1}, \
|
||
{"$2", RTYPE_NUM | 2}, \
|
||
{"$3", RTYPE_NUM | 3}, \
|
||
{"$4", RTYPE_NUM | 4}, \
|
||
{"$5", RTYPE_NUM | 5}, \
|
||
{"$6", RTYPE_NUM | 6}, \
|
||
{"$7", RTYPE_NUM | 7}, \
|
||
{"$8", RTYPE_NUM | 8}, \
|
||
{"$9", RTYPE_NUM | 9}, \
|
||
{"$10", RTYPE_NUM | 10}, \
|
||
{"$11", RTYPE_NUM | 11}, \
|
||
{"$12", RTYPE_NUM | 12}, \
|
||
{"$13", RTYPE_NUM | 13}, \
|
||
{"$14", RTYPE_NUM | 14}, \
|
||
{"$15", RTYPE_NUM | 15}, \
|
||
{"$16", RTYPE_NUM | 16}, \
|
||
{"$17", RTYPE_NUM | 17}, \
|
||
{"$18", RTYPE_NUM | 18}, \
|
||
{"$19", RTYPE_NUM | 19}, \
|
||
{"$20", RTYPE_NUM | 20}, \
|
||
{"$21", RTYPE_NUM | 21}, \
|
||
{"$22", RTYPE_NUM | 22}, \
|
||
{"$23", RTYPE_NUM | 23}, \
|
||
{"$24", RTYPE_NUM | 24}, \
|
||
{"$25", RTYPE_NUM | 25}, \
|
||
{"$26", RTYPE_NUM | 26}, \
|
||
{"$27", RTYPE_NUM | 27}, \
|
||
{"$28", RTYPE_NUM | 28}, \
|
||
{"$29", RTYPE_NUM | 29}, \
|
||
{"$30", RTYPE_NUM | 30}, \
|
||
{"$31", RTYPE_NUM | 31}
|
||
|
||
#define FPU_REGISTER_NAMES \
|
||
{"$f0", RTYPE_FPU | 0}, \
|
||
{"$f1", RTYPE_FPU | 1}, \
|
||
{"$f2", RTYPE_FPU | 2}, \
|
||
{"$f3", RTYPE_FPU | 3}, \
|
||
{"$f4", RTYPE_FPU | 4}, \
|
||
{"$f5", RTYPE_FPU | 5}, \
|
||
{"$f6", RTYPE_FPU | 6}, \
|
||
{"$f7", RTYPE_FPU | 7}, \
|
||
{"$f8", RTYPE_FPU | 8}, \
|
||
{"$f9", RTYPE_FPU | 9}, \
|
||
{"$f10", RTYPE_FPU | 10}, \
|
||
{"$f11", RTYPE_FPU | 11}, \
|
||
{"$f12", RTYPE_FPU | 12}, \
|
||
{"$f13", RTYPE_FPU | 13}, \
|
||
{"$f14", RTYPE_FPU | 14}, \
|
||
{"$f15", RTYPE_FPU | 15}, \
|
||
{"$f16", RTYPE_FPU | 16}, \
|
||
{"$f17", RTYPE_FPU | 17}, \
|
||
{"$f18", RTYPE_FPU | 18}, \
|
||
{"$f19", RTYPE_FPU | 19}, \
|
||
{"$f20", RTYPE_FPU | 20}, \
|
||
{"$f21", RTYPE_FPU | 21}, \
|
||
{"$f22", RTYPE_FPU | 22}, \
|
||
{"$f23", RTYPE_FPU | 23}, \
|
||
{"$f24", RTYPE_FPU | 24}, \
|
||
{"$f25", RTYPE_FPU | 25}, \
|
||
{"$f26", RTYPE_FPU | 26}, \
|
||
{"$f27", RTYPE_FPU | 27}, \
|
||
{"$f28", RTYPE_FPU | 28}, \
|
||
{"$f29", RTYPE_FPU | 29}, \
|
||
{"$f30", RTYPE_FPU | 30}, \
|
||
{"$f31", RTYPE_FPU | 31}
|
||
|
||
#define FPU_CONDITION_CODE_NAMES \
|
||
{"$fcc0", RTYPE_FCC | 0}, \
|
||
{"$fcc1", RTYPE_FCC | 1}, \
|
||
{"$fcc2", RTYPE_FCC | 2}, \
|
||
{"$fcc3", RTYPE_FCC | 3}, \
|
||
{"$fcc4", RTYPE_FCC | 4}, \
|
||
{"$fcc5", RTYPE_FCC | 5}, \
|
||
{"$fcc6", RTYPE_FCC | 6}, \
|
||
{"$fcc7", RTYPE_FCC | 7}
|
||
|
||
#define COPROC_CONDITION_CODE_NAMES \
|
||
{"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
|
||
{"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
|
||
{"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
|
||
{"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
|
||
{"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
|
||
{"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
|
||
{"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
|
||
{"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
|
||
|
||
#define N32N64_SYMBOLIC_REGISTER_NAMES \
|
||
{"$a4", RTYPE_GP | 8}, \
|
||
{"$a5", RTYPE_GP | 9}, \
|
||
{"$a6", RTYPE_GP | 10}, \
|
||
{"$a7", RTYPE_GP | 11}, \
|
||
{"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
|
||
{"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
|
||
{"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
|
||
{"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
|
||
{"$t0", RTYPE_GP | 12}, \
|
||
{"$t1", RTYPE_GP | 13}, \
|
||
{"$t2", RTYPE_GP | 14}, \
|
||
{"$t3", RTYPE_GP | 15}
|
||
|
||
#define O32_SYMBOLIC_REGISTER_NAMES \
|
||
{"$t0", RTYPE_GP | 8}, \
|
||
{"$t1", RTYPE_GP | 9}, \
|
||
{"$t2", RTYPE_GP | 10}, \
|
||
{"$t3", RTYPE_GP | 11}, \
|
||
{"$t4", RTYPE_GP | 12}, \
|
||
{"$t5", RTYPE_GP | 13}, \
|
||
{"$t6", RTYPE_GP | 14}, \
|
||
{"$t7", RTYPE_GP | 15}, \
|
||
{"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
|
||
{"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
|
||
{"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
|
||
{"$ta3", RTYPE_GP | 15} /* alias for $t7 */
|
||
|
||
/* Remaining symbolic register names */
|
||
#define SYMBOLIC_REGISTER_NAMES \
|
||
{"$zero", RTYPE_GP | 0}, \
|
||
{"$at", RTYPE_GP | 1}, \
|
||
{"$AT", RTYPE_GP | 1}, \
|
||
{"$v0", RTYPE_GP | 2}, \
|
||
{"$v1", RTYPE_GP | 3}, \
|
||
{"$a0", RTYPE_GP | 4}, \
|
||
{"$a1", RTYPE_GP | 5}, \
|
||
{"$a2", RTYPE_GP | 6}, \
|
||
{"$a3", RTYPE_GP | 7}, \
|
||
{"$s0", RTYPE_GP | 16}, \
|
||
{"$s1", RTYPE_GP | 17}, \
|
||
{"$s2", RTYPE_GP | 18}, \
|
||
{"$s3", RTYPE_GP | 19}, \
|
||
{"$s4", RTYPE_GP | 20}, \
|
||
{"$s5", RTYPE_GP | 21}, \
|
||
{"$s6", RTYPE_GP | 22}, \
|
||
{"$s7", RTYPE_GP | 23}, \
|
||
{"$t8", RTYPE_GP | 24}, \
|
||
{"$t9", RTYPE_GP | 25}, \
|
||
{"$k0", RTYPE_GP | 26}, \
|
||
{"$kt0", RTYPE_GP | 26}, \
|
||
{"$k1", RTYPE_GP | 27}, \
|
||
{"$kt1", RTYPE_GP | 27}, \
|
||
{"$gp", RTYPE_GP | 28}, \
|
||
{"$sp", RTYPE_GP | 29}, \
|
||
{"$s8", RTYPE_GP | 30}, \
|
||
{"$fp", RTYPE_GP | 30}, \
|
||
{"$ra", RTYPE_GP | 31}
|
||
|
||
#define MIPS16_SPECIAL_REGISTER_NAMES \
|
||
{"$pc", RTYPE_PC | 0}
|
||
|
||
#define MDMX_VECTOR_REGISTER_NAMES \
|
||
/* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
|
||
/* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
|
||
{"$v2", RTYPE_VEC | 2}, \
|
||
{"$v3", RTYPE_VEC | 3}, \
|
||
{"$v4", RTYPE_VEC | 4}, \
|
||
{"$v5", RTYPE_VEC | 5}, \
|
||
{"$v6", RTYPE_VEC | 6}, \
|
||
{"$v7", RTYPE_VEC | 7}, \
|
||
{"$v8", RTYPE_VEC | 8}, \
|
||
{"$v9", RTYPE_VEC | 9}, \
|
||
{"$v10", RTYPE_VEC | 10}, \
|
||
{"$v11", RTYPE_VEC | 11}, \
|
||
{"$v12", RTYPE_VEC | 12}, \
|
||
{"$v13", RTYPE_VEC | 13}, \
|
||
{"$v14", RTYPE_VEC | 14}, \
|
||
{"$v15", RTYPE_VEC | 15}, \
|
||
{"$v16", RTYPE_VEC | 16}, \
|
||
{"$v17", RTYPE_VEC | 17}, \
|
||
{"$v18", RTYPE_VEC | 18}, \
|
||
{"$v19", RTYPE_VEC | 19}, \
|
||
{"$v20", RTYPE_VEC | 20}, \
|
||
{"$v21", RTYPE_VEC | 21}, \
|
||
{"$v22", RTYPE_VEC | 22}, \
|
||
{"$v23", RTYPE_VEC | 23}, \
|
||
{"$v24", RTYPE_VEC | 24}, \
|
||
{"$v25", RTYPE_VEC | 25}, \
|
||
{"$v26", RTYPE_VEC | 26}, \
|
||
{"$v27", RTYPE_VEC | 27}, \
|
||
{"$v28", RTYPE_VEC | 28}, \
|
||
{"$v29", RTYPE_VEC | 29}, \
|
||
{"$v30", RTYPE_VEC | 30}, \
|
||
{"$v31", RTYPE_VEC | 31}
|
||
|
||
#define R5900_I_NAMES \
|
||
{"$I", RTYPE_R5900_I | 0}
|
||
|
||
#define R5900_Q_NAMES \
|
||
{"$Q", RTYPE_R5900_Q | 0}
|
||
|
||
#define R5900_R_NAMES \
|
||
{"$R", RTYPE_R5900_R | 0}
|
||
|
||
#define R5900_ACC_NAMES \
|
||
{"$ACC", RTYPE_R5900_ACC | 0 }
|
||
|
||
#define MIPS_DSP_ACCUMULATOR_NAMES \
|
||
{"$ac0", RTYPE_ACC | 0}, \
|
||
{"$ac1", RTYPE_ACC | 1}, \
|
||
{"$ac2", RTYPE_ACC | 2}, \
|
||
{"$ac3", RTYPE_ACC | 3}
|
||
|
||
static const struct regname reg_names[] = {
|
||
GENERIC_REGISTER_NUMBERS,
|
||
FPU_REGISTER_NAMES,
|
||
FPU_CONDITION_CODE_NAMES,
|
||
COPROC_CONDITION_CODE_NAMES,
|
||
|
||
/* The $txx registers depends on the abi,
|
||
these will be added later into the symbol table from
|
||
one of the tables below once mips_abi is set after
|
||
parsing of arguments from the command line. */
|
||
SYMBOLIC_REGISTER_NAMES,
|
||
|
||
MIPS16_SPECIAL_REGISTER_NAMES,
|
||
MDMX_VECTOR_REGISTER_NAMES,
|
||
R5900_I_NAMES,
|
||
R5900_Q_NAMES,
|
||
R5900_R_NAMES,
|
||
R5900_ACC_NAMES,
|
||
MIPS_DSP_ACCUMULATOR_NAMES,
|
||
{0, 0}
|
||
};
|
||
|
||
static const struct regname reg_names_o32[] = {
|
||
O32_SYMBOLIC_REGISTER_NAMES,
|
||
{0, 0}
|
||
};
|
||
|
||
static const struct regname reg_names_n32n64[] = {
|
||
N32N64_SYMBOLIC_REGISTER_NAMES,
|
||
{0, 0}
|
||
};
|
||
|
||
/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
|
||
interpreted as vector registers 0 and 1. If SYMVAL is the value of one
|
||
of these register symbols, return the associated vector register,
|
||
otherwise return SYMVAL itself. */
|
||
|
||
static unsigned int
|
||
mips_prefer_vec_regno (unsigned int symval)
|
||
{
|
||
if ((symval & -2) == (RTYPE_GP | 2))
|
||
return RTYPE_VEC | (symval & 1);
|
||
return symval;
|
||
}
|
||
|
||
/* Return true if string [S, E) is a valid register name, storing its
|
||
symbol value in *SYMVAL_PTR if so. */
|
||
|
||
static bfd_boolean
|
||
mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
|
||
{
|
||
char save_c;
|
||
symbolS *symbol;
|
||
|
||
/* Terminate name. */
|
||
save_c = *e;
|
||
*e = '\0';
|
||
|
||
/* Look up the name. */
|
||
symbol = symbol_find (s);
|
||
*e = save_c;
|
||
|
||
if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
|
||
return FALSE;
|
||
|
||
*symval_ptr = S_GET_VALUE (symbol);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return true if the string at *SPTR is a valid register name. Allow it
|
||
to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
|
||
is nonnull.
|
||
|
||
When returning true, move *SPTR past the register, store the
|
||
register's symbol value in *SYMVAL_PTR and the channel mask in
|
||
*CHANNELS_PTR (if nonnull). The symbol value includes the register
|
||
number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
|
||
is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
|
||
|
||
static bfd_boolean
|
||
mips_parse_register (char **sptr, unsigned int *symval_ptr,
|
||
unsigned int *channels_ptr)
|
||
{
|
||
char *s, *e, *m;
|
||
const char *q;
|
||
unsigned int channels, symval, bit;
|
||
|
||
/* Find end of name. */
|
||
s = e = *sptr;
|
||
if (is_name_beginner (*e))
|
||
++e;
|
||
while (is_part_of_name (*e))
|
||
++e;
|
||
|
||
channels = 0;
|
||
if (!mips_parse_register_1 (s, e, &symval))
|
||
{
|
||
if (!channels_ptr)
|
||
return FALSE;
|
||
|
||
/* Eat characters from the end of the string that are valid
|
||
channel suffixes. The preceding register must be $ACC or
|
||
end with a digit, so there is no ambiguity. */
|
||
bit = 1;
|
||
m = e;
|
||
for (q = "wzyx"; *q; q++, bit <<= 1)
|
||
if (m > s && m[-1] == *q)
|
||
{
|
||
--m;
|
||
channels |= bit;
|
||
}
|
||
|
||
if (channels == 0
|
||
|| !mips_parse_register_1 (s, m, &symval)
|
||
|| (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
|
||
return FALSE;
|
||
}
|
||
|
||
*sptr = e;
|
||
*symval_ptr = symval;
|
||
if (channels_ptr)
|
||
*channels_ptr = channels;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Check if SPTR points at a valid register specifier according to TYPES.
|
||
If so, then return 1, advance S to consume the specifier and store
|
||
the register's number in REGNOP, otherwise return 0. */
|
||
|
||
static int
|
||
reg_lookup (char **s, unsigned int types, unsigned int *regnop)
|
||
{
|
||
unsigned int regno;
|
||
|
||
if (mips_parse_register (s, ®no, NULL))
|
||
{
|
||
if (types & RTYPE_VEC)
|
||
regno = mips_prefer_vec_regno (regno);
|
||
if (regno & types)
|
||
regno &= RNUM_MASK;
|
||
else
|
||
regno = ~0;
|
||
}
|
||
else
|
||
{
|
||
if (types & RWARN)
|
||
as_warn (_("unrecognized register name `%s'"), *s);
|
||
regno = ~0;
|
||
}
|
||
if (regnop)
|
||
*regnop = regno;
|
||
return regno <= RNUM_MASK;
|
||
}
|
||
|
||
/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
|
||
mask in *CHANNELS. Return a pointer to the first unconsumed character. */
|
||
|
||
static char *
|
||
mips_parse_vu0_channels (char *s, unsigned int *channels)
|
||
{
|
||
unsigned int i;
|
||
|
||
*channels = 0;
|
||
for (i = 0; i < 4; i++)
|
||
if (*s == "xyzw"[i])
|
||
{
|
||
*channels |= 1 << (3 - i);
|
||
++s;
|
||
}
|
||
return s;
|
||
}
|
||
|
||
/* Token types for parsed operand lists. */
|
||
enum mips_operand_token_type {
|
||
/* A plain register, e.g. $f2. */
|
||
OT_REG,
|
||
|
||
/* A 4-bit XYZW channel mask. */
|
||
OT_CHANNELS,
|
||
|
||
/* A constant vector index, e.g. [1]. */
|
||
OT_INTEGER_INDEX,
|
||
|
||
/* A register vector index, e.g. [$2]. */
|
||
OT_REG_INDEX,
|
||
|
||
/* A continuous range of registers, e.g. $s0-$s4. */
|
||
OT_REG_RANGE,
|
||
|
||
/* A (possibly relocated) expression. */
|
||
OT_INTEGER,
|
||
|
||
/* A floating-point value. */
|
||
OT_FLOAT,
|
||
|
||
/* A single character. This can be '(', ')' or ',', but '(' only appears
|
||
before OT_REGs. */
|
||
OT_CHAR,
|
||
|
||
/* A doubled character, either "--" or "++". */
|
||
OT_DOUBLE_CHAR,
|
||
|
||
/* The end of the operand list. */
|
||
OT_END
|
||
};
|
||
|
||
/* A parsed operand token. */
|
||
struct mips_operand_token
|
||
{
|
||
/* The type of token. */
|
||
enum mips_operand_token_type type;
|
||
union
|
||
{
|
||
/* The register symbol value for an OT_REG or OT_REG_INDEX. */
|
||
unsigned int regno;
|
||
|
||
/* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
|
||
unsigned int channels;
|
||
|
||
/* The integer value of an OT_INTEGER_INDEX. */
|
||
addressT index;
|
||
|
||
/* The two register symbol values involved in an OT_REG_RANGE. */
|
||
struct {
|
||
unsigned int regno1;
|
||
unsigned int regno2;
|
||
} reg_range;
|
||
|
||
/* The value of an OT_INTEGER. The value is represented as an
|
||
expression and the relocation operators that were applied to
|
||
that expression. The reloc entries are BFD_RELOC_UNUSED if no
|
||
relocation operators were used. */
|
||
struct {
|
||
expressionS value;
|
||
bfd_reloc_code_real_type relocs[3];
|
||
} integer;
|
||
|
||
/* The binary data for an OT_FLOAT constant, and the number of bytes
|
||
in the constant. */
|
||
struct {
|
||
unsigned char data[8];
|
||
int length;
|
||
} flt;
|
||
|
||
/* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
|
||
char ch;
|
||
} u;
|
||
};
|
||
|
||
/* An obstack used to construct lists of mips_operand_tokens. */
|
||
static struct obstack mips_operand_tokens;
|
||
|
||
/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
|
||
|
||
static void
|
||
mips_add_token (struct mips_operand_token *token,
|
||
enum mips_operand_token_type type)
|
||
{
|
||
token->type = type;
|
||
obstack_grow (&mips_operand_tokens, token, sizeof (*token));
|
||
}
|
||
|
||
/* Check whether S is '(' followed by a register name. Add OT_CHAR
|
||
and OT_REG tokens for them if so, and return a pointer to the first
|
||
unconsumed character. Return null otherwise. */
|
||
|
||
static char *
|
||
mips_parse_base_start (char *s)
|
||
{
|
||
struct mips_operand_token token;
|
||
unsigned int regno, channels;
|
||
bfd_boolean decrement_p;
|
||
|
||
if (*s != '(')
|
||
return 0;
|
||
|
||
++s;
|
||
SKIP_SPACE_TABS (s);
|
||
|
||
/* Only match "--" as part of a base expression. In other contexts "--X"
|
||
is a double negative. */
|
||
decrement_p = (s[0] == '-' && s[1] == '-');
|
||
if (decrement_p)
|
||
{
|
||
s += 2;
|
||
SKIP_SPACE_TABS (s);
|
||
}
|
||
|
||
/* Allow a channel specifier because that leads to better error messages
|
||
than treating something like "$vf0x++" as an expression. */
|
||
if (!mips_parse_register (&s, ®no, &channels))
|
||
return 0;
|
||
|
||
token.u.ch = '(';
|
||
mips_add_token (&token, OT_CHAR);
|
||
|
||
if (decrement_p)
|
||
{
|
||
token.u.ch = '-';
|
||
mips_add_token (&token, OT_DOUBLE_CHAR);
|
||
}
|
||
|
||
token.u.regno = regno;
|
||
mips_add_token (&token, OT_REG);
|
||
|
||
if (channels)
|
||
{
|
||
token.u.channels = channels;
|
||
mips_add_token (&token, OT_CHANNELS);
|
||
}
|
||
|
||
/* For consistency, only match "++" as part of base expressions too. */
|
||
SKIP_SPACE_TABS (s);
|
||
if (s[0] == '+' && s[1] == '+')
|
||
{
|
||
s += 2;
|
||
token.u.ch = '+';
|
||
mips_add_token (&token, OT_DOUBLE_CHAR);
|
||
}
|
||
|
||
return s;
|
||
}
|
||
|
||
/* Parse one or more tokens from S. Return a pointer to the first
|
||
unconsumed character on success. Return null if an error was found
|
||
and store the error text in insn_error. FLOAT_FORMAT is as for
|
||
mips_parse_arguments. */
|
||
|
||
static char *
|
||
mips_parse_argument_token (char *s, char float_format)
|
||
{
|
||
char *end, *save_in, *err;
|
||
unsigned int regno1, regno2, channels;
|
||
struct mips_operand_token token;
|
||
|
||
/* First look for "($reg", since we want to treat that as an
|
||
OT_CHAR and OT_REG rather than an expression. */
|
||
end = mips_parse_base_start (s);
|
||
if (end)
|
||
return end;
|
||
|
||
/* Handle other characters that end up as OT_CHARs. */
|
||
if (*s == ')' || *s == ',')
|
||
{
|
||
token.u.ch = *s;
|
||
mips_add_token (&token, OT_CHAR);
|
||
++s;
|
||
return s;
|
||
}
|
||
|
||
/* Handle tokens that start with a register. */
|
||
if (mips_parse_register (&s, ®no1, &channels))
|
||
{
|
||
if (channels)
|
||
{
|
||
/* A register and a VU0 channel suffix. */
|
||
token.u.regno = regno1;
|
||
mips_add_token (&token, OT_REG);
|
||
|
||
token.u.channels = channels;
|
||
mips_add_token (&token, OT_CHANNELS);
|
||
return s;
|
||
}
|
||
|
||
SKIP_SPACE_TABS (s);
|
||
if (*s == '-')
|
||
{
|
||
/* A register range. */
|
||
++s;
|
||
SKIP_SPACE_TABS (s);
|
||
if (!mips_parse_register (&s, ®no2, NULL))
|
||
{
|
||
set_insn_error (0, _("invalid register range"));
|
||
return 0;
|
||
}
|
||
|
||
token.u.reg_range.regno1 = regno1;
|
||
token.u.reg_range.regno2 = regno2;
|
||
mips_add_token (&token, OT_REG_RANGE);
|
||
return s;
|
||
}
|
||
|
||
/* Add the register itself. */
|
||
token.u.regno = regno1;
|
||
mips_add_token (&token, OT_REG);
|
||
|
||
/* Check for a vector index. */
|
||
if (*s == '[')
|
||
{
|
||
++s;
|
||
SKIP_SPACE_TABS (s);
|
||
if (mips_parse_register (&s, &token.u.regno, NULL))
|
||
mips_add_token (&token, OT_REG_INDEX);
|
||
else
|
||
{
|
||
expressionS element;
|
||
|
||
my_getExpression (&element, s);
|
||
if (element.X_op != O_constant)
|
||
{
|
||
set_insn_error (0, _("vector element must be constant"));
|
||
return 0;
|
||
}
|
||
s = expr_end;
|
||
token.u.index = element.X_add_number;
|
||
mips_add_token (&token, OT_INTEGER_INDEX);
|
||
}
|
||
SKIP_SPACE_TABS (s);
|
||
if (*s != ']')
|
||
{
|
||
set_insn_error (0, _("missing `]'"));
|
||
return 0;
|
||
}
|
||
++s;
|
||
}
|
||
return s;
|
||
}
|
||
|
||
if (float_format)
|
||
{
|
||
/* First try to treat expressions as floats. */
|
||
save_in = input_line_pointer;
|
||
input_line_pointer = s;
|
||
err = md_atof (float_format, (char *) token.u.flt.data,
|
||
&token.u.flt.length);
|
||
end = input_line_pointer;
|
||
input_line_pointer = save_in;
|
||
if (err && *err)
|
||
{
|
||
set_insn_error (0, err);
|
||
return 0;
|
||
}
|
||
if (s != end)
|
||
{
|
||
mips_add_token (&token, OT_FLOAT);
|
||
return end;
|
||
}
|
||
}
|
||
|
||
/* Treat everything else as an integer expression. */
|
||
token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
|
||
token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
|
||
token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
|
||
my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
|
||
s = expr_end;
|
||
mips_add_token (&token, OT_INTEGER);
|
||
return s;
|
||
}
|
||
|
||
/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
|
||
if expressions should be treated as 32-bit floating-point constants,
|
||
'd' if they should be treated as 64-bit floating-point constants,
|
||
or 0 if they should be treated as integer expressions (the usual case).
|
||
|
||
Return a list of tokens on success, otherwise return 0. The caller
|
||
must obstack_free the list after use. */
|
||
|
||
static struct mips_operand_token *
|
||
mips_parse_arguments (char *s, char float_format)
|
||
{
|
||
struct mips_operand_token token;
|
||
|
||
SKIP_SPACE_TABS (s);
|
||
while (*s)
|
||
{
|
||
s = mips_parse_argument_token (s, float_format);
|
||
if (!s)
|
||
{
|
||
obstack_free (&mips_operand_tokens,
|
||
obstack_finish (&mips_operand_tokens));
|
||
return 0;
|
||
}
|
||
SKIP_SPACE_TABS (s);
|
||
}
|
||
mips_add_token (&token, OT_END);
|
||
return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
|
||
}
|
||
|
||
/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
|
||
and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
|
||
|
||
static bfd_boolean
|
||
is_opcode_valid (const struct mips_opcode *mo)
|
||
{
|
||
int isa = mips_opts.isa;
|
||
int ase = mips_opts.ase;
|
||
int fp_s, fp_d;
|
||
unsigned int i;
|
||
|
||
if (ISA_HAS_64BIT_REGS (mips_opts.isa))
|
||
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
|
||
if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
|
||
ase |= mips_ases[i].flags64;
|
||
|
||
if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
|
||
return FALSE;
|
||
|
||
/* Check whether the instruction or macro requires single-precision or
|
||
double-precision floating-point support. Note that this information is
|
||
stored differently in the opcode table for insns and macros. */
|
||
if (mo->pinfo == INSN_MACRO)
|
||
{
|
||
fp_s = mo->pinfo2 & INSN2_M_FP_S;
|
||
fp_d = mo->pinfo2 & INSN2_M_FP_D;
|
||
}
|
||
else
|
||
{
|
||
fp_s = mo->pinfo & FP_S;
|
||
fp_d = mo->pinfo & FP_D;
|
||
}
|
||
|
||
if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
|
||
return FALSE;
|
||
|
||
if (fp_s && mips_opts.soft_float)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return TRUE if the MIPS16 opcode MO is valid on the currently
|
||
selected ISA and architecture. */
|
||
|
||
static bfd_boolean
|
||
is_opcode_valid_16 (const struct mips_opcode *mo)
|
||
{
|
||
return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
|
||
}
|
||
|
||
/* Return TRUE if the size of the microMIPS opcode MO matches one
|
||
explicitly requested. Always TRUE in the standard MIPS mode. */
|
||
|
||
static bfd_boolean
|
||
is_size_valid (const struct mips_opcode *mo)
|
||
{
|
||
if (!mips_opts.micromips)
|
||
return TRUE;
|
||
|
||
if (mips_opts.insn32)
|
||
{
|
||
if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
|
||
return FALSE;
|
||
if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
|
||
return FALSE;
|
||
}
|
||
if (!forced_insn_length)
|
||
return TRUE;
|
||
if (mo->pinfo == INSN_MACRO)
|
||
return FALSE;
|
||
return forced_insn_length == micromips_insn_length (mo);
|
||
}
|
||
|
||
/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
|
||
of the preceding instruction. Always TRUE in the standard MIPS mode.
|
||
|
||
We don't accept macros in 16-bit delay slots to avoid a case where
|
||
a macro expansion fails because it relies on a preceding 32-bit real
|
||
instruction to have matched and does not handle the operands correctly.
|
||
The only macros that may expand to 16-bit instructions are JAL that
|
||
cannot be placed in a delay slot anyway, and corner cases of BALIGN
|
||
and BGT (that likewise cannot be placed in a delay slot) that decay to
|
||
a NOP. In all these cases the macros precede any corresponding real
|
||
instruction definitions in the opcode table, so they will match in the
|
||
second pass where the size of the delay slot is ignored and therefore
|
||
produce correct code. */
|
||
|
||
static bfd_boolean
|
||
is_delay_slot_valid (const struct mips_opcode *mo)
|
||
{
|
||
if (!mips_opts.micromips)
|
||
return TRUE;
|
||
|
||
if (mo->pinfo == INSN_MACRO)
|
||
return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
|
||
if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
|
||
&& micromips_insn_length (mo) != 4)
|
||
return FALSE;
|
||
if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
|
||
&& micromips_insn_length (mo) != 2)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* For consistency checking, verify that all bits of OPCODE are specified
|
||
either by the match/mask part of the instruction definition, or by the
|
||
operand list. Also build up a list of operands in OPERANDS.
|
||
|
||
INSN_BITS says which bits of the instruction are significant.
|
||
If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
|
||
provides the mips_operand description of each operand. DECODE_OPERAND
|
||
is null for MIPS16 instructions. */
|
||
|
||
static int
|
||
validate_mips_insn (const struct mips_opcode *opcode,
|
||
unsigned long insn_bits,
|
||
const struct mips_operand *(*decode_operand) (const char *),
|
||
struct mips_operand_array *operands)
|
||
{
|
||
const char *s;
|
||
unsigned long used_bits, doubled, undefined, opno, mask;
|
||
const struct mips_operand *operand;
|
||
|
||
mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
|
||
if ((mask & opcode->match) != opcode->match)
|
||
{
|
||
as_bad (_("internal: bad mips opcode (mask error): %s %s"),
|
||
opcode->name, opcode->args);
|
||
return 0;
|
||
}
|
||
used_bits = 0;
|
||
opno = 0;
|
||
if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
|
||
used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
|
||
for (s = opcode->args; *s; ++s)
|
||
switch (*s)
|
||
{
|
||
case ',':
|
||
case '(':
|
||
case ')':
|
||
break;
|
||
|
||
case '#':
|
||
s++;
|
||
break;
|
||
|
||
default:
|
||
if (!decode_operand)
|
||
operand = decode_mips16_operand (*s, FALSE);
|
||
else
|
||
operand = decode_operand (s);
|
||
if (!operand && opcode->pinfo != INSN_MACRO)
|
||
{
|
||
as_bad (_("internal: unknown operand type: %s %s"),
|
||
opcode->name, opcode->args);
|
||
return 0;
|
||
}
|
||
gas_assert (opno < MAX_OPERANDS);
|
||
operands->operand[opno] = operand;
|
||
if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
|
||
{
|
||
used_bits = mips_insert_operand (operand, used_bits, -1);
|
||
if (operand->type == OP_MDMX_IMM_REG)
|
||
/* Bit 5 is the format selector (OB vs QH). The opcode table
|
||
has separate entries for each format. */
|
||
used_bits &= ~(1 << (operand->lsb + 5));
|
||
if (operand->type == OP_ENTRY_EXIT_LIST)
|
||
used_bits &= ~(mask & 0x700);
|
||
}
|
||
/* Skip prefix characters. */
|
||
if (decode_operand && (*s == '+' || *s == 'm'))
|
||
++s;
|
||
opno += 1;
|
||
break;
|
||
}
|
||
doubled = used_bits & mask & insn_bits;
|
||
if (doubled)
|
||
{
|
||
as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
|
||
" %s %s"), doubled, opcode->name, opcode->args);
|
||
return 0;
|
||
}
|
||
used_bits |= mask;
|
||
undefined = ~used_bits & insn_bits;
|
||
if (opcode->pinfo != INSN_MACRO && undefined)
|
||
{
|
||
as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
|
||
undefined, opcode->name, opcode->args);
|
||
return 0;
|
||
}
|
||
used_bits &= ~insn_bits;
|
||
if (used_bits)
|
||
{
|
||
as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
|
||
used_bits, opcode->name, opcode->args);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* The MIPS16 version of validate_mips_insn. */
|
||
|
||
static int
|
||
validate_mips16_insn (const struct mips_opcode *opcode,
|
||
struct mips_operand_array *operands)
|
||
{
|
||
if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
|
||
{
|
||
/* In this case OPCODE defines the first 16 bits in a 32-bit jump
|
||
instruction. Use TMP to describe the full instruction. */
|
||
struct mips_opcode tmp;
|
||
|
||
tmp = *opcode;
|
||
tmp.match <<= 16;
|
||
tmp.mask <<= 16;
|
||
return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
|
||
}
|
||
return validate_mips_insn (opcode, 0xffff, 0, operands);
|
||
}
|
||
|
||
/* The microMIPS version of validate_mips_insn. */
|
||
|
||
static int
|
||
validate_micromips_insn (const struct mips_opcode *opc,
|
||
struct mips_operand_array *operands)
|
||
{
|
||
unsigned long insn_bits;
|
||
unsigned long major;
|
||
unsigned int length;
|
||
|
||
if (opc->pinfo == INSN_MACRO)
|
||
return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
|
||
operands);
|
||
|
||
length = micromips_insn_length (opc);
|
||
if (length != 2 && length != 4)
|
||
{
|
||
as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
|
||
"%s %s"), length, opc->name, opc->args);
|
||
return 0;
|
||
}
|
||
major = opc->match >> (10 + 8 * (length - 2));
|
||
if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
|
||
|| (length == 4 && (major & 7) != 0 && (major & 4) != 4))
|
||
{
|
||
as_bad (_("internal error: bad microMIPS opcode "
|
||
"(opcode/length mismatch): %s %s"), opc->name, opc->args);
|
||
return 0;
|
||
}
|
||
|
||
/* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
|
||
insn_bits = 1 << 4 * length;
|
||
insn_bits <<= 4 * length;
|
||
insn_bits -= 1;
|
||
return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
|
||
operands);
|
||
}
|
||
|
||
/* This function is called once, at assembler startup time. It should set up
|
||
all the tables, etc. that the MD part of the assembler will need. */
|
||
|
||
void
|
||
md_begin (void)
|
||
{
|
||
const char *retval = NULL;
|
||
int i = 0;
|
||
int broken = 0;
|
||
|
||
if (mips_pic != NO_PIC)
|
||
{
|
||
if (g_switch_seen && g_switch_value != 0)
|
||
as_bad (_("-G may not be used in position-independent code"));
|
||
g_switch_value = 0;
|
||
}
|
||
|
||
if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
|
||
as_warn (_("could not set architecture and machine"));
|
||
|
||
op_hash = hash_new ();
|
||
|
||
mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
|
||
for (i = 0; i < NUMOPCODES;)
|
||
{
|
||
const char *name = mips_opcodes[i].name;
|
||
|
||
retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
|
||
if (retval != NULL)
|
||
{
|
||
fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
|
||
mips_opcodes[i].name, retval);
|
||
/* Probably a memory allocation problem? Give up now. */
|
||
as_fatal (_("broken assembler, no assembly attempted"));
|
||
}
|
||
do
|
||
{
|
||
if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
|
||
decode_mips_operand, &mips_operands[i]))
|
||
broken = 1;
|
||
if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
|
||
{
|
||
create_insn (&nop_insn, mips_opcodes + i);
|
||
if (mips_fix_loongson2f_nop)
|
||
nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
|
||
nop_insn.fixed_p = 1;
|
||
}
|
||
++i;
|
||
}
|
||
while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
|
||
}
|
||
|
||
mips16_op_hash = hash_new ();
|
||
mips16_operands = XCNEWVEC (struct mips_operand_array,
|
||
bfd_mips16_num_opcodes);
|
||
|
||
i = 0;
|
||
while (i < bfd_mips16_num_opcodes)
|
||
{
|
||
const char *name = mips16_opcodes[i].name;
|
||
|
||
retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
|
||
if (retval != NULL)
|
||
as_fatal (_("internal: can't hash `%s': %s"),
|
||
mips16_opcodes[i].name, retval);
|
||
do
|
||
{
|
||
if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
|
||
broken = 1;
|
||
if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
|
||
{
|
||
create_insn (&mips16_nop_insn, mips16_opcodes + i);
|
||
mips16_nop_insn.fixed_p = 1;
|
||
}
|
||
++i;
|
||
}
|
||
while (i < bfd_mips16_num_opcodes
|
||
&& strcmp (mips16_opcodes[i].name, name) == 0);
|
||
}
|
||
|
||
micromips_op_hash = hash_new ();
|
||
micromips_operands = XCNEWVEC (struct mips_operand_array,
|
||
bfd_micromips_num_opcodes);
|
||
|
||
i = 0;
|
||
while (i < bfd_micromips_num_opcodes)
|
||
{
|
||
const char *name = micromips_opcodes[i].name;
|
||
|
||
retval = hash_insert (micromips_op_hash, name,
|
||
(void *) µmips_opcodes[i]);
|
||
if (retval != NULL)
|
||
as_fatal (_("internal: can't hash `%s': %s"),
|
||
micromips_opcodes[i].name, retval);
|
||
do
|
||
{
|
||
struct mips_cl_insn *micromips_nop_insn;
|
||
|
||
if (!validate_micromips_insn (µmips_opcodes[i],
|
||
µmips_operands[i]))
|
||
broken = 1;
|
||
|
||
if (micromips_opcodes[i].pinfo != INSN_MACRO)
|
||
{
|
||
if (micromips_insn_length (micromips_opcodes + i) == 2)
|
||
micromips_nop_insn = µmips_nop16_insn;
|
||
else if (micromips_insn_length (micromips_opcodes + i) == 4)
|
||
micromips_nop_insn = µmips_nop32_insn;
|
||
else
|
||
continue;
|
||
|
||
if (micromips_nop_insn->insn_mo == NULL
|
||
&& strcmp (name, "nop") == 0)
|
||
{
|
||
create_insn (micromips_nop_insn, micromips_opcodes + i);
|
||
micromips_nop_insn->fixed_p = 1;
|
||
}
|
||
}
|
||
}
|
||
while (++i < bfd_micromips_num_opcodes
|
||
&& strcmp (micromips_opcodes[i].name, name) == 0);
|
||
}
|
||
|
||
if (broken)
|
||
as_fatal (_("broken assembler, no assembly attempted"));
|
||
|
||
/* We add all the general register names to the symbol table. This
|
||
helps us detect invalid uses of them. */
|
||
for (i = 0; reg_names[i].name; i++)
|
||
symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
|
||
reg_names[i].num, /* & RNUM_MASK, */
|
||
&zero_address_frag));
|
||
if (HAVE_NEWABI)
|
||
for (i = 0; reg_names_n32n64[i].name; i++)
|
||
symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
|
||
reg_names_n32n64[i].num, /* & RNUM_MASK, */
|
||
&zero_address_frag));
|
||
else
|
||
for (i = 0; reg_names_o32[i].name; i++)
|
||
symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
|
||
reg_names_o32[i].num, /* & RNUM_MASK, */
|
||
&zero_address_frag));
|
||
|
||
for (i = 0; i < 32; i++)
|
||
{
|
||
char regname[7];
|
||
|
||
/* R5900 VU0 floating-point register. */
|
||
regname[sizeof (rename) - 1] = 0;
|
||
snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
|
||
symbol_table_insert (symbol_new (regname, reg_section,
|
||
RTYPE_VF | i, &zero_address_frag));
|
||
|
||
/* R5900 VU0 integer register. */
|
||
snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
|
||
symbol_table_insert (symbol_new (regname, reg_section,
|
||
RTYPE_VI | i, &zero_address_frag));
|
||
|
||
/* MSA register. */
|
||
snprintf (regname, sizeof (regname) - 1, "$w%d", i);
|
||
symbol_table_insert (symbol_new (regname, reg_section,
|
||
RTYPE_MSA | i, &zero_address_frag));
|
||
}
|
||
|
||
obstack_init (&mips_operand_tokens);
|
||
|
||
mips_no_prev_insn ();
|
||
|
||
mips_gprmask = 0;
|
||
mips_cprmask[0] = 0;
|
||
mips_cprmask[1] = 0;
|
||
mips_cprmask[2] = 0;
|
||
mips_cprmask[3] = 0;
|
||
|
||
/* set the default alignment for the text section (2**2) */
|
||
record_alignment (text_section, 2);
|
||
|
||
bfd_set_gp_size (stdoutput, g_switch_value);
|
||
|
||
/* On a native system other than VxWorks, sections must be aligned
|
||
to 16 byte boundaries. When configured for an embedded ELF
|
||
target, we don't bother. */
|
||
if (strncmp (TARGET_OS, "elf", 3) != 0
|
||
&& strncmp (TARGET_OS, "vxworks", 7) != 0)
|
||
{
|
||
(void) bfd_set_section_alignment (stdoutput, text_section, 4);
|
||
(void) bfd_set_section_alignment (stdoutput, data_section, 4);
|
||
(void) bfd_set_section_alignment (stdoutput, bss_section, 4);
|
||
}
|
||
|
||
/* Create a .reginfo section for register masks and a .mdebug
|
||
section for debugging information. */
|
||
{
|
||
segT seg;
|
||
subsegT subseg;
|
||
flagword flags;
|
||
segT sec;
|
||
|
||
seg = now_seg;
|
||
subseg = now_subseg;
|
||
|
||
/* The ABI says this section should be loaded so that the
|
||
running program can access it. However, we don't load it
|
||
if we are configured for an embedded target */
|
||
flags = SEC_READONLY | SEC_DATA;
|
||
if (strncmp (TARGET_OS, "elf", 3) != 0)
|
||
flags |= SEC_ALLOC | SEC_LOAD;
|
||
|
||
if (mips_abi != N64_ABI)
|
||
{
|
||
sec = subseg_new (".reginfo", (subsegT) 0);
|
||
|
||
bfd_set_section_flags (stdoutput, sec, flags);
|
||
bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
|
||
|
||
mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
|
||
}
|
||
else
|
||
{
|
||
/* The 64-bit ABI uses a .MIPS.options section rather than
|
||
.reginfo section. */
|
||
sec = subseg_new (".MIPS.options", (subsegT) 0);
|
||
bfd_set_section_flags (stdoutput, sec, flags);
|
||
bfd_set_section_alignment (stdoutput, sec, 3);
|
||
|
||
/* Set up the option header. */
|
||
{
|
||
Elf_Internal_Options opthdr;
|
||
char *f;
|
||
|
||
opthdr.kind = ODK_REGINFO;
|
||
opthdr.size = (sizeof (Elf_External_Options)
|
||
+ sizeof (Elf64_External_RegInfo));
|
||
opthdr.section = 0;
|
||
opthdr.info = 0;
|
||
f = frag_more (sizeof (Elf_External_Options));
|
||
bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
|
||
(Elf_External_Options *) f);
|
||
|
||
mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
|
||
}
|
||
}
|
||
|
||
if (ECOFF_DEBUGGING)
|
||
{
|
||
sec = subseg_new (".mdebug", (subsegT) 0);
|
||
(void) bfd_set_section_flags (stdoutput, sec,
|
||
SEC_HAS_CONTENTS | SEC_READONLY);
|
||
(void) bfd_set_section_alignment (stdoutput, sec, 2);
|
||
}
|
||
else if (mips_flag_pdr)
|
||
{
|
||
pdr_seg = subseg_new (".pdr", (subsegT) 0);
|
||
(void) bfd_set_section_flags (stdoutput, pdr_seg,
|
||
SEC_READONLY | SEC_RELOC
|
||
| SEC_DEBUGGING);
|
||
(void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
|
||
}
|
||
|
||
subseg_set (seg, subseg);
|
||
}
|
||
|
||
if (! ECOFF_DEBUGGING)
|
||
md_obj_begin ();
|
||
|
||
if (mips_fix_vr4120)
|
||
init_vr4120_conflicts ();
|
||
}
|
||
|
||
void
|
||
md_mips_end (void)
|
||
{
|
||
mips_emit_delays ();
|
||
if (! ECOFF_DEBUGGING)
|
||
md_obj_end ();
|
||
}
|
||
|
||
void
|
||
md_assemble (char *str)
|
||
{
|
||
struct mips_cl_insn insn;
|
||
bfd_reloc_code_real_type unused_reloc[3]
|
||
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
|
||
|
||
imm_expr.X_op = O_absent;
|
||
offset_expr.X_op = O_absent;
|
||
offset_reloc[0] = BFD_RELOC_UNUSED;
|
||
offset_reloc[1] = BFD_RELOC_UNUSED;
|
||
offset_reloc[2] = BFD_RELOC_UNUSED;
|
||
|
||
mips_mark_labels ();
|
||
mips_assembling_insn = TRUE;
|
||
clear_insn_error ();
|
||
|
||
if (mips_opts.mips16)
|
||
mips16_ip (str, &insn);
|
||
else
|
||
{
|
||
mips_ip (str, &insn);
|
||
DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
|
||
str, insn.insn_opcode));
|
||
}
|
||
|
||
if (insn_error.msg)
|
||
report_insn_error (str);
|
||
else if (insn.insn_mo->pinfo == INSN_MACRO)
|
||
{
|
||
macro_start ();
|
||
if (mips_opts.mips16)
|
||
mips16_macro (&insn);
|
||
else
|
||
macro (&insn, str);
|
||
macro_end ();
|
||
}
|
||
else
|
||
{
|
||
if (offset_expr.X_op != O_absent)
|
||
append_insn (&insn, &offset_expr, offset_reloc, FALSE);
|
||
else
|
||
append_insn (&insn, NULL, unused_reloc, FALSE);
|
||
}
|
||
|
||
mips_assembling_insn = FALSE;
|
||
}
|
||
|
||
/* Convenience functions for abstracting away the differences between
|
||
MIPS16 and non-MIPS16 relocations. */
|
||
|
||
static inline bfd_boolean
|
||
mips16_reloc_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
switch (reloc)
|
||
{
|
||
case BFD_RELOC_MIPS16_JMP:
|
||
case BFD_RELOC_MIPS16_GPREL:
|
||
case BFD_RELOC_MIPS16_GOT16:
|
||
case BFD_RELOC_MIPS16_CALL16:
|
||
case BFD_RELOC_MIPS16_HI16_S:
|
||
case BFD_RELOC_MIPS16_HI16:
|
||
case BFD_RELOC_MIPS16_LO16:
|
||
return TRUE;
|
||
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
micromips_reloc_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
switch (reloc)
|
||
{
|
||
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
|
||
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
|
||
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
|
||
case BFD_RELOC_MICROMIPS_GPREL16:
|
||
case BFD_RELOC_MICROMIPS_JMP:
|
||
case BFD_RELOC_MICROMIPS_HI16:
|
||
case BFD_RELOC_MICROMIPS_HI16_S:
|
||
case BFD_RELOC_MICROMIPS_LO16:
|
||
case BFD_RELOC_MICROMIPS_LITERAL:
|
||
case BFD_RELOC_MICROMIPS_GOT16:
|
||
case BFD_RELOC_MICROMIPS_CALL16:
|
||
case BFD_RELOC_MICROMIPS_GOT_HI16:
|
||
case BFD_RELOC_MICROMIPS_GOT_LO16:
|
||
case BFD_RELOC_MICROMIPS_CALL_HI16:
|
||
case BFD_RELOC_MICROMIPS_CALL_LO16:
|
||
case BFD_RELOC_MICROMIPS_SUB:
|
||
case BFD_RELOC_MICROMIPS_GOT_PAGE:
|
||
case BFD_RELOC_MICROMIPS_GOT_OFST:
|
||
case BFD_RELOC_MICROMIPS_GOT_DISP:
|
||
case BFD_RELOC_MICROMIPS_HIGHEST:
|
||
case BFD_RELOC_MICROMIPS_HIGHER:
|
||
case BFD_RELOC_MICROMIPS_SCN_DISP:
|
||
case BFD_RELOC_MICROMIPS_JALR:
|
||
return TRUE;
|
||
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
jmp_reloc_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
got16_reloc_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
|
||
|| reloc == BFD_RELOC_MICROMIPS_GOT16);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
hi16_reloc_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
|
||
|| reloc == BFD_RELOC_MICROMIPS_HI16_S);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
lo16_reloc_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
|
||
|| reloc == BFD_RELOC_MICROMIPS_LO16);
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
jalr_reloc_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
|
||
}
|
||
|
||
static inline bfd_boolean
|
||
gprel16_reloc_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
|
||
|| reloc == BFD_RELOC_MICROMIPS_GPREL16);
|
||
}
|
||
|
||
/* Return true if RELOC is a PC-relative relocation that does not have
|
||
full address range. */
|
||
|
||
static inline bfd_boolean
|
||
limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
switch (reloc)
|
||
{
|
||
case BFD_RELOC_16_PCREL_S2:
|
||
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
|
||
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
|
||
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
|
||
return TRUE;
|
||
|
||
case BFD_RELOC_32_PCREL:
|
||
return HAVE_64BIT_ADDRESSES;
|
||
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Return true if the given relocation might need a matching %lo().
|
||
This is only "might" because SVR4 R_MIPS_GOT16 relocations only
|
||
need a matching %lo() when applied to local symbols. */
|
||
|
||
static inline bfd_boolean
|
||
reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
|
||
{
|
||
return (HAVE_IN_PLACE_ADDENDS
|
||
&& (hi16_reloc_p (reloc)
|
||
/* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
|
||
all GOT16 relocations evaluate to "G". */
|
||
|| (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
|
||
}
|
||
|
||
/* Return the type of %lo() reloc needed by RELOC, given that
|
||
reloc_needs_lo_p. */
|
||
|
||
static inline bfd_reloc_code_real_type
|
||
matching_lo_reloc (bfd_reloc_code_real_type reloc)
|
||
{
|
||
return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
|
||
: (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
|
||
: BFD_RELOC_LO16));
|
||
}
|
||
|
||
/* Return true if the given fixup is followed by a matching R_MIPS_LO16
|
||
relocation. */
|
||
|
||
static inline bfd_boolean
|
||
fixup_has_matching_lo_p (fixS *fixp)
|
||
{
|
||
return (fixp->fx_next != NULL
|
||
&& fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
|
||
&& fixp->fx_addsy == fixp->fx_next->fx_addsy
|
||
&& fixp->fx_offset == fixp->fx_next->fx_offset);
|
||
}
|
||
|
||
/* Move all labels in LABELS to the current insertion point. TEXT_P
|
||
says whether the labels refer to text or data. */
|
||
|
||
static void
|
||
mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
|
||
{
|
||
struct insn_label_list *l;
|
||
valueT val;
|
||
|
||
for (l = labels; l != NULL; l = l->next)
|
||
{
|
||
gas_assert (S_GET_SEGMENT (l->label) == now_seg);
|
||
symbol_set_frag (l->label, frag_now);
|
||
val = (valueT) frag_now_fix ();
|
||
/* MIPS16/microMIPS text labels are stored as odd. */
|
||
if (text_p && HAVE_CODE_COMPRESSION)
|
||
++val;
|
||
S_SET_VALUE (l->label, val);
|
||
}
|
||
}
|
||
|
||
/* Move all labels in insn_labels to the current insertion point
|
||
and treat them as text labels. */
|
||
|
||
static void
|
||
mips_move_text_labels (void)
|
||
{
|
||
mips_move_labels (seg_info (now_seg)->label_list, TRUE);
|
||
}
|
||
|
||
static bfd_boolean
|
||
s_is_linkonce (symbolS *sym, segT from_seg)
|
||
{
|
||
bfd_boolean linkonce = FALSE;
|
||
segT symseg = S_GET_SEGMENT (sym);
|
||
|
||
if (symseg != from_seg && !S_IS_LOCAL (sym))
|
||
{
|
||
if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
|
||
linkonce = TRUE;
|
||
/* The GNU toolchain uses an extension for ELF: a section
|
||
beginning with the magic string .gnu.linkonce is a
|
||
linkonce section. */
|
||
if (strncmp (segment_name (symseg), ".gnu.linkonce",
|
||
sizeof ".gnu.linkonce" - 1) == 0)
|
||
linkonce = TRUE;
|
||
}
|
||
return linkonce;
|
||
}
|
||
|
||
/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
|
||
linker to handle them specially, such as generating jalx instructions
|
||
when needed. We also make them odd for the duration of the assembly,
|
||
in order to generate the right sort of code. We will make them even
|
||
in the adjust_symtab routine, while leaving them marked. This is
|
||
convenient for the debugger and the disassembler. The linker knows
|
||
to make them odd again. */
|
||
|
||
static void
|
||
mips_compressed_mark_label (symbolS *label)
|
||
{
|
||
gas_assert (HAVE_CODE_COMPRESSION);
|
||
|
||
if (mips_opts.mips16)
|
||
S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
|
||
else
|
||
S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
|
||
if ((S_GET_VALUE (label) & 1) == 0
|
||
/* Don't adjust the address if the label is global or weak, or
|
||
in a link-once section, since we'll be emitting symbol reloc
|
||
references to it which will be patched up by the linker, and
|
||
the final value of the symbol may or may not be MIPS16/microMIPS. */
|
||
&& !S_IS_WEAK (label)
|
||
&& !S_IS_EXTERNAL (label)
|
||
&& !s_is_linkonce (label, now_seg))
|
||
S_SET_VALUE (label, S_GET_VALUE (label) | 1);
|
||
}
|
||
|
||
/* Mark preceding MIPS16 or microMIPS instruction labels. */
|
||
|
||
static void
|
||
mips_compressed_mark_labels (void)
|
||
{
|
||
struct insn_label_list *l;
|
||
|
||
for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
|
||
mips_compressed_mark_label (l->label);
|
||
}
|
||
|
||
/* End the current frag. Make it a variant frag and record the
|
||
relaxation info. */
|
||
|
||
static void
|
||
relax_close_frag (void)
|
||
{
|
||
mips_macro_warning.first_frag = frag_now;
|
||
frag_var (rs_machine_dependent, 0, 0,
|
||
RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
|
||
mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
|
||
|
||
memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
|
||
mips_relax.first_fixup = 0;
|
||
}
|
||
|
||
/* Start a new relaxation sequence whose expansion depends on SYMBOL.
|
||
See the comment above RELAX_ENCODE for more details. */
|
||
|
||
static void
|
||
relax_start (symbolS *symbol)
|
||
{
|
||
gas_assert (mips_relax.sequence == 0);
|
||
mips_relax.sequence = 1;
|
||
mips_relax.symbol = symbol;
|
||
}
|
||
|
||
/* Start generating the second version of a relaxable sequence.
|
||
See the comment above RELAX_ENCODE for more details. */
|
||
|
||
static void
|
||
relax_switch (void)
|
||
{
|
||
gas_assert (mips_relax.sequence == 1);
|
||
mips_relax.sequence = 2;
|
||
}
|
||
|
||
/* End the current relaxable sequence. */
|
||
|
||
static void
|
||
relax_end (void)
|
||
{
|
||
gas_assert (mips_relax.sequence == 2);
|
||
relax_close_frag ();
|
||
mips_relax.sequence = 0;
|
||
}
|
||
|
||
/* Return true if IP is a delayed branch or jump. */
|
||
|
||
static inline bfd_boolean
|
||
delayed_branch_p (const struct mips_cl_insn *ip)
|
||
{
|
||
return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
|
||
| INSN_COND_BRANCH_DELAY
|
||
| INSN_COND_BRANCH_LIKELY)) != 0;
|
||
}
|
||
|
||
/* Return true if IP is a compact branch or jump. */
|
||
|
||
static inline bfd_boolean
|
||
compact_branch_p (const struct mips_cl_insn *ip)
|
||
{
|
||
return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
|
||
| INSN2_COND_BRANCH)) != 0;
|
||
}
|
||
|
||
/* Return true if IP is an unconditional branch or jump. */
|
||
|
||
static inline bfd_boolean
|
||
uncond_branch_p (const struct mips_cl_insn *ip)
|
||
{
|
||
return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
|
||
|| (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
|
||
}
|
||
|
||
/* Return true if IP is a branch-likely instruction. */
|
||
|
||
static inline bfd_boolean
|
||
branch_likely_p (const struct mips_cl_insn *ip)
|
||
{
|
||
return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
|
||
}
|
||
|
||
/* Return the type of nop that should be used to fill the delay slot
|
||
of delayed branch IP. */
|
||
|
||
static struct mips_cl_insn *
|
||
get_delay_slot_nop (const struct mips_cl_insn *ip)
|
||
{
|
||
if (mips_opts.micromips
|
||
&& (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
|
||
return µmips_nop32_insn;
|
||
return NOP_INSN;
|
||
}
|
||
|
||
/* Return a mask that has bit N set if OPCODE reads the register(s)
|
||
in operand N. */
|
||
|
||
static unsigned int
|
||
insn_read_mask (const struct mips_opcode *opcode)
|
||
{
|
||
return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
|
||
}
|
||
|
||
/* Return a mask that has bit N set if OPCODE writes to the register(s)
|
||
in operand N. */
|
||
|
||
static unsigned int
|
||
insn_write_mask (const struct mips_opcode *opcode)
|
||
{
|
||
return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
|
||
}
|
||
|
||
/* Return a mask of the registers specified by operand OPERAND of INSN.
|
||
Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
|
||
is set. */
|
||
|
||
static unsigned int
|
||
operand_reg_mask (const struct mips_cl_insn *insn,
|
||
const struct mips_operand *operand,
|
||
unsigned int type_mask)
|
||
{
|
||
unsigned int uval, vsel;
|
||
|
||
switch (operand->type)
|
||
{
|
||
case OP_INT:
|
||
case OP_MAPPED_INT:
|
||
case OP_MSB:
|
||
case OP_PCREL:
|
||
case OP_PERF_REG:
|
||
case OP_ADDIUSP_INT:
|
||
case OP_ENTRY_EXIT_LIST:
|
||
case OP_REPEAT_DEST_REG:
|
||
case OP_REPEAT_PREV_REG:
|
||
case OP_PC:
|
||
case OP_VU0_SUFFIX:
|
||
case OP_VU0_MATCH_SUFFIX:
|
||
case OP_IMM_INDEX:
|
||
abort ();
|
||
|
||
case OP_REG:
|
||
case OP_OPTIONAL_REG:
|
||
{
|
||
const struct mips_reg_operand *reg_op;
|
||
|
||
reg_op = (const struct mips_reg_operand *) operand;
|
||
if (!(type_mask & (1 << reg_op->reg_type)))
|
||
return 0;
|
||
uval = insn_extract_operand (insn, operand);
|
||
return 1 << mips_decode_reg_operand (reg_op, uval);
|
||
}
|
||
|
||
case OP_REG_PAIR:
|
||
{
|
||
const struct mips_reg_pair_operand *pair_op;
|
||
|
||
pair_op = (const struct mips_reg_pair_operand *) operand;
|
||
if (!(type_mask & (1 << pair_op->reg_type)))
|
||
return 0;
|
||
uval = insn_extract_operand (insn, operand);
|
||
return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
|
||
}
|
||
|
||
case OP_CLO_CLZ_DEST:
|
||
if (!(type_mask & (1 << OP_REG_GP)))
|
||
return 0;
|
||
uval = insn_extract_operand (insn, operand);
|
||
return (1 << (uval & 31)) | (1 << (uval >> 5));
|
||
|
||
case OP_LWM_SWM_LIST:
|
||
abort ();
|
||
|
||
case OP_SAVE_RESTORE_LIST:
|
||
abort ();
|
||
|
||
case OP_MDMX_IMM_REG:
|
||
if (!(type_mask & (1 << OP_REG_VEC)))
|
||
return 0;
|
||
uval = insn_extract_operand (insn, operand);
|
||
vsel = uval >> 5;
|
||
if ((vsel & 0x18) == 0x18)
|
||
return 0;
|
||
return 1 << (uval & 31);
|
||
|
||
case OP_REG_INDEX:
|
||
if (!(type_mask & (1 << OP_REG_GP)))
|
||
return 0;
|
||
return 1 << insn_extract_operand (insn, operand);
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
|
||
where bit N of OPNO_MASK is set if operand N should be included.
|
||
Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
|
||
is set. */
|
||
|
||
static unsigned int
|
||
insn_reg_mask (const struct mips_cl_insn *insn,
|
||
unsigned int type_mask, unsigned int opno_mask)
|
||
{
|
||
unsigned int opno, reg_mask;
|
||
|
||
opno = 0;
|
||
reg_mask = 0;
|
||
while (opno_mask != 0)
|
||
{
|
||
if (opno_mask & 1)
|
||
reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
|
||
opno_mask >>= 1;
|
||
opno += 1;
|
||
}
|
||
return reg_mask;
|
||
}
|
||
|
||
/* Return the mask of core registers that IP reads. */
|
||
|
||
static unsigned int
|
||
gpr_read_mask (const struct mips_cl_insn *ip)
|
||
{
|
||
unsigned long pinfo, pinfo2;
|
||
unsigned int mask;
|
||
|
||
mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
|
||
pinfo = ip->insn_mo->pinfo;
|
||
pinfo2 = ip->insn_mo->pinfo2;
|
||
if (pinfo & INSN_UDI)
|
||
{
|
||
/* UDI instructions have traditionally been assumed to read RS
|
||
and RT. */
|
||
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
|
||
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
|
||
}
|
||
if (pinfo & INSN_READ_GPR_24)
|
||
mask |= 1 << 24;
|
||
if (pinfo2 & INSN2_READ_GPR_16)
|
||
mask |= 1 << 16;
|
||
if (pinfo2 & INSN2_READ_SP)
|
||
mask |= 1 << SP;
|
||
if (pinfo2 & INSN2_READ_GPR_31)
|
||
mask |= 1 << 31;
|
||
/* Don't include register 0. */
|
||
return mask & ~1;
|
||
}
|
||
|
||
/* Return the mask of core registers that IP writes. */
|
||
|
||
static unsigned int
|
||
gpr_write_mask (const struct mips_cl_insn *ip)
|
||
{
|
||
unsigned long pinfo, pinfo2;
|
||
unsigned int mask;
|
||
|
||
mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
|
||
pinfo = ip->insn_mo->pinfo;
|
||
pinfo2 = ip->insn_mo->pinfo2;
|
||
if (pinfo & INSN_WRITE_GPR_24)
|
||
mask |= 1 << 24;
|
||
if (pinfo & INSN_WRITE_GPR_31)
|
||
mask |= 1 << 31;
|
||
if (pinfo & INSN_UDI)
|
||
/* UDI instructions have traditionally been assumed to write to RD. */
|
||
mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
|
||
if (pinfo2 & INSN2_WRITE_SP)
|
||
mask |= 1 << SP;
|
||
/* Don't include register 0. */
|
||
return mask & ~1;
|
||
}
|
||
|
||
/* Return the mask of floating-point registers that IP reads. */
|
||
|
||
static unsigned int
|
||
fpr_read_mask (const struct mips_cl_insn *ip)
|
||
{
|
||
unsigned long pinfo;
|
||
unsigned int mask;
|
||
|
||
mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
|
||
| (1 << OP_REG_MSA)),
|
||
insn_read_mask (ip->insn_mo));
|
||
pinfo = ip->insn_mo->pinfo;
|
||
/* Conservatively treat all operands to an FP_D instruction are doubles.
|
||
(This is overly pessimistic for things like cvt.d.s.) */
|
||
if (HAVE_32BIT_FPRS && (pinfo & FP_D))
|
||
mask |= mask << 1;
|
||
return mask;
|
||
}
|
||
|
||
/* Return the mask of floating-point registers that IP writes. */
|
||
|
||
static unsigned int
|
||
fpr_write_mask (const struct mips_cl_insn *ip)
|
||
{
|
||
unsigned long pinfo;
|
||
unsigned int mask;
|
||
|
||
mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
|
||
| (1 << OP_REG_MSA)),
|
||
insn_write_mask (ip->insn_mo));
|
||
pinfo = ip->insn_mo->pinfo;
|
||
/* Conservatively treat all operands to an FP_D instruction are doubles.
|
||
(This is overly pessimistic for things like cvt.s.d.) */
|
||
if (HAVE_32BIT_FPRS && (pinfo & FP_D))
|
||
mask |= mask << 1;
|
||
return mask;
|
||
}
|
||
|
||
/* Operand OPNUM of INSN is an odd-numbered floating-point register.
|
||
Check whether that is allowed. */
|
||
|
||
static bfd_boolean
|
||
mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
|
||
{
|
||
const char *s = insn->name;
|
||
|
||
if (insn->pinfo == INSN_MACRO)
|
||
/* Let a macro pass, we'll catch it later when it is expanded. */
|
||
return TRUE;
|
||
|
||
if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || mips_opts.arch == CPU_R5900)
|
||
{
|
||
/* Allow odd registers for single-precision ops. */
|
||
switch (insn->pinfo & (FP_S | FP_D))
|
||
{
|
||
case FP_S:
|
||
case 0:
|
||
return TRUE;
|
||
case FP_D:
|
||
return FALSE;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
|
||
s = strchr (insn->name, '.');
|
||
if (s != NULL && opnum == 2)
|
||
s = strchr (s + 1, '.');
|
||
return (s != NULL && (s[1] == 'w' || s[1] == 's'));
|
||
}
|
||
|
||
/* Single-precision coprocessor loads and moves are OK too. */
|
||
if ((insn->pinfo & FP_S)
|
||
&& (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
|
||
| INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Information about an instruction argument that we're trying to match. */
|
||
struct mips_arg_info
|
||
{
|
||
/* The instruction so far. */
|
||
struct mips_cl_insn *insn;
|
||
|
||
/* The first unconsumed operand token. */
|
||
struct mips_operand_token *token;
|
||
|
||
/* The 1-based operand number, in terms of insn->insn_mo->args. */
|
||
int opnum;
|
||
|
||
/* The 1-based argument number, for error reporting. This does not
|
||
count elided optional registers, etc.. */
|
||
int argnum;
|
||
|
||
/* The last OP_REG operand seen, or ILLEGAL_REG if none. */
|
||
unsigned int last_regno;
|
||
|
||
/* If the first operand was an OP_REG, this is the register that it
|
||
specified, otherwise it is ILLEGAL_REG. */
|
||
unsigned int dest_regno;
|
||
|
||
/* The value of the last OP_INT operand. Only used for OP_MSB,
|
||
where it gives the lsb position. */
|
||
unsigned int last_op_int;
|
||
|
||
/* If true, match routines should assume that no later instruction
|
||
alternative matches and should therefore be as accomodating as
|
||
possible. Match routines should not report errors if something
|
||
is only invalid for !LAX_MATCH. */
|
||
bfd_boolean lax_match;
|
||
|
||
/* True if a reference to the current AT register was seen. */
|
||
bfd_boolean seen_at;
|
||
};
|
||
|
||
/* Record that the argument is out of range. */
|
||
|
||
static void
|
||
match_out_of_range (struct mips_arg_info *arg)
|
||
{
|
||
set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
|
||
}
|
||
|
||
/* Record that the argument isn't constant but needs to be. */
|
||
|
||
static void
|
||
match_not_constant (struct mips_arg_info *arg)
|
||
{
|
||
set_insn_error_i (arg->argnum, _("operand %d must be constant"),
|
||
arg->argnum);
|
||
}
|
||
|
||
/* Try to match an OT_CHAR token for character CH. Consume the token
|
||
and return true on success, otherwise return false. */
|
||
|
||
static bfd_boolean
|
||
match_char (struct mips_arg_info *arg, char ch)
|
||
{
|
||
if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
|
||
{
|
||
++arg->token;
|
||
if (ch == ',')
|
||
arg->argnum += 1;
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
/* Try to get an expression from the next tokens in ARG. Consume the
|
||
tokens and return true on success, storing the expression value in
|
||
VALUE and relocation types in R. */
|
||
|
||
static bfd_boolean
|
||
match_expression (struct mips_arg_info *arg, expressionS *value,
|
||
bfd_reloc_code_real_type *r)
|
||
{
|
||
/* If the next token is a '(' that was parsed as being part of a base
|
||
expression, assume we have an elided offset. The later match will fail
|
||
if this turns out to be wrong. */
|
||
if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
|
||
{
|
||
value->X_op = O_constant;
|
||
value->X_add_number = 0;
|
||
r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Reject register-based expressions such as "0+$2" and "(($2))".
|
||
For plain registers the default error seems more appropriate. */
|
||
if (arg->token->type == OT_INTEGER
|
||
&& arg->token->u.integer.value.X_op == O_register)
|
||
{
|
||
set_insn_error (arg->argnum, _("register value used as expression"));
|
||
return FALSE;
|
||
}
|
||
|
||
if (arg->token->type == OT_INTEGER)
|
||
{
|
||
*value = arg->token->u.integer.value;
|
||
memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
|
||
++arg->token;
|
||
return TRUE;
|
||
}
|
||
|
||
set_insn_error_i
|
||
(arg->argnum, _("operand %d must be an immediate expression"),
|
||
arg->argnum);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Try to get a constant expression from the next tokens in ARG. Consume
|
||
the tokens and return return true on success, storing the constant value
|
||
in *VALUE. Use FALLBACK as the value if the match succeeded with an
|
||
error. */
|
||
|
||
static bfd_boolean
|
||
match_const_int (struct mips_arg_info *arg, offsetT *value)
|
||
{
|
||
expressionS ex;
|
||
bfd_reloc_code_real_type r[3];
|
||
|
||
if (!match_expression (arg, &ex, r))
|
||
return FALSE;
|
||
|
||
if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
|
||
*value = ex.X_add_number;
|
||
else
|
||
{
|
||
match_not_constant (arg);
|
||
return FALSE;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the RTYPE_* flags for a register operand of type TYPE that
|
||
appears in instruction OPCODE. */
|
||
|
||
static unsigned int
|
||
convert_reg_type (const struct mips_opcode *opcode,
|
||
enum mips_reg_operand_type type)
|
||
{
|
||
switch (type)
|
||
{
|
||
case OP_REG_GP:
|
||
return RTYPE_NUM | RTYPE_GP;
|
||
|
||
case OP_REG_FP:
|
||
/* Allow vector register names for MDMX if the instruction is a 64-bit
|
||
FPR load, store or move (including moves to and from GPRs). */
|
||
if ((mips_opts.ase & ASE_MDMX)
|
||
&& (opcode->pinfo & FP_D)
|
||
&& (opcode->pinfo & (INSN_COPROC_MOVE_DELAY
|
||
| INSN_COPROC_MEMORY_DELAY
|
||
| INSN_LOAD_COPROC_DELAY
|
||
| INSN_LOAD_MEMORY
|
||
| INSN_STORE_MEMORY)))
|
||
return RTYPE_FPU | RTYPE_VEC;
|
||
return RTYPE_FPU;
|
||
|
||
case OP_REG_CCC:
|
||
if (opcode->pinfo & (FP_D | FP_S))
|
||
return RTYPE_CCC | RTYPE_FCC;
|
||
return RTYPE_CCC;
|
||
|
||
case OP_REG_VEC:
|
||
if (opcode->membership & INSN_5400)
|
||
return RTYPE_FPU;
|
||
return RTYPE_FPU | RTYPE_VEC;
|
||
|
||
case OP_REG_ACC:
|
||
return RTYPE_ACC;
|
||
|
||
case OP_REG_COPRO:
|
||
if (opcode->name[strlen (opcode->name) - 1] == '0')
|
||
return RTYPE_NUM | RTYPE_CP0;
|
||
return RTYPE_NUM;
|
||
|
||
case OP_REG_HW:
|
||
return RTYPE_NUM;
|
||
|
||
case OP_REG_VI:
|
||
return RTYPE_NUM | RTYPE_VI;
|
||
|
||
case OP_REG_VF:
|
||
return RTYPE_NUM | RTYPE_VF;
|
||
|
||
case OP_REG_R5900_I:
|
||
return RTYPE_R5900_I;
|
||
|
||
case OP_REG_R5900_Q:
|
||
return RTYPE_R5900_Q;
|
||
|
||
case OP_REG_R5900_R:
|
||
return RTYPE_R5900_R;
|
||
|
||
case OP_REG_R5900_ACC:
|
||
return RTYPE_R5900_ACC;
|
||
|
||
case OP_REG_MSA:
|
||
return RTYPE_MSA;
|
||
|
||
case OP_REG_MSA_CTRL:
|
||
return RTYPE_NUM;
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
|
||
|
||
static void
|
||
check_regno (struct mips_arg_info *arg,
|
||
enum mips_reg_operand_type type, unsigned int regno)
|
||
{
|
||
if (AT && type == OP_REG_GP && regno == AT)
|
||
arg->seen_at = TRUE;
|
||
|
||
if (type == OP_REG_FP
|
||
&& (regno & 1) != 0
|
||
&& HAVE_32BIT_FPRS
|
||
&& !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
|
||
as_warn (_("float register should be even, was %d"), regno);
|
||
|
||
if (type == OP_REG_CCC)
|
||
{
|
||
const char *name;
|
||
size_t length;
|
||
|
||
name = arg->insn->insn_mo->name;
|
||
length = strlen (name);
|
||
if ((regno & 1) != 0
|
||
&& ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
|
||
|| (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
|
||
as_warn (_("condition code register should be even for %s, was %d"),
|
||
name, regno);
|
||
|
||
if ((regno & 3) != 0
|
||
&& (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
|
||
as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
|
||
name, regno);
|
||
}
|
||
}
|
||
|
||
/* ARG is a register with symbol value SYMVAL. Try to interpret it as
|
||
a register of type TYPE. Return true on success, storing the register
|
||
number in *REGNO and warning about any dubious uses. */
|
||
|
||
static bfd_boolean
|
||
match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
|
||
unsigned int symval, unsigned int *regno)
|
||
{
|
||
if (type == OP_REG_VEC)
|
||
symval = mips_prefer_vec_regno (symval);
|
||
if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
|
||
return FALSE;
|
||
|
||
*regno = symval & RNUM_MASK;
|
||
check_regno (arg, type, *regno);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Try to interpret the next token in ARG as a register of type TYPE.
|
||
Consume the token and return true on success, storing the register
|
||
number in *REGNO. Return false on failure. */
|
||
|
||
static bfd_boolean
|
||
match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
|
||
unsigned int *regno)
|
||
{
|
||
if (arg->token->type == OT_REG
|
||
&& match_regno (arg, type, arg->token->u.regno, regno))
|
||
{
|
||
++arg->token;
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
/* Try to interpret the next token in ARG as a range of registers of type TYPE.
|
||
Consume the token and return true on success, storing the register numbers
|
||
in *REGNO1 and *REGNO2. Return false on failure. */
|
||
|
||
static bfd_boolean
|
||
match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
|
||
unsigned int *regno1, unsigned int *regno2)
|
||
{
|
||
if (match_reg (arg, type, regno1))
|
||
{
|
||
*regno2 = *regno1;
|
||
return TRUE;
|
||
}
|
||
if (arg->token->type == OT_REG_RANGE
|
||
&& match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
|
||
&& match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
|
||
&& *regno1 <= *regno2)
|
||
{
|
||
++arg->token;
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
/* OP_INT matcher. */
|
||
|
||
static bfd_boolean
|
||
match_int_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand_base)
|
||
{
|
||
const struct mips_int_operand *operand;
|
||
unsigned int uval;
|
||
int min_val, max_val, factor;
|
||
offsetT sval;
|
||
|
||
operand = (const struct mips_int_operand *) operand_base;
|
||
factor = 1 << operand->shift;
|
||
min_val = mips_int_operand_min (operand);
|
||
max_val = mips_int_operand_max (operand);
|
||
|
||
if (operand_base->lsb == 0
|
||
&& operand_base->size == 16
|
||
&& operand->shift == 0
|
||
&& operand->bias == 0
|
||
&& (operand->max_val == 32767 || operand->max_val == 65535))
|
||
{
|
||
/* The operand can be relocated. */
|
||
if (!match_expression (arg, &offset_expr, offset_reloc))
|
||
return FALSE;
|
||
|
||
if (offset_reloc[0] != BFD_RELOC_UNUSED)
|
||
/* Relocation operators were used. Accept the arguent and
|
||
leave the relocation value in offset_expr and offset_relocs
|
||
for the caller to process. */
|
||
return TRUE;
|
||
|
||
if (offset_expr.X_op != O_constant)
|
||
{
|
||
/* Accept non-constant operands if no later alternative matches,
|
||
leaving it for the caller to process. */
|
||
if (!arg->lax_match)
|
||
return FALSE;
|
||
offset_reloc[0] = BFD_RELOC_LO16;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Clear the global state; we're going to install the operand
|
||
ourselves. */
|
||
sval = offset_expr.X_add_number;
|
||
offset_expr.X_op = O_absent;
|
||
|
||
/* For compatibility with older assemblers, we accept
|
||
0x8000-0xffff as signed 16-bit numbers when only
|
||
signed numbers are allowed. */
|
||
if (sval > max_val)
|
||
{
|
||
max_val = ((1 << operand_base->size) - 1) << operand->shift;
|
||
if (!arg->lax_match && sval <= max_val)
|
||
return FALSE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!match_const_int (arg, &sval))
|
||
return FALSE;
|
||
}
|
||
|
||
arg->last_op_int = sval;
|
||
|
||
if (sval < min_val || sval > max_val || sval % factor)
|
||
{
|
||
match_out_of_range (arg);
|
||
return FALSE;
|
||
}
|
||
|
||
uval = (unsigned int) sval >> operand->shift;
|
||
uval -= operand->bias;
|
||
|
||
/* Handle -mfix-cn63xxp1. */
|
||
if (arg->opnum == 1
|
||
&& mips_fix_cn63xxp1
|
||
&& !mips_opts.micromips
|
||
&& strcmp ("pref", arg->insn->insn_mo->name) == 0)
|
||
switch (uval)
|
||
{
|
||
case 5:
|
||
case 25:
|
||
case 26:
|
||
case 27:
|
||
case 28:
|
||
case 29:
|
||
case 30:
|
||
case 31:
|
||
/* These are ok. */
|
||
break;
|
||
|
||
default:
|
||
/* The rest must be changed to 28. */
|
||
uval = 28;
|
||
break;
|
||
}
|
||
|
||
insn_insert_operand (arg->insn, operand_base, uval);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_MAPPED_INT matcher. */
|
||
|
||
static bfd_boolean
|
||
match_mapped_int_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand_base)
|
||
{
|
||
const struct mips_mapped_int_operand *operand;
|
||
unsigned int uval, num_vals;
|
||
offsetT sval;
|
||
|
||
operand = (const struct mips_mapped_int_operand *) operand_base;
|
||
if (!match_const_int (arg, &sval))
|
||
return FALSE;
|
||
|
||
num_vals = 1 << operand_base->size;
|
||
for (uval = 0; uval < num_vals; uval++)
|
||
if (operand->int_map[uval] == sval)
|
||
break;
|
||
if (uval == num_vals)
|
||
{
|
||
match_out_of_range (arg);
|
||
return FALSE;
|
||
}
|
||
|
||
insn_insert_operand (arg->insn, operand_base, uval);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_MSB matcher. */
|
||
|
||
static bfd_boolean
|
||
match_msb_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand_base)
|
||
{
|
||
const struct mips_msb_operand *operand;
|
||
int min_val, max_val, max_high;
|
||
offsetT size, sval, high;
|
||
|
||
operand = (const struct mips_msb_operand *) operand_base;
|
||
min_val = operand->bias;
|
||
max_val = min_val + (1 << operand_base->size) - 1;
|
||
max_high = operand->opsize;
|
||
|
||
if (!match_const_int (arg, &size))
|
||
return FALSE;
|
||
|
||
high = size + arg->last_op_int;
|
||
sval = operand->add_lsb ? high : size;
|
||
|
||
if (size < 0 || high > max_high || sval < min_val || sval > max_val)
|
||
{
|
||
match_out_of_range (arg);
|
||
return FALSE;
|
||
}
|
||
insn_insert_operand (arg->insn, operand_base, sval - min_val);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_REG matcher. */
|
||
|
||
static bfd_boolean
|
||
match_reg_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand_base)
|
||
{
|
||
const struct mips_reg_operand *operand;
|
||
unsigned int regno, uval, num_vals;
|
||
|
||
operand = (const struct mips_reg_operand *) operand_base;
|
||
if (!match_reg (arg, operand->reg_type, ®no))
|
||
return FALSE;
|
||
|
||
if (operand->reg_map)
|
||
{
|
||
num_vals = 1 << operand->root.size;
|
||
for (uval = 0; uval < num_vals; uval++)
|
||
if (operand->reg_map[uval] == regno)
|
||
break;
|
||
if (num_vals == uval)
|
||
return FALSE;
|
||
}
|
||
else
|
||
uval = regno;
|
||
|
||
arg->last_regno = regno;
|
||
if (arg->opnum == 1)
|
||
arg->dest_regno = regno;
|
||
insn_insert_operand (arg->insn, operand_base, uval);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_REG_PAIR matcher. */
|
||
|
||
static bfd_boolean
|
||
match_reg_pair_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand_base)
|
||
{
|
||
const struct mips_reg_pair_operand *operand;
|
||
unsigned int regno1, regno2, uval, num_vals;
|
||
|
||
operand = (const struct mips_reg_pair_operand *) operand_base;
|
||
if (!match_reg (arg, operand->reg_type, ®no1)
|
||
|| !match_char (arg, ',')
|
||
|| !match_reg (arg, operand->reg_type, ®no2))
|
||
return FALSE;
|
||
|
||
num_vals = 1 << operand_base->size;
|
||
for (uval = 0; uval < num_vals; uval++)
|
||
if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
|
||
break;
|
||
if (uval == num_vals)
|
||
return FALSE;
|
||
|
||
insn_insert_operand (arg->insn, operand_base, uval);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_PCREL matcher. The caller chooses the relocation type. */
|
||
|
||
static bfd_boolean
|
||
match_pcrel_operand (struct mips_arg_info *arg)
|
||
{
|
||
bfd_reloc_code_real_type r[3];
|
||
|
||
return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
|
||
}
|
||
|
||
/* OP_PERF_REG matcher. */
|
||
|
||
static bfd_boolean
|
||
match_perf_reg_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand)
|
||
{
|
||
offsetT sval;
|
||
|
||
if (!match_const_int (arg, &sval))
|
||
return FALSE;
|
||
|
||
if (sval != 0
|
||
&& (sval != 1
|
||
|| (mips_opts.arch == CPU_R5900
|
||
&& (strcmp (arg->insn->insn_mo->name, "mfps") == 0
|
||
|| strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
|
||
{
|
||
set_insn_error (arg->argnum, _("invalid performance register"));
|
||
return FALSE;
|
||
}
|
||
|
||
insn_insert_operand (arg->insn, operand, sval);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_ADDIUSP matcher. */
|
||
|
||
static bfd_boolean
|
||
match_addiusp_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand)
|
||
{
|
||
offsetT sval;
|
||
unsigned int uval;
|
||
|
||
if (!match_const_int (arg, &sval))
|
||
return FALSE;
|
||
|
||
if (sval % 4)
|
||
{
|
||
match_out_of_range (arg);
|
||
return FALSE;
|
||
}
|
||
|
||
sval /= 4;
|
||
if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
|
||
{
|
||
match_out_of_range (arg);
|
||
return FALSE;
|
||
}
|
||
|
||
uval = (unsigned int) sval;
|
||
uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
|
||
insn_insert_operand (arg->insn, operand, uval);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_CLO_CLZ_DEST matcher. */
|
||
|
||
static bfd_boolean
|
||
match_clo_clz_dest_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand)
|
||
{
|
||
unsigned int regno;
|
||
|
||
if (!match_reg (arg, OP_REG_GP, ®no))
|
||
return FALSE;
|
||
|
||
insn_insert_operand (arg->insn, operand, regno | (regno << 5));
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_LWM_SWM_LIST matcher. */
|
||
|
||
static bfd_boolean
|
||
match_lwm_swm_list_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand)
|
||
{
|
||
unsigned int reglist, sregs, ra, regno1, regno2;
|
||
struct mips_arg_info reset;
|
||
|
||
reglist = 0;
|
||
if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
|
||
return FALSE;
|
||
do
|
||
{
|
||
if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
|
||
{
|
||
reglist |= 1 << FP;
|
||
regno2 = S7;
|
||
}
|
||
reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
|
||
reset = *arg;
|
||
}
|
||
while (match_char (arg, ',')
|
||
&& match_reg_range (arg, OP_REG_GP, ®no1, ®no2));
|
||
*arg = reset;
|
||
|
||
if (operand->size == 2)
|
||
{
|
||
/* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
|
||
|
||
s0, ra
|
||
s0, s1, ra, s2, s3
|
||
s0-s2, ra
|
||
|
||
and any permutations of these. */
|
||
if ((reglist & 0xfff1ffff) != 0x80010000)
|
||
return FALSE;
|
||
|
||
sregs = (reglist >> 17) & 7;
|
||
ra = 0;
|
||
}
|
||
else
|
||
{
|
||
/* The list must include at least one of ra and s0-sN,
|
||
for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
|
||
which are $23 and $30 respectively.) E.g.:
|
||
|
||
ra
|
||
s0
|
||
ra, s0, s1, s2
|
||
s0-s8
|
||
s0-s5, ra
|
||
|
||
and any permutations of these. */
|
||
if ((reglist & 0x3f00ffff) != 0)
|
||
return FALSE;
|
||
|
||
ra = (reglist >> 27) & 0x10;
|
||
sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
|
||
}
|
||
sregs += 1;
|
||
if ((sregs & -sregs) != sregs)
|
||
return FALSE;
|
||
|
||
insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_ENTRY_EXIT_LIST matcher. */
|
||
|
||
static unsigned int
|
||
match_entry_exit_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand)
|
||
{
|
||
unsigned int mask;
|
||
bfd_boolean is_exit;
|
||
|
||
/* The format is the same for both ENTRY and EXIT, but the constraints
|
||
are different. */
|
||
is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
|
||
mask = (is_exit ? 7 << 3 : 0);
|
||
do
|
||
{
|
||
unsigned int regno1, regno2;
|
||
bfd_boolean is_freg;
|
||
|
||
if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
|
||
is_freg = FALSE;
|
||
else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2))
|
||
is_freg = TRUE;
|
||
else
|
||
return FALSE;
|
||
|
||
if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
|
||
{
|
||
mask &= ~(7 << 3);
|
||
mask |= (5 + regno2) << 3;
|
||
}
|
||
else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
|
||
mask |= (regno2 - 3) << 3;
|
||
else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
|
||
mask |= (regno2 - 15) << 1;
|
||
else if (regno1 == RA && regno2 == RA)
|
||
mask |= 1;
|
||
else
|
||
return FALSE;
|
||
}
|
||
while (match_char (arg, ','));
|
||
|
||
insn_insert_operand (arg->insn, operand, mask);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_SAVE_RESTORE_LIST matcher. */
|
||
|
||
static bfd_boolean
|
||
match_save_restore_list_operand (struct mips_arg_info *arg)
|
||
{
|
||
unsigned int opcode, args, statics, sregs;
|
||
unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
|
||
offsetT frame_size;
|
||
|
||
opcode = arg->insn->insn_opcode;
|
||
frame_size = 0;
|
||
num_frame_sizes = 0;
|
||
args = 0;
|
||
statics = 0;
|
||
sregs = 0;
|
||
do
|
||
{
|
||
unsigned int regno1, regno2;
|
||
|
||
if (arg->token->type == OT_INTEGER)
|
||
{
|
||
/* Handle the frame size. */
|
||
if (!match_const_int (arg, &frame_size))
|
||
return FALSE;
|
||
num_frame_sizes += 1;
|
||
}
|
||
else
|
||
{
|
||
if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
|
||
return FALSE;
|
||
|
||
while (regno1 <= regno2)
|
||
{
|
||
if (regno1 >= 4 && regno1 <= 7)
|
||
{
|
||
if (num_frame_sizes == 0)
|
||
/* args $a0-$a3 */
|
||
args |= 1 << (regno1 - 4);
|
||
else
|
||
/* statics $a0-$a3 */
|
||
statics |= 1 << (regno1 - 4);
|
||
}
|
||
else if (regno1 >= 16 && regno1 <= 23)
|
||
/* $s0-$s7 */
|
||
sregs |= 1 << (regno1 - 16);
|
||
else if (regno1 == 30)
|
||
/* $s8 */
|
||
sregs |= 1 << 8;
|
||
else if (regno1 == 31)
|
||
/* Add $ra to insn. */
|
||
opcode |= 0x40;
|
||
else
|
||
return FALSE;
|
||
regno1 += 1;
|
||
if (regno1 == 24)
|
||
regno1 = 30;
|
||
}
|
||
}
|
||
}
|
||
while (match_char (arg, ','));
|
||
|
||
/* Encode args/statics combination. */
|
||
if (args & statics)
|
||
return FALSE;
|
||
else if (args == 0xf)
|
||
/* All $a0-$a3 are args. */
|
||
opcode |= MIPS16_ALL_ARGS << 16;
|
||
else if (statics == 0xf)
|
||
/* All $a0-$a3 are statics. */
|
||
opcode |= MIPS16_ALL_STATICS << 16;
|
||
else
|
||
{
|
||
/* Count arg registers. */
|
||
num_args = 0;
|
||
while (args & 0x1)
|
||
{
|
||
args >>= 1;
|
||
num_args += 1;
|
||
}
|
||
if (args != 0)
|
||
return FALSE;
|
||
|
||
/* Count static registers. */
|
||
num_statics = 0;
|
||
while (statics & 0x8)
|
||
{
|
||
statics = (statics << 1) & 0xf;
|
||
num_statics += 1;
|
||
}
|
||
if (statics != 0)
|
||
return FALSE;
|
||
|
||
/* Encode args/statics. */
|
||
opcode |= ((num_args << 2) | num_statics) << 16;
|
||
}
|
||
|
||
/* Encode $s0/$s1. */
|
||
if (sregs & (1 << 0)) /* $s0 */
|
||
opcode |= 0x20;
|
||
if (sregs & (1 << 1)) /* $s1 */
|
||
opcode |= 0x10;
|
||
sregs >>= 2;
|
||
|
||
/* Encode $s2-$s8. */
|
||
num_sregs = 0;
|
||
while (sregs & 1)
|
||
{
|
||
sregs >>= 1;
|
||
num_sregs += 1;
|
||
}
|
||
if (sregs != 0)
|
||
return FALSE;
|
||
opcode |= num_sregs << 24;
|
||
|
||
/* Encode frame size. */
|
||
if (num_frame_sizes == 0)
|
||
{
|
||
set_insn_error (arg->argnum, _("missing frame size"));
|
||
return FALSE;
|
||
}
|
||
if (num_frame_sizes > 1)
|
||
{
|
||
set_insn_error (arg->argnum, _("frame size specified twice"));
|
||
return FALSE;
|
||
}
|
||
if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
|
||
{
|
||
set_insn_error (arg->argnum, _("invalid frame size"));
|
||
return FALSE;
|
||
}
|
||
if (frame_size != 128 || (opcode >> 16) != 0)
|
||
{
|
||
frame_size /= 8;
|
||
opcode |= (((frame_size & 0xf0) << 16)
|
||
| (frame_size & 0x0f));
|
||
}
|
||
|
||
/* Finally build the instruction. */
|
||
if ((opcode >> 16) != 0 || frame_size == 0)
|
||
opcode |= MIPS16_EXTEND;
|
||
arg->insn->insn_opcode = opcode;
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_MDMX_IMM_REG matcher. */
|
||
|
||
static bfd_boolean
|
||
match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand)
|
||
{
|
||
unsigned int regno, uval;
|
||
bfd_boolean is_qh;
|
||
const struct mips_opcode *opcode;
|
||
|
||
/* The mips_opcode records whether this is an octobyte or quadhalf
|
||
instruction. Start out with that bit in place. */
|
||
opcode = arg->insn->insn_mo;
|
||
uval = mips_extract_operand (operand, opcode->match);
|
||
is_qh = (uval != 0);
|
||
|
||
if (arg->token->type == OT_REG)
|
||
{
|
||
if ((opcode->membership & INSN_5400)
|
||
&& strcmp (opcode->name, "rzu.ob") == 0)
|
||
{
|
||
set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
|
||
arg->argnum);
|
||
return FALSE;
|
||
}
|
||
|
||
if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no))
|
||
return FALSE;
|
||
++arg->token;
|
||
|
||
/* Check whether this is a vector register or a broadcast of
|
||
a single element. */
|
||
if (arg->token->type == OT_INTEGER_INDEX)
|
||
{
|
||
if (arg->token->u.index > (is_qh ? 3 : 7))
|
||
{
|
||
set_insn_error (arg->argnum, _("invalid element selector"));
|
||
return FALSE;
|
||
}
|
||
uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
|
||
++arg->token;
|
||
}
|
||
else
|
||
{
|
||
/* A full vector. */
|
||
if ((opcode->membership & INSN_5400)
|
||
&& (strcmp (opcode->name, "sll.ob") == 0
|
||
|| strcmp (opcode->name, "srl.ob") == 0))
|
||
{
|
||
set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
|
||
arg->argnum);
|
||
return FALSE;
|
||
}
|
||
|
||
if (is_qh)
|
||
uval |= MDMX_FMTSEL_VEC_QH << 5;
|
||
else
|
||
uval |= MDMX_FMTSEL_VEC_OB << 5;
|
||
}
|
||
uval |= regno;
|
||
}
|
||
else
|
||
{
|
||
offsetT sval;
|
||
|
||
if (!match_const_int (arg, &sval))
|
||
return FALSE;
|
||
if (sval < 0 || sval > 31)
|
||
{
|
||
match_out_of_range (arg);
|
||
return FALSE;
|
||
}
|
||
uval |= (sval & 31);
|
||
if (is_qh)
|
||
uval |= MDMX_FMTSEL_IMM_QH << 5;
|
||
else
|
||
uval |= MDMX_FMTSEL_IMM_OB << 5;
|
||
}
|
||
insn_insert_operand (arg->insn, operand, uval);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_IMM_INDEX matcher. */
|
||
|
||
static bfd_boolean
|
||
match_imm_index_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand)
|
||
{
|
||
unsigned int max_val;
|
||
|
||
if (arg->token->type != OT_INTEGER_INDEX)
|
||
return FALSE;
|
||
|
||
max_val = (1 << operand->size) - 1;
|
||
if (arg->token->u.index > max_val)
|
||
{
|
||
match_out_of_range (arg);
|
||
return FALSE;
|
||
}
|
||
insn_insert_operand (arg->insn, operand, arg->token->u.index);
|
||
++arg->token;
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_REG_INDEX matcher. */
|
||
|
||
static bfd_boolean
|
||
match_reg_index_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand)
|
||
{
|
||
unsigned int regno;
|
||
|
||
if (arg->token->type != OT_REG_INDEX)
|
||
return FALSE;
|
||
|
||
if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no))
|
||
return FALSE;
|
||
|
||
insn_insert_operand (arg->insn, operand, regno);
|
||
++arg->token;
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_PC matcher. */
|
||
|
||
static bfd_boolean
|
||
match_pc_operand (struct mips_arg_info *arg)
|
||
{
|
||
if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
|
||
{
|
||
++arg->token;
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
|
||
register that we need to match. */
|
||
|
||
static bfd_boolean
|
||
match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
|
||
{
|
||
unsigned int regno;
|
||
|
||
return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno;
|
||
}
|
||
|
||
/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
|
||
the length of the value in bytes (4 for float, 8 for double) and
|
||
USING_GPRS says whether the destination is a GPR rather than an FPR.
|
||
|
||
Return the constant in IMM and OFFSET as follows:
|
||
|
||
- If the constant should be loaded via memory, set IMM to O_absent and
|
||
OFFSET to the memory address.
|
||
|
||
- Otherwise, if the constant should be loaded into two 32-bit registers,
|
||
set IMM to the O_constant to load into the high register and OFFSET
|
||
to the corresponding value for the low register.
|
||
|
||
- Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
|
||
|
||
These constants only appear as the last operand in an instruction,
|
||
and every instruction that accepts them in any variant accepts them
|
||
in all variants. This means we don't have to worry about backing out
|
||
any changes if the instruction does not match. We just match
|
||
unconditionally and report an error if the constant is invalid. */
|
||
|
||
static bfd_boolean
|
||
match_float_constant (struct mips_arg_info *arg, expressionS *imm,
|
||
expressionS *offset, int length, bfd_boolean using_gprs)
|
||
{
|
||
char *p;
|
||
segT seg, new_seg;
|
||
subsegT subseg;
|
||
const char *newname;
|
||
unsigned char *data;
|
||
|
||
/* Where the constant is placed is based on how the MIPS assembler
|
||
does things:
|
||
|
||
length == 4 && using_gprs -- immediate value only
|
||
length == 8 && using_gprs -- .rdata or immediate value
|
||
length == 4 && !using_gprs -- .lit4 or immediate value
|
||
length == 8 && !using_gprs -- .lit8 or immediate value
|
||
|
||
The .lit4 and .lit8 sections are only used if permitted by the
|
||
-G argument. */
|
||
if (arg->token->type != OT_FLOAT)
|
||
{
|
||
set_insn_error (arg->argnum, _("floating-point expression required"));
|
||
return FALSE;
|
||
}
|
||
|
||
gas_assert (arg->token->u.flt.length == length);
|
||
data = arg->token->u.flt.data;
|
||
++arg->token;
|
||
|
||
/* Handle 32-bit constants for which an immediate value is best. */
|
||
if (length == 4
|
||
&& (using_gprs
|
||
|| g_switch_value < 4
|
||
|| (data[0] == 0 && data[1] == 0)
|
||
|| (data[2] == 0 && data[3] == 0)))
|
||
{
|
||
imm->X_op = O_constant;
|
||
if (!target_big_endian)
|
||
imm->X_add_number = bfd_getl32 (data);
|
||
else
|
||
imm->X_add_number = bfd_getb32 (data);
|
||
offset->X_op = O_absent;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Handle 64-bit constants for which an immediate value is best. */
|
||
if (length == 8
|
||
&& !mips_disable_float_construction
|
||
/* Constants can only be constructed in GPRs and copied
|
||
to FPRs if the GPRs are at least as wide as the FPRs.
|
||
Force the constant into memory if we are using 64-bit FPRs
|
||
but the GPRs are only 32 bits wide. */
|
||
/* ??? No longer true with the addition of MTHC1, but this
|
||
is legacy code... */
|
||
&& (using_gprs || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
|
||
&& ((data[0] == 0 && data[1] == 0)
|
||
|| (data[2] == 0 && data[3] == 0))
|
||
&& ((data[4] == 0 && data[5] == 0)
|
||
|| (data[6] == 0 && data[7] == 0)))
|
||
{
|
||
/* The value is simple enough to load with a couple of instructions.
|
||
If using 32-bit registers, set IMM to the high order 32 bits and
|
||
OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
|
||
64 bit constant. */
|
||
if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
|
||
{
|
||
imm->X_op = O_constant;
|
||
offset->X_op = O_constant;
|
||
if (!target_big_endian)
|
||
{
|
||
imm->X_add_number = bfd_getl32 (data + 4);
|
||
offset->X_add_number = bfd_getl32 (data);
|
||
}
|
||
else
|
||
{
|
||
imm->X_add_number = bfd_getb32 (data);
|
||
offset->X_add_number = bfd_getb32 (data + 4);
|
||
}
|
||
if (offset->X_add_number == 0)
|
||
offset->X_op = O_absent;
|
||
}
|
||
else
|
||
{
|
||
imm->X_op = O_constant;
|
||
if (!target_big_endian)
|
||
imm->X_add_number = bfd_getl64 (data);
|
||
else
|
||
imm->X_add_number = bfd_getb64 (data);
|
||
offset->X_op = O_absent;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Switch to the right section. */
|
||
seg = now_seg;
|
||
subseg = now_subseg;
|
||
if (length == 4)
|
||
{
|
||
gas_assert (!using_gprs && g_switch_value >= 4);
|
||
newname = ".lit4";
|
||
}
|
||
else
|
||
{
|
||
if (using_gprs || g_switch_value < 8)
|
||
newname = RDATA_SECTION_NAME;
|
||
else
|
||
newname = ".lit8";
|
||
}
|
||
|
||
new_seg = subseg_new (newname, (subsegT) 0);
|
||
bfd_set_section_flags (stdoutput, new_seg,
|
||
SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
|
||
frag_align (length == 4 ? 2 : 3, 0, 0);
|
||
if (strncmp (TARGET_OS, "elf", 3) != 0)
|
||
record_alignment (new_seg, 4);
|
||
else
|
||
record_alignment (new_seg, length == 4 ? 2 : 3);
|
||
if (seg == now_seg)
|
||
as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
|
||
|
||
/* Set the argument to the current address in the section. */
|
||
imm->X_op = O_absent;
|
||
offset->X_op = O_symbol;
|
||
offset->X_add_symbol = symbol_temp_new_now ();
|
||
offset->X_add_number = 0;
|
||
|
||
/* Put the floating point number into the section. */
|
||
p = frag_more (length);
|
||
memcpy (p, data, length);
|
||
|
||
/* Switch back to the original section. */
|
||
subseg_set (seg, subseg);
|
||
return TRUE;
|
||
}
|
||
|
||
/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
|
||
them. */
|
||
|
||
static bfd_boolean
|
||
match_vu0_suffix_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand,
|
||
bfd_boolean match_p)
|
||
{
|
||
unsigned int uval;
|
||
|
||
/* The operand can be an XYZW mask or a single 2-bit channel index
|
||
(with X being 0). */
|
||
gas_assert (operand->size == 2 || operand->size == 4);
|
||
|
||
/* The suffix can be omitted when it is already part of the opcode. */
|
||
if (arg->token->type != OT_CHANNELS)
|
||
return match_p;
|
||
|
||
uval = arg->token->u.channels;
|
||
if (operand->size == 2)
|
||
{
|
||
/* Check that a single bit is set and convert it into a 2-bit index. */
|
||
if ((uval & -uval) != uval)
|
||
return FALSE;
|
||
uval = 4 - ffs (uval);
|
||
}
|
||
|
||
if (match_p && insn_extract_operand (arg->insn, operand) != uval)
|
||
return FALSE;
|
||
|
||
++arg->token;
|
||
if (!match_p)
|
||
insn_insert_operand (arg->insn, operand, uval);
|
||
return TRUE;
|
||
}
|
||
|
||
/* S is the text seen for ARG. Match it against OPERAND. Return the end
|
||
of the argument text if the match is successful, otherwise return null. */
|
||
|
||
static bfd_boolean
|
||
match_operand (struct mips_arg_info *arg,
|
||
const struct mips_operand *operand)
|
||
{
|
||
switch (operand->type)
|
||
{
|
||
case OP_INT:
|
||
return match_int_operand (arg, operand);
|
||
|
||
case OP_MAPPED_INT:
|
||
return match_mapped_int_operand (arg, operand);
|
||
|
||
case OP_MSB:
|
||
return match_msb_operand (arg, operand);
|
||
|
||
case OP_REG:
|
||
case OP_OPTIONAL_REG:
|
||
return match_reg_operand (arg, operand);
|
||
|
||
case OP_REG_PAIR:
|
||
return match_reg_pair_operand (arg, operand);
|
||
|
||
case OP_PCREL:
|
||
return match_pcrel_operand (arg);
|
||
|
||
case OP_PERF_REG:
|
||
return match_perf_reg_operand (arg, operand);
|
||
|
||
case OP_ADDIUSP_INT:
|
||
return match_addiusp_operand (arg, operand);
|
||
|
||
case OP_CLO_CLZ_DEST:
|
||
return match_clo_clz_dest_operand (arg, operand);
|
||
|
||
case OP_LWM_SWM_LIST:
|
||
return match_lwm_swm_list_operand (arg, operand);
|
||
|
||
case OP_ENTRY_EXIT_LIST:
|
||
return match_entry_exit_operand (arg, operand);
|
||
|
||
case OP_SAVE_RESTORE_LIST:
|
||
return match_save_restore_list_operand (arg);
|
||
|
||
case OP_MDMX_IMM_REG:
|
||
return match_mdmx_imm_reg_operand (arg, operand);
|
||
|
||
case OP_REPEAT_DEST_REG:
|
||
return match_tied_reg_operand (arg, arg->dest_regno);
|
||
|
||
case OP_REPEAT_PREV_REG:
|
||
return match_tied_reg_operand (arg, arg->last_regno);
|
||
|
||
case OP_PC:
|
||
return match_pc_operand (arg);
|
||
|
||
case OP_VU0_SUFFIX:
|
||
return match_vu0_suffix_operand (arg, operand, FALSE);
|
||
|
||
case OP_VU0_MATCH_SUFFIX:
|
||
return match_vu0_suffix_operand (arg, operand, TRUE);
|
||
|
||
case OP_IMM_INDEX:
|
||
return match_imm_index_operand (arg, operand);
|
||
|
||
case OP_REG_INDEX:
|
||
return match_reg_index_operand (arg, operand);
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* ARG is the state after successfully matching an instruction.
|
||
Issue any queued-up warnings. */
|
||
|
||
static void
|
||
check_completed_insn (struct mips_arg_info *arg)
|
||
{
|
||
if (arg->seen_at)
|
||
{
|
||
if (AT == ATREG)
|
||
as_warn (_("used $at without \".set noat\""));
|
||
else
|
||
as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
|
||
}
|
||
}
|
||
|
||
/* Return true if modifying general-purpose register REG needs a delay. */
|
||
|
||
static bfd_boolean
|
||
reg_needs_delay (unsigned int reg)
|
||
{
|
||
unsigned long prev_pinfo;
|
||
|
||
prev_pinfo = history[0].insn_mo->pinfo;
|
||
if (!mips_opts.noreorder
|
||
&& (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
|
||
|| ((prev_pinfo & INSN_LOAD_COPROC_DELAY) && !cop_interlocks))
|
||
&& (gpr_write_mask (&history[0]) & (1 << reg)))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Classify an instruction according to the FIX_VR4120_* enumeration.
|
||
Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
|
||
by VR4120 errata. */
|
||
|
||
static unsigned int
|
||
classify_vr4120_insn (const char *name)
|
||
{
|
||
if (strncmp (name, "macc", 4) == 0)
|
||
return FIX_VR4120_MACC;
|
||
if (strncmp (name, "dmacc", 5) == 0)
|
||
return FIX_VR4120_DMACC;
|
||
if (strncmp (name, "mult", 4) == 0)
|
||
return FIX_VR4120_MULT;
|
||
if (strncmp (name, "dmult", 5) == 0)
|
||
return FIX_VR4120_DMULT;
|
||
if (strstr (name, "div"))
|
||
return FIX_VR4120_DIV;
|
||
if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
|
||
return FIX_VR4120_MTHILO;
|
||
return NUM_FIX_VR4120_CLASSES;
|
||
}
|
||
|
||
#define INSN_ERET 0x42000018
|
||
#define INSN_DERET 0x4200001f
|
||
#define INSN_DMULT 0x1c
|
||
#define INSN_DMULTU 0x1d
|
||
|
||
/* Return the number of instructions that must separate INSN1 and INSN2,
|
||
where INSN1 is the earlier instruction. Return the worst-case value
|
||
for any INSN2 if INSN2 is null. */
|
||
|
||
static unsigned int
|
||
insns_between (const struct mips_cl_insn *insn1,
|
||
const struct mips_cl_insn *insn2)
|
||
{
|
||
unsigned long pinfo1, pinfo2;
|
||
unsigned int mask;
|
||
|
||
/* If INFO2 is null, pessimistically assume that all flags are set for
|
||
the second instruction. */
|
||
pinfo1 = insn1->insn_mo->pinfo;
|
||
pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
|
||
|
||
/* For most targets, write-after-read dependencies on the HI and LO
|
||
registers must be separated by at least two instructions. */
|
||
if (!hilo_interlocks)
|
||
{
|
||
if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
|
||
return 2;
|
||
if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
|
||
return 2;
|
||
}
|
||
|
||
/* If we're working around r7000 errata, there must be two instructions
|
||
between an mfhi or mflo and any instruction that uses the result. */
|
||
if (mips_7000_hilo_fix
|
||
&& !mips_opts.micromips
|
||
&& MF_HILO_INSN (pinfo1)
|
||
&& (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
|
||
return 2;
|
||
|
||
/* If we're working around 24K errata, one instruction is required
|
||
if an ERET or DERET is followed by a branch instruction. */
|
||
if (mips_fix_24k && !mips_opts.micromips)
|
||
{
|
||
if (insn1->insn_opcode == INSN_ERET
|
||
|| insn1->insn_opcode == INSN_DERET)
|
||
{
|
||
if (insn2 == NULL
|
||
|| insn2->insn_opcode == INSN_ERET
|
||
|| insn2->insn_opcode == INSN_DERET
|
||
|| delayed_branch_p (insn2))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* If we're working around PMC RM7000 errata, there must be three
|
||
nops between a dmult and a load instruction. */
|
||
if (mips_fix_rm7000 && !mips_opts.micromips)
|
||
{
|
||
if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
|
||
|| (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
|
||
{
|
||
if (pinfo2 & INSN_LOAD_MEMORY)
|
||
return 3;
|
||
}
|
||
}
|
||
|
||
/* If working around VR4120 errata, check for combinations that need
|
||
a single intervening instruction. */
|
||
if (mips_fix_vr4120 && !mips_opts.micromips)
|
||
{
|
||
unsigned int class1, class2;
|
||
|
||
class1 = classify_vr4120_insn (insn1->insn_mo->name);
|
||
if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
|
||
{
|
||
if (insn2 == NULL)
|
||
return 1;
|
||
class2 = classify_vr4120_insn (insn2->insn_mo->name);
|
||
if (vr4120_conflicts[class1] & (1 << class2))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
if (!HAVE_CODE_COMPRESSION)
|
||
{
|
||
/* Check for GPR or coprocessor load delays. All such delays
|
||
are on the RT register. */
|
||
/* Itbl support may require additional care here. */
|
||
if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
|
||
|| (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
|
||
{
|
||
if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
|
||
return 1;
|
||
}
|
||
|
||
/* Check for generic coprocessor hazards.
|
||
|
||
This case is not handled very well. There is no special
|
||
knowledge of CP0 handling, and the coprocessors other than
|
||
the floating point unit are not distinguished at all. */
|
||
/* Itbl support may require additional care here. FIXME!
|
||
Need to modify this to include knowledge about
|
||
user specified delays! */
|
||
else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
|
||
|| (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
|
||
{
|
||
/* Handle cases where INSN1 writes to a known general coprocessor
|
||
register. There must be a one instruction delay before INSN2
|
||
if INSN2 reads that register, otherwise no delay is needed. */
|
||
mask = fpr_write_mask (insn1);
|
||
if (mask != 0)
|
||
{
|
||
if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
/* Read-after-write dependencies on the control registers
|
||
require a two-instruction gap. */
|
||
if ((pinfo1 & INSN_WRITE_COND_CODE)
|
||
&& (pinfo2 & INSN_READ_COND_CODE))
|
||
return 2;
|
||
|
||
/* We don't know exactly what INSN1 does. If INSN2 is
|
||
also a coprocessor instruction, assume there must be
|
||
a one instruction gap. */
|
||
if (pinfo2 & INSN_COP)
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Check for read-after-write dependencies on the coprocessor
|
||
control registers in cases where INSN1 does not need a general
|
||
coprocessor delay. This means that INSN1 is a floating point
|
||
comparison instruction. */
|
||
/* Itbl support may require additional care here. */
|
||
else if (!cop_interlocks
|
||
&& (pinfo1 & INSN_WRITE_COND_CODE)
|
||
&& (pinfo2 & INSN_READ_COND_CODE))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the number of nops that would be needed to work around the
|
||
VR4130 mflo/mfhi errata if instruction INSN immediately followed
|
||
the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
|
||
that are contained within the first IGNORE instructions of HIST. */
|
||
|
||
static int
|
||
nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
|
||
const struct mips_cl_insn *insn)
|
||
{
|
||
int i, j;
|
||
unsigned int mask;
|
||
|
||
/* Check if the instruction writes to HI or LO. MTHI and MTLO
|
||
are not affected by the errata. */
|
||
if (insn != 0
|
||
&& ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
|
||
|| strcmp (insn->insn_mo->name, "mtlo") == 0
|
||
|| strcmp (insn->insn_mo->name, "mthi") == 0))
|
||
return 0;
|
||
|
||
/* Search for the first MFLO or MFHI. */
|
||
for (i = 0; i < MAX_VR4130_NOPS; i++)
|
||
if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
|
||
{
|
||
/* Extract the destination register. */
|
||
mask = gpr_write_mask (&hist[i]);
|
||
|
||
/* No nops are needed if INSN reads that register. */
|
||
if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
|
||
return 0;
|
||
|
||
/* ...or if any of the intervening instructions do. */
|
||
for (j = 0; j < i; j++)
|
||
if (gpr_read_mask (&hist[j]) & mask)
|
||
return 0;
|
||
|
||
if (i >= ignore)
|
||
return MAX_VR4130_NOPS - i;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
#define BASE_REG_EQ(INSN1, INSN2) \
|
||
((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
|
||
== (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
|
||
|
||
/* Return the minimum alignment for this store instruction. */
|
||
|
||
static int
|
||
fix_24k_align_to (const struct mips_opcode *mo)
|
||
{
|
||
if (strcmp (mo->name, "sh") == 0)
|
||
return 2;
|
||
|
||
if (strcmp (mo->name, "swc1") == 0
|
||
|| strcmp (mo->name, "swc2") == 0
|
||
|| strcmp (mo->name, "sw") == 0
|
||
|| strcmp (mo->name, "sc") == 0
|
||
|| strcmp (mo->name, "s.s") == 0)
|
||
return 4;
|
||
|
||
if (strcmp (mo->name, "sdc1") == 0
|
||
|| strcmp (mo->name, "sdc2") == 0
|
||
|| strcmp (mo->name, "s.d") == 0)
|
||
return 8;
|
||
|
||
/* sb, swl, swr */
|
||
return 1;
|
||
}
|
||
|
||
struct fix_24k_store_info
|
||
{
|
||
/* Immediate offset, if any, for this store instruction. */
|
||
short off;
|
||
/* Alignment required by this store instruction. */
|
||
int align_to;
|
||
/* True for register offsets. */
|
||
int register_offset;
|
||
};
|
||
|
||
/* Comparison function used by qsort. */
|
||
|
||
static int
|
||
fix_24k_sort (const void *a, const void *b)
|
||
{
|
||
const struct fix_24k_store_info *pos1 = a;
|
||
const struct fix_24k_store_info *pos2 = b;
|
||
|
||
return (pos1->off - pos2->off);
|
||
}
|
||
|
||
/* INSN is a store instruction. Try to record the store information
|
||
in STINFO. Return false if the information isn't known. */
|
||
|
||
static bfd_boolean
|
||
fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
|
||
const struct mips_cl_insn *insn)
|
||
{
|
||
/* The instruction must have a known offset. */
|
||
if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
|
||
return FALSE;
|
||
|
||
stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
|
||
stinfo->align_to = fix_24k_align_to (insn->insn_mo);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the number of nops that would be needed to work around the 24k
|
||
"lost data on stores during refill" errata if instruction INSN
|
||
immediately followed the 2 instructions described by HIST.
|
||
Ignore hazards that are contained within the first IGNORE
|
||
instructions of HIST.
|
||
|
||
Problem: The FSB (fetch store buffer) acts as an intermediate buffer
|
||
for the data cache refills and store data. The following describes
|
||
the scenario where the store data could be lost.
|
||
|
||
* A data cache miss, due to either a load or a store, causing fill
|
||
data to be supplied by the memory subsystem
|
||
* The first three doublewords of fill data are returned and written
|
||
into the cache
|
||
* A sequence of four stores occurs in consecutive cycles around the
|
||
final doubleword of the fill:
|
||
* Store A
|
||
* Store B
|
||
* Store C
|
||
* Zero, One or more instructions
|
||
* Store D
|
||
|
||
The four stores A-D must be to different doublewords of the line that
|
||
is being filled. The fourth instruction in the sequence above permits
|
||
the fill of the final doubleword to be transferred from the FSB into
|
||
the cache. In the sequence above, the stores may be either integer
|
||
(sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
|
||
swxc1, sdxc1, suxc1) stores, as long as the four stores are to
|
||
different doublewords on the line. If the floating point unit is
|
||
running in 1:2 mode, it is not possible to create the sequence above
|
||
using only floating point store instructions.
|
||
|
||
In this case, the cache line being filled is incorrectly marked
|
||
invalid, thereby losing the data from any store to the line that
|
||
occurs between the original miss and the completion of the five
|
||
cycle sequence shown above.
|
||
|
||
The workarounds are:
|
||
|
||
* Run the data cache in write-through mode.
|
||
* Insert a non-store instruction between
|
||
Store A and Store B or Store B and Store C. */
|
||
|
||
static int
|
||
nops_for_24k (int ignore, const struct mips_cl_insn *hist,
|
||
const struct mips_cl_insn *insn)
|
||
{
|
||
struct fix_24k_store_info pos[3];
|
||
int align, i, base_offset;
|
||
|
||
if (ignore >= 2)
|
||
return 0;
|
||
|
||
/* If the previous instruction wasn't a store, there's nothing to
|
||
worry about. */
|
||
if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
|
||
return 0;
|
||
|
||
/* If the instructions after the previous one are unknown, we have
|
||
to assume the worst. */
|
||
if (!insn)
|
||
return 1;
|
||
|
||
/* Check whether we are dealing with three consecutive stores. */
|
||
if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
|
||
|| (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
|
||
return 0;
|
||
|
||
/* If we don't know the relationship between the store addresses,
|
||
assume the worst. */
|
||
if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
|
||
|| !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
|
||
return 1;
|
||
|
||
if (!fix_24k_record_store_info (&pos[0], insn)
|
||
|| !fix_24k_record_store_info (&pos[1], &hist[0])
|
||
|| !fix_24k_record_store_info (&pos[2], &hist[1]))
|
||
return 1;
|
||
|
||
qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
|
||
|
||
/* Pick a value of ALIGN and X such that all offsets are adjusted by
|
||
X bytes and such that the base register + X is known to be aligned
|
||
to align bytes. */
|
||
|
||
if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
|
||
align = 8;
|
||
else
|
||
{
|
||
align = pos[0].align_to;
|
||
base_offset = pos[0].off;
|
||
for (i = 1; i < 3; i++)
|
||
if (align < pos[i].align_to)
|
||
{
|
||
align = pos[i].align_to;
|
||
base_offset = pos[i].off;
|
||
}
|
||
for (i = 0; i < 3; i++)
|
||
pos[i].off -= base_offset;
|
||
}
|
||
|
||
pos[0].off &= ~align + 1;
|
||
pos[1].off &= ~align + 1;
|
||
pos[2].off &= ~align + 1;
|
||
|
||
/* If any two stores write to the same chunk, they also write to the
|
||
same doubleword. The offsets are still sorted at this point. */
|
||
if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
|
||
return 0;
|
||
|
||
/* A range of at least 9 bytes is needed for the stores to be in
|
||
non-overlapping doublewords. */
|
||
if (pos[2].off - pos[0].off <= 8)
|
||
return 0;
|
||
|
||
if (pos[2].off - pos[1].off >= 24
|
||
|| pos[1].off - pos[0].off >= 24
|
||
|| pos[2].off - pos[0].off >= 32)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return the number of nops that would be needed if instruction INSN
|
||
immediately followed the MAX_NOPS instructions given by HIST,
|
||
where HIST[0] is the most recent instruction. Ignore hazards
|
||
between INSN and the first IGNORE instructions in HIST.
|
||
|
||
If INSN is null, return the worse-case number of nops for any
|
||
instruction. */
|
||
|
||
static int
|
||
nops_for_insn (int ignore, const struct mips_cl_insn *hist,
|
||
const struct mips_cl_insn *insn)
|
||
{
|
||
int i, nops, tmp_nops;
|
||
|
||
nops = 0;
|
||
for (i = ignore; i < MAX_DELAY_NOPS; i++)
|
||
{
|
||
tmp_nops = insns_between (hist + i, insn) - i;
|
||
if (tmp_nops > nops)
|
||
nops = tmp_nops;
|
||
}
|
||
|
||
if (mips_fix_vr4130 && !mips_opts.micromips)
|
||
{
|
||
tmp_nops = nops_for_vr4130 (ignore, hist, insn);
|
||
if (tmp_nops > nops)
|
||
nops = tmp_nops;
|
||
}
|
||
|
||
if (mips_fix_24k && !mips_opts.micromips)
|
||
{
|
||
tmp_nops = nops_for_24k (ignore, hist, insn);
|
||
if (tmp_nops > nops)
|
||
nops = tmp_nops;
|
||
}
|
||
|
||
return nops;
|
||
}
|
||
|
||
/* The variable arguments provide NUM_INSNS extra instructions that
|
||
might be added to HIST. Return the largest number of nops that
|
||
would be needed after the extended sequence, ignoring hazards
|
||
in the first IGNORE instructions. */
|
||
|
||
static int
|
||
nops_for_sequence (int num_insns, int ignore,
|
||
const struct mips_cl_insn *hist, ...)
|
||
{
|
||
va_list args;
|
||
struct mips_cl_insn buffer[MAX_NOPS];
|
||
struct mips_cl_insn *cursor;
|
||
int nops;
|
||
|
||
va_start (args, hist);
|
||
cursor = buffer + num_insns;
|
||
memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
|
||
while (cursor > buffer)
|
||
*--cursor = *va_arg (args, const struct mips_cl_insn *);
|
||
|
||
nops = nops_for_insn (ignore, buffer, NULL);
|
||
va_end (args);
|
||
return nops;
|
||
}
|
||
|
||
/* Like nops_for_insn, but if INSN is a branch, take into account the
|
||
worst-case delay for the branch target. */
|
||
|
||
static int
|
||
nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
|
||
const struct mips_cl_insn *insn)
|
||
{
|
||
int nops, tmp_nops;
|
||
|
||
nops = nops_for_insn (ignore, hist, insn);
|
||
if (delayed_branch_p (insn))
|
||
{
|
||
tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
|
||
hist, insn, get_delay_slot_nop (insn));
|
||
if (tmp_nops > nops)
|
||
nops = tmp_nops;
|
||
}
|
||
else if (compact_branch_p (insn))
|
||
{
|
||
tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
|
||
if (tmp_nops > nops)
|
||
nops = tmp_nops;
|
||
}
|
||
return nops;
|
||
}
|
||
|
||
/* Fix NOP issue: Replace nops by "or at,at,zero". */
|
||
|
||
static void
|
||
fix_loongson2f_nop (struct mips_cl_insn * ip)
|
||
{
|
||
gas_assert (!HAVE_CODE_COMPRESSION);
|
||
if (strcmp (ip->insn_mo->name, "nop") == 0)
|
||
ip->insn_opcode = LOONGSON2F_NOP_INSN;
|
||
}
|
||
|
||
/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
|
||
jr target pc &= 'hffff_ffff_cfff_ffff. */
|
||
|
||
static void
|
||
fix_loongson2f_jump (struct mips_cl_insn * ip)
|
||
{
|
||
gas_assert (!HAVE_CODE_COMPRESSION);
|
||
if (strcmp (ip->insn_mo->name, "j") == 0
|
||
|| strcmp (ip->insn_mo->name, "jr") == 0
|
||
|| strcmp (ip->insn_mo->name, "jalr") == 0)
|
||
{
|
||
int sreg;
|
||
expressionS ep;
|
||
|
||
if (! mips_opts.at)
|
||
return;
|
||
|
||
sreg = EXTRACT_OPERAND (0, RS, *ip);
|
||
if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
|
||
return;
|
||
|
||
ep.X_op = O_constant;
|
||
ep.X_add_number = 0xcfff0000;
|
||
macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
|
||
ep.X_add_number = 0xffff;
|
||
macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
|
||
macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
|
||
}
|
||
}
|
||
|
||
static void
|
||
fix_loongson2f (struct mips_cl_insn * ip)
|
||
{
|
||
if (mips_fix_loongson2f_nop)
|
||
fix_loongson2f_nop (ip);
|
||
|
||
if (mips_fix_loongson2f_jump)
|
||
fix_loongson2f_jump (ip);
|
||
}
|
||
|
||
/* IP is a branch that has a delay slot, and we need to fill it
|
||
automatically. Return true if we can do that by swapping IP
|
||
with the previous instruction.
|
||
ADDRESS_EXPR is an operand of the instruction to be used with
|
||
RELOC_TYPE. */
|
||
|
||
static bfd_boolean
|
||
can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
|
||
bfd_reloc_code_real_type *reloc_type)
|
||
{
|
||
unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
|
||
unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
|
||
unsigned int fpr_read, prev_fpr_write;
|
||
|
||
/* -O2 and above is required for this optimization. */
|
||
if (mips_optimize < 2)
|
||
return FALSE;
|
||
|
||
/* If we have seen .set volatile or .set nomove, don't optimize. */
|
||
if (mips_opts.nomove)
|
||
return FALSE;
|
||
|
||
/* We can't swap if the previous instruction's position is fixed. */
|
||
if (history[0].fixed_p)
|
||
return FALSE;
|
||
|
||
/* If the previous previous insn was in a .set noreorder, we can't
|
||
swap. Actually, the MIPS assembler will swap in this situation.
|
||
However, gcc configured -with-gnu-as will generate code like
|
||
|
||
.set noreorder
|
||
lw $4,XXX
|
||
.set reorder
|
||
INSN
|
||
bne $4,$0,foo
|
||
|
||
in which we can not swap the bne and INSN. If gcc is not configured
|
||
-with-gnu-as, it does not output the .set pseudo-ops. */
|
||
if (history[1].noreorder_p)
|
||
return FALSE;
|
||
|
||
/* If the previous instruction had a fixup in mips16 mode, we can not swap.
|
||
This means that the previous instruction was a 4-byte one anyhow. */
|
||
if (mips_opts.mips16 && history[0].fixp[0])
|
||
return FALSE;
|
||
|
||
/* If the branch is itself the target of a branch, we can not swap.
|
||
We cheat on this; all we check for is whether there is a label on
|
||
this instruction. If there are any branches to anything other than
|
||
a label, users must use .set noreorder. */
|
||
if (seg_info (now_seg)->label_list)
|
||
return FALSE;
|
||
|
||
/* If the previous instruction is in a variant frag other than this
|
||
branch's one, we cannot do the swap. This does not apply to
|
||
MIPS16 code, which uses variant frags for different purposes. */
|
||
if (!mips_opts.mips16
|
||
&& history[0].frag
|
||
&& history[0].frag->fr_type == rs_machine_dependent)
|
||
return FALSE;
|
||
|
||
/* We do not swap with instructions that cannot architecturally
|
||
be placed in a branch delay slot, such as SYNC or ERET. We
|
||
also refrain from swapping with a trap instruction, since it
|
||
complicates trap handlers to have the trap instruction be in
|
||
a delay slot. */
|
||
prev_pinfo = history[0].insn_mo->pinfo;
|
||
if (prev_pinfo & INSN_NO_DELAY_SLOT)
|
||
return FALSE;
|
||
|
||
/* Check for conflicts between the branch and the instructions
|
||
before the candidate delay slot. */
|
||
if (nops_for_insn (0, history + 1, ip) > 0)
|
||
return FALSE;
|
||
|
||
/* Check for conflicts between the swapped sequence and the
|
||
target of the branch. */
|
||
if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
|
||
return FALSE;
|
||
|
||
/* If the branch reads a register that the previous
|
||
instruction sets, we can not swap. */
|
||
gpr_read = gpr_read_mask (ip);
|
||
prev_gpr_write = gpr_write_mask (&history[0]);
|
||
if (gpr_read & prev_gpr_write)
|
||
return FALSE;
|
||
|
||
fpr_read = fpr_read_mask (ip);
|
||
prev_fpr_write = fpr_write_mask (&history[0]);
|
||
if (fpr_read & prev_fpr_write)
|
||
return FALSE;
|
||
|
||
/* If the branch writes a register that the previous
|
||
instruction sets, we can not swap. */
|
||
gpr_write = gpr_write_mask (ip);
|
||
if (gpr_write & prev_gpr_write)
|
||
return FALSE;
|
||
|
||
/* If the branch writes a register that the previous
|
||
instruction reads, we can not swap. */
|
||
prev_gpr_read = gpr_read_mask (&history[0]);
|
||
if (gpr_write & prev_gpr_read)
|
||
return FALSE;
|
||
|
||
/* If one instruction sets a condition code and the
|
||
other one uses a condition code, we can not swap. */
|
||
pinfo = ip->insn_mo->pinfo;
|
||
if ((pinfo & INSN_READ_COND_CODE)
|
||
&& (prev_pinfo & INSN_WRITE_COND_CODE))
|
||
return FALSE;
|
||
if ((pinfo & INSN_WRITE_COND_CODE)
|
||
&& (prev_pinfo & INSN_READ_COND_CODE))
|
||
return FALSE;
|
||
|
||
/* If the previous instruction uses the PC, we can not swap. */
|
||
prev_pinfo2 = history[0].insn_mo->pinfo2;
|
||
if (prev_pinfo2 & INSN2_READ_PC)
|
||
return FALSE;
|
||
|
||
/* If the previous instruction has an incorrect size for a fixed
|
||
branch delay slot in microMIPS mode, we cannot swap. */
|
||
pinfo2 = ip->insn_mo->pinfo2;
|
||
if (mips_opts.micromips
|
||
&& (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
|
||
&& insn_length (history) != 2)
|
||
return FALSE;
|
||
if (mips_opts.micromips
|
||
&& (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
|
||
&& insn_length (history) != 4)
|
||
return FALSE;
|
||
|
||
/* On R5900 short loops need to be fixed by inserting a nop in
|
||
the branch delay slots.
|
||
A short loop can be terminated too early. */
|
||
if (mips_opts.arch == CPU_R5900
|
||
/* Check if instruction has a parameter, ignore "j $31". */
|
||
&& (address_expr != NULL)
|
||
/* Parameter must be 16 bit. */
|
||
&& (*reloc_type == BFD_RELOC_16_PCREL_S2)
|
||
/* Branch to same segment. */
|
||
&& (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
|
||
/* Branch to same code fragment. */
|
||
&& (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
|
||
/* Can only calculate branch offset if value is known. */
|
||
&& symbol_constant_p(address_expr->X_add_symbol)
|
||
/* Check if branch is really conditional. */
|
||
&& !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
|
||
|| (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
|
||
|| (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
|
||
{
|
||
int distance;
|
||
/* Check if loop is shorter than 6 instructions including
|
||
branch and delay slot. */
|
||
distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
|
||
if (distance <= 20)
|
||
{
|
||
int i;
|
||
int rv;
|
||
|
||
rv = FALSE;
|
||
/* When the loop includes branches or jumps,
|
||
it is not a short loop. */
|
||
for (i = 0; i < (distance / 4); i++)
|
||
{
|
||
if ((history[i].cleared_p)
|
||
|| delayed_branch_p(&history[i]))
|
||
{
|
||
rv = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
if (rv == FALSE)
|
||
{
|
||
/* Insert nop after branch to fix short loop. */
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Decide how we should add IP to the instruction stream.
|
||
ADDRESS_EXPR is an operand of the instruction to be used with
|
||
RELOC_TYPE. */
|
||
|
||
static enum append_method
|
||
get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
|
||
bfd_reloc_code_real_type *reloc_type)
|
||
{
|
||
/* The relaxed version of a macro sequence must be inherently
|
||
hazard-free. */
|
||
if (mips_relax.sequence == 2)
|
||
return APPEND_ADD;
|
||
|
||
/* We must not dabble with instructions in a ".set norerorder" block. */
|
||
if (mips_opts.noreorder)
|
||
return APPEND_ADD;
|
||
|
||
/* Otherwise, it's our responsibility to fill branch delay slots. */
|
||
if (delayed_branch_p (ip))
|
||
{
|
||
if (!branch_likely_p (ip)
|
||
&& can_swap_branch_p (ip, address_expr, reloc_type))
|
||
return APPEND_SWAP;
|
||
|
||
if (mips_opts.mips16
|
||
&& ISA_SUPPORTS_MIPS16E
|
||
&& gpr_read_mask (ip) != 0)
|
||
return APPEND_ADD_COMPACT;
|
||
|
||
return APPEND_ADD_WITH_NOP;
|
||
}
|
||
|
||
return APPEND_ADD;
|
||
}
|
||
|
||
/* IP is a MIPS16 instruction whose opcode we have just changed.
|
||
Point IP->insn_mo to the new opcode's definition. */
|
||
|
||
static void
|
||
find_altered_mips16_opcode (struct mips_cl_insn *ip)
|
||
{
|
||
const struct mips_opcode *mo, *end;
|
||
|
||
end = &mips16_opcodes[bfd_mips16_num_opcodes];
|
||
for (mo = ip->insn_mo; mo < end; mo++)
|
||
if ((ip->insn_opcode & mo->mask) == mo->match)
|
||
{
|
||
ip->insn_mo = mo;
|
||
return;
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* For microMIPS macros, we need to generate a local number label
|
||
as the target of branches. */
|
||
#define MICROMIPS_LABEL_CHAR '\037'
|
||
static unsigned long micromips_target_label;
|
||
static char micromips_target_name[32];
|
||
|
||
static char *
|
||
micromips_label_name (void)
|
||
{
|
||
char *p = micromips_target_name;
|
||
char symbol_name_temporary[24];
|
||
unsigned long l;
|
||
int i;
|
||
|
||
if (*p)
|
||
return p;
|
||
|
||
i = 0;
|
||
l = micromips_target_label;
|
||
#ifdef LOCAL_LABEL_PREFIX
|
||
*p++ = LOCAL_LABEL_PREFIX;
|
||
#endif
|
||
*p++ = 'L';
|
||
*p++ = MICROMIPS_LABEL_CHAR;
|
||
do
|
||
{
|
||
symbol_name_temporary[i++] = l % 10 + '0';
|
||
l /= 10;
|
||
}
|
||
while (l != 0);
|
||
while (i > 0)
|
||
*p++ = symbol_name_temporary[--i];
|
||
*p = '\0';
|
||
|
||
return micromips_target_name;
|
||
}
|
||
|
||
static void
|
||
micromips_label_expr (expressionS *label_expr)
|
||
{
|
||
label_expr->X_op = O_symbol;
|
||
label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
|
||
label_expr->X_add_number = 0;
|
||
}
|
||
|
||
static void
|
||
micromips_label_inc (void)
|
||
{
|
||
micromips_target_label++;
|
||
*micromips_target_name = '\0';
|
||
}
|
||
|
||
static void
|
||
micromips_add_label (void)
|
||
{
|
||
symbolS *s;
|
||
|
||
s = colon (micromips_label_name ());
|
||
micromips_label_inc ();
|
||
S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
|
||
}
|
||
|
||
/* If assembling microMIPS code, then return the microMIPS reloc
|
||
corresponding to the requested one if any. Otherwise return
|
||
the reloc unchanged. */
|
||
|
||
static bfd_reloc_code_real_type
|
||
micromips_map_reloc (bfd_reloc_code_real_type reloc)
|
||
{
|
||
static const bfd_reloc_code_real_type relocs[][2] =
|
||
{
|
||
/* Keep sorted incrementally by the left-hand key. */
|
||
{ BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
|
||
{ BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
|
||
{ BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
|
||
{ BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
|
||
{ BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
|
||
{ BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
|
||
{ BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
|
||
{ BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
|
||
{ BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
|
||
{ BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
|
||
{ BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
|
||
{ BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
|
||
{ BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
|
||
{ BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
|
||
{ BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
|
||
{ BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
|
||
{ BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
|
||
{ BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
|
||
{ BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
|
||
{ BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
|
||
{ BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
|
||
{ BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
|
||
{ BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
|
||
{ BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
|
||
{ BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
|
||
{ BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
|
||
{ BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
|
||
};
|
||
bfd_reloc_code_real_type r;
|
||
size_t i;
|
||
|
||
if (!mips_opts.micromips)
|
||
return reloc;
|
||
for (i = 0; i < ARRAY_SIZE (relocs); i++)
|
||
{
|
||
r = relocs[i][0];
|
||
if (r > reloc)
|
||
return reloc;
|
||
if (r == reloc)
|
||
return relocs[i][1];
|
||
}
|
||
return reloc;
|
||
}
|
||
|
||
/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
|
||
Return true on success, storing the resolved value in RESULT. */
|
||
|
||
static bfd_boolean
|
||
calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
|
||
offsetT *result)
|
||
{
|
||
switch (reloc)
|
||
{
|
||
case BFD_RELOC_MIPS_HIGHEST:
|
||
case BFD_RELOC_MICROMIPS_HIGHEST:
|
||
*result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
|
||
return TRUE;
|
||
|
||
case BFD_RELOC_MIPS_HIGHER:
|
||
case BFD_RELOC_MICROMIPS_HIGHER:
|
||
*result = ((operand + 0x80008000ull) >> 32) & 0xffff;
|
||
return TRUE;
|
||
|
||
case BFD_RELOC_HI16_S:
|
||
case BFD_RELOC_MICROMIPS_HI16_S:
|
||
case BFD_RELOC_MIPS16_HI16_S:
|
||
*result = ((operand + 0x8000) >> 16) & 0xffff;
|
||
return TRUE;
|
||
|
||
case BFD_RELOC_HI16:
|
||
case BFD_RELOC_MICROMIPS_HI16:
|
||
case BFD_RELOC_MIPS16_HI16:
|
||
*result = (operand >> 16) & 0xffff;
|
||
return TRUE;
|
||
|
||
case BFD_RELOC_LO16:
|
||
case BFD_RELOC_MICROMIPS_LO16:
|
||
case BFD_RELOC_MIPS16_LO16:
|
||
*result = operand & 0xffff;
|
||
return TRUE;
|
||
|
||
case BFD_RELOC_UNUSED:
|
||
*result = operand;
|
||
return TRUE;
|
||
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Output an instruction. IP is the instruction information.
|
||
ADDRESS_EXPR is an operand of the instruction to be used with
|
||
RELOC_TYPE. EXPANSIONP is true if the instruction is part of
|
||
a macro expansion. */
|
||
|
||
static void
|
||
append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
|
||
bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
|
||
{
|
||
unsigned long prev_pinfo2, pinfo;
|
||
bfd_boolean relaxed_branch = FALSE;
|
||
enum append_method method;
|
||
bfd_boolean relax32;
|
||
int branch_disp;
|
||
|
||
if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
|
||
fix_loongson2f (ip);
|
||
|
||
file_ase_mips16 |= mips_opts.mips16;
|
||
file_ase_micromips |= mips_opts.micromips;
|
||
|
||
prev_pinfo2 = history[0].insn_mo->pinfo2;
|
||
pinfo = ip->insn_mo->pinfo;
|
||
|
||
if (mips_opts.micromips
|
||
&& !expansionp
|
||
&& (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
|
||
&& micromips_insn_length (ip->insn_mo) != 2)
|
||
|| ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
|
||
&& micromips_insn_length (ip->insn_mo) != 4)))
|
||
as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
|
||
(prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
|
||
|
||
if (address_expr == NULL)
|
||
ip->complete_p = 1;
|
||
else if (reloc_type[0] <= BFD_RELOC_UNUSED
|
||
&& reloc_type[1] == BFD_RELOC_UNUSED
|
||
&& reloc_type[2] == BFD_RELOC_UNUSED
|
||
&& address_expr->X_op == O_constant)
|
||
{
|
||
switch (*reloc_type)
|
||
{
|
||
case BFD_RELOC_MIPS_JMP:
|
||
{
|
||
int shift;
|
||
|
||
shift = mips_opts.micromips ? 1 : 2;
|
||
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
|
||
as_bad (_("jump to misaligned address (0x%lx)"),
|
||
(unsigned long) address_expr->X_add_number);
|
||
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
|
||
& 0x3ffffff);
|
||
ip->complete_p = 1;
|
||
}
|
||
break;
|
||
|
||
case BFD_RELOC_MIPS16_JMP:
|
||
if ((address_expr->X_add_number & 3) != 0)
|
||
as_bad (_("jump to misaligned address (0x%lx)"),
|
||
(unsigned long) address_expr->X_add_number);
|
||
ip->insn_opcode |=
|
||
(((address_expr->X_add_number & 0x7c0000) << 3)
|
||
| ((address_expr->X_add_number & 0xf800000) >> 7)
|
||
| ((address_expr->X_add_number & 0x3fffc) >> 2));
|
||
ip->complete_p = 1;
|
||
break;
|
||
|
||
case BFD_RELOC_16_PCREL_S2:
|
||
{
|
||
int shift;
|
||
|
||
shift = mips_opts.micromips ? 1 : 2;
|
||
if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
|
||
as_bad (_("branch to misaligned address (0x%lx)"),
|
||
(unsigned long) address_expr->X_add_number);
|
||
if (!mips_relax_branch)
|
||
{
|
||
if ((address_expr->X_add_number + (1 << (shift + 15)))
|
||
& ~((1 << (shift + 16)) - 1))
|
||
as_bad (_("branch address range overflow (0x%lx)"),
|
||
(unsigned long) address_expr->X_add_number);
|
||
ip->insn_opcode |= ((address_expr->X_add_number >> shift)
|
||
& 0xffff);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
{
|
||
offsetT value;
|
||
|
||
if (calculate_reloc (*reloc_type, address_expr->X_add_number,
|
||
&value))
|
||
{
|
||
ip->insn_opcode |= value & 0xffff;
|
||
ip->complete_p = 1;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (mips_relax.sequence != 2 && !mips_opts.noreorder)
|
||
{
|
||
/* There are a lot of optimizations we could do that we don't.
|
||
In particular, we do not, in general, reorder instructions.
|
||
If you use gcc with optimization, it will reorder
|
||
instructions and generally do much more optimization then we
|
||
do here; repeating all that work in the assembler would only
|
||
benefit hand written assembly code, and does not seem worth
|
||
it. */
|
||
int nops = (mips_optimize == 0
|
||
? nops_for_insn (0, history, NULL)
|
||
: nops_for_insn_or_target (0, history, ip));
|
||
if (nops > 0)
|
||
{
|
||
fragS *old_frag;
|
||
unsigned long old_frag_offset;
|
||
int i;
|
||
|
||
old_frag = frag_now;
|
||
old_frag_offset = frag_now_fix ();
|
||
|
||
for (i = 0; i < nops; i++)
|
||
add_fixed_insn (NOP_INSN);
|
||
insert_into_history (0, nops, NOP_INSN);
|
||
|
||
if (listing)
|
||
{
|
||
listing_prev_line ();
|
||
/* We may be at the start of a variant frag. In case we
|
||
are, make sure there is enough space for the frag
|
||
after the frags created by listing_prev_line. The
|
||
argument to frag_grow here must be at least as large
|
||
as the argument to all other calls to frag_grow in
|
||
this file. We don't have to worry about being in the
|
||
middle of a variant frag, because the variants insert
|
||
all needed nop instructions themselves. */
|
||
frag_grow (40);
|
||
}
|
||
|
||
mips_move_text_labels ();
|
||
|
||
#ifndef NO_ECOFF_DEBUGGING
|
||
if (ECOFF_DEBUGGING)
|
||
ecoff_fix_loc (old_frag, old_frag_offset);
|
||
#endif
|
||
}
|
||
}
|
||
else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
|
||
{
|
||
int nops;
|
||
|
||
/* Work out how many nops in prev_nop_frag are needed by IP,
|
||
ignoring hazards generated by the first prev_nop_frag_since
|
||
instructions. */
|
||
nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
|
||
gas_assert (nops <= prev_nop_frag_holds);
|
||
|
||
/* Enforce NOPS as a minimum. */
|
||
if (nops > prev_nop_frag_required)
|
||
prev_nop_frag_required = nops;
|
||
|
||
if (prev_nop_frag_holds == prev_nop_frag_required)
|
||
{
|
||
/* Settle for the current number of nops. Update the history
|
||
accordingly (for the benefit of any future .set reorder code). */
|
||
prev_nop_frag = NULL;
|
||
insert_into_history (prev_nop_frag_since,
|
||
prev_nop_frag_holds, NOP_INSN);
|
||
}
|
||
else
|
||
{
|
||
/* Allow this instruction to replace one of the nops that was
|
||
tentatively added to prev_nop_frag. */
|
||
prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
|
||
prev_nop_frag_holds--;
|
||
prev_nop_frag_since++;
|
||
}
|
||
}
|
||
|
||
method = get_append_method (ip, address_expr, reloc_type);
|
||
branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
|
||
|
||
dwarf2_emit_insn (0);
|
||
/* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
|
||
so "move" the instruction address accordingly.
|
||
|
||
Also, it doesn't seem appropriate for the assembler to reorder .loc
|
||
entries. If this instruction is a branch that we are going to swap
|
||
with the previous instruction, the two instructions should be
|
||
treated as a unit, and the debug information for both instructions
|
||
should refer to the start of the branch sequence. Using the
|
||
current position is certainly wrong when swapping a 32-bit branch
|
||
and a 16-bit delay slot, since the current position would then be
|
||
in the middle of a branch. */
|
||
dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
|
||
|
||
relax32 = (mips_relax_branch
|
||
/* Don't try branch relaxation within .set nomacro, or within
|
||
.set noat if we use $at for PIC computations. If it turns
|
||
out that the branch was out-of-range, we'll get an error. */
|
||
&& !mips_opts.warn_about_macros
|
||
&& (mips_opts.at || mips_pic == NO_PIC)
|
||
/* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
|
||
as they have no complementing branches. */
|
||
&& !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
|
||
|
||
if (!HAVE_CODE_COMPRESSION
|
||
&& address_expr
|
||
&& relax32
|
||
&& *reloc_type == BFD_RELOC_16_PCREL_S2
|
||
&& delayed_branch_p (ip))
|
||
{
|
||
relaxed_branch = TRUE;
|
||
add_relaxed_insn (ip, (relaxed_branch_length
|
||
(NULL, NULL,
|
||
uncond_branch_p (ip) ? -1
|
||
: branch_likely_p (ip) ? 1
|
||
: 0)), 4,
|
||
RELAX_BRANCH_ENCODE
|
||
(AT,
|
||
uncond_branch_p (ip),
|
||
branch_likely_p (ip),
|
||
pinfo & INSN_WRITE_GPR_31,
|
||
0),
|
||
address_expr->X_add_symbol,
|
||
address_expr->X_add_number);
|
||
*reloc_type = BFD_RELOC_UNUSED;
|
||
}
|
||
else if (mips_opts.micromips
|
||
&& address_expr
|
||
&& ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
|
||
|| *reloc_type > BFD_RELOC_UNUSED)
|
||
&& (delayed_branch_p (ip) || compact_branch_p (ip))
|
||
/* Don't try branch relaxation when users specify
|
||
16-bit/32-bit instructions. */
|
||
&& !forced_insn_length)
|
||
{
|
||
bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
|
||
int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
|
||
int uncond = uncond_branch_p (ip) ? -1 : 0;
|
||
int compact = compact_branch_p (ip);
|
||
int al = pinfo & INSN_WRITE_GPR_31;
|
||
int length32;
|
||
|
||
gas_assert (address_expr != NULL);
|
||
gas_assert (!mips_relax.sequence);
|
||
|
||
relaxed_branch = TRUE;
|
||
length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
|
||
add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
|
||
RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
|
||
relax32, 0, 0),
|
||
address_expr->X_add_symbol,
|
||
address_expr->X_add_number);
|
||
*reloc_type = BFD_RELOC_UNUSED;
|
||
}
|
||
else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
|
||
{
|
||
/* We need to set up a variant frag. */
|
||
gas_assert (address_expr != NULL);
|
||
add_relaxed_insn (ip, 4, 0,
|
||
RELAX_MIPS16_ENCODE
|
||
(*reloc_type - BFD_RELOC_UNUSED,
|
||
forced_insn_length == 2, forced_insn_length == 4,
|
||
delayed_branch_p (&history[0]),
|
||
history[0].mips16_absolute_jump_p),
|
||
make_expr_symbol (address_expr), 0);
|
||
}
|
||
else if (mips_opts.mips16 && insn_length (ip) == 2)
|
||
{
|
||
if (!delayed_branch_p (ip))
|
||
/* Make sure there is enough room to swap this instruction with
|
||
a following jump instruction. */
|
||
frag_grow (6);
|
||
add_fixed_insn (ip);
|
||
}
|
||
else
|
||
{
|
||
if (mips_opts.mips16
|
||
&& mips_opts.noreorder
|
||
&& delayed_branch_p (&history[0]))
|
||
as_warn (_("extended instruction in delay slot"));
|
||
|
||
if (mips_relax.sequence)
|
||
{
|
||
/* If we've reached the end of this frag, turn it into a variant
|
||
frag and record the information for the instructions we've
|
||
written so far. */
|
||
if (frag_room () < 4)
|
||
relax_close_frag ();
|
||
mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
|
||
}
|
||
|
||
if (mips_relax.sequence != 2)
|
||
{
|
||
if (mips_macro_warning.first_insn_sizes[0] == 0)
|
||
mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
|
||
mips_macro_warning.sizes[0] += insn_length (ip);
|
||
mips_macro_warning.insns[0]++;
|
||
}
|
||
if (mips_relax.sequence != 1)
|
||
{
|
||
if (mips_macro_warning.first_insn_sizes[1] == 0)
|
||
mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
|
||
mips_macro_warning.sizes[1] += insn_length (ip);
|
||
mips_macro_warning.insns[1]++;
|
||
}
|
||
|
||
if (mips_opts.mips16)
|
||
{
|
||
ip->fixed_p = 1;
|
||
ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
|
||
}
|
||
add_fixed_insn (ip);
|
||
}
|
||
|
||
if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
|
||
{
|
||
bfd_reloc_code_real_type final_type[3];
|
||
reloc_howto_type *howto0;
|
||
reloc_howto_type *howto;
|
||
int i;
|
||
|
||
/* Perform any necessary conversion to microMIPS relocations
|
||
and find out how many relocations there actually are. */
|
||
for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
|
||
final_type[i] = micromips_map_reloc (reloc_type[i]);
|
||
|
||
/* In a compound relocation, it is the final (outermost)
|
||
operator that determines the relocated field. */
|
||
howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
|
||
if (!howto)
|
||
abort ();
|
||
|
||
if (i > 1)
|
||
howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
|
||
ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
|
||
bfd_get_reloc_size (howto),
|
||
address_expr,
|
||
howto0 && howto0->pc_relative,
|
||
final_type[0]);
|
||
|
||
/* Tag symbols that have a R_MIPS16_26 relocation against them. */
|
||
if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
|
||
*symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
|
||
|
||
/* These relocations can have an addend that won't fit in
|
||
4 octets for 64bit assembly. */
|
||
if (HAVE_64BIT_GPRS
|
||
&& ! howto->partial_inplace
|
||
&& (reloc_type[0] == BFD_RELOC_16
|
||
|| reloc_type[0] == BFD_RELOC_32
|
||
|| reloc_type[0] == BFD_RELOC_MIPS_JMP
|
||
|| reloc_type[0] == BFD_RELOC_GPREL16
|
||
|| reloc_type[0] == BFD_RELOC_MIPS_LITERAL
|
||
|| reloc_type[0] == BFD_RELOC_GPREL32
|
||
|| reloc_type[0] == BFD_RELOC_64
|
||
|| reloc_type[0] == BFD_RELOC_CTOR
|
||
|| reloc_type[0] == BFD_RELOC_MIPS_SUB
|
||
|| reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
|
||
|| reloc_type[0] == BFD_RELOC_MIPS_HIGHER
|
||
|| reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
|
||
|| reloc_type[0] == BFD_RELOC_MIPS_REL16
|
||
|| reloc_type[0] == BFD_RELOC_MIPS_RELGOT
|
||
|| reloc_type[0] == BFD_RELOC_MIPS16_GPREL
|
||
|| hi16_reloc_p (reloc_type[0])
|
||
|| lo16_reloc_p (reloc_type[0])))
|
||
ip->fixp[0]->fx_no_overflow = 1;
|
||
|
||
/* These relocations can have an addend that won't fit in 2 octets. */
|
||
if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
|
||
|| reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
|
||
ip->fixp[0]->fx_no_overflow = 1;
|
||
|
||
if (mips_relax.sequence)
|
||
{
|
||
if (mips_relax.first_fixup == 0)
|
||
mips_relax.first_fixup = ip->fixp[0];
|
||
}
|
||
else if (reloc_needs_lo_p (*reloc_type))
|
||
{
|
||
struct mips_hi_fixup *hi_fixup;
|
||
|
||
/* Reuse the last entry if it already has a matching %lo. */
|
||
hi_fixup = mips_hi_fixup_list;
|
||
if (hi_fixup == 0
|
||
|| !fixup_has_matching_lo_p (hi_fixup->fixp))
|
||
{
|
||
hi_fixup = ((struct mips_hi_fixup *)
|
||
xmalloc (sizeof (struct mips_hi_fixup)));
|
||
hi_fixup->next = mips_hi_fixup_list;
|
||
mips_hi_fixup_list = hi_fixup;
|
||
}
|
||
hi_fixup->fixp = ip->fixp[0];
|
||
hi_fixup->seg = now_seg;
|
||
}
|
||
|
||
/* Add fixups for the second and third relocations, if given.
|
||
Note that the ABI allows the second relocation to be
|
||
against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
|
||
moment we only use RSS_UNDEF, but we could add support
|
||
for the others if it ever becomes necessary. */
|
||
for (i = 1; i < 3; i++)
|
||
if (reloc_type[i] != BFD_RELOC_UNUSED)
|
||
{
|
||
ip->fixp[i] = fix_new (ip->frag, ip->where,
|
||
ip->fixp[0]->fx_size, NULL, 0,
|
||
FALSE, final_type[i]);
|
||
|
||
/* Use fx_tcbit to mark compound relocs. */
|
||
ip->fixp[0]->fx_tcbit = 1;
|
||
ip->fixp[i]->fx_tcbit = 1;
|
||
}
|
||
}
|
||
install_insn (ip);
|
||
|
||
/* Update the register mask information. */
|
||
mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
|
||
mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
|
||
|
||
switch (method)
|
||
{
|
||
case APPEND_ADD:
|
||
insert_into_history (0, 1, ip);
|
||
break;
|
||
|
||
case APPEND_ADD_WITH_NOP:
|
||
{
|
||
struct mips_cl_insn *nop;
|
||
|
||
insert_into_history (0, 1, ip);
|
||
nop = get_delay_slot_nop (ip);
|
||
add_fixed_insn (nop);
|
||
insert_into_history (0, 1, nop);
|
||
if (mips_relax.sequence)
|
||
mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
|
||
}
|
||
break;
|
||
|
||
case APPEND_ADD_COMPACT:
|
||
/* Convert MIPS16 jr/jalr into a "compact" jump. */
|
||
gas_assert (mips_opts.mips16);
|
||
ip->insn_opcode |= 0x0080;
|
||
find_altered_mips16_opcode (ip);
|
||
install_insn (ip);
|
||
insert_into_history (0, 1, ip);
|
||
break;
|
||
|
||
case APPEND_SWAP:
|
||
{
|
||
struct mips_cl_insn delay = history[0];
|
||
if (mips_opts.mips16)
|
||
{
|
||
know (delay.frag == ip->frag);
|
||
move_insn (ip, delay.frag, delay.where);
|
||
move_insn (&delay, ip->frag, ip->where + insn_length (ip));
|
||
}
|
||
else if (relaxed_branch || delay.frag != ip->frag)
|
||
{
|
||
/* Add the delay slot instruction to the end of the
|
||
current frag and shrink the fixed part of the
|
||
original frag. If the branch occupies the tail of
|
||
the latter, move it backwards to cover the gap. */
|
||
delay.frag->fr_fix -= branch_disp;
|
||
if (delay.frag == ip->frag)
|
||
move_insn (ip, ip->frag, ip->where - branch_disp);
|
||
add_fixed_insn (&delay);
|
||
}
|
||
else
|
||
{
|
||
move_insn (&delay, ip->frag,
|
||
ip->where - branch_disp + insn_length (ip));
|
||
move_insn (ip, history[0].frag, history[0].where);
|
||
}
|
||
history[0] = *ip;
|
||
delay.fixed_p = 1;
|
||
insert_into_history (0, 1, &delay);
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* If we have just completed an unconditional branch, clear the history. */
|
||
if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
|
||
|| (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
|
||
{
|
||
unsigned int i;
|
||
|
||
mips_no_prev_insn ();
|
||
|
||
for (i = 0; i < ARRAY_SIZE (history); i++)
|
||
history[i].cleared_p = 1;
|
||
}
|
||
|
||
/* We need to emit a label at the end of branch-likely macros. */
|
||
if (emit_branch_likely_macro)
|
||
{
|
||
emit_branch_likely_macro = FALSE;
|
||
micromips_add_label ();
|
||
}
|
||
|
||
/* We just output an insn, so the next one doesn't have a label. */
|
||
mips_clear_insn_labels ();
|
||
}
|
||
|
||
/* Forget that there was any previous instruction or label.
|
||
When BRANCH is true, the branch history is also flushed. */
|
||
|
||
static void
|
||
mips_no_prev_insn (void)
|
||
{
|
||
prev_nop_frag = NULL;
|
||
insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
|
||
mips_clear_insn_labels ();
|
||
}
|
||
|
||
/* This function must be called before we emit something other than
|
||
instructions. It is like mips_no_prev_insn except that it inserts
|
||
any NOPS that might be needed by previous instructions. */
|
||
|
||
void
|
||
mips_emit_delays (void)
|
||
{
|
||
if (! mips_opts.noreorder)
|
||
{
|
||
int nops = nops_for_insn (0, history, NULL);
|
||
if (nops > 0)
|
||
{
|
||
while (nops-- > 0)
|
||
add_fixed_insn (NOP_INSN);
|
||
mips_move_text_labels ();
|
||
}
|
||
}
|
||
mips_no_prev_insn ();
|
||
}
|
||
|
||
/* Start a (possibly nested) noreorder block. */
|
||
|
||
static void
|
||
start_noreorder (void)
|
||
{
|
||
if (mips_opts.noreorder == 0)
|
||
{
|
||
unsigned int i;
|
||
int nops;
|
||
|
||
/* None of the instructions before the .set noreorder can be moved. */
|
||
for (i = 0; i < ARRAY_SIZE (history); i++)
|
||
history[i].fixed_p = 1;
|
||
|
||
/* Insert any nops that might be needed between the .set noreorder
|
||
block and the previous instructions. We will later remove any
|
||
nops that turn out not to be needed. */
|
||
nops = nops_for_insn (0, history, NULL);
|
||
if (nops > 0)
|
||
{
|
||
if (mips_optimize != 0)
|
||
{
|
||
/* Record the frag which holds the nop instructions, so
|
||
that we can remove them if we don't need them. */
|
||
frag_grow (nops * NOP_INSN_SIZE);
|
||
prev_nop_frag = frag_now;
|
||
prev_nop_frag_holds = nops;
|
||
prev_nop_frag_required = 0;
|
||
prev_nop_frag_since = 0;
|
||
}
|
||
|
||
for (; nops > 0; --nops)
|
||
add_fixed_insn (NOP_INSN);
|
||
|
||
/* Move on to a new frag, so that it is safe to simply
|
||
decrease the size of prev_nop_frag. */
|
||
frag_wane (frag_now);
|
||
frag_new (0);
|
||
mips_move_text_labels ();
|
||
}
|
||
mips_mark_labels ();
|
||
mips_clear_insn_labels ();
|
||
}
|
||
mips_opts.noreorder++;
|
||
mips_any_noreorder = 1;
|
||
}
|
||
|
||
/* End a nested noreorder block. */
|
||
|
||
static void
|
||
end_noreorder (void)
|
||
{
|
||
mips_opts.noreorder--;
|
||
if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
|
||
{
|
||
/* Commit to inserting prev_nop_frag_required nops and go back to
|
||
handling nop insertion the .set reorder way. */
|
||
prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
|
||
* NOP_INSN_SIZE);
|
||
insert_into_history (prev_nop_frag_since,
|
||
prev_nop_frag_required, NOP_INSN);
|
||
prev_nop_frag = NULL;
|
||
}
|
||
}
|
||
|
||
/* Sign-extend 32-bit mode constants that have bit 31 set and all
|
||
higher bits unset. */
|
||
|
||
static void
|
||
normalize_constant_expr (expressionS *ex)
|
||
{
|
||
if (ex->X_op == O_constant
|
||
&& IS_ZEXT_32BIT_NUM (ex->X_add_number))
|
||
ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
|
||
- 0x80000000);
|
||
}
|
||
|
||
/* Sign-extend 32-bit mode address offsets that have bit 31 set and
|
||
all higher bits unset. */
|
||
|
||
static void
|
||
normalize_address_expr (expressionS *ex)
|
||
{
|
||
if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
|
||
|| (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
|
||
&& IS_ZEXT_32BIT_NUM (ex->X_add_number))
|
||
ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
|
||
- 0x80000000);
|
||
}
|
||
|
||
/* Try to match TOKENS against OPCODE, storing the result in INSN.
|
||
Return true if the match was successful.
|
||
|
||
OPCODE_EXTRA is a value that should be ORed into the opcode
|
||
(used for VU0 channel suffixes, etc.). MORE_ALTS is true if
|
||
there are more alternatives after OPCODE and SOFT_MATCH is
|
||
as for mips_arg_info. */
|
||
|
||
static bfd_boolean
|
||
match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
|
||
struct mips_operand_token *tokens, unsigned int opcode_extra,
|
||
bfd_boolean lax_match, bfd_boolean complete_p)
|
||
{
|
||
const char *args;
|
||
struct mips_arg_info arg;
|
||
const struct mips_operand *operand;
|
||
char c;
|
||
|
||
imm_expr.X_op = O_absent;
|
||
offset_expr.X_op = O_absent;
|
||
offset_reloc[0] = BFD_RELOC_UNUSED;
|
||
offset_reloc[1] = BFD_RELOC_UNUSED;
|
||
offset_reloc[2] = BFD_RELOC_UNUSED;
|
||
|
||
create_insn (insn, opcode);
|
||
/* When no opcode suffix is specified, assume ".xyzw". */
|
||
if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
|
||
insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
|
||
else
|
||
insn->insn_opcode |= opcode_extra;
|
||
memset (&arg, 0, sizeof (arg));
|
||
arg.insn = insn;
|
||
arg.token = tokens;
|
||
arg.argnum = 1;
|
||
arg.last_regno = ILLEGAL_REG;
|
||
arg.dest_regno = ILLEGAL_REG;
|
||
arg.lax_match = lax_match;
|
||
for (args = opcode->args;; ++args)
|
||
{
|
||
if (arg.token->type == OT_END)
|
||
{
|
||
/* Handle unary instructions in which only one operand is given.
|
||
The source is then the same as the destination. */
|
||
if (arg.opnum == 1 && *args == ',')
|
||
{
|
||
operand = (mips_opts.micromips
|
||
? decode_micromips_operand (args + 1)
|
||
: decode_mips_operand (args + 1));
|
||
if (operand && mips_optional_operand_p (operand))
|
||
{
|
||
arg.token = tokens;
|
||
arg.argnum = 1;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Treat elided base registers as $0. */
|
||
if (strcmp (args, "(b)") == 0)
|
||
args += 3;
|
||
|
||
if (args[0] == '+')
|
||
switch (args[1])
|
||
{
|
||
case 'K':
|
||
case 'N':
|
||
/* The register suffix is optional. */
|
||
args += 2;
|
||
break;
|
||
}
|
||
|
||
/* Fail the match if there were too few operands. */
|
||
if (*args)
|
||
return FALSE;
|
||
|
||
/* Successful match. */
|
||
if (!complete_p)
|
||
return TRUE;
|
||
clear_insn_error ();
|
||
if (arg.dest_regno == arg.last_regno
|
||
&& strncmp (insn->insn_mo->name, "jalr", 4) == 0)
|
||
{
|
||
if (arg.opnum == 2)
|
||
set_insn_error
|
||
(0, _("source and destination must be different"));
|
||
else if (arg.last_regno == 31)
|
||
set_insn_error
|
||
(0, _("a destination register must be supplied"));
|
||
}
|
||
else if (arg.last_regno == 31
|
||
&& (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
|
||
|| strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
|
||
set_insn_error (0, _("the source register must not be $31"));
|
||
check_completed_insn (&arg);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Fail the match if the line has too many operands. */
|
||
if (*args == 0)
|
||
return FALSE;
|
||
|
||
/* Handle characters that need to match exactly. */
|
||
if (*args == '(' || *args == ')' || *args == ',')
|
||
{
|
||
if (match_char (&arg, *args))
|
||
continue;
|
||
return FALSE;
|
||
}
|
||
if (*args == '#')
|
||
{
|
||
++args;
|
||
if (arg.token->type == OT_DOUBLE_CHAR
|
||
&& arg.token->u.ch == *args)
|
||
{
|
||
++arg.token;
|
||
continue;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
/* Handle special macro operands. Work out the properties of
|
||
other operands. */
|
||
arg.opnum += 1;
|
||
switch (*args)
|
||
{
|
||
case '+':
|
||
switch (args[1])
|
||
{
|
||
case 'i':
|
||
*offset_reloc = BFD_RELOC_MIPS_JMP;
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case 'I':
|
||
if (!match_const_int (&arg, &imm_expr.X_add_number))
|
||
return FALSE;
|
||
imm_expr.X_op = O_constant;
|
||
if (HAVE_32BIT_GPRS)
|
||
normalize_constant_expr (&imm_expr);
|
||
continue;
|
||
|
||
case 'A':
|
||
if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
|
||
{
|
||
/* Assume that the offset has been elided and that what
|
||
we saw was a base register. The match will fail later
|
||
if that assumption turns out to be wrong. */
|
||
offset_expr.X_op = O_constant;
|
||
offset_expr.X_add_number = 0;
|
||
}
|
||
else
|
||
{
|
||
if (!match_expression (&arg, &offset_expr, offset_reloc))
|
||
return FALSE;
|
||
normalize_address_expr (&offset_expr);
|
||
}
|
||
continue;
|
||
|
||
case 'F':
|
||
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
|
||
8, TRUE))
|
||
return FALSE;
|
||
continue;
|
||
|
||
case 'L':
|
||
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
|
||
8, FALSE))
|
||
return FALSE;
|
||
continue;
|
||
|
||
case 'f':
|
||
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
|
||
4, TRUE))
|
||
return FALSE;
|
||
continue;
|
||
|
||
case 'l':
|
||
if (!match_float_constant (&arg, &imm_expr, &offset_expr,
|
||
4, FALSE))
|
||
return FALSE;
|
||
continue;
|
||
|
||
case 'p':
|
||
*offset_reloc = BFD_RELOC_16_PCREL_S2;
|
||
break;
|
||
|
||
case 'a':
|
||
*offset_reloc = BFD_RELOC_MIPS_JMP;
|
||
break;
|
||
|
||
case 'm':
|
||
gas_assert (mips_opts.micromips);
|
||
c = args[1];
|
||
switch (c)
|
||
{
|
||
case 'D':
|
||
case 'E':
|
||
if (!forced_insn_length)
|
||
*offset_reloc = (int) BFD_RELOC_UNUSED + c;
|
||
else if (c == 'D')
|
||
*offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
|
||
else
|
||
*offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
|
||
operand = (mips_opts.micromips
|
||
? decode_micromips_operand (args)
|
||
: decode_mips_operand (args));
|
||
if (!operand)
|
||
abort ();
|
||
|
||
/* Skip prefixes. */
|
||
if (*args == '+' || *args == 'm')
|
||
args++;
|
||
|
||
if (mips_optional_operand_p (operand)
|
||
&& args[1] == ','
|
||
&& (arg.token[0].type != OT_REG
|
||
|| arg.token[1].type == OT_END))
|
||
{
|
||
/* Assume that the register has been elided and is the
|
||
same as the first operand. */
|
||
arg.token = tokens;
|
||
arg.argnum = 1;
|
||
}
|
||
|
||
if (!match_operand (&arg, operand))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Like match_insn, but for MIPS16. */
|
||
|
||
static bfd_boolean
|
||
match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
|
||
struct mips_operand_token *tokens)
|
||
{
|
||
const char *args;
|
||
const struct mips_operand *operand;
|
||
const struct mips_operand *ext_operand;
|
||
struct mips_arg_info arg;
|
||
int relax_char;
|
||
|
||
create_insn (insn, opcode);
|
||
imm_expr.X_op = O_absent;
|
||
offset_expr.X_op = O_absent;
|
||
offset_reloc[0] = BFD_RELOC_UNUSED;
|
||
offset_reloc[1] = BFD_RELOC_UNUSED;
|
||
offset_reloc[2] = BFD_RELOC_UNUSED;
|
||
relax_char = 0;
|
||
|
||
memset (&arg, 0, sizeof (arg));
|
||
arg.insn = insn;
|
||
arg.token = tokens;
|
||
arg.argnum = 1;
|
||
arg.last_regno = ILLEGAL_REG;
|
||
arg.dest_regno = ILLEGAL_REG;
|
||
relax_char = 0;
|
||
for (args = opcode->args;; ++args)
|
||
{
|
||
int c;
|
||
|
||
if (arg.token->type == OT_END)
|
||
{
|
||
offsetT value;
|
||
|
||
/* Handle unary instructions in which only one operand is given.
|
||
The source is then the same as the destination. */
|
||
if (arg.opnum == 1 && *args == ',')
|
||
{
|
||
operand = decode_mips16_operand (args[1], FALSE);
|
||
if (operand && mips_optional_operand_p (operand))
|
||
{
|
||
arg.token = tokens;
|
||
arg.argnum = 1;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Fail the match if there were too few operands. */
|
||
if (*args)
|
||
return FALSE;
|
||
|
||
/* Successful match. Stuff the immediate value in now, if
|
||
we can. */
|
||
clear_insn_error ();
|
||
if (opcode->pinfo == INSN_MACRO)
|
||
{
|
||
gas_assert (relax_char == 0 || relax_char == 'p');
|
||
gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
|
||
}
|
||
else if (relax_char
|
||
&& offset_expr.X_op == O_constant
|
||
&& calculate_reloc (*offset_reloc,
|
||
offset_expr.X_add_number,
|
||
&value))
|
||
{
|
||
mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
|
||
forced_insn_length, &insn->insn_opcode);
|
||
offset_expr.X_op = O_absent;
|
||
*offset_reloc = BFD_RELOC_UNUSED;
|
||
}
|
||
else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
|
||
{
|
||
if (forced_insn_length == 2)
|
||
set_insn_error (0, _("invalid unextended operand value"));
|
||
forced_insn_length = 4;
|
||
insn->insn_opcode |= MIPS16_EXTEND;
|
||
}
|
||
else if (relax_char)
|
||
*offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
|
||
|
||
check_completed_insn (&arg);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Fail the match if the line has too many operands. */
|
||
if (*args == 0)
|
||
return FALSE;
|
||
|
||
/* Handle characters that need to match exactly. */
|
||
if (*args == '(' || *args == ')' || *args == ',')
|
||
{
|
||
if (match_char (&arg, *args))
|
||
continue;
|
||
return FALSE;
|
||
}
|
||
|
||
arg.opnum += 1;
|
||
c = *args;
|
||
switch (c)
|
||
{
|
||
case 'p':
|
||
case 'q':
|
||
case 'A':
|
||
case 'B':
|
||
case 'E':
|
||
relax_char = c;
|
||
break;
|
||
|
||
case 'I':
|
||
if (!match_const_int (&arg, &imm_expr.X_add_number))
|
||
return FALSE;
|
||
imm_expr.X_op = O_constant;
|
||
if (HAVE_32BIT_GPRS)
|
||
normalize_constant_expr (&imm_expr);
|
||
continue;
|
||
|
||
case 'a':
|
||
case 'i':
|
||
*offset_reloc = BFD_RELOC_MIPS16_JMP;
|
||
insn->insn_opcode <<= 16;
|
||
break;
|
||
}
|
||
|
||
operand = decode_mips16_operand (c, FALSE);
|
||
if (!operand)
|
||
abort ();
|
||
|
||
/* '6' is a special case. It is used for BREAK and SDBBP,
|
||
whose operands are only meaningful to the software that decodes
|
||
them. This means that there is no architectural reason why
|
||
they cannot be prefixed by EXTEND, but in practice,
|
||
exception handlers will only look at the instruction
|
||
itself. We therefore allow '6' to be extended when
|
||
disassembling but not when assembling. */
|
||
if (operand->type != OP_PCREL && c != '6')
|
||
{
|
||
ext_operand = decode_mips16_operand (c, TRUE);
|
||
if (operand != ext_operand)
|
||
{
|
||
if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
|
||
{
|
||
offset_expr.X_op = O_constant;
|
||
offset_expr.X_add_number = 0;
|
||
relax_char = c;
|
||
continue;
|
||
}
|
||
|
||
/* We need the OT_INTEGER check because some MIPS16
|
||
immediate variants are listed before the register ones. */
|
||
if (arg.token->type != OT_INTEGER
|
||
|| !match_expression (&arg, &offset_expr, offset_reloc))
|
||
return FALSE;
|
||
|
||
/* '8' is used for SLTI(U) and has traditionally not
|
||
been allowed to take relocation operators. */
|
||
if (offset_reloc[0] != BFD_RELOC_UNUSED
|
||
&& (ext_operand->size != 16 || c == '8'))
|
||
return FALSE;
|
||
|
||
relax_char = c;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (mips_optional_operand_p (operand)
|
||
&& args[1] == ','
|
||
&& (arg.token[0].type != OT_REG
|
||
|| arg.token[1].type == OT_END))
|
||
{
|
||
/* Assume that the register has been elided and is the
|
||
same as the first operand. */
|
||
arg.token = tokens;
|
||
arg.argnum = 1;
|
||
}
|
||
|
||
if (!match_operand (&arg, operand))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Record that the current instruction is invalid for the current ISA. */
|
||
|
||
static void
|
||
match_invalid_for_isa (void)
|
||
{
|
||
set_insn_error_ss
|
||
(0, _("opcode not supported on this processor: %s (%s)"),
|
||
mips_cpu_info_from_arch (mips_opts.arch)->name,
|
||
mips_cpu_info_from_isa (mips_opts.isa)->name);
|
||
}
|
||
|
||
/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
|
||
Return true if a definite match or failure was found, storing any match
|
||
in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
|
||
(to handle things like VU0 suffixes). LAX_MATCH is true if we have already
|
||
tried and failed to match under normal conditions and now want to try a
|
||
more relaxed match. */
|
||
|
||
static bfd_boolean
|
||
match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
|
||
const struct mips_opcode *past, struct mips_operand_token *tokens,
|
||
int opcode_extra, bfd_boolean lax_match)
|
||
{
|
||
const struct mips_opcode *opcode;
|
||
const struct mips_opcode *invalid_delay_slot;
|
||
bfd_boolean seen_valid_for_isa, seen_valid_for_size;
|
||
|
||
/* Search for a match, ignoring alternatives that don't satisfy the
|
||
current ISA or forced_length. */
|
||
invalid_delay_slot = 0;
|
||
seen_valid_for_isa = FALSE;
|
||
seen_valid_for_size = FALSE;
|
||
opcode = first;
|
||
do
|
||
{
|
||
gas_assert (strcmp (opcode->name, first->name) == 0);
|
||
if (is_opcode_valid (opcode))
|
||
{
|
||
seen_valid_for_isa = TRUE;
|
||
if (is_size_valid (opcode))
|
||
{
|
||
bfd_boolean delay_slot_ok;
|
||
|
||
seen_valid_for_size = TRUE;
|
||
delay_slot_ok = is_delay_slot_valid (opcode);
|
||
if (match_insn (insn, opcode, tokens, opcode_extra,
|
||
lax_match, delay_slot_ok))
|
||
{
|
||
if (!delay_slot_ok)
|
||
{
|
||
if (!invalid_delay_slot)
|
||
invalid_delay_slot = opcode;
|
||
}
|
||
else
|
||
return TRUE;
|
||
}
|
||
}
|
||
}
|
||
++opcode;
|
||
}
|
||
while (opcode < past && strcmp (opcode->name, first->name) == 0);
|
||
|
||
/* If the only matches we found had the wrong length for the delay slot,
|
||
pick the first such match. We'll issue an appropriate warning later. */
|
||
if (invalid_delay_slot)
|
||
{
|
||
if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
|
||
lax_match, TRUE))
|
||
return TRUE;
|
||
abort ();
|
||
}
|
||
|
||
/* Handle the case where we didn't try to match an instruction because
|
||
all the alternatives were incompatible with the current ISA. */
|
||
if (!seen_valid_for_isa)
|
||
{
|
||
match_invalid_for_isa ();
|
||
return TRUE;
|
||
}
|
||
|
||
/* Handle the case where we didn't try to match an instruction because
|
||
all the alternatives were of the wrong size. */
|
||
if (!seen_valid_for_size)
|
||
{
|
||
if (mips_opts.insn32)
|
||
set_insn_error (0, _("opcode not supported in the `insn32' mode"));
|
||
else
|
||
set_insn_error_i
|
||
(0, _("unrecognized %d-bit version of microMIPS opcode"),
|
||
8 * forced_insn_length);
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Like match_insns, but for MIPS16. */
|
||
|
||
static bfd_boolean
|
||
match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
|
||
struct mips_operand_token *tokens)
|
||
{
|
||
const struct mips_opcode *opcode;
|
||
bfd_boolean seen_valid_for_isa;
|
||
|
||
/* Search for a match, ignoring alternatives that don't satisfy the
|
||
current ISA. There are no separate entries for extended forms so
|
||
we deal with forced_length later. */
|
||
seen_valid_for_isa = FALSE;
|
||
opcode = first;
|
||
do
|
||
{
|
||
gas_assert (strcmp (opcode->name, first->name) == 0);
|
||
if (is_opcode_valid_16 (opcode))
|
||
{
|
||
seen_valid_for_isa = TRUE;
|
||
if (match_mips16_insn (insn, opcode, tokens))
|
||
return TRUE;
|
||
}
|
||
++opcode;
|
||
}
|
||
while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
|
||
&& strcmp (opcode->name, first->name) == 0);
|
||
|
||
/* Handle the case where we didn't try to match an instruction because
|
||
all the alternatives were incompatible with the current ISA. */
|
||
if (!seen_valid_for_isa)
|
||
{
|
||
match_invalid_for_isa ();
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Set up global variables for the start of a new macro. */
|
||
|
||
static void
|
||
macro_start (void)
|
||
{
|
||
memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
|
||
memset (&mips_macro_warning.first_insn_sizes, 0,
|
||
sizeof (mips_macro_warning.first_insn_sizes));
|
||
memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
|
||
mips_macro_warning.delay_slot_p = (mips_opts.noreorder
|
||
&& delayed_branch_p (&history[0]));
|
||
switch (history[0].insn_mo->pinfo2
|
||
& (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
|
||
{
|
||
case INSN2_BRANCH_DELAY_32BIT:
|
||
mips_macro_warning.delay_slot_length = 4;
|
||
break;
|
||
case INSN2_BRANCH_DELAY_16BIT:
|
||
mips_macro_warning.delay_slot_length = 2;
|
||
break;
|
||
default:
|
||
mips_macro_warning.delay_slot_length = 0;
|
||
break;
|
||
}
|
||
mips_macro_warning.first_frag = NULL;
|
||
}
|
||
|
||
/* Given that a macro is longer than one instruction or of the wrong size,
|
||
return the appropriate warning for it. Return null if no warning is
|
||
needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
|
||
RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
|
||
and RELAX_NOMACRO. */
|
||
|
||
static const char *
|
||
macro_warning (relax_substateT subtype)
|
||
{
|
||
if (subtype & RELAX_DELAY_SLOT)
|
||
return _("macro instruction expanded into multiple instructions"
|
||
" in a branch delay slot");
|
||
else if (subtype & RELAX_NOMACRO)
|
||
return _("macro instruction expanded into multiple instructions");
|
||
else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
|
||
| RELAX_DELAY_SLOT_SIZE_SECOND))
|
||
return ((subtype & RELAX_DELAY_SLOT_16BIT)
|
||
? _("macro instruction expanded into a wrong size instruction"
|
||
" in a 16-bit branch delay slot")
|
||
: _("macro instruction expanded into a wrong size instruction"
|
||
" in a 32-bit branch delay slot"));
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Finish up a macro. Emit warnings as appropriate. */
|
||
|
||
static void
|
||
macro_end (void)
|
||
{
|
||
/* Relaxation warning flags. */
|
||
relax_substateT subtype = 0;
|
||
|
||
/* Check delay slot size requirements. */
|
||
if (mips_macro_warning.delay_slot_length == 2)
|
||
subtype |= RELAX_DELAY_SLOT_16BIT;
|
||
if (mips_macro_warning.delay_slot_length != 0)
|
||
{
|
||
if (mips_macro_warning.delay_slot_length
|
||
!= mips_macro_warning.first_insn_sizes[0])
|
||
subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
|
||
if (mips_macro_warning.delay_slot_length
|
||
!= mips_macro_warning.first_insn_sizes[1])
|
||
subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
|
||
}
|
||
|
||
/* Check instruction count requirements. */
|
||
if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
|
||
{
|
||
if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
|
||
subtype |= RELAX_SECOND_LONGER;
|
||
if (mips_opts.warn_about_macros)
|
||
subtype |= RELAX_NOMACRO;
|
||
if (mips_macro_warning.delay_slot_p)
|
||
subtype |= RELAX_DELAY_SLOT;
|
||
}
|
||
|
||
/* If both alternatives fail to fill a delay slot correctly,
|
||
emit the warning now. */
|
||
if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
|
||
&& (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
|
||
{
|
||
relax_substateT s;
|
||
const char *msg;
|
||
|
||
s = subtype & (RELAX_DELAY_SLOT_16BIT
|
||
| RELAX_DELAY_SLOT_SIZE_FIRST
|
||
| RELAX_DELAY_SLOT_SIZE_SECOND);
|
||
msg = macro_warning (s);
|
||
if (msg != NULL)
|
||
as_warn ("%s", msg);
|
||
subtype &= ~s;
|
||
}
|
||
|
||
/* If both implementations are longer than 1 instruction, then emit the
|
||
warning now. */
|
||
if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
|
||
{
|
||
relax_substateT s;
|
||
const char *msg;
|
||
|
||
s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
|
||
msg = macro_warning (s);
|
||
if (msg != NULL)
|
||
as_warn ("%s", msg);
|
||
subtype &= ~s;
|
||
}
|
||
|
||
/* If any flags still set, then one implementation might need a warning
|
||
and the other either will need one of a different kind or none at all.
|
||
Pass any remaining flags over to relaxation. */
|
||
if (mips_macro_warning.first_frag != NULL)
|
||
mips_macro_warning.first_frag->fr_subtype |= subtype;
|
||
}
|
||
|
||
/* Instruction operand formats used in macros that vary between
|
||
standard MIPS and microMIPS code. */
|
||
|
||
static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
|
||
static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
|
||
static const char * const jalr_fmt[2] = { "d,s", "t,s" };
|
||
static const char * const lui_fmt[2] = { "t,u", "s,u" };
|
||
static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
|
||
static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
|
||
static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
|
||
static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
|
||
|
||
#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
|
||
#define COP12_FMT (cop12_fmt[mips_opts.micromips])
|
||
#define JALR_FMT (jalr_fmt[mips_opts.micromips])
|
||
#define LUI_FMT (lui_fmt[mips_opts.micromips])
|
||
#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
|
||
#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
|
||
#define SHFT_FMT (shft_fmt[mips_opts.micromips])
|
||
#define TRAP_FMT (trap_fmt[mips_opts.micromips])
|
||
|
||
/* Read a macro's relocation codes from *ARGS and store them in *R.
|
||
The first argument in *ARGS will be either the code for a single
|
||
relocation or -1 followed by the three codes that make up a
|
||
composite relocation. */
|
||
|
||
static void
|
||
macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
|
||
{
|
||
int i, next;
|
||
|
||
next = va_arg (*args, int);
|
||
if (next >= 0)
|
||
r[0] = (bfd_reloc_code_real_type) next;
|
||
else
|
||
{
|
||
for (i = 0; i < 3; i++)
|
||
r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
|
||
/* This function is only used for 16-bit relocation fields.
|
||
To make the macro code simpler, treat an unrelocated value
|
||
in the same way as BFD_RELOC_LO16. */
|
||
if (r[0] == BFD_RELOC_UNUSED)
|
||
r[0] = BFD_RELOC_LO16;
|
||
}
|
||
}
|
||
|
||
/* Build an instruction created by a macro expansion. This is passed
|
||
a pointer to the count of instructions created so far, an
|
||
expression, the name of the instruction to build, an operand format
|
||
string, and corresponding arguments. */
|
||
|
||
static void
|
||
macro_build (expressionS *ep, const char *name, const char *fmt, ...)
|
||
{
|
||
const struct mips_opcode *mo = NULL;
|
||
bfd_reloc_code_real_type r[3];
|
||
const struct mips_opcode *amo;
|
||
const struct mips_operand *operand;
|
||
struct hash_control *hash;
|
||
struct mips_cl_insn insn;
|
||
va_list args;
|
||
unsigned int uval;
|
||
|
||
va_start (args, fmt);
|
||
|
||
if (mips_opts.mips16)
|
||
{
|
||
mips16_macro_build (ep, name, fmt, &args);
|
||
va_end (args);
|
||
return;
|
||
}
|
||
|
||
r[0] = BFD_RELOC_UNUSED;
|
||
r[1] = BFD_RELOC_UNUSED;
|
||
r[2] = BFD_RELOC_UNUSED;
|
||
hash = mips_opts.micromips ? micromips_op_hash : op_hash;
|
||
amo = (struct mips_opcode *) hash_find (hash, name);
|
||
gas_assert (amo);
|
||
gas_assert (strcmp (name, amo->name) == 0);
|
||
|
||
do
|
||
{
|
||
/* Search until we get a match for NAME. It is assumed here that
|
||
macros will never generate MDMX, MIPS-3D, or MT instructions.
|
||
We try to match an instruction that fulfils the branch delay
|
||
slot instruction length requirement (if any) of the previous
|
||
instruction. While doing this we record the first instruction
|
||
seen that matches all the other conditions and use it anyway
|
||
if the requirement cannot be met; we will issue an appropriate
|
||
warning later on. */
|
||
if (strcmp (fmt, amo->args) == 0
|
||
&& amo->pinfo != INSN_MACRO
|
||
&& is_opcode_valid (amo)
|
||
&& is_size_valid (amo))
|
||
{
|
||
if (is_delay_slot_valid (amo))
|
||
{
|
||
mo = amo;
|
||
break;
|
||
}
|
||
else if (!mo)
|
||
mo = amo;
|
||
}
|
||
|
||
++amo;
|
||
gas_assert (amo->name);
|
||
}
|
||
while (strcmp (name, amo->name) == 0);
|
||
|
||
gas_assert (mo);
|
||
create_insn (&insn, mo);
|
||
for (; *fmt; ++fmt)
|
||
{
|
||
switch (*fmt)
|
||
{
|
||
case ',':
|
||
case '(':
|
||
case ')':
|
||
case 'z':
|
||
break;
|
||
|
||
case 'i':
|
||
case 'j':
|
||
macro_read_relocs (&args, r);
|
||
gas_assert (*r == BFD_RELOC_GPREL16
|
||
|| *r == BFD_RELOC_MIPS_HIGHER
|
||
|| *r == BFD_RELOC_HI16_S
|
||
|| *r == BFD_RELOC_LO16
|
||
|| *r == BFD_RELOC_MIPS_GOT_OFST);
|
||
break;
|
||
|
||
case 'o':
|
||
macro_read_relocs (&args, r);
|
||
break;
|
||
|
||
case 'u':
|
||
macro_read_relocs (&args, r);
|
||
gas_assert (ep != NULL
|
||
&& (ep->X_op == O_constant
|
||
|| (ep->X_op == O_symbol
|
||
&& (*r == BFD_RELOC_MIPS_HIGHEST
|
||
|| *r == BFD_RELOC_HI16_S
|
||
|| *r == BFD_RELOC_HI16
|
||
|| *r == BFD_RELOC_GPREL16
|
||
|| *r == BFD_RELOC_MIPS_GOT_HI16
|
||
|| *r == BFD_RELOC_MIPS_CALL_HI16))));
|
||
break;
|
||
|
||
case 'p':
|
||
gas_assert (ep != NULL);
|
||
|
||
/*
|
||
* This allows macro() to pass an immediate expression for
|
||
* creating short branches without creating a symbol.
|
||
*
|
||
* We don't allow branch relaxation for these branches, as
|
||
* they should only appear in ".set nomacro" anyway.
|
||
*/
|
||
if (ep->X_op == O_constant)
|
||
{
|
||
/* For microMIPS we always use relocations for branches.
|
||
So we should not resolve immediate values. */
|
||
gas_assert (!mips_opts.micromips);
|
||
|
||
if ((ep->X_add_number & 3) != 0)
|
||
as_bad (_("branch to misaligned address (0x%lx)"),
|
||
(unsigned long) ep->X_add_number);
|
||
if ((ep->X_add_number + 0x20000) & ~0x3ffff)
|
||
as_bad (_("branch address range overflow (0x%lx)"),
|
||
(unsigned long) ep->X_add_number);
|
||
insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
|
||
ep = NULL;
|
||
}
|
||
else
|
||
*r = BFD_RELOC_16_PCREL_S2;
|
||
break;
|
||
|
||
case 'a':
|
||
gas_assert (ep != NULL);
|
||
*r = BFD_RELOC_MIPS_JMP;
|
||
break;
|
||
|
||
default:
|
||
operand = (mips_opts.micromips
|
||
? decode_micromips_operand (fmt)
|
||
: decode_mips_operand (fmt));
|
||
if (!operand)
|
||
abort ();
|
||
|
||
uval = va_arg (args, int);
|
||
if (operand->type == OP_CLO_CLZ_DEST)
|
||
uval |= (uval << 5);
|
||
insn_insert_operand (&insn, operand, uval);
|
||
|
||
if (*fmt == '+' || *fmt == 'm')
|
||
++fmt;
|
||
break;
|
||
}
|
||
}
|
||
va_end (args);
|
||
gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
|
||
|
||
append_insn (&insn, ep, r, TRUE);
|
||
}
|
||
|
||
static void
|
||
mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
|
||
va_list *args)
|
||
{
|
||
struct mips_opcode *mo;
|
||
struct mips_cl_insn insn;
|
||
const struct mips_operand *operand;
|
||
bfd_reloc_code_real_type r[3]
|
||
= {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
|
||
|
||
mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
|
||
gas_assert (mo);
|
||
gas_assert (strcmp (name, mo->name) == 0);
|
||
|
||
while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
|
||
{
|
||
++mo;
|
||
gas_assert (mo->name);
|
||
gas_assert (strcmp (name, mo->name) == 0);
|
||
}
|
||
|
||
create_insn (&insn, mo);
|
||
for (; *fmt; ++fmt)
|
||
{
|
||
int c;
|
||
|
||
c = *fmt;
|
||
switch (c)
|
||
{
|
||
case ',':
|
||
case '(':
|
||
case ')':
|
||
break;
|
||
|
||
case '0':
|
||
case 'S':
|
||
case 'P':
|
||
case 'R':
|
||
break;
|
||
|
||
case '<':
|
||
case '>':
|
||
case '4':
|
||
case '5':
|
||
case 'H':
|
||
case 'W':
|
||
case 'D':
|
||
case 'j':
|
||
case '8':
|
||
case 'V':
|
||
case 'C':
|
||
case 'U':
|
||
case 'k':
|
||
case 'K':
|
||
case 'p':
|
||
case 'q':
|
||
{
|
||
offsetT value;
|
||
|
||
gas_assert (ep != NULL);
|
||
|
||
if (ep->X_op != O_constant)
|
||
*r = (int) BFD_RELOC_UNUSED + c;
|
||
else if (calculate_reloc (*r, ep->X_add_number, &value))
|
||
{
|
||
mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
|
||
ep = NULL;
|
||
*r = BFD_RELOC_UNUSED;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
operand = decode_mips16_operand (c, FALSE);
|
||
if (!operand)
|
||
abort ();
|
||
|
||
insn_insert_operand (&insn, operand, va_arg (*args, int));
|
||
break;
|
||
}
|
||
}
|
||
|
||
gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
|
||
|
||
append_insn (&insn, ep, r, TRUE);
|
||
}
|
||
|
||
/*
|
||
* Generate a "jalr" instruction with a relocation hint to the called
|
||
* function. This occurs in NewABI PIC code.
|
||
*/
|
||
static void
|
||
macro_build_jalr (expressionS *ep, int cprestore)
|
||
{
|
||
static const bfd_reloc_code_real_type jalr_relocs[2]
|
||
= { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
|
||
bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
|
||
const char *jalr;
|
||
char *f = NULL;
|
||
|
||
if (MIPS_JALR_HINT_P (ep))
|
||
{
|
||
frag_grow (8);
|
||
f = frag_more (0);
|
||
}
|
||
if (mips_opts.micromips)
|
||
{
|
||
jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
|
||
? "jalr" : "jalrs");
|
||
if (MIPS_JALR_HINT_P (ep)
|
||
|| mips_opts.insn32
|
||
|| (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
|
||
macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
|
||
else
|
||
macro_build (NULL, jalr, "mj", PIC_CALL_REG);
|
||
}
|
||
else
|
||
macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
|
||
if (MIPS_JALR_HINT_P (ep))
|
||
fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
|
||
}
|
||
|
||
/*
|
||
* Generate a "lui" instruction.
|
||
*/
|
||
static void
|
||
macro_build_lui (expressionS *ep, int regnum)
|
||
{
|
||
gas_assert (! mips_opts.mips16);
|
||
|
||
if (ep->X_op != O_constant)
|
||
{
|
||
gas_assert (ep->X_op == O_symbol);
|
||
/* _gp_disp is a special case, used from s_cpload.
|
||
__gnu_local_gp is used if mips_no_shared. */
|
||
gas_assert (mips_pic == NO_PIC
|
||
|| (! HAVE_NEWABI
|
||
&& strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
|
||
|| (! mips_in_shared
|
||
&& strcmp (S_GET_NAME (ep->X_add_symbol),
|
||
"__gnu_local_gp") == 0));
|
||
}
|
||
|
||
macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
|
||
}
|
||
|
||
/* Generate a sequence of instructions to do a load or store from a constant
|
||
offset off of a base register (breg) into/from a target register (treg),
|
||
using AT if necessary. */
|
||
static void
|
||
macro_build_ldst_constoffset (expressionS *ep, const char *op,
|
||
int treg, int breg, int dbl)
|
||
{
|
||
gas_assert (ep->X_op == O_constant);
|
||
|
||
/* Sign-extending 32-bit constants makes their handling easier. */
|
||
if (!dbl)
|
||
normalize_constant_expr (ep);
|
||
|
||
/* Right now, this routine can only handle signed 32-bit constants. */
|
||
if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
|
||
as_warn (_("operand overflow"));
|
||
|
||
if (IS_SEXT_16BIT_NUM(ep->X_add_number))
|
||
{
|
||
/* Signed 16-bit offset will fit in the op. Easy! */
|
||
macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
|
||
}
|
||
else
|
||
{
|
||
/* 32-bit offset, need multiple instructions and AT, like:
|
||
lui $tempreg,const_hi (BFD_RELOC_HI16_S)
|
||
addu $tempreg,$tempreg,$breg
|
||
<op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
|
||
to handle the complete offset. */
|
||
macro_build_lui (ep, AT);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
|
||
macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
|
||
|
||
if (!mips_opts.at)
|
||
as_bad (_("macro used $at after \".set noat\""));
|
||
}
|
||
}
|
||
|
||
/* set_at()
|
||
* Generates code to set the $at register to true (one)
|
||
* if reg is less than the immediate expression.
|
||
*/
|
||
static void
|
||
set_at (int reg, int unsignedp)
|
||
{
|
||
if (imm_expr.X_add_number >= -0x8000
|
||
&& imm_expr.X_add_number < 0x8000)
|
||
macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
|
||
AT, reg, BFD_RELOC_LO16);
|
||
else
|
||
{
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
|
||
}
|
||
}
|
||
|
||
/* Count the leading zeroes by performing a binary chop. This is a
|
||
bulky bit of source, but performance is a LOT better for the
|
||
majority of values than a simple loop to count the bits:
|
||
for (lcnt = 0; (lcnt < 32); lcnt++)
|
||
if ((v) & (1 << (31 - lcnt)))
|
||
break;
|
||
However it is not code size friendly, and the gain will drop a bit
|
||
on certain cached systems.
|
||
*/
|
||
#define COUNT_TOP_ZEROES(v) \
|
||
(((v) & ~0xffff) == 0 \
|
||
? ((v) & ~0xff) == 0 \
|
||
? ((v) & ~0xf) == 0 \
|
||
? ((v) & ~0x3) == 0 \
|
||
? ((v) & ~0x1) == 0 \
|
||
? !(v) \
|
||
? 32 \
|
||
: 31 \
|
||
: 30 \
|
||
: ((v) & ~0x7) == 0 \
|
||
? 29 \
|
||
: 28 \
|
||
: ((v) & ~0x3f) == 0 \
|
||
? ((v) & ~0x1f) == 0 \
|
||
? 27 \
|
||
: 26 \
|
||
: ((v) & ~0x7f) == 0 \
|
||
? 25 \
|
||
: 24 \
|
||
: ((v) & ~0xfff) == 0 \
|
||
? ((v) & ~0x3ff) == 0 \
|
||
? ((v) & ~0x1ff) == 0 \
|
||
? 23 \
|
||
: 22 \
|
||
: ((v) & ~0x7ff) == 0 \
|
||
? 21 \
|
||
: 20 \
|
||
: ((v) & ~0x3fff) == 0 \
|
||
? ((v) & ~0x1fff) == 0 \
|
||
? 19 \
|
||
: 18 \
|
||
: ((v) & ~0x7fff) == 0 \
|
||
? 17 \
|
||
: 16 \
|
||
: ((v) & ~0xffffff) == 0 \
|
||
? ((v) & ~0xfffff) == 0 \
|
||
? ((v) & ~0x3ffff) == 0 \
|
||
? ((v) & ~0x1ffff) == 0 \
|
||
? 15 \
|
||
: 14 \
|
||
: ((v) & ~0x7ffff) == 0 \
|
||
? 13 \
|
||
: 12 \
|
||
: ((v) & ~0x3fffff) == 0 \
|
||
? ((v) & ~0x1fffff) == 0 \
|
||
? 11 \
|
||
: 10 \
|
||
: ((v) & ~0x7fffff) == 0 \
|
||
? 9 \
|
||
: 8 \
|
||
: ((v) & ~0xfffffff) == 0 \
|
||
? ((v) & ~0x3ffffff) == 0 \
|
||
? ((v) & ~0x1ffffff) == 0 \
|
||
? 7 \
|
||
: 6 \
|
||
: ((v) & ~0x7ffffff) == 0 \
|
||
? 5 \
|
||
: 4 \
|
||
: ((v) & ~0x3fffffff) == 0 \
|
||
? ((v) & ~0x1fffffff) == 0 \
|
||
? 3 \
|
||
: 2 \
|
||
: ((v) & ~0x7fffffff) == 0 \
|
||
? 1 \
|
||
: 0)
|
||
|
||
/* load_register()
|
||
* This routine generates the least number of instructions necessary to load
|
||
* an absolute expression value into a register.
|
||
*/
|
||
static void
|
||
load_register (int reg, expressionS *ep, int dbl)
|
||
{
|
||
int freg;
|
||
expressionS hi32, lo32;
|
||
|
||
if (ep->X_op != O_big)
|
||
{
|
||
gas_assert (ep->X_op == O_constant);
|
||
|
||
/* Sign-extending 32-bit constants makes their handling easier. */
|
||
if (!dbl)
|
||
normalize_constant_expr (ep);
|
||
|
||
if (IS_SEXT_16BIT_NUM (ep->X_add_number))
|
||
{
|
||
/* We can handle 16 bit signed values with an addiu to
|
||
$zero. No need to ever use daddiu here, since $zero and
|
||
the result are always correct in 32 bit mode. */
|
||
macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
|
||
return;
|
||
}
|
||
else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
|
||
{
|
||
/* We can handle 16 bit unsigned values with an ori to
|
||
$zero. */
|
||
macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
|
||
return;
|
||
}
|
||
else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
|
||
{
|
||
/* 32 bit values require an lui. */
|
||
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
|
||
if ((ep->X_add_number & 0xffff) != 0)
|
||
macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* The value is larger than 32 bits. */
|
||
|
||
if (!dbl || HAVE_32BIT_GPRS)
|
||
{
|
||
char value[32];
|
||
|
||
sprintf_vma (value, ep->X_add_number);
|
||
as_bad (_("number (0x%s) larger than 32 bits"), value);
|
||
macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
|
||
return;
|
||
}
|
||
|
||
if (ep->X_op != O_big)
|
||
{
|
||
hi32 = *ep;
|
||
hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
|
||
hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
|
||
hi32.X_add_number &= 0xffffffff;
|
||
lo32 = *ep;
|
||
lo32.X_add_number &= 0xffffffff;
|
||
}
|
||
else
|
||
{
|
||
gas_assert (ep->X_add_number > 2);
|
||
if (ep->X_add_number == 3)
|
||
generic_bignum[3] = 0;
|
||
else if (ep->X_add_number > 4)
|
||
as_bad (_("number larger than 64 bits"));
|
||
lo32.X_op = O_constant;
|
||
lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
|
||
hi32.X_op = O_constant;
|
||
hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
|
||
}
|
||
|
||
if (hi32.X_add_number == 0)
|
||
freg = 0;
|
||
else
|
||
{
|
||
int shift, bit;
|
||
unsigned long hi, lo;
|
||
|
||
if (hi32.X_add_number == (offsetT) 0xffffffff)
|
||
{
|
||
if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
|
||
{
|
||
macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
|
||
return;
|
||
}
|
||
if (lo32.X_add_number & 0x80000000)
|
||
{
|
||
macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
|
||
if (lo32.X_add_number & 0xffff)
|
||
macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Check for 16bit shifted constant. We know that hi32 is
|
||
non-zero, so start the mask on the first bit of the hi32
|
||
value. */
|
||
shift = 17;
|
||
do
|
||
{
|
||
unsigned long himask, lomask;
|
||
|
||
if (shift < 32)
|
||
{
|
||
himask = 0xffff >> (32 - shift);
|
||
lomask = (0xffff << shift) & 0xffffffff;
|
||
}
|
||
else
|
||
{
|
||
himask = 0xffff << (shift - 32);
|
||
lomask = 0;
|
||
}
|
||
if ((hi32.X_add_number & ~(offsetT) himask) == 0
|
||
&& (lo32.X_add_number & ~(offsetT) lomask) == 0)
|
||
{
|
||
expressionS tmp;
|
||
|
||
tmp.X_op = O_constant;
|
||
if (shift < 32)
|
||
tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
|
||
| (lo32.X_add_number >> shift));
|
||
else
|
||
tmp.X_add_number = hi32.X_add_number >> (shift - 32);
|
||
macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
|
||
macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
|
||
reg, reg, (shift >= 32) ? shift - 32 : shift);
|
||
return;
|
||
}
|
||
++shift;
|
||
}
|
||
while (shift <= (64 - 16));
|
||
|
||
/* Find the bit number of the lowest one bit, and store the
|
||
shifted value in hi/lo. */
|
||
hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
|
||
lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
|
||
if (lo != 0)
|
||
{
|
||
bit = 0;
|
||
while ((lo & 1) == 0)
|
||
{
|
||
lo >>= 1;
|
||
++bit;
|
||
}
|
||
lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
|
||
hi >>= bit;
|
||
}
|
||
else
|
||
{
|
||
bit = 32;
|
||
while ((hi & 1) == 0)
|
||
{
|
||
hi >>= 1;
|
||
++bit;
|
||
}
|
||
lo = hi;
|
||
hi = 0;
|
||
}
|
||
|
||
/* Optimize if the shifted value is a (power of 2) - 1. */
|
||
if ((hi == 0 && ((lo + 1) & lo) == 0)
|
||
|| (lo == 0xffffffff && ((hi + 1) & hi) == 0))
|
||
{
|
||
shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
|
||
if (shift != 0)
|
||
{
|
||
expressionS tmp;
|
||
|
||
/* This instruction will set the register to be all
|
||
ones. */
|
||
tmp.X_op = O_constant;
|
||
tmp.X_add_number = (offsetT) -1;
|
||
macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
|
||
if (bit != 0)
|
||
{
|
||
bit += shift;
|
||
macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
|
||
reg, reg, (bit >= 32) ? bit - 32 : bit);
|
||
}
|
||
macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
|
||
reg, reg, (shift >= 32) ? shift - 32 : shift);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Sign extend hi32 before calling load_register, because we can
|
||
generally get better code when we load a sign extended value. */
|
||
if ((hi32.X_add_number & 0x80000000) != 0)
|
||
hi32.X_add_number |= ~(offsetT) 0xffffffff;
|
||
load_register (reg, &hi32, 0);
|
||
freg = reg;
|
||
}
|
||
if ((lo32.X_add_number & 0xffff0000) == 0)
|
||
{
|
||
if (freg != 0)
|
||
{
|
||
macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
|
||
freg = reg;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
expressionS mid16;
|
||
|
||
if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
|
||
{
|
||
macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
|
||
macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
|
||
return;
|
||
}
|
||
|
||
if (freg != 0)
|
||
{
|
||
macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
|
||
freg = reg;
|
||
}
|
||
mid16 = lo32;
|
||
mid16.X_add_number >>= 16;
|
||
macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
|
||
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
|
||
freg = reg;
|
||
}
|
||
if ((lo32.X_add_number & 0xffff) != 0)
|
||
macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
|
||
}
|
||
|
||
static inline void
|
||
load_delay_nop (void)
|
||
{
|
||
if (!gpr_interlocks)
|
||
macro_build (NULL, "nop", "");
|
||
}
|
||
|
||
/* Load an address into a register. */
|
||
|
||
static void
|
||
load_address (int reg, expressionS *ep, int *used_at)
|
||
{
|
||
if (ep->X_op != O_constant
|
||
&& ep->X_op != O_symbol)
|
||
{
|
||
as_bad (_("expression too complex"));
|
||
ep->X_op = O_constant;
|
||
}
|
||
|
||
if (ep->X_op == O_constant)
|
||
{
|
||
load_register (reg, ep, HAVE_64BIT_ADDRESSES);
|
||
return;
|
||
}
|
||
|
||
if (mips_pic == NO_PIC)
|
||
{
|
||
/* If this is a reference to a GP relative symbol, we want
|
||
addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
|
||
Otherwise we want
|
||
lui $reg,<sym> (BFD_RELOC_HI16_S)
|
||
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
|
||
If we have an addend, we always use the latter form.
|
||
|
||
With 64bit address space and a usable $at we want
|
||
lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
|
||
lui $at,<sym> (BFD_RELOC_HI16_S)
|
||
daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
|
||
daddiu $at,<sym> (BFD_RELOC_LO16)
|
||
dsll32 $reg,0
|
||
daddu $reg,$reg,$at
|
||
|
||
If $at is already in use, we use a path which is suboptimal
|
||
on superscalar processors.
|
||
lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
|
||
daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
|
||
dsll $reg,16
|
||
daddiu $reg,<sym> (BFD_RELOC_HI16_S)
|
||
dsll $reg,16
|
||
daddiu $reg,<sym> (BFD_RELOC_LO16)
|
||
|
||
For GP relative symbols in 64bit address space we can use
|
||
the same sequence as in 32bit address space. */
|
||
if (HAVE_64BIT_SYMBOLS)
|
||
{
|
||
if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
|
||
&& !nopic_need_relax (ep->X_add_symbol, 1))
|
||
{
|
||
relax_start (ep->X_add_symbol);
|
||
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
|
||
mips_gp_register, BFD_RELOC_GPREL16);
|
||
relax_switch ();
|
||
}
|
||
|
||
if (*used_at == 0 && mips_opts.at)
|
||
{
|
||
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
|
||
macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
|
||
macro_build (ep, "daddiu", "t,r,j", reg, reg,
|
||
BFD_RELOC_MIPS_HIGHER);
|
||
macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
|
||
macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
|
||
macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
|
||
*used_at = 1;
|
||
}
|
||
else
|
||
{
|
||
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
|
||
macro_build (ep, "daddiu", "t,r,j", reg, reg,
|
||
BFD_RELOC_MIPS_HIGHER);
|
||
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
|
||
macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
|
||
macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
|
||
macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
|
||
}
|
||
|
||
if (mips_relax.sequence)
|
||
relax_end ();
|
||
}
|
||
else
|
||
{
|
||
if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
|
||
&& !nopic_need_relax (ep->X_add_symbol, 1))
|
||
{
|
||
relax_start (ep->X_add_symbol);
|
||
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
|
||
mips_gp_register, BFD_RELOC_GPREL16);
|
||
relax_switch ();
|
||
}
|
||
macro_build_lui (ep, reg);
|
||
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
|
||
reg, reg, BFD_RELOC_LO16);
|
||
if (mips_relax.sequence)
|
||
relax_end ();
|
||
}
|
||
}
|
||
else if (!mips_big_got)
|
||
{
|
||
expressionS ex;
|
||
|
||
/* If this is a reference to an external symbol, we want
|
||
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
Otherwise we want
|
||
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
|
||
If there is a constant, it must be added in after.
|
||
|
||
If we have NewABI, we want
|
||
lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
|
||
unless we're referencing a global symbol with a non-zero
|
||
offset, in which case cst must be added separately. */
|
||
if (HAVE_NEWABI)
|
||
{
|
||
if (ep->X_add_number)
|
||
{
|
||
ex.X_add_number = ep->X_add_number;
|
||
ep->X_add_number = 0;
|
||
relax_start (ep->X_add_symbol);
|
||
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
|
||
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
|
||
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
|
||
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
|
||
ex.X_op = O_constant;
|
||
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
|
||
reg, reg, BFD_RELOC_LO16);
|
||
ep->X_add_number = ex.X_add_number;
|
||
relax_switch ();
|
||
}
|
||
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
|
||
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
|
||
if (mips_relax.sequence)
|
||
relax_end ();
|
||
}
|
||
else
|
||
{
|
||
ex.X_add_number = ep->X_add_number;
|
||
ep->X_add_number = 0;
|
||
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
|
||
BFD_RELOC_MIPS_GOT16, mips_gp_register);
|
||
load_delay_nop ();
|
||
relax_start (ep->X_add_symbol);
|
||
relax_switch ();
|
||
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
|
||
BFD_RELOC_LO16);
|
||
relax_end ();
|
||
|
||
if (ex.X_add_number != 0)
|
||
{
|
||
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
|
||
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
|
||
ex.X_op = O_constant;
|
||
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
|
||
reg, reg, BFD_RELOC_LO16);
|
||
}
|
||
}
|
||
}
|
||
else if (mips_big_got)
|
||
{
|
||
expressionS ex;
|
||
|
||
/* This is the large GOT case. If this is a reference to an
|
||
external symbol, we want
|
||
lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
addu $reg,$reg,$gp
|
||
lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
|
||
|
||
Otherwise, for a reference to a local symbol in old ABI, we want
|
||
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
|
||
If there is a constant, it must be added in after.
|
||
|
||
In the NewABI, for local symbols, with or without offsets, we want:
|
||
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
|
||
addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
|
||
*/
|
||
if (HAVE_NEWABI)
|
||
{
|
||
ex.X_add_number = ep->X_add_number;
|
||
ep->X_add_number = 0;
|
||
relax_start (ep->X_add_symbol);
|
||
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
reg, reg, mips_gp_register);
|
||
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
reg, BFD_RELOC_MIPS_GOT_LO16, reg);
|
||
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
|
||
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
|
||
else if (ex.X_add_number)
|
||
{
|
||
ex.X_op = O_constant;
|
||
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
|
||
BFD_RELOC_LO16);
|
||
}
|
||
|
||
ep->X_add_number = ex.X_add_number;
|
||
relax_switch ();
|
||
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
|
||
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
|
||
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
|
||
BFD_RELOC_MIPS_GOT_OFST);
|
||
relax_end ();
|
||
}
|
||
else
|
||
{
|
||
ex.X_add_number = ep->X_add_number;
|
||
ep->X_add_number = 0;
|
||
relax_start (ep->X_add_symbol);
|
||
macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
reg, reg, mips_gp_register);
|
||
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
reg, BFD_RELOC_MIPS_GOT_LO16, reg);
|
||
relax_switch ();
|
||
if (reg_needs_delay (mips_gp_register))
|
||
{
|
||
/* We need a nop before loading from $gp. This special
|
||
check is required because the lui which starts the main
|
||
instruction stream does not refer to $gp, and so will not
|
||
insert the nop which may be required. */
|
||
macro_build (NULL, "nop", "");
|
||
}
|
||
macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
|
||
BFD_RELOC_MIPS_GOT16, mips_gp_register);
|
||
load_delay_nop ();
|
||
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
|
||
BFD_RELOC_LO16);
|
||
relax_end ();
|
||
|
||
if (ex.X_add_number != 0)
|
||
{
|
||
if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
|
||
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
|
||
ex.X_op = O_constant;
|
||
macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
|
||
BFD_RELOC_LO16);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
if (!mips_opts.at && *used_at == 1)
|
||
as_bad (_("macro used $at after \".set noat\""));
|
||
}
|
||
|
||
/* Move the contents of register SOURCE into register DEST. */
|
||
|
||
static void
|
||
move_register (int dest, int source)
|
||
{
|
||
/* Prefer to use a 16-bit microMIPS instruction unless the previous
|
||
instruction specifically requires a 32-bit one. */
|
||
if (mips_opts.micromips
|
||
&& !mips_opts.insn32
|
||
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
|
||
macro_build (NULL, "move", "mp,mj", dest, source);
|
||
else
|
||
macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
|
||
dest, source, 0);
|
||
}
|
||
|
||
/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
|
||
LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
|
||
The two alternatives are:
|
||
|
||
Global symbol Local sybmol
|
||
------------- ------------
|
||
lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
|
||
... ...
|
||
addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
|
||
|
||
load_got_offset emits the first instruction and add_got_offset
|
||
emits the second for a 16-bit offset or add_got_offset_hilo emits
|
||
a sequence to add a 32-bit offset using a scratch register. */
|
||
|
||
static void
|
||
load_got_offset (int dest, expressionS *local)
|
||
{
|
||
expressionS global;
|
||
|
||
global = *local;
|
||
global.X_add_number = 0;
|
||
|
||
relax_start (local->X_add_symbol);
|
||
macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
|
||
BFD_RELOC_MIPS_GOT16, mips_gp_register);
|
||
relax_switch ();
|
||
macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
|
||
BFD_RELOC_MIPS_GOT16, mips_gp_register);
|
||
relax_end ();
|
||
}
|
||
|
||
static void
|
||
add_got_offset (int dest, expressionS *local)
|
||
{
|
||
expressionS global;
|
||
|
||
global.X_op = O_constant;
|
||
global.X_op_symbol = NULL;
|
||
global.X_add_symbol = NULL;
|
||
global.X_add_number = local->X_add_number;
|
||
|
||
relax_start (local->X_add_symbol);
|
||
macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
|
||
dest, dest, BFD_RELOC_LO16);
|
||
relax_switch ();
|
||
macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
|
||
relax_end ();
|
||
}
|
||
|
||
static void
|
||
add_got_offset_hilo (int dest, expressionS *local, int tmp)
|
||
{
|
||
expressionS global;
|
||
int hold_mips_optimize;
|
||
|
||
global.X_op = O_constant;
|
||
global.X_op_symbol = NULL;
|
||
global.X_add_symbol = NULL;
|
||
global.X_add_number = local->X_add_number;
|
||
|
||
relax_start (local->X_add_symbol);
|
||
load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
|
||
relax_switch ();
|
||
/* Set mips_optimize around the lui instruction to avoid
|
||
inserting an unnecessary nop after the lw. */
|
||
hold_mips_optimize = mips_optimize;
|
||
mips_optimize = 2;
|
||
macro_build_lui (&global, tmp);
|
||
mips_optimize = hold_mips_optimize;
|
||
macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
|
||
relax_end ();
|
||
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
|
||
}
|
||
|
||
/* Emit a sequence of instructions to emulate a branch likely operation.
|
||
BR is an ordinary branch corresponding to one to be emulated. BRNEG
|
||
is its complementing branch with the original condition negated.
|
||
CALL is set if the original branch specified the link operation.
|
||
EP, FMT, SREG and TREG specify the usual macro_build() parameters.
|
||
|
||
Code like this is produced in the noreorder mode:
|
||
|
||
BRNEG <args>, 1f
|
||
nop
|
||
b <sym>
|
||
delay slot (executed only if branch taken)
|
||
1:
|
||
|
||
or, if CALL is set:
|
||
|
||
BRNEG <args>, 1f
|
||
nop
|
||
bal <sym>
|
||
delay slot (executed only if branch taken)
|
||
1:
|
||
|
||
In the reorder mode the delay slot would be filled with a nop anyway,
|
||
so code produced is simply:
|
||
|
||
BR <args>, <sym>
|
||
nop
|
||
|
||
This function is used when producing code for the microMIPS ASE that
|
||
does not implement branch likely instructions in hardware. */
|
||
|
||
static void
|
||
macro_build_branch_likely (const char *br, const char *brneg,
|
||
int call, expressionS *ep, const char *fmt,
|
||
unsigned int sreg, unsigned int treg)
|
||
{
|
||
int noreorder = mips_opts.noreorder;
|
||
expressionS expr1;
|
||
|
||
gas_assert (mips_opts.micromips);
|
||
start_noreorder ();
|
||
if (noreorder)
|
||
{
|
||
micromips_label_expr (&expr1);
|
||
macro_build (&expr1, brneg, fmt, sreg, treg);
|
||
macro_build (NULL, "nop", "");
|
||
macro_build (ep, call ? "bal" : "b", "p");
|
||
|
||
/* Set to true so that append_insn adds a label. */
|
||
emit_branch_likely_macro = TRUE;
|
||
}
|
||
else
|
||
{
|
||
macro_build (ep, br, fmt, sreg, treg);
|
||
macro_build (NULL, "nop", "");
|
||
}
|
||
end_noreorder ();
|
||
}
|
||
|
||
/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
|
||
the condition code tested. EP specifies the branch target. */
|
||
|
||
static void
|
||
macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
|
||
{
|
||
const int call = 0;
|
||
const char *brneg;
|
||
const char *br;
|
||
|
||
switch (type)
|
||
{
|
||
case M_BC1FL:
|
||
br = "bc1f";
|
||
brneg = "bc1t";
|
||
break;
|
||
case M_BC1TL:
|
||
br = "bc1t";
|
||
brneg = "bc1f";
|
||
break;
|
||
case M_BC2FL:
|
||
br = "bc2f";
|
||
brneg = "bc2t";
|
||
break;
|
||
case M_BC2TL:
|
||
br = "bc2t";
|
||
brneg = "bc2f";
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
|
||
}
|
||
|
||
/* Emit a two-argument branch macro specified by TYPE, using SREG as
|
||
the register tested. EP specifies the branch target. */
|
||
|
||
static void
|
||
macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
|
||
{
|
||
const char *brneg = NULL;
|
||
const char *br;
|
||
int call = 0;
|
||
|
||
switch (type)
|
||
{
|
||
case M_BGEZ:
|
||
br = "bgez";
|
||
break;
|
||
case M_BGEZL:
|
||
br = mips_opts.micromips ? "bgez" : "bgezl";
|
||
brneg = "bltz";
|
||
break;
|
||
case M_BGEZALL:
|
||
gas_assert (mips_opts.micromips);
|
||
br = mips_opts.insn32 ? "bgezal" : "bgezals";
|
||
brneg = "bltz";
|
||
call = 1;
|
||
break;
|
||
case M_BGTZ:
|
||
br = "bgtz";
|
||
break;
|
||
case M_BGTZL:
|
||
br = mips_opts.micromips ? "bgtz" : "bgtzl";
|
||
brneg = "blez";
|
||
break;
|
||
case M_BLEZ:
|
||
br = "blez";
|
||
break;
|
||
case M_BLEZL:
|
||
br = mips_opts.micromips ? "blez" : "blezl";
|
||
brneg = "bgtz";
|
||
break;
|
||
case M_BLTZ:
|
||
br = "bltz";
|
||
break;
|
||
case M_BLTZL:
|
||
br = mips_opts.micromips ? "bltz" : "bltzl";
|
||
brneg = "bgez";
|
||
break;
|
||
case M_BLTZALL:
|
||
gas_assert (mips_opts.micromips);
|
||
br = mips_opts.insn32 ? "bltzal" : "bltzals";
|
||
brneg = "bgez";
|
||
call = 1;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
if (mips_opts.micromips && brneg)
|
||
macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
|
||
else
|
||
macro_build (ep, br, "s,p", sreg);
|
||
}
|
||
|
||
/* Emit a three-argument branch macro specified by TYPE, using SREG and
|
||
TREG as the registers tested. EP specifies the branch target. */
|
||
|
||
static void
|
||
macro_build_branch_rsrt (int type, expressionS *ep,
|
||
unsigned int sreg, unsigned int treg)
|
||
{
|
||
const char *brneg = NULL;
|
||
const int call = 0;
|
||
const char *br;
|
||
|
||
switch (type)
|
||
{
|
||
case M_BEQ:
|
||
case M_BEQ_I:
|
||
br = "beq";
|
||
break;
|
||
case M_BEQL:
|
||
case M_BEQL_I:
|
||
br = mips_opts.micromips ? "beq" : "beql";
|
||
brneg = "bne";
|
||
break;
|
||
case M_BNE:
|
||
case M_BNE_I:
|
||
br = "bne";
|
||
break;
|
||
case M_BNEL:
|
||
case M_BNEL_I:
|
||
br = mips_opts.micromips ? "bne" : "bnel";
|
||
brneg = "beq";
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
if (mips_opts.micromips && brneg)
|
||
macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
|
||
else
|
||
macro_build (ep, br, "s,t,p", sreg, treg);
|
||
}
|
||
|
||
/* Return the high part that should be loaded in order to make the low
|
||
part of VALUE accessible using an offset of OFFBITS bits. */
|
||
|
||
static offsetT
|
||
offset_high_part (offsetT value, unsigned int offbits)
|
||
{
|
||
offsetT bias;
|
||
addressT low_mask;
|
||
|
||
if (offbits == 0)
|
||
return value;
|
||
bias = 1 << (offbits - 1);
|
||
low_mask = bias * 2 - 1;
|
||
return (value + bias) & ~low_mask;
|
||
}
|
||
|
||
/* Return true if the value stored in offset_expr and offset_reloc
|
||
fits into a signed offset of OFFBITS bits. RANGE is the maximum
|
||
amount that the caller wants to add without inducing overflow
|
||
and ALIGN is the known alignment of the value in bytes. */
|
||
|
||
static bfd_boolean
|
||
small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
|
||
{
|
||
if (offbits == 16)
|
||
{
|
||
/* Accept any relocation operator if overflow isn't a concern. */
|
||
if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
|
||
return TRUE;
|
||
|
||
/* These relocations are guaranteed not to overflow in correct links. */
|
||
if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
|
||
|| gprel16_reloc_p (*offset_reloc))
|
||
return TRUE;
|
||
}
|
||
if (offset_expr.X_op == O_constant
|
||
&& offset_high_part (offset_expr.X_add_number, offbits) == 0
|
||
&& offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
|
||
return TRUE;
|
||
return FALSE;
|
||
}
|
||
|
||
/*
|
||
* Build macros
|
||
* This routine implements the seemingly endless macro or synthesized
|
||
* instructions and addressing modes in the mips assembly language. Many
|
||
* of these macros are simple and are similar to each other. These could
|
||
* probably be handled by some kind of table or grammar approach instead of
|
||
* this verbose method. Others are not simple macros but are more like
|
||
* optimizing code generation.
|
||
* One interesting optimization is when several store macros appear
|
||
* consecutively that would load AT with the upper half of the same address.
|
||
* The ensuing load upper instructions are ommited. This implies some kind
|
||
* of global optimization. We currently only optimize within a single macro.
|
||
* For many of the load and store macros if the address is specified as a
|
||
* constant expression in the first 64k of memory (ie ld $2,0x4000c) we
|
||
* first load register 'at' with zero and use it as the base register. The
|
||
* mips assembler simply uses register $zero. Just one tiny optimization
|
||
* we're missing.
|
||
*/
|
||
static void
|
||
macro (struct mips_cl_insn *ip, char *str)
|
||
{
|
||
const struct mips_operand_array *operands;
|
||
unsigned int breg, i;
|
||
unsigned int tempreg;
|
||
int mask;
|
||
int used_at = 0;
|
||
expressionS label_expr;
|
||
expressionS expr1;
|
||
expressionS *ep;
|
||
const char *s;
|
||
const char *s2;
|
||
const char *fmt;
|
||
int likely = 0;
|
||
int coproc = 0;
|
||
int offbits = 16;
|
||
int call = 0;
|
||
int jals = 0;
|
||
int dbl = 0;
|
||
int imm = 0;
|
||
int ust = 0;
|
||
int lp = 0;
|
||
bfd_boolean large_offset;
|
||
int off;
|
||
int hold_mips_optimize;
|
||
unsigned int align;
|
||
unsigned int op[MAX_OPERANDS];
|
||
|
||
gas_assert (! mips_opts.mips16);
|
||
|
||
operands = insn_operands (ip);
|
||
for (i = 0; i < MAX_OPERANDS; i++)
|
||
if (operands->operand[i])
|
||
op[i] = insn_extract_operand (ip, operands->operand[i]);
|
||
else
|
||
op[i] = -1;
|
||
|
||
mask = ip->insn_mo->mask;
|
||
|
||
label_expr.X_op = O_constant;
|
||
label_expr.X_op_symbol = NULL;
|
||
label_expr.X_add_symbol = NULL;
|
||
label_expr.X_add_number = 0;
|
||
|
||
expr1.X_op = O_constant;
|
||
expr1.X_op_symbol = NULL;
|
||
expr1.X_add_symbol = NULL;
|
||
expr1.X_add_number = 1;
|
||
align = 1;
|
||
|
||
switch (mask)
|
||
{
|
||
case M_DABS:
|
||
dbl = 1;
|
||
case M_ABS:
|
||
/* bgez $a0,1f
|
||
move v0,$a0
|
||
sub v0,$zero,$a0
|
||
1:
|
||
*/
|
||
|
||
start_noreorder ();
|
||
|
||
if (mips_opts.micromips)
|
||
micromips_label_expr (&label_expr);
|
||
else
|
||
label_expr.X_add_number = 8;
|
||
macro_build (&label_expr, "bgez", "s,p", op[1]);
|
||
if (op[0] == op[1])
|
||
macro_build (NULL, "nop", "");
|
||
else
|
||
move_register (op[0], op[1]);
|
||
macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
|
||
if (mips_opts.micromips)
|
||
micromips_add_label ();
|
||
|
||
end_noreorder ();
|
||
break;
|
||
|
||
case M_ADD_I:
|
||
s = "addi";
|
||
s2 = "add";
|
||
goto do_addi;
|
||
case M_ADDU_I:
|
||
s = "addiu";
|
||
s2 = "addu";
|
||
goto do_addi;
|
||
case M_DADD_I:
|
||
dbl = 1;
|
||
s = "daddi";
|
||
s2 = "dadd";
|
||
if (!mips_opts.micromips)
|
||
goto do_addi;
|
||
if (imm_expr.X_add_number >= -0x200
|
||
&& imm_expr.X_add_number < 0x200)
|
||
{
|
||
macro_build (NULL, s, "t,r,.", op[0], op[1],
|
||
(int) imm_expr.X_add_number);
|
||
break;
|
||
}
|
||
goto do_addi_i;
|
||
case M_DADDU_I:
|
||
dbl = 1;
|
||
s = "daddiu";
|
||
s2 = "daddu";
|
||
do_addi:
|
||
if (imm_expr.X_add_number >= -0x8000
|
||
&& imm_expr.X_add_number < 0x8000)
|
||
{
|
||
macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
|
||
break;
|
||
}
|
||
do_addi_i:
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, dbl);
|
||
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
|
||
break;
|
||
|
||
case M_AND_I:
|
||
s = "andi";
|
||
s2 = "and";
|
||
goto do_bit;
|
||
case M_OR_I:
|
||
s = "ori";
|
||
s2 = "or";
|
||
goto do_bit;
|
||
case M_NOR_I:
|
||
s = "";
|
||
s2 = "nor";
|
||
goto do_bit;
|
||
case M_XOR_I:
|
||
s = "xori";
|
||
s2 = "xor";
|
||
do_bit:
|
||
if (imm_expr.X_add_number >= 0
|
||
&& imm_expr.X_add_number < 0x10000)
|
||
{
|
||
if (mask != M_NOR_I)
|
||
macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
|
||
else
|
||
{
|
||
macro_build (&imm_expr, "ori", "t,r,i",
|
||
op[0], op[1], BFD_RELOC_LO16);
|
||
macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
|
||
}
|
||
break;
|
||
}
|
||
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
|
||
break;
|
||
|
||
case M_BALIGN:
|
||
switch (imm_expr.X_add_number)
|
||
{
|
||
case 0:
|
||
macro_build (NULL, "nop", "");
|
||
break;
|
||
case 2:
|
||
macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
|
||
break;
|
||
case 1:
|
||
case 3:
|
||
macro_build (NULL, "balign", "t,s,2", op[0], op[1],
|
||
(int) imm_expr.X_add_number);
|
||
break;
|
||
default:
|
||
as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
|
||
(unsigned long) imm_expr.X_add_number);
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case M_BC1FL:
|
||
case M_BC1TL:
|
||
case M_BC2FL:
|
||
case M_BC2TL:
|
||
gas_assert (mips_opts.micromips);
|
||
macro_build_branch_ccl (mask, &offset_expr,
|
||
EXTRACT_OPERAND (1, BCC, *ip));
|
||
break;
|
||
|
||
case M_BEQ_I:
|
||
case M_BEQL_I:
|
||
case M_BNE_I:
|
||
case M_BNEL_I:
|
||
if (imm_expr.X_add_number == 0)
|
||
op[1] = 0;
|
||
else
|
||
{
|
||
op[1] = AT;
|
||
used_at = 1;
|
||
load_register (op[1], &imm_expr, HAVE_64BIT_GPRS);
|
||
}
|
||
/* Fall through. */
|
||
case M_BEQL:
|
||
case M_BNEL:
|
||
macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
|
||
break;
|
||
|
||
case M_BGEL:
|
||
likely = 1;
|
||
case M_BGE:
|
||
if (op[1] == 0)
|
||
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
|
||
else if (op[0] == 0)
|
||
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
|
||
else
|
||
{
|
||
used_at = 1;
|
||
macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
|
||
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BGEZL:
|
||
case M_BGEZALL:
|
||
case M_BGTZL:
|
||
case M_BLEZL:
|
||
case M_BLTZL:
|
||
case M_BLTZALL:
|
||
macro_build_branch_rs (mask, &offset_expr, op[0]);
|
||
break;
|
||
|
||
case M_BGTL_I:
|
||
likely = 1;
|
||
case M_BGT_I:
|
||
/* Check for > max integer. */
|
||
if (imm_expr.X_add_number >= GPR_SMAX)
|
||
{
|
||
do_false:
|
||
/* Result is always false. */
|
||
if (! likely)
|
||
macro_build (NULL, "nop", "");
|
||
else
|
||
macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
|
||
break;
|
||
}
|
||
++imm_expr.X_add_number;
|
||
/* FALLTHROUGH */
|
||
case M_BGE_I:
|
||
case M_BGEL_I:
|
||
if (mask == M_BGEL_I)
|
||
likely = 1;
|
||
if (imm_expr.X_add_number == 0)
|
||
{
|
||
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
|
||
&offset_expr, op[0]);
|
||
break;
|
||
}
|
||
if (imm_expr.X_add_number == 1)
|
||
{
|
||
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
|
||
&offset_expr, op[0]);
|
||
break;
|
||
}
|
||
if (imm_expr.X_add_number <= GPR_SMIN)
|
||
{
|
||
do_true:
|
||
/* result is always true */
|
||
as_warn (_("branch %s is always true"), ip->insn_mo->name);
|
||
macro_build (&offset_expr, "b", "p");
|
||
break;
|
||
}
|
||
used_at = 1;
|
||
set_at (op[0], 0);
|
||
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
|
||
&offset_expr, AT, ZERO);
|
||
break;
|
||
|
||
case M_BGEUL:
|
||
likely = 1;
|
||
case M_BGEU:
|
||
if (op[1] == 0)
|
||
goto do_true;
|
||
else if (op[0] == 0)
|
||
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
|
||
&offset_expr, ZERO, op[1]);
|
||
else
|
||
{
|
||
used_at = 1;
|
||
macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
|
||
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BGTUL_I:
|
||
likely = 1;
|
||
case M_BGTU_I:
|
||
if (op[0] == 0
|
||
|| (HAVE_32BIT_GPRS
|
||
&& imm_expr.X_add_number == -1))
|
||
goto do_false;
|
||
++imm_expr.X_add_number;
|
||
/* FALLTHROUGH */
|
||
case M_BGEU_I:
|
||
case M_BGEUL_I:
|
||
if (mask == M_BGEUL_I)
|
||
likely = 1;
|
||
if (imm_expr.X_add_number == 0)
|
||
goto do_true;
|
||
else if (imm_expr.X_add_number == 1)
|
||
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
|
||
&offset_expr, op[0], ZERO);
|
||
else
|
||
{
|
||
used_at = 1;
|
||
set_at (op[0], 1);
|
||
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BGTL:
|
||
likely = 1;
|
||
case M_BGT:
|
||
if (op[1] == 0)
|
||
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
|
||
else if (op[0] == 0)
|
||
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
|
||
else
|
||
{
|
||
used_at = 1;
|
||
macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
|
||
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BGTUL:
|
||
likely = 1;
|
||
case M_BGTU:
|
||
if (op[1] == 0)
|
||
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
|
||
&offset_expr, op[0], ZERO);
|
||
else if (op[0] == 0)
|
||
goto do_false;
|
||
else
|
||
{
|
||
used_at = 1;
|
||
macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
|
||
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BLEL:
|
||
likely = 1;
|
||
case M_BLE:
|
||
if (op[1] == 0)
|
||
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
|
||
else if (op[0] == 0)
|
||
macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
|
||
else
|
||
{
|
||
used_at = 1;
|
||
macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
|
||
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BLEL_I:
|
||
likely = 1;
|
||
case M_BLE_I:
|
||
if (imm_expr.X_add_number >= GPR_SMAX)
|
||
goto do_true;
|
||
++imm_expr.X_add_number;
|
||
/* FALLTHROUGH */
|
||
case M_BLT_I:
|
||
case M_BLTL_I:
|
||
if (mask == M_BLTL_I)
|
||
likely = 1;
|
||
if (imm_expr.X_add_number == 0)
|
||
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
|
||
else if (imm_expr.X_add_number == 1)
|
||
macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
|
||
else
|
||
{
|
||
used_at = 1;
|
||
set_at (op[0], 0);
|
||
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BLEUL:
|
||
likely = 1;
|
||
case M_BLEU:
|
||
if (op[1] == 0)
|
||
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
|
||
&offset_expr, op[0], ZERO);
|
||
else if (op[0] == 0)
|
||
goto do_true;
|
||
else
|
||
{
|
||
used_at = 1;
|
||
macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
|
||
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BLEUL_I:
|
||
likely = 1;
|
||
case M_BLEU_I:
|
||
if (op[0] == 0
|
||
|| (HAVE_32BIT_GPRS
|
||
&& imm_expr.X_add_number == -1))
|
||
goto do_true;
|
||
++imm_expr.X_add_number;
|
||
/* FALLTHROUGH */
|
||
case M_BLTU_I:
|
||
case M_BLTUL_I:
|
||
if (mask == M_BLTUL_I)
|
||
likely = 1;
|
||
if (imm_expr.X_add_number == 0)
|
||
goto do_false;
|
||
else if (imm_expr.X_add_number == 1)
|
||
macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
|
||
&offset_expr, op[0], ZERO);
|
||
else
|
||
{
|
||
used_at = 1;
|
||
set_at (op[0], 1);
|
||
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BLTL:
|
||
likely = 1;
|
||
case M_BLT:
|
||
if (op[1] == 0)
|
||
macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
|
||
else if (op[0] == 0)
|
||
macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
|
||
else
|
||
{
|
||
used_at = 1;
|
||
macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
|
||
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_BLTUL:
|
||
likely = 1;
|
||
case M_BLTU:
|
||
if (op[1] == 0)
|
||
goto do_false;
|
||
else if (op[0] == 0)
|
||
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
|
||
&offset_expr, ZERO, op[1]);
|
||
else
|
||
{
|
||
used_at = 1;
|
||
macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
|
||
macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
|
||
&offset_expr, AT, ZERO);
|
||
}
|
||
break;
|
||
|
||
case M_DDIV_3:
|
||
dbl = 1;
|
||
case M_DIV_3:
|
||
s = "mflo";
|
||
goto do_div3;
|
||
case M_DREM_3:
|
||
dbl = 1;
|
||
case M_REM_3:
|
||
s = "mfhi";
|
||
do_div3:
|
||
if (op[2] == 0)
|
||
{
|
||
as_warn (_("divide by zero"));
|
||
if (mips_trap)
|
||
macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
|
||
else
|
||
macro_build (NULL, "break", BRK_FMT, 7);
|
||
break;
|
||
}
|
||
|
||
start_noreorder ();
|
||
if (mips_trap)
|
||
{
|
||
macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
|
||
macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
|
||
}
|
||
else
|
||
{
|
||
if (mips_opts.micromips)
|
||
micromips_label_expr (&label_expr);
|
||
else
|
||
label_expr.X_add_number = 8;
|
||
macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
|
||
macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
|
||
macro_build (NULL, "break", BRK_FMT, 7);
|
||
if (mips_opts.micromips)
|
||
micromips_add_label ();
|
||
}
|
||
expr1.X_add_number = -1;
|
||
used_at = 1;
|
||
load_register (AT, &expr1, dbl);
|
||
if (mips_opts.micromips)
|
||
micromips_label_expr (&label_expr);
|
||
else
|
||
label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
|
||
macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
|
||
if (dbl)
|
||
{
|
||
expr1.X_add_number = 1;
|
||
load_register (AT, &expr1, dbl);
|
||
macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
|
||
}
|
||
else
|
||
{
|
||
expr1.X_add_number = 0x80000000;
|
||
macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
|
||
}
|
||
if (mips_trap)
|
||
{
|
||
macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
|
||
/* We want to close the noreorder block as soon as possible, so
|
||
that later insns are available for delay slot filling. */
|
||
end_noreorder ();
|
||
}
|
||
else
|
||
{
|
||
if (mips_opts.micromips)
|
||
micromips_label_expr (&label_expr);
|
||
else
|
||
label_expr.X_add_number = 8;
|
||
macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
|
||
macro_build (NULL, "nop", "");
|
||
|
||
/* We want to close the noreorder block as soon as possible, so
|
||
that later insns are available for delay slot filling. */
|
||
end_noreorder ();
|
||
|
||
macro_build (NULL, "break", BRK_FMT, 6);
|
||
}
|
||
if (mips_opts.micromips)
|
||
micromips_add_label ();
|
||
macro_build (NULL, s, MFHL_FMT, op[0]);
|
||
break;
|
||
|
||
case M_DIV_3I:
|
||
s = "div";
|
||
s2 = "mflo";
|
||
goto do_divi;
|
||
case M_DIVU_3I:
|
||
s = "divu";
|
||
s2 = "mflo";
|
||
goto do_divi;
|
||
case M_REM_3I:
|
||
s = "div";
|
||
s2 = "mfhi";
|
||
goto do_divi;
|
||
case M_REMU_3I:
|
||
s = "divu";
|
||
s2 = "mfhi";
|
||
goto do_divi;
|
||
case M_DDIV_3I:
|
||
dbl = 1;
|
||
s = "ddiv";
|
||
s2 = "mflo";
|
||
goto do_divi;
|
||
case M_DDIVU_3I:
|
||
dbl = 1;
|
||
s = "ddivu";
|
||
s2 = "mflo";
|
||
goto do_divi;
|
||
case M_DREM_3I:
|
||
dbl = 1;
|
||
s = "ddiv";
|
||
s2 = "mfhi";
|
||
goto do_divi;
|
||
case M_DREMU_3I:
|
||
dbl = 1;
|
||
s = "ddivu";
|
||
s2 = "mfhi";
|
||
do_divi:
|
||
if (imm_expr.X_add_number == 0)
|
||
{
|
||
as_warn (_("divide by zero"));
|
||
if (mips_trap)
|
||
macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
|
||
else
|
||
macro_build (NULL, "break", BRK_FMT, 7);
|
||
break;
|
||
}
|
||
if (imm_expr.X_add_number == 1)
|
||
{
|
||
if (strcmp (s2, "mflo") == 0)
|
||
move_register (op[0], op[1]);
|
||
else
|
||
move_register (op[0], ZERO);
|
||
break;
|
||
}
|
||
if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
|
||
{
|
||
if (strcmp (s2, "mflo") == 0)
|
||
macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
|
||
else
|
||
move_register (op[0], ZERO);
|
||
break;
|
||
}
|
||
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, dbl);
|
||
macro_build (NULL, s, "z,s,t", op[1], AT);
|
||
macro_build (NULL, s2, MFHL_FMT, op[0]);
|
||
break;
|
||
|
||
case M_DIVU_3:
|
||
s = "divu";
|
||
s2 = "mflo";
|
||
goto do_divu3;
|
||
case M_REMU_3:
|
||
s = "divu";
|
||
s2 = "mfhi";
|
||
goto do_divu3;
|
||
case M_DDIVU_3:
|
||
s = "ddivu";
|
||
s2 = "mflo";
|
||
goto do_divu3;
|
||
case M_DREMU_3:
|
||
s = "ddivu";
|
||
s2 = "mfhi";
|
||
do_divu3:
|
||
start_noreorder ();
|
||
if (mips_trap)
|
||
{
|
||
macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
|
||
macro_build (NULL, s, "z,s,t", op[1], op[2]);
|
||
/* We want to close the noreorder block as soon as possible, so
|
||
that later insns are available for delay slot filling. */
|
||
end_noreorder ();
|
||
}
|
||
else
|
||
{
|
||
if (mips_opts.micromips)
|
||
micromips_label_expr (&label_expr);
|
||
else
|
||
label_expr.X_add_number = 8;
|
||
macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
|
||
macro_build (NULL, s, "z,s,t", op[1], op[2]);
|
||
|
||
/* We want to close the noreorder block as soon as possible, so
|
||
that later insns are available for delay slot filling. */
|
||
end_noreorder ();
|
||
macro_build (NULL, "break", BRK_FMT, 7);
|
||
if (mips_opts.micromips)
|
||
micromips_add_label ();
|
||
}
|
||
macro_build (NULL, s2, MFHL_FMT, op[0]);
|
||
break;
|
||
|
||
case M_DLCA_AB:
|
||
dbl = 1;
|
||
case M_LCA_AB:
|
||
call = 1;
|
||
goto do_la;
|
||
case M_DLA_AB:
|
||
dbl = 1;
|
||
case M_LA_AB:
|
||
do_la:
|
||
/* Load the address of a symbol into a register. If breg is not
|
||
zero, we then add a base register to it. */
|
||
|
||
breg = op[2];
|
||
if (dbl && HAVE_32BIT_GPRS)
|
||
as_warn (_("dla used to load 32-bit register"));
|
||
|
||
if (!dbl && HAVE_64BIT_OBJECTS)
|
||
as_warn (_("la used to load 64-bit address"));
|
||
|
||
if (small_offset_p (0, align, 16))
|
||
{
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
|
||
-1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
|
||
break;
|
||
}
|
||
|
||
if (mips_opts.at && (op[0] == breg))
|
||
{
|
||
tempreg = AT;
|
||
used_at = 1;
|
||
}
|
||
else
|
||
tempreg = op[0];
|
||
|
||
if (offset_expr.X_op != O_symbol
|
||
&& offset_expr.X_op != O_constant)
|
||
{
|
||
as_bad (_("expression too complex"));
|
||
offset_expr.X_op = O_constant;
|
||
}
|
||
|
||
if (offset_expr.X_op == O_constant)
|
||
load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
|
||
else if (mips_pic == NO_PIC)
|
||
{
|
||
/* If this is a reference to a GP relative symbol, we want
|
||
addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
|
||
Otherwise we want
|
||
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
|
||
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
|
||
If we have a constant, we need two instructions anyhow,
|
||
so we may as well always use the latter form.
|
||
|
||
With 64bit address space and a usable $at we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
|
||
lui $at,<sym> (BFD_RELOC_HI16_S)
|
||
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
|
||
daddiu $at,<sym> (BFD_RELOC_LO16)
|
||
dsll32 $tempreg,0
|
||
daddu $tempreg,$tempreg,$at
|
||
|
||
If $at is already in use, we use a path which is suboptimal
|
||
on superscalar processors.
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
|
||
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
|
||
dsll $tempreg,16
|
||
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
|
||
dsll $tempreg,16
|
||
daddiu $tempreg,<sym> (BFD_RELOC_LO16)
|
||
|
||
For GP relative symbols in 64bit address space we can use
|
||
the same sequence as in 32bit address space. */
|
||
if (HAVE_64BIT_SYMBOLS)
|
||
{
|
||
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
|
||
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
|
||
tempreg, mips_gp_register, BFD_RELOC_GPREL16);
|
||
relax_switch ();
|
||
}
|
||
|
||
if (used_at == 0 && mips_opts.at)
|
||
{
|
||
macro_build (&offset_expr, "lui", LUI_FMT,
|
||
tempreg, BFD_RELOC_MIPS_HIGHEST);
|
||
macro_build (&offset_expr, "lui", LUI_FMT,
|
||
AT, BFD_RELOC_HI16_S);
|
||
macro_build (&offset_expr, "daddiu", "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
|
||
macro_build (&offset_expr, "daddiu", "t,r,j",
|
||
AT, AT, BFD_RELOC_LO16);
|
||
macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
|
||
macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
|
||
used_at = 1;
|
||
}
|
||
else
|
||
{
|
||
macro_build (&offset_expr, "lui", LUI_FMT,
|
||
tempreg, BFD_RELOC_MIPS_HIGHEST);
|
||
macro_build (&offset_expr, "daddiu", "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
|
||
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
|
||
macro_build (&offset_expr, "daddiu", "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_HI16_S);
|
||
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
|
||
macro_build (&offset_expr, "daddiu", "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_LO16);
|
||
}
|
||
|
||
if (mips_relax.sequence)
|
||
relax_end ();
|
||
}
|
||
else
|
||
{
|
||
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
|
||
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
|
||
tempreg, mips_gp_register, BFD_RELOC_GPREL16);
|
||
relax_switch ();
|
||
}
|
||
if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
|
||
as_bad (_("offset too large"));
|
||
macro_build_lui (&offset_expr, tempreg);
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_LO16);
|
||
if (mips_relax.sequence)
|
||
relax_end ();
|
||
}
|
||
}
|
||
else if (!mips_big_got && !HAVE_NEWABI)
|
||
{
|
||
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
|
||
|
||
/* If this is a reference to an external symbol, and there
|
||
is no constant, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
or for lca or if tempreg is PIC_CALL_REG
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
|
||
For a local symbol, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
|
||
|
||
If we have a small constant, and this is a reference to
|
||
an external symbol, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
addiu $tempreg,$tempreg,<constant>
|
||
For a local symbol, we want the same instruction
|
||
sequence, but we output a BFD_RELOC_LO16 reloc on the
|
||
addiu instruction.
|
||
|
||
If we have a large constant, and this is a reference to
|
||
an external symbol, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
lui $at,<hiconstant>
|
||
addiu $at,$at,<loconstant>
|
||
addu $tempreg,$tempreg,$at
|
||
For a local symbol, we want the same instruction
|
||
sequence, but we output a BFD_RELOC_LO16 reloc on the
|
||
addiu instruction.
|
||
*/
|
||
|
||
if (offset_expr.X_add_number == 0)
|
||
{
|
||
if (mips_pic == SVR4_PIC
|
||
&& breg == 0
|
||
&& (call || tempreg == PIC_CALL_REG))
|
||
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
|
||
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
lw_reloc_type, mips_gp_register);
|
||
if (breg != 0)
|
||
{
|
||
/* We're going to put in an addu instruction using
|
||
tempreg, so we may as well insert the nop right
|
||
now. */
|
||
load_delay_nop ();
|
||
}
|
||
relax_switch ();
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
|
||
load_delay_nop ();
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_LO16);
|
||
relax_end ();
|
||
/* FIXME: If breg == 0, and the next instruction uses
|
||
$tempreg, then if this variant case is used an extra
|
||
nop will be generated. */
|
||
}
|
||
else if (offset_expr.X_add_number >= -0x8000
|
||
&& offset_expr.X_add_number < 0x8000)
|
||
{
|
||
load_got_offset (tempreg, &offset_expr);
|
||
load_delay_nop ();
|
||
add_got_offset (tempreg, &offset_expr);
|
||
}
|
||
else
|
||
{
|
||
expr1.X_add_number = offset_expr.X_add_number;
|
||
offset_expr.X_add_number =
|
||
SEXT_16BIT (offset_expr.X_add_number);
|
||
load_got_offset (tempreg, &offset_expr);
|
||
offset_expr.X_add_number = expr1.X_add_number;
|
||
/* If we are going to add in a base register, and the
|
||
target register and the base register are the same,
|
||
then we are using AT as a temporary register. Since
|
||
we want to load the constant into AT, we add our
|
||
current AT (from the global offset table) and the
|
||
register into the register now, and pretend we were
|
||
not using a base register. */
|
||
if (breg == op[0])
|
||
{
|
||
load_delay_nop ();
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
op[0], AT, breg);
|
||
breg = 0;
|
||
tempreg = op[0];
|
||
}
|
||
add_got_offset_hilo (tempreg, &offset_expr, AT);
|
||
used_at = 1;
|
||
}
|
||
}
|
||
else if (!mips_big_got && HAVE_NEWABI)
|
||
{
|
||
int add_breg_early = 0;
|
||
|
||
/* If this is a reference to an external, and there is no
|
||
constant, or local symbol (*), with or without a
|
||
constant, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
|
||
or for lca or if tempreg is PIC_CALL_REG
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
|
||
|
||
If we have a small constant, and this is a reference to
|
||
an external symbol, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
|
||
addiu $tempreg,$tempreg,<constant>
|
||
|
||
If we have a large constant, and this is a reference to
|
||
an external symbol, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
|
||
lui $at,<hiconstant>
|
||
addiu $at,$at,<loconstant>
|
||
addu $tempreg,$tempreg,$at
|
||
|
||
(*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
|
||
local symbols, even though it introduces an additional
|
||
instruction. */
|
||
|
||
if (offset_expr.X_add_number)
|
||
{
|
||
expr1.X_add_number = offset_expr.X_add_number;
|
||
offset_expr.X_add_number = 0;
|
||
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
|
||
|
||
if (expr1.X_add_number >= -0x8000
|
||
&& expr1.X_add_number < 0x8000)
|
||
{
|
||
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_LO16);
|
||
}
|
||
else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
|
||
{
|
||
unsigned int dreg;
|
||
|
||
/* If we are going to add in a base register, and the
|
||
target register and the base register are the same,
|
||
then we are using AT as a temporary register. Since
|
||
we want to load the constant into AT, we add our
|
||
current AT (from the global offset table) and the
|
||
register into the register now, and pretend we were
|
||
not using a base register. */
|
||
if (breg != op[0])
|
||
dreg = tempreg;
|
||
else
|
||
{
|
||
gas_assert (tempreg == AT);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
op[0], AT, breg);
|
||
dreg = op[0];
|
||
add_breg_early = 1;
|
||
}
|
||
|
||
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
dreg, dreg, AT);
|
||
|
||
used_at = 1;
|
||
}
|
||
else
|
||
as_bad (_("PIC code offset overflow (max 32 signed bits)"));
|
||
|
||
relax_switch ();
|
||
offset_expr.X_add_number = expr1.X_add_number;
|
||
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
|
||
if (add_breg_early)
|
||
{
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
op[0], tempreg, breg);
|
||
breg = 0;
|
||
tempreg = op[0];
|
||
}
|
||
relax_end ();
|
||
}
|
||
else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_CALL16, mips_gp_register);
|
||
relax_switch ();
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
|
||
relax_end ();
|
||
}
|
||
else
|
||
{
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
|
||
}
|
||
}
|
||
else if (mips_big_got && !HAVE_NEWABI)
|
||
{
|
||
int gpdelay;
|
||
int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
|
||
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
|
||
int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
|
||
|
||
/* This is the large GOT case. If this is a reference to an
|
||
external symbol, and there is no constant, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
addu $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
|
||
or for lca or if tempreg is PIC_CALL_REG
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
|
||
addu $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
|
||
For a local symbol, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
|
||
|
||
If we have a small constant, and this is a reference to
|
||
an external symbol, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
addu $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
|
||
nop
|
||
addiu $tempreg,$tempreg,<constant>
|
||
For a local symbol, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
|
||
|
||
If we have a large constant, and this is a reference to
|
||
an external symbol, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
addu $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
|
||
lui $at,<hiconstant>
|
||
addiu $at,$at,<loconstant>
|
||
addu $tempreg,$tempreg,$at
|
||
For a local symbol, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
lui $at,<hiconstant>
|
||
addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
|
||
addu $tempreg,$tempreg,$at
|
||
*/
|
||
|
||
expr1.X_add_number = offset_expr.X_add_number;
|
||
offset_expr.X_add_number = 0;
|
||
relax_start (offset_expr.X_add_symbol);
|
||
gpdelay = reg_needs_delay (mips_gp_register);
|
||
if (expr1.X_add_number == 0 && breg == 0
|
||
&& (call || tempreg == PIC_CALL_REG))
|
||
{
|
||
lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
|
||
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
|
||
}
|
||
macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, mips_gp_register);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
tempreg, lw_reloc_type, tempreg);
|
||
if (expr1.X_add_number == 0)
|
||
{
|
||
if (breg != 0)
|
||
{
|
||
/* We're going to put in an addu instruction using
|
||
tempreg, so we may as well insert the nop right
|
||
now. */
|
||
load_delay_nop ();
|
||
}
|
||
}
|
||
else if (expr1.X_add_number >= -0x8000
|
||
&& expr1.X_add_number < 0x8000)
|
||
{
|
||
load_delay_nop ();
|
||
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_LO16);
|
||
}
|
||
else
|
||
{
|
||
unsigned int dreg;
|
||
|
||
/* If we are going to add in a base register, and the
|
||
target register and the base register are the same,
|
||
then we are using AT as a temporary register. Since
|
||
we want to load the constant into AT, we add our
|
||
current AT (from the global offset table) and the
|
||
register into the register now, and pretend we were
|
||
not using a base register. */
|
||
if (breg != op[0])
|
||
dreg = tempreg;
|
||
else
|
||
{
|
||
gas_assert (tempreg == AT);
|
||
load_delay_nop ();
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
op[0], AT, breg);
|
||
dreg = op[0];
|
||
}
|
||
|
||
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
|
||
|
||
used_at = 1;
|
||
}
|
||
offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
|
||
relax_switch ();
|
||
|
||
if (gpdelay)
|
||
{
|
||
/* This is needed because this instruction uses $gp, but
|
||
the first instruction on the main stream does not. */
|
||
macro_build (NULL, "nop", "");
|
||
}
|
||
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
local_reloc_type, mips_gp_register);
|
||
if (expr1.X_add_number >= -0x8000
|
||
&& expr1.X_add_number < 0x8000)
|
||
{
|
||
load_delay_nop ();
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_LO16);
|
||
/* FIXME: If add_number is 0, and there was no base
|
||
register, the external symbol case ended with a load,
|
||
so if the symbol turns out to not be external, and
|
||
the next instruction uses tempreg, an unnecessary nop
|
||
will be inserted. */
|
||
}
|
||
else
|
||
{
|
||
if (breg == op[0])
|
||
{
|
||
/* We must add in the base register now, as in the
|
||
external symbol case. */
|
||
gas_assert (tempreg == AT);
|
||
load_delay_nop ();
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
op[0], AT, breg);
|
||
tempreg = op[0];
|
||
/* We set breg to 0 because we have arranged to add
|
||
it in in both cases. */
|
||
breg = 0;
|
||
}
|
||
|
||
macro_build_lui (&expr1, AT);
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
|
||
AT, AT, BFD_RELOC_LO16);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, AT);
|
||
used_at = 1;
|
||
}
|
||
relax_end ();
|
||
}
|
||
else if (mips_big_got && HAVE_NEWABI)
|
||
{
|
||
int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
|
||
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
|
||
int add_breg_early = 0;
|
||
|
||
/* This is the large GOT case. If this is a reference to an
|
||
external symbol, and there is no constant, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
add $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
|
||
or for lca or if tempreg is PIC_CALL_REG
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
|
||
add $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
|
||
|
||
If we have a small constant, and this is a reference to
|
||
an external symbol, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
add $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
|
||
addi $tempreg,$tempreg,<constant>
|
||
|
||
If we have a large constant, and this is a reference to
|
||
an external symbol, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
addu $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
|
||
lui $at,<hiconstant>
|
||
addi $at,$at,<loconstant>
|
||
add $tempreg,$tempreg,$at
|
||
|
||
If we have NewABI, and we know it's a local symbol, we want
|
||
lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
|
||
addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
|
||
otherwise we have to resort to GOT_HI16/GOT_LO16. */
|
||
|
||
relax_start (offset_expr.X_add_symbol);
|
||
|
||
expr1.X_add_number = offset_expr.X_add_number;
|
||
offset_expr.X_add_number = 0;
|
||
|
||
if (expr1.X_add_number == 0 && breg == 0
|
||
&& (call || tempreg == PIC_CALL_REG))
|
||
{
|
||
lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
|
||
lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
|
||
}
|
||
macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, mips_gp_register);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
tempreg, lw_reloc_type, tempreg);
|
||
|
||
if (expr1.X_add_number == 0)
|
||
;
|
||
else if (expr1.X_add_number >= -0x8000
|
||
&& expr1.X_add_number < 0x8000)
|
||
{
|
||
macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
|
||
tempreg, tempreg, BFD_RELOC_LO16);
|
||
}
|
||
else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
|
||
{
|
||
unsigned int dreg;
|
||
|
||
/* If we are going to add in a base register, and the
|
||
target register and the base register are the same,
|
||
then we are using AT as a temporary register. Since
|
||
we want to load the constant into AT, we add our
|
||
current AT (from the global offset table) and the
|
||
register into the register now, and pretend we were
|
||
not using a base register. */
|
||
if (breg != op[0])
|
||
dreg = tempreg;
|
||
else
|
||
{
|
||
gas_assert (tempreg == AT);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
op[0], AT, breg);
|
||
dreg = op[0];
|
||
add_breg_early = 1;
|
||
}
|
||
|
||
load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
|
||
|
||
used_at = 1;
|
||
}
|
||
else
|
||
as_bad (_("PIC code offset overflow (max 32 signed bits)"));
|
||
|
||
relax_switch ();
|
||
offset_expr.X_add_number = expr1.X_add_number;
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
|
||
tempreg, BFD_RELOC_MIPS_GOT_OFST);
|
||
if (add_breg_early)
|
||
{
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
op[0], tempreg, breg);
|
||
breg = 0;
|
||
tempreg = op[0];
|
||
}
|
||
relax_end ();
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
|
||
break;
|
||
|
||
case M_MSGSND:
|
||
gas_assert (!mips_opts.micromips);
|
||
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
|
||
break;
|
||
|
||
case M_MSGLD:
|
||
gas_assert (!mips_opts.micromips);
|
||
macro_build (NULL, "c2", "C", 0x02);
|
||
break;
|
||
|
||
case M_MSGLD_T:
|
||
gas_assert (!mips_opts.micromips);
|
||
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
|
||
break;
|
||
|
||
case M_MSGWAIT:
|
||
gas_assert (!mips_opts.micromips);
|
||
macro_build (NULL, "c2", "C", 3);
|
||
break;
|
||
|
||
case M_MSGWAIT_T:
|
||
gas_assert (!mips_opts.micromips);
|
||
macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
|
||
break;
|
||
|
||
case M_J_A:
|
||
/* The j instruction may not be used in PIC code, since it
|
||
requires an absolute address. We convert it to a b
|
||
instruction. */
|
||
if (mips_pic == NO_PIC)
|
||
macro_build (&offset_expr, "j", "a");
|
||
else
|
||
macro_build (&offset_expr, "b", "p");
|
||
break;
|
||
|
||
/* The jal instructions must be handled as macros because when
|
||
generating PIC code they expand to multi-instruction
|
||
sequences. Normally they are simple instructions. */
|
||
case M_JALS_1:
|
||
op[1] = op[0];
|
||
op[0] = RA;
|
||
/* Fall through. */
|
||
case M_JALS_2:
|
||
gas_assert (mips_opts.micromips);
|
||
if (mips_opts.insn32)
|
||
{
|
||
as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
|
||
break;
|
||
}
|
||
jals = 1;
|
||
goto jal;
|
||
case M_JAL_1:
|
||
op[1] = op[0];
|
||
op[0] = RA;
|
||
/* Fall through. */
|
||
case M_JAL_2:
|
||
jal:
|
||
if (mips_pic == NO_PIC)
|
||
{
|
||
s = jals ? "jalrs" : "jalr";
|
||
if (mips_opts.micromips
|
||
&& !mips_opts.insn32
|
||
&& op[0] == RA
|
||
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
|
||
macro_build (NULL, s, "mj", op[1]);
|
||
else
|
||
macro_build (NULL, s, JALR_FMT, op[0], op[1]);
|
||
}
|
||
else
|
||
{
|
||
int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
|
||
&& mips_cprestore_offset >= 0);
|
||
|
||
if (op[1] != PIC_CALL_REG)
|
||
as_warn (_("MIPS PIC call to register other than $25"));
|
||
|
||
s = ((mips_opts.micromips
|
||
&& !mips_opts.insn32
|
||
&& (!mips_opts.noreorder || cprestore))
|
||
? "jalrs" : "jalr");
|
||
if (mips_opts.micromips
|
||
&& !mips_opts.insn32
|
||
&& op[0] == RA
|
||
&& !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
|
||
macro_build (NULL, s, "mj", op[1]);
|
||
else
|
||
macro_build (NULL, s, JALR_FMT, op[0], op[1]);
|
||
if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
|
||
{
|
||
if (mips_cprestore_offset < 0)
|
||
as_warn (_("no .cprestore pseudo-op used in PIC code"));
|
||
else
|
||
{
|
||
if (!mips_frame_reg_valid)
|
||
{
|
||
as_warn (_("no .frame pseudo-op used in PIC code"));
|
||
/* Quiet this warning. */
|
||
mips_frame_reg_valid = 1;
|
||
}
|
||
if (!mips_cprestore_valid)
|
||
{
|
||
as_warn (_("no .cprestore pseudo-op used in PIC code"));
|
||
/* Quiet this warning. */
|
||
mips_cprestore_valid = 1;
|
||
}
|
||
if (mips_opts.noreorder)
|
||
macro_build (NULL, "nop", "");
|
||
expr1.X_add_number = mips_cprestore_offset;
|
||
macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
|
||
mips_gp_register,
|
||
mips_frame_reg,
|
||
HAVE_64BIT_ADDRESSES);
|
||
}
|
||
}
|
||
}
|
||
|
||
break;
|
||
|
||
case M_JALS_A:
|
||
gas_assert (mips_opts.micromips);
|
||
if (mips_opts.insn32)
|
||
{
|
||
as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
|
||
break;
|
||
}
|
||
jals = 1;
|
||
/* Fall through. */
|
||
case M_JAL_A:
|
||
if (mips_pic == NO_PIC)
|
||
macro_build (&offset_expr, jals ? "jals" : "jal", "a");
|
||
else if (mips_pic == SVR4_PIC)
|
||
{
|
||
/* If this is a reference to an external symbol, and we are
|
||
using a small GOT, we want
|
||
lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
|
||
nop
|
||
jalr $ra,$25
|
||
nop
|
||
lw $gp,cprestore($sp)
|
||
The cprestore value is set using the .cprestore
|
||
pseudo-op. If we are using a big GOT, we want
|
||
lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
|
||
addu $25,$25,$gp
|
||
lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
|
||
nop
|
||
jalr $ra,$25
|
||
nop
|
||
lw $gp,cprestore($sp)
|
||
If the symbol is not external, we want
|
||
lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
addiu $25,$25,<sym> (BFD_RELOC_LO16)
|
||
jalr $ra,$25
|
||
nop
|
||
lw $gp,cprestore($sp)
|
||
|
||
For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
|
||
sequences above, minus nops, unless the symbol is local,
|
||
which enables us to use GOT_PAGE/GOT_OFST (big got) or
|
||
GOT_DISP. */
|
||
if (HAVE_NEWABI)
|
||
{
|
||
if (!mips_big_got)
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
|
||
mips_gp_register);
|
||
relax_switch ();
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
|
||
mips_gp_register);
|
||
relax_end ();
|
||
}
|
||
else
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
|
||
BFD_RELOC_MIPS_CALL_HI16);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
|
||
PIC_CALL_REG, mips_gp_register);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
|
||
PIC_CALL_REG);
|
||
relax_switch ();
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
|
||
mips_gp_register);
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
|
||
PIC_CALL_REG, PIC_CALL_REG,
|
||
BFD_RELOC_MIPS_GOT_OFST);
|
||
relax_end ();
|
||
}
|
||
|
||
macro_build_jalr (&offset_expr, 0);
|
||
}
|
||
else
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
if (!mips_big_got)
|
||
{
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
|
||
mips_gp_register);
|
||
load_delay_nop ();
|
||
relax_switch ();
|
||
}
|
||
else
|
||
{
|
||
int gpdelay;
|
||
|
||
gpdelay = reg_needs_delay (mips_gp_register);
|
||
macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
|
||
BFD_RELOC_MIPS_CALL_HI16);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
|
||
PIC_CALL_REG, mips_gp_register);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
|
||
PIC_CALL_REG);
|
||
load_delay_nop ();
|
||
relax_switch ();
|
||
if (gpdelay)
|
||
macro_build (NULL, "nop", "");
|
||
}
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
|
||
mips_gp_register);
|
||
load_delay_nop ();
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
|
||
PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
|
||
relax_end ();
|
||
macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
|
||
|
||
if (mips_cprestore_offset < 0)
|
||
as_warn (_("no .cprestore pseudo-op used in PIC code"));
|
||
else
|
||
{
|
||
if (!mips_frame_reg_valid)
|
||
{
|
||
as_warn (_("no .frame pseudo-op used in PIC code"));
|
||
/* Quiet this warning. */
|
||
mips_frame_reg_valid = 1;
|
||
}
|
||
if (!mips_cprestore_valid)
|
||
{
|
||
as_warn (_("no .cprestore pseudo-op used in PIC code"));
|
||
/* Quiet this warning. */
|
||
mips_cprestore_valid = 1;
|
||
}
|
||
if (mips_opts.noreorder)
|
||
macro_build (NULL, "nop", "");
|
||
expr1.X_add_number = mips_cprestore_offset;
|
||
macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
|
||
mips_gp_register,
|
||
mips_frame_reg,
|
||
HAVE_64BIT_ADDRESSES);
|
||
}
|
||
}
|
||
}
|
||
else if (mips_pic == VXWORKS_PIC)
|
||
as_bad (_("non-PIC jump used in PIC library"));
|
||
else
|
||
abort ();
|
||
|
||
break;
|
||
|
||
case M_LBUE_AB:
|
||
s = "lbue";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_LHUE_AB:
|
||
s = "lhue";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_LBE_AB:
|
||
s = "lbe";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_LHE_AB:
|
||
s = "lhe";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_LLE_AB:
|
||
s = "lle";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_LWE_AB:
|
||
s = "lwe";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_LWLE_AB:
|
||
s = "lwle";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_LWRE_AB:
|
||
s = "lwre";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_SBE_AB:
|
||
s = "sbe";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_SCE_AB:
|
||
s = "sce";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_SHE_AB:
|
||
s = "she";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_SWE_AB:
|
||
s = "swe";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_SWLE_AB:
|
||
s = "swle";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_SWRE_AB:
|
||
s = "swre";
|
||
fmt = "t,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_ACLR_AB:
|
||
s = "aclr";
|
||
fmt = "\\,~(b)";
|
||
offbits = 12;
|
||
goto ld_st;
|
||
case M_ASET_AB:
|
||
s = "aset";
|
||
fmt = "\\,~(b)";
|
||
offbits = 12;
|
||
goto ld_st;
|
||
case M_LB_AB:
|
||
s = "lb";
|
||
fmt = "t,o(b)";
|
||
goto ld;
|
||
case M_LBU_AB:
|
||
s = "lbu";
|
||
fmt = "t,o(b)";
|
||
goto ld;
|
||
case M_LH_AB:
|
||
s = "lh";
|
||
fmt = "t,o(b)";
|
||
goto ld;
|
||
case M_LHU_AB:
|
||
s = "lhu";
|
||
fmt = "t,o(b)";
|
||
goto ld;
|
||
case M_LW_AB:
|
||
s = "lw";
|
||
fmt = "t,o(b)";
|
||
goto ld;
|
||
case M_LWC0_AB:
|
||
gas_assert (!mips_opts.micromips);
|
||
s = "lwc0";
|
||
fmt = "E,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_LWC1_AB:
|
||
s = "lwc1";
|
||
fmt = "T,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_LWC2_AB:
|
||
s = "lwc2";
|
||
fmt = COP12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_LWC3_AB:
|
||
gas_assert (!mips_opts.micromips);
|
||
s = "lwc3";
|
||
fmt = "E,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_LWL_AB:
|
||
s = "lwl";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_LWR_AB:
|
||
s = "lwr";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_LDC1_AB:
|
||
s = "ldc1";
|
||
fmt = "T,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_LDC2_AB:
|
||
s = "ldc2";
|
||
fmt = COP12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_LQC2_AB:
|
||
s = "lqc2";
|
||
fmt = "+7,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_LDC3_AB:
|
||
s = "ldc3";
|
||
fmt = "E,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_LDL_AB:
|
||
s = "ldl";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_LDR_AB:
|
||
s = "ldr";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_LL_AB:
|
||
s = "ll";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld;
|
||
case M_LLD_AB:
|
||
s = "lld";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld;
|
||
case M_LWU_AB:
|
||
s = "lwu";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld;
|
||
case M_LWP_AB:
|
||
gas_assert (mips_opts.micromips);
|
||
s = "lwp";
|
||
fmt = "t,~(b)";
|
||
offbits = 12;
|
||
lp = 1;
|
||
goto ld;
|
||
case M_LDP_AB:
|
||
gas_assert (mips_opts.micromips);
|
||
s = "ldp";
|
||
fmt = "t,~(b)";
|
||
offbits = 12;
|
||
lp = 1;
|
||
goto ld;
|
||
case M_LWM_AB:
|
||
gas_assert (mips_opts.micromips);
|
||
s = "lwm";
|
||
fmt = "n,~(b)";
|
||
offbits = 12;
|
||
goto ld_st;
|
||
case M_LDM_AB:
|
||
gas_assert (mips_opts.micromips);
|
||
s = "ldm";
|
||
fmt = "n,~(b)";
|
||
offbits = 12;
|
||
goto ld_st;
|
||
|
||
ld:
|
||
/* We don't want to use $0 as tempreg. */
|
||
if (op[2] == op[0] + lp || op[0] + lp == ZERO)
|
||
goto ld_st;
|
||
else
|
||
tempreg = op[0] + lp;
|
||
goto ld_noat;
|
||
|
||
case M_SB_AB:
|
||
s = "sb";
|
||
fmt = "t,o(b)";
|
||
goto ld_st;
|
||
case M_SH_AB:
|
||
s = "sh";
|
||
fmt = "t,o(b)";
|
||
goto ld_st;
|
||
case M_SW_AB:
|
||
s = "sw";
|
||
fmt = "t,o(b)";
|
||
goto ld_st;
|
||
case M_SWC0_AB:
|
||
gas_assert (!mips_opts.micromips);
|
||
s = "swc0";
|
||
fmt = "E,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_SWC1_AB:
|
||
s = "swc1";
|
||
fmt = "T,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_SWC2_AB:
|
||
s = "swc2";
|
||
fmt = COP12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_SWC3_AB:
|
||
gas_assert (!mips_opts.micromips);
|
||
s = "swc3";
|
||
fmt = "E,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_SWL_AB:
|
||
s = "swl";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_SWR_AB:
|
||
s = "swr";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_SC_AB:
|
||
s = "sc";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_SCD_AB:
|
||
s = "scd";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_CACHE_AB:
|
||
s = "cache";
|
||
fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_CACHEE_AB:
|
||
s = "cachee";
|
||
fmt = "k,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_PREF_AB:
|
||
s = "pref";
|
||
fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_PREFE_AB:
|
||
s = "prefe";
|
||
fmt = "k,+j(b)";
|
||
offbits = 9;
|
||
goto ld_st;
|
||
case M_SDC1_AB:
|
||
s = "sdc1";
|
||
fmt = "T,o(b)";
|
||
coproc = 1;
|
||
/* Itbl support may require additional care here. */
|
||
goto ld_st;
|
||
case M_SDC2_AB:
|
||
s = "sdc2";
|
||
fmt = COP12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_SQC2_AB:
|
||
s = "sqc2";
|
||
fmt = "+7,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_SDC3_AB:
|
||
gas_assert (!mips_opts.micromips);
|
||
s = "sdc3";
|
||
fmt = "E,o(b)";
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
goto ld_st;
|
||
case M_SDL_AB:
|
||
s = "sdl";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_SDR_AB:
|
||
s = "sdr";
|
||
fmt = MEM12_FMT;
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
goto ld_st;
|
||
case M_SWP_AB:
|
||
gas_assert (mips_opts.micromips);
|
||
s = "swp";
|
||
fmt = "t,~(b)";
|
||
offbits = 12;
|
||
goto ld_st;
|
||
case M_SDP_AB:
|
||
gas_assert (mips_opts.micromips);
|
||
s = "sdp";
|
||
fmt = "t,~(b)";
|
||
offbits = 12;
|
||
goto ld_st;
|
||
case M_SWM_AB:
|
||
gas_assert (mips_opts.micromips);
|
||
s = "swm";
|
||
fmt = "n,~(b)";
|
||
offbits = 12;
|
||
goto ld_st;
|
||
case M_SDM_AB:
|
||
gas_assert (mips_opts.micromips);
|
||
s = "sdm";
|
||
fmt = "n,~(b)";
|
||
offbits = 12;
|
||
|
||
ld_st:
|
||
tempreg = AT;
|
||
ld_noat:
|
||
breg = op[2];
|
||
if (small_offset_p (0, align, 16))
|
||
{
|
||
/* The first case exists for M_LD_AB and M_SD_AB, which are
|
||
macros for o32 but which should act like normal instructions
|
||
otherwise. */
|
||
if (offbits == 16)
|
||
macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
|
||
offset_reloc[1], offset_reloc[2], breg);
|
||
else if (small_offset_p (0, align, offbits))
|
||
{
|
||
if (offbits == 0)
|
||
macro_build (NULL, s, fmt, op[0], breg);
|
||
else
|
||
macro_build (NULL, s, fmt, op[0],
|
||
(int) offset_expr.X_add_number, breg);
|
||
}
|
||
else
|
||
{
|
||
if (tempreg == AT)
|
||
used_at = 1;
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
|
||
tempreg, breg, -1, offset_reloc[0],
|
||
offset_reloc[1], offset_reloc[2]);
|
||
if (offbits == 0)
|
||
macro_build (NULL, s, fmt, op[0], tempreg);
|
||
else
|
||
macro_build (NULL, s, fmt, op[0], 0, tempreg);
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (tempreg == AT)
|
||
used_at = 1;
|
||
|
||
if (offset_expr.X_op != O_constant
|
||
&& offset_expr.X_op != O_symbol)
|
||
{
|
||
as_bad (_("expression too complex"));
|
||
offset_expr.X_op = O_constant;
|
||
}
|
||
|
||
if (HAVE_32BIT_ADDRESSES
|
||
&& !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
|
||
{
|
||
char value [32];
|
||
|
||
sprintf_vma (value, offset_expr.X_add_number);
|
||
as_bad (_("number (0x%s) larger than 32 bits"), value);
|
||
}
|
||
|
||
/* A constant expression in PIC code can be handled just as it
|
||
is in non PIC code. */
|
||
if (offset_expr.X_op == O_constant)
|
||
{
|
||
expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
|
||
offbits == 0 ? 16 : offbits);
|
||
offset_expr.X_add_number -= expr1.X_add_number;
|
||
|
||
load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
if (offbits == 0)
|
||
{
|
||
if (offset_expr.X_add_number != 0)
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN,
|
||
"t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
|
||
macro_build (NULL, s, fmt, op[0], tempreg);
|
||
}
|
||
else if (offbits == 16)
|
||
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
|
||
else
|
||
macro_build (NULL, s, fmt, op[0],
|
||
(int) offset_expr.X_add_number, tempreg);
|
||
}
|
||
else if (offbits != 16)
|
||
{
|
||
/* The offset field is too narrow to be used for a low-part
|
||
relocation, so load the whole address into the auxillary
|
||
register. */
|
||
load_address (tempreg, &offset_expr, &used_at);
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
if (offbits == 0)
|
||
macro_build (NULL, s, fmt, op[0], tempreg);
|
||
else
|
||
macro_build (NULL, s, fmt, op[0], 0, tempreg);
|
||
}
|
||
else if (mips_pic == NO_PIC)
|
||
{
|
||
/* If this is a reference to a GP relative symbol, and there
|
||
is no base register, we want
|
||
<op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
|
||
Otherwise, if there is no base register, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
|
||
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
|
||
If we have a constant, we need two instructions anyhow,
|
||
so we always use the latter form.
|
||
|
||
If we have a base register, and this is a reference to a
|
||
GP relative symbol, we want
|
||
addu $tempreg,$breg,$gp
|
||
<op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
|
||
Otherwise we want
|
||
lui $tempreg,<sym> (BFD_RELOC_HI16_S)
|
||
addu $tempreg,$tempreg,$breg
|
||
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
|
||
With a constant we always use the latter case.
|
||
|
||
With 64bit address space and no base register and $at usable,
|
||
we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
|
||
lui $at,<sym> (BFD_RELOC_HI16_S)
|
||
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
|
||
dsll32 $tempreg,0
|
||
daddu $tempreg,$at
|
||
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
|
||
If we have a base register, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
|
||
lui $at,<sym> (BFD_RELOC_HI16_S)
|
||
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
|
||
daddu $at,$breg
|
||
dsll32 $tempreg,0
|
||
daddu $tempreg,$at
|
||
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
|
||
|
||
Without $at we can't generate the optimal path for superscalar
|
||
processors here since this would require two temporary registers.
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
|
||
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
|
||
dsll $tempreg,16
|
||
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
|
||
dsll $tempreg,16
|
||
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
|
||
If we have a base register, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
|
||
daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
|
||
dsll $tempreg,16
|
||
daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
|
||
dsll $tempreg,16
|
||
daddu $tempreg,$tempreg,$breg
|
||
<op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
|
||
|
||
For GP relative symbols in 64bit address space we can use
|
||
the same sequence as in 32bit address space. */
|
||
if (HAVE_64BIT_SYMBOLS)
|
||
{
|
||
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
|
||
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
if (breg == 0)
|
||
{
|
||
macro_build (&offset_expr, s, fmt, op[0],
|
||
BFD_RELOC_GPREL16, mips_gp_register);
|
||
}
|
||
else
|
||
{
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, breg, mips_gp_register);
|
||
macro_build (&offset_expr, s, fmt, op[0],
|
||
BFD_RELOC_GPREL16, tempreg);
|
||
}
|
||
relax_switch ();
|
||
}
|
||
|
||
if (used_at == 0 && mips_opts.at)
|
||
{
|
||
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
|
||
BFD_RELOC_MIPS_HIGHEST);
|
||
macro_build (&offset_expr, "lui", LUI_FMT, AT,
|
||
BFD_RELOC_HI16_S);
|
||
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
|
||
tempreg, BFD_RELOC_MIPS_HIGHER);
|
||
if (breg != 0)
|
||
macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
|
||
macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
|
||
macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
|
||
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
|
||
tempreg);
|
||
used_at = 1;
|
||
}
|
||
else
|
||
{
|
||
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
|
||
BFD_RELOC_MIPS_HIGHEST);
|
||
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
|
||
tempreg, BFD_RELOC_MIPS_HIGHER);
|
||
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
|
||
macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
|
||
tempreg, BFD_RELOC_HI16_S);
|
||
macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
|
||
if (breg != 0)
|
||
macro_build (NULL, "daddu", "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
macro_build (&offset_expr, s, fmt, op[0],
|
||
BFD_RELOC_LO16, tempreg);
|
||
}
|
||
|
||
if (mips_relax.sequence)
|
||
relax_end ();
|
||
break;
|
||
}
|
||
|
||
if (breg == 0)
|
||
{
|
||
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
|
||
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
|
||
mips_gp_register);
|
||
relax_switch ();
|
||
}
|
||
macro_build_lui (&offset_expr, tempreg);
|
||
macro_build (&offset_expr, s, fmt, op[0],
|
||
BFD_RELOC_LO16, tempreg);
|
||
if (mips_relax.sequence)
|
||
relax_end ();
|
||
}
|
||
else
|
||
{
|
||
if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
|
||
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, breg, mips_gp_register);
|
||
macro_build (&offset_expr, s, fmt, op[0],
|
||
BFD_RELOC_GPREL16, tempreg);
|
||
relax_switch ();
|
||
}
|
||
macro_build_lui (&offset_expr, tempreg);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
macro_build (&offset_expr, s, fmt, op[0],
|
||
BFD_RELOC_LO16, tempreg);
|
||
if (mips_relax.sequence)
|
||
relax_end ();
|
||
}
|
||
}
|
||
else if (!mips_big_got)
|
||
{
|
||
int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
|
||
|
||
/* If this is a reference to an external symbol, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
<op> op[0],0($tempreg)
|
||
Otherwise we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
|
||
<op> op[0],0($tempreg)
|
||
|
||
For NewABI, we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
|
||
<op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
|
||
|
||
If there is a base register, we add it to $tempreg before
|
||
the <op>. If there is a constant, we stick it in the
|
||
<op> instruction. We don't handle constants larger than
|
||
16 bits, because we have no way to load the upper 16 bits
|
||
(actually, we could handle them for the subset of cases
|
||
in which we are not using $at). */
|
||
gas_assert (offset_expr.X_op == O_symbol);
|
||
if (HAVE_NEWABI)
|
||
{
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
macro_build (&offset_expr, s, fmt, op[0],
|
||
BFD_RELOC_MIPS_GOT_OFST, tempreg);
|
||
break;
|
||
}
|
||
expr1.X_add_number = offset_expr.X_add_number;
|
||
offset_expr.X_add_number = 0;
|
||
if (expr1.X_add_number < -0x8000
|
||
|| expr1.X_add_number >= 0x8000)
|
||
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
lw_reloc_type, mips_gp_register);
|
||
load_delay_nop ();
|
||
relax_start (offset_expr.X_add_symbol);
|
||
relax_switch ();
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
|
||
tempreg, BFD_RELOC_LO16);
|
||
relax_end ();
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
|
||
}
|
||
else if (mips_big_got && !HAVE_NEWABI)
|
||
{
|
||
int gpdelay;
|
||
|
||
/* If this is a reference to an external symbol, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
addu $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
|
||
<op> op[0],0($tempreg)
|
||
Otherwise we want
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
|
||
<op> op[0],0($tempreg)
|
||
If there is a base register, we add it to $tempreg before
|
||
the <op>. If there is a constant, we stick it in the
|
||
<op> instruction. We don't handle constants larger than
|
||
16 bits, because we have no way to load the upper 16 bits
|
||
(actually, we could handle them for the subset of cases
|
||
in which we are not using $at). */
|
||
gas_assert (offset_expr.X_op == O_symbol);
|
||
expr1.X_add_number = offset_expr.X_add_number;
|
||
offset_expr.X_add_number = 0;
|
||
if (expr1.X_add_number < -0x8000
|
||
|| expr1.X_add_number >= 0x8000)
|
||
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
|
||
gpdelay = reg_needs_delay (mips_gp_register);
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
|
||
BFD_RELOC_MIPS_GOT_HI16);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
|
||
mips_gp_register);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT_LO16, tempreg);
|
||
relax_switch ();
|
||
if (gpdelay)
|
||
macro_build (NULL, "nop", "");
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT16, mips_gp_register);
|
||
load_delay_nop ();
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
|
||
tempreg, BFD_RELOC_LO16);
|
||
relax_end ();
|
||
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
|
||
}
|
||
else if (mips_big_got && HAVE_NEWABI)
|
||
{
|
||
/* If this is a reference to an external symbol, we want
|
||
lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
add $tempreg,$tempreg,$gp
|
||
lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
|
||
<op> op[0],<ofst>($tempreg)
|
||
Otherwise, for local symbols, we want:
|
||
lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
|
||
<op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
|
||
gas_assert (offset_expr.X_op == O_symbol);
|
||
expr1.X_add_number = offset_expr.X_add_number;
|
||
offset_expr.X_add_number = 0;
|
||
if (expr1.X_add_number < -0x8000
|
||
|| expr1.X_add_number >= 0x8000)
|
||
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
|
||
BFD_RELOC_MIPS_GOT_HI16);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
|
||
mips_gp_register);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT_LO16, tempreg);
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
|
||
|
||
relax_switch ();
|
||
offset_expr.X_add_number = expr1.X_add_number;
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
|
||
BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
macro_build (&offset_expr, s, fmt, op[0],
|
||
BFD_RELOC_MIPS_GOT_OFST, tempreg);
|
||
relax_end ();
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
break;
|
||
|
||
case M_JRADDIUSP:
|
||
gas_assert (mips_opts.micromips);
|
||
gas_assert (mips_opts.insn32);
|
||
start_noreorder ();
|
||
macro_build (NULL, "jr", "s", RA);
|
||
expr1.X_add_number = op[0] << 2;
|
||
macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
|
||
end_noreorder ();
|
||
break;
|
||
|
||
case M_JRC:
|
||
gas_assert (mips_opts.micromips);
|
||
gas_assert (mips_opts.insn32);
|
||
macro_build (NULL, "jr", "s", op[0]);
|
||
if (mips_opts.noreorder)
|
||
macro_build (NULL, "nop", "");
|
||
break;
|
||
|
||
case M_LI:
|
||
case M_LI_S:
|
||
load_register (op[0], &imm_expr, 0);
|
||
break;
|
||
|
||
case M_DLI:
|
||
load_register (op[0], &imm_expr, 1);
|
||
break;
|
||
|
||
case M_LI_SS:
|
||
if (imm_expr.X_op == O_constant)
|
||
{
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, 0);
|
||
macro_build (NULL, "mtc1", "t,G", AT, op[0]);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
gas_assert (imm_expr.X_op == O_absent
|
||
&& offset_expr.X_op == O_symbol
|
||
&& strcmp (segment_name (S_GET_SEGMENT
|
||
(offset_expr.X_add_symbol)),
|
||
".lit4") == 0
|
||
&& offset_expr.X_add_number == 0);
|
||
macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
|
||
BFD_RELOC_MIPS_LITERAL, mips_gp_register);
|
||
break;
|
||
}
|
||
|
||
case M_LI_D:
|
||
/* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
|
||
wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
|
||
order 32 bits of the value and the low order 32 bits are either
|
||
zero or in OFFSET_EXPR. */
|
||
if (imm_expr.X_op == O_constant)
|
||
{
|
||
if (HAVE_64BIT_GPRS)
|
||
load_register (op[0], &imm_expr, 1);
|
||
else
|
||
{
|
||
int hreg, lreg;
|
||
|
||
if (target_big_endian)
|
||
{
|
||
hreg = op[0];
|
||
lreg = op[0] + 1;
|
||
}
|
||
else
|
||
{
|
||
hreg = op[0] + 1;
|
||
lreg = op[0];
|
||
}
|
||
|
||
if (hreg <= 31)
|
||
load_register (hreg, &imm_expr, 0);
|
||
if (lreg <= 31)
|
||
{
|
||
if (offset_expr.X_op == O_absent)
|
||
move_register (lreg, 0);
|
||
else
|
||
{
|
||
gas_assert (offset_expr.X_op == O_constant);
|
||
load_register (lreg, &offset_expr, 0);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
gas_assert (imm_expr.X_op == O_absent);
|
||
|
||
/* We know that sym is in the .rdata section. First we get the
|
||
upper 16 bits of the address. */
|
||
if (mips_pic == NO_PIC)
|
||
{
|
||
macro_build_lui (&offset_expr, AT);
|
||
used_at = 1;
|
||
}
|
||
else
|
||
{
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
|
||
BFD_RELOC_MIPS_GOT16, mips_gp_register);
|
||
used_at = 1;
|
||
}
|
||
|
||
/* Now we load the register(s). */
|
||
if (HAVE_64BIT_GPRS)
|
||
{
|
||
used_at = 1;
|
||
macro_build (&offset_expr, "ld", "t,o(b)", op[0],
|
||
BFD_RELOC_LO16, AT);
|
||
}
|
||
else
|
||
{
|
||
used_at = 1;
|
||
macro_build (&offset_expr, "lw", "t,o(b)", op[0],
|
||
BFD_RELOC_LO16, AT);
|
||
if (op[0] != RA)
|
||
{
|
||
/* FIXME: How in the world do we deal with the possible
|
||
overflow here? */
|
||
offset_expr.X_add_number += 4;
|
||
macro_build (&offset_expr, "lw", "t,o(b)",
|
||
op[0] + 1, BFD_RELOC_LO16, AT);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case M_LI_DD:
|
||
/* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
|
||
wide, IMM_EXPR is the entire value and the GPRs are known to be 64
|
||
bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
|
||
the value and the low order 32 bits are either zero or in
|
||
OFFSET_EXPR. */
|
||
if (imm_expr.X_op == O_constant)
|
||
{
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
|
||
if (HAVE_64BIT_FPRS)
|
||
{
|
||
gas_assert (HAVE_64BIT_GPRS);
|
||
macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
|
||
}
|
||
else
|
||
{
|
||
macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
|
||
if (offset_expr.X_op == O_absent)
|
||
macro_build (NULL, "mtc1", "t,G", 0, op[0]);
|
||
else
|
||
{
|
||
gas_assert (offset_expr.X_op == O_constant);
|
||
load_register (AT, &offset_expr, 0);
|
||
macro_build (NULL, "mtc1", "t,G", AT, op[0]);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
gas_assert (imm_expr.X_op == O_absent
|
||
&& offset_expr.X_op == O_symbol
|
||
&& offset_expr.X_add_number == 0);
|
||
s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
|
||
if (strcmp (s, ".lit8") == 0)
|
||
{
|
||
op[2] = mips_gp_register;
|
||
offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
|
||
offset_reloc[1] = BFD_RELOC_UNUSED;
|
||
offset_reloc[2] = BFD_RELOC_UNUSED;
|
||
}
|
||
else
|
||
{
|
||
gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
|
||
used_at = 1;
|
||
if (mips_pic != NO_PIC)
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
|
||
BFD_RELOC_MIPS_GOT16, mips_gp_register);
|
||
else
|
||
{
|
||
/* FIXME: This won't work for a 64 bit address. */
|
||
macro_build_lui (&offset_expr, AT);
|
||
}
|
||
|
||
op[2] = AT;
|
||
offset_reloc[0] = BFD_RELOC_LO16;
|
||
offset_reloc[1] = BFD_RELOC_UNUSED;
|
||
offset_reloc[2] = BFD_RELOC_UNUSED;
|
||
}
|
||
align = 8;
|
||
/* Fall through */
|
||
|
||
case M_L_DAB:
|
||
/*
|
||
* The MIPS assembler seems to check for X_add_number not
|
||
* being double aligned and generating:
|
||
* lui at,%hi(foo+1)
|
||
* addu at,at,v1
|
||
* addiu at,at,%lo(foo+1)
|
||
* lwc1 f2,0(at)
|
||
* lwc1 f3,4(at)
|
||
* But, the resulting address is the same after relocation so why
|
||
* generate the extra instruction?
|
||
*/
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
fmt = "T,o(b)";
|
||
if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
|
||
{
|
||
s = "ldc1";
|
||
goto ld_st;
|
||
}
|
||
s = "lwc1";
|
||
goto ldd_std;
|
||
|
||
case M_S_DAB:
|
||
gas_assert (!mips_opts.micromips);
|
||
/* Itbl support may require additional care here. */
|
||
coproc = 1;
|
||
fmt = "T,o(b)";
|
||
if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
|
||
{
|
||
s = "sdc1";
|
||
goto ld_st;
|
||
}
|
||
s = "swc1";
|
||
goto ldd_std;
|
||
|
||
case M_LQ_AB:
|
||
fmt = "t,o(b)";
|
||
s = "lq";
|
||
goto ld;
|
||
|
||
case M_SQ_AB:
|
||
fmt = "t,o(b)";
|
||
s = "sq";
|
||
goto ld_st;
|
||
|
||
case M_LD_AB:
|
||
fmt = "t,o(b)";
|
||
if (HAVE_64BIT_GPRS)
|
||
{
|
||
s = "ld";
|
||
goto ld;
|
||
}
|
||
s = "lw";
|
||
goto ldd_std;
|
||
|
||
case M_SD_AB:
|
||
fmt = "t,o(b)";
|
||
if (HAVE_64BIT_GPRS)
|
||
{
|
||
s = "sd";
|
||
goto ld_st;
|
||
}
|
||
s = "sw";
|
||
|
||
ldd_std:
|
||
/* Even on a big endian machine $fn comes before $fn+1. We have
|
||
to adjust when loading from memory. We set coproc if we must
|
||
load $fn+1 first. */
|
||
/* Itbl support may require additional care here. */
|
||
if (!target_big_endian)
|
||
coproc = 0;
|
||
|
||
breg = op[2];
|
||
if (small_offset_p (0, align, 16))
|
||
{
|
||
ep = &offset_expr;
|
||
if (!small_offset_p (4, align, 16))
|
||
{
|
||
macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
|
||
-1, offset_reloc[0], offset_reloc[1],
|
||
offset_reloc[2]);
|
||
expr1.X_add_number = 0;
|
||
ep = &expr1;
|
||
breg = AT;
|
||
used_at = 1;
|
||
offset_reloc[0] = BFD_RELOC_LO16;
|
||
offset_reloc[1] = BFD_RELOC_UNUSED;
|
||
offset_reloc[2] = BFD_RELOC_UNUSED;
|
||
}
|
||
if (strcmp (s, "lw") == 0 && op[0] == breg)
|
||
{
|
||
ep->X_add_number += 4;
|
||
macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
|
||
offset_reloc[1], offset_reloc[2], breg);
|
||
ep->X_add_number -= 4;
|
||
macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
|
||
offset_reloc[1], offset_reloc[2], breg);
|
||
}
|
||
else
|
||
{
|
||
macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
|
||
offset_reloc[0], offset_reloc[1], offset_reloc[2],
|
||
breg);
|
||
ep->X_add_number += 4;
|
||
macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
|
||
offset_reloc[0], offset_reloc[1], offset_reloc[2],
|
||
breg);
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (offset_expr.X_op != O_symbol
|
||
&& offset_expr.X_op != O_constant)
|
||
{
|
||
as_bad (_("expression too complex"));
|
||
offset_expr.X_op = O_constant;
|
||
}
|
||
|
||
if (HAVE_32BIT_ADDRESSES
|
||
&& !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
|
||
{
|
||
char value [32];
|
||
|
||
sprintf_vma (value, offset_expr.X_add_number);
|
||
as_bad (_("number (0x%s) larger than 32 bits"), value);
|
||
}
|
||
|
||
if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
|
||
{
|
||
/* If this is a reference to a GP relative symbol, we want
|
||
<op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
|
||
<op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
|
||
If we have a base register, we use this
|
||
addu $at,$breg,$gp
|
||
<op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
|
||
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
|
||
If this is not a GP relative symbol, we want
|
||
lui $at,<sym> (BFD_RELOC_HI16_S)
|
||
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
|
||
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
|
||
If there is a base register, we add it to $at after the
|
||
lui instruction. If there is a constant, we always use
|
||
the last case. */
|
||
if (offset_expr.X_op == O_symbol
|
||
&& (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
|
||
&& !nopic_need_relax (offset_expr.X_add_symbol, 1))
|
||
{
|
||
relax_start (offset_expr.X_add_symbol);
|
||
if (breg == 0)
|
||
{
|
||
tempreg = mips_gp_register;
|
||
}
|
||
else
|
||
{
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
AT, breg, mips_gp_register);
|
||
tempreg = AT;
|
||
used_at = 1;
|
||
}
|
||
|
||
/* Itbl support may require additional care here. */
|
||
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
|
||
BFD_RELOC_GPREL16, tempreg);
|
||
offset_expr.X_add_number += 4;
|
||
|
||
/* Set mips_optimize to 2 to avoid inserting an
|
||
undesired nop. */
|
||
hold_mips_optimize = mips_optimize;
|
||
mips_optimize = 2;
|
||
/* Itbl support may require additional care here. */
|
||
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
|
||
BFD_RELOC_GPREL16, tempreg);
|
||
mips_optimize = hold_mips_optimize;
|
||
|
||
relax_switch ();
|
||
|
||
offset_expr.X_add_number -= 4;
|
||
}
|
||
used_at = 1;
|
||
if (offset_high_part (offset_expr.X_add_number, 16)
|
||
!= offset_high_part (offset_expr.X_add_number + 4, 16))
|
||
{
|
||
load_address (AT, &offset_expr, &used_at);
|
||
offset_expr.X_op = O_constant;
|
||
offset_expr.X_add_number = 0;
|
||
}
|
||
else
|
||
macro_build_lui (&offset_expr, AT);
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
|
||
/* Itbl support may require additional care here. */
|
||
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
|
||
BFD_RELOC_LO16, AT);
|
||
/* FIXME: How do we handle overflow here? */
|
||
offset_expr.X_add_number += 4;
|
||
/* Itbl support may require additional care here. */
|
||
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
|
||
BFD_RELOC_LO16, AT);
|
||
if (mips_relax.sequence)
|
||
relax_end ();
|
||
}
|
||
else if (!mips_big_got)
|
||
{
|
||
/* If this is a reference to an external symbol, we want
|
||
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
<op> op[0],0($at)
|
||
<op> op[0]+1,4($at)
|
||
Otherwise we want
|
||
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
|
||
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
|
||
If there is a base register we add it to $at before the
|
||
lwc1 instructions. If there is a constant we include it
|
||
in the lwc1 instructions. */
|
||
used_at = 1;
|
||
expr1.X_add_number = offset_expr.X_add_number;
|
||
if (expr1.X_add_number < -0x8000
|
||
|| expr1.X_add_number >= 0x8000 - 4)
|
||
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
|
||
load_got_offset (AT, &offset_expr);
|
||
load_delay_nop ();
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
|
||
|
||
/* Set mips_optimize to 2 to avoid inserting an undesired
|
||
nop. */
|
||
hold_mips_optimize = mips_optimize;
|
||
mips_optimize = 2;
|
||
|
||
/* Itbl support may require additional care here. */
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
|
||
BFD_RELOC_LO16, AT);
|
||
expr1.X_add_number += 4;
|
||
macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
|
||
BFD_RELOC_LO16, AT);
|
||
relax_switch ();
|
||
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
|
||
BFD_RELOC_LO16, AT);
|
||
offset_expr.X_add_number += 4;
|
||
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
|
||
BFD_RELOC_LO16, AT);
|
||
relax_end ();
|
||
|
||
mips_optimize = hold_mips_optimize;
|
||
}
|
||
else if (mips_big_got)
|
||
{
|
||
int gpdelay;
|
||
|
||
/* If this is a reference to an external symbol, we want
|
||
lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
|
||
addu $at,$at,$gp
|
||
lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
|
||
nop
|
||
<op> op[0],0($at)
|
||
<op> op[0]+1,4($at)
|
||
Otherwise we want
|
||
lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
|
||
nop
|
||
<op> op[0],<sym>($at) (BFD_RELOC_LO16)
|
||
<op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
|
||
If there is a base register we add it to $at before the
|
||
lwc1 instructions. If there is a constant we include it
|
||
in the lwc1 instructions. */
|
||
used_at = 1;
|
||
expr1.X_add_number = offset_expr.X_add_number;
|
||
offset_expr.X_add_number = 0;
|
||
if (expr1.X_add_number < -0x8000
|
||
|| expr1.X_add_number >= 0x8000 - 4)
|
||
as_bad (_("PIC code offset overflow (max 16 signed bits)"));
|
||
gpdelay = reg_needs_delay (mips_gp_register);
|
||
relax_start (offset_expr.X_add_symbol);
|
||
macro_build (&offset_expr, "lui", LUI_FMT,
|
||
AT, BFD_RELOC_MIPS_GOT_HI16);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
AT, AT, mips_gp_register);
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
|
||
AT, BFD_RELOC_MIPS_GOT_LO16, AT);
|
||
load_delay_nop ();
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
|
||
/* Itbl support may require additional care here. */
|
||
macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
|
||
BFD_RELOC_LO16, AT);
|
||
expr1.X_add_number += 4;
|
||
|
||
/* Set mips_optimize to 2 to avoid inserting an undesired
|
||
nop. */
|
||
hold_mips_optimize = mips_optimize;
|
||
mips_optimize = 2;
|
||
/* Itbl support may require additional care here. */
|
||
macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
|
||
BFD_RELOC_LO16, AT);
|
||
mips_optimize = hold_mips_optimize;
|
||
expr1.X_add_number -= 4;
|
||
|
||
relax_switch ();
|
||
offset_expr.X_add_number = expr1.X_add_number;
|
||
if (gpdelay)
|
||
macro_build (NULL, "nop", "");
|
||
macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
|
||
BFD_RELOC_MIPS_GOT16, mips_gp_register);
|
||
load_delay_nop ();
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
|
||
/* Itbl support may require additional care here. */
|
||
macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
|
||
BFD_RELOC_LO16, AT);
|
||
offset_expr.X_add_number += 4;
|
||
|
||
/* Set mips_optimize to 2 to avoid inserting an undesired
|
||
nop. */
|
||
hold_mips_optimize = mips_optimize;
|
||
mips_optimize = 2;
|
||
/* Itbl support may require additional care here. */
|
||
macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
|
||
BFD_RELOC_LO16, AT);
|
||
mips_optimize = hold_mips_optimize;
|
||
relax_end ();
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
break;
|
||
|
||
case M_SAA_AB:
|
||
s = "saa";
|
||
offbits = 0;
|
||
fmt = "t,(b)";
|
||
goto ld_st;
|
||
case M_SAAD_AB:
|
||
s = "saad";
|
||
offbits = 0;
|
||
fmt = "t,(b)";
|
||
goto ld_st;
|
||
|
||
/* New code added to support COPZ instructions.
|
||
This code builds table entries out of the macros in mip_opcodes.
|
||
R4000 uses interlocks to handle coproc delays.
|
||
Other chips (like the R3000) require nops to be inserted for delays.
|
||
|
||
FIXME: Currently, we require that the user handle delays.
|
||
In order to fill delay slots for non-interlocked chips,
|
||
we must have a way to specify delays based on the coprocessor.
|
||
Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
|
||
What are the side-effects of the cop instruction?
|
||
What cache support might we have and what are its effects?
|
||
Both coprocessor & memory require delays. how long???
|
||
What registers are read/set/modified?
|
||
|
||
If an itbl is provided to interpret cop instructions,
|
||
this knowledge can be encoded in the itbl spec. */
|
||
|
||
case M_COP0:
|
||
s = "c0";
|
||
goto copz;
|
||
case M_COP1:
|
||
s = "c1";
|
||
goto copz;
|
||
case M_COP2:
|
||
s = "c2";
|
||
goto copz;
|
||
case M_COP3:
|
||
s = "c3";
|
||
copz:
|
||
gas_assert (!mips_opts.micromips);
|
||
/* For now we just do C (same as Cz). The parameter will be
|
||
stored in insn_opcode by mips_ip. */
|
||
macro_build (NULL, s, "C", (int) ip->insn_opcode);
|
||
break;
|
||
|
||
case M_MOVE:
|
||
move_register (op[0], op[1]);
|
||
break;
|
||
|
||
case M_MOVEP:
|
||
gas_assert (mips_opts.micromips);
|
||
gas_assert (mips_opts.insn32);
|
||
move_register (micromips_to_32_reg_h_map1[op[0]],
|
||
micromips_to_32_reg_m_map[op[1]]);
|
||
move_register (micromips_to_32_reg_h_map2[op[0]],
|
||
micromips_to_32_reg_n_map[op[2]]);
|
||
break;
|
||
|
||
case M_DMUL:
|
||
dbl = 1;
|
||
case M_MUL:
|
||
if (mips_opts.arch == CPU_R5900)
|
||
macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
|
||
op[2]);
|
||
else
|
||
{
|
||
macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
|
||
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
|
||
}
|
||
break;
|
||
|
||
case M_DMUL_I:
|
||
dbl = 1;
|
||
case M_MUL_I:
|
||
/* The MIPS assembler some times generates shifts and adds. I'm
|
||
not trying to be that fancy. GCC should do this for us
|
||
anyway. */
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, dbl);
|
||
macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
|
||
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
|
||
break;
|
||
|
||
case M_DMULO_I:
|
||
dbl = 1;
|
||
case M_MULO_I:
|
||
imm = 1;
|
||
goto do_mulo;
|
||
|
||
case M_DMULO:
|
||
dbl = 1;
|
||
case M_MULO:
|
||
do_mulo:
|
||
start_noreorder ();
|
||
used_at = 1;
|
||
if (imm)
|
||
load_register (AT, &imm_expr, dbl);
|
||
macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
|
||
op[1], imm ? AT : op[2]);
|
||
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
|
||
macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
|
||
macro_build (NULL, "mfhi", MFHL_FMT, AT);
|
||
if (mips_trap)
|
||
macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
|
||
else
|
||
{
|
||
if (mips_opts.micromips)
|
||
micromips_label_expr (&label_expr);
|
||
else
|
||
label_expr.X_add_number = 8;
|
||
macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
|
||
macro_build (NULL, "nop", "");
|
||
macro_build (NULL, "break", BRK_FMT, 6);
|
||
if (mips_opts.micromips)
|
||
micromips_add_label ();
|
||
}
|
||
end_noreorder ();
|
||
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
|
||
break;
|
||
|
||
case M_DMULOU_I:
|
||
dbl = 1;
|
||
case M_MULOU_I:
|
||
imm = 1;
|
||
goto do_mulou;
|
||
|
||
case M_DMULOU:
|
||
dbl = 1;
|
||
case M_MULOU:
|
||
do_mulou:
|
||
start_noreorder ();
|
||
used_at = 1;
|
||
if (imm)
|
||
load_register (AT, &imm_expr, dbl);
|
||
macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
|
||
op[1], imm ? AT : op[2]);
|
||
macro_build (NULL, "mfhi", MFHL_FMT, AT);
|
||
macro_build (NULL, "mflo", MFHL_FMT, op[0]);
|
||
if (mips_trap)
|
||
macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
|
||
else
|
||
{
|
||
if (mips_opts.micromips)
|
||
micromips_label_expr (&label_expr);
|
||
else
|
||
label_expr.X_add_number = 8;
|
||
macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
|
||
macro_build (NULL, "nop", "");
|
||
macro_build (NULL, "break", BRK_FMT, 6);
|
||
if (mips_opts.micromips)
|
||
micromips_add_label ();
|
||
}
|
||
end_noreorder ();
|
||
break;
|
||
|
||
case M_DROL:
|
||
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
|
||
{
|
||
if (op[0] == op[1])
|
||
{
|
||
tempreg = AT;
|
||
used_at = 1;
|
||
}
|
||
else
|
||
tempreg = op[0];
|
||
macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
|
||
macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
|
||
break;
|
||
}
|
||
used_at = 1;
|
||
macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
|
||
macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
|
||
macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
|
||
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
|
||
break;
|
||
|
||
case M_ROL:
|
||
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
|
||
{
|
||
if (op[0] == op[1])
|
||
{
|
||
tempreg = AT;
|
||
used_at = 1;
|
||
}
|
||
else
|
||
tempreg = op[0];
|
||
macro_build (NULL, "negu", "d,w", tempreg, op[2]);
|
||
macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
|
||
break;
|
||
}
|
||
used_at = 1;
|
||
macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
|
||
macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
|
||
macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
|
||
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
|
||
break;
|
||
|
||
case M_DROL_I:
|
||
{
|
||
unsigned int rot;
|
||
char *l;
|
||
char *rr;
|
||
|
||
rot = imm_expr.X_add_number & 0x3f;
|
||
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
|
||
{
|
||
rot = (64 - rot) & 0x3f;
|
||
if (rot >= 32)
|
||
macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
|
||
else
|
||
macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
|
||
break;
|
||
}
|
||
if (rot == 0)
|
||
{
|
||
macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
|
||
break;
|
||
}
|
||
l = (rot < 0x20) ? "dsll" : "dsll32";
|
||
rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
|
||
rot &= 0x1f;
|
||
used_at = 1;
|
||
macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
|
||
macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
|
||
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
|
||
}
|
||
break;
|
||
|
||
case M_ROL_I:
|
||
{
|
||
unsigned int rot;
|
||
|
||
rot = imm_expr.X_add_number & 0x1f;
|
||
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
|
||
{
|
||
macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
|
||
(32 - rot) & 0x1f);
|
||
break;
|
||
}
|
||
if (rot == 0)
|
||
{
|
||
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
|
||
break;
|
||
}
|
||
used_at = 1;
|
||
macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
|
||
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
|
||
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
|
||
}
|
||
break;
|
||
|
||
case M_DROR:
|
||
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
|
||
{
|
||
macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
|
||
break;
|
||
}
|
||
used_at = 1;
|
||
macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
|
||
macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
|
||
macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
|
||
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
|
||
break;
|
||
|
||
case M_ROR:
|
||
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
|
||
{
|
||
macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
|
||
break;
|
||
}
|
||
used_at = 1;
|
||
macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
|
||
macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
|
||
macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
|
||
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
|
||
break;
|
||
|
||
case M_DROR_I:
|
||
{
|
||
unsigned int rot;
|
||
char *l;
|
||
char *rr;
|
||
|
||
rot = imm_expr.X_add_number & 0x3f;
|
||
if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
|
||
{
|
||
if (rot >= 32)
|
||
macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
|
||
else
|
||
macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
|
||
break;
|
||
}
|
||
if (rot == 0)
|
||
{
|
||
macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
|
||
break;
|
||
}
|
||
rr = (rot < 0x20) ? "dsrl" : "dsrl32";
|
||
l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
|
||
rot &= 0x1f;
|
||
used_at = 1;
|
||
macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
|
||
macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
|
||
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
|
||
}
|
||
break;
|
||
|
||
case M_ROR_I:
|
||
{
|
||
unsigned int rot;
|
||
|
||
rot = imm_expr.X_add_number & 0x1f;
|
||
if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
|
||
{
|
||
macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
|
||
break;
|
||
}
|
||
if (rot == 0)
|
||
{
|
||
macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
|
||
break;
|
||
}
|
||
used_at = 1;
|
||
macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
|
||
macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
|
||
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
|
||
}
|
||
break;
|
||
|
||
case M_SEQ:
|
||
if (op[1] == 0)
|
||
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
|
||
else if (op[2] == 0)
|
||
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
|
||
else
|
||
{
|
||
macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
|
||
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
|
||
}
|
||
break;
|
||
|
||
case M_SEQ_I:
|
||
if (imm_expr.X_add_number == 0)
|
||
{
|
||
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
|
||
break;
|
||
}
|
||
if (op[1] == 0)
|
||
{
|
||
as_warn (_("instruction %s: result is always false"),
|
||
ip->insn_mo->name);
|
||
move_register (op[0], 0);
|
||
break;
|
||
}
|
||
if (CPU_HAS_SEQ (mips_opts.arch)
|
||
&& -512 <= imm_expr.X_add_number
|
||
&& imm_expr.X_add_number < 512)
|
||
{
|
||
macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
|
||
(int) imm_expr.X_add_number);
|
||
break;
|
||
}
|
||
if (imm_expr.X_add_number >= 0
|
||
&& imm_expr.X_add_number < 0x10000)
|
||
macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
|
||
else if (imm_expr.X_add_number > -0x8000
|
||
&& imm_expr.X_add_number < 0)
|
||
{
|
||
imm_expr.X_add_number = -imm_expr.X_add_number;
|
||
macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
|
||
"t,r,j", op[0], op[1], BFD_RELOC_LO16);
|
||
}
|
||
else if (CPU_HAS_SEQ (mips_opts.arch))
|
||
{
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
|
||
used_at = 1;
|
||
}
|
||
macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
|
||
break;
|
||
|
||
case M_SGE: /* X >= Y <==> not (X < Y) */
|
||
s = "slt";
|
||
goto sge;
|
||
case M_SGEU:
|
||
s = "sltu";
|
||
sge:
|
||
macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
|
||
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
|
||
break;
|
||
|
||
case M_SGE_I: /* X >= I <==> not (X < I) */
|
||
case M_SGEU_I:
|
||
if (imm_expr.X_add_number >= -0x8000
|
||
&& imm_expr.X_add_number < 0x8000)
|
||
macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
|
||
op[0], op[1], BFD_RELOC_LO16);
|
||
else
|
||
{
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
|
||
op[0], op[1], AT);
|
||
used_at = 1;
|
||
}
|
||
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
|
||
break;
|
||
|
||
case M_SGT: /* X > Y <==> Y < X */
|
||
s = "slt";
|
||
goto sgt;
|
||
case M_SGTU:
|
||
s = "sltu";
|
||
sgt:
|
||
macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
|
||
break;
|
||
|
||
case M_SGT_I: /* X > I <==> I < X */
|
||
s = "slt";
|
||
goto sgti;
|
||
case M_SGTU_I:
|
||
s = "sltu";
|
||
sgti:
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
|
||
break;
|
||
|
||
case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
|
||
s = "slt";
|
||
goto sle;
|
||
case M_SLEU:
|
||
s = "sltu";
|
||
sle:
|
||
macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
|
||
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
|
||
break;
|
||
|
||
case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
|
||
s = "slt";
|
||
goto slei;
|
||
case M_SLEU_I:
|
||
s = "sltu";
|
||
slei:
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
|
||
macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
|
||
break;
|
||
|
||
case M_SLT_I:
|
||
if (imm_expr.X_add_number >= -0x8000
|
||
&& imm_expr.X_add_number < 0x8000)
|
||
{
|
||
macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
|
||
BFD_RELOC_LO16);
|
||
break;
|
||
}
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
|
||
break;
|
||
|
||
case M_SLTU_I:
|
||
if (imm_expr.X_add_number >= -0x8000
|
||
&& imm_expr.X_add_number < 0x8000)
|
||
{
|
||
macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
|
||
BFD_RELOC_LO16);
|
||
break;
|
||
}
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
|
||
break;
|
||
|
||
case M_SNE:
|
||
if (op[1] == 0)
|
||
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
|
||
else if (op[2] == 0)
|
||
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
|
||
else
|
||
{
|
||
macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
|
||
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
|
||
}
|
||
break;
|
||
|
||
case M_SNE_I:
|
||
if (imm_expr.X_add_number == 0)
|
||
{
|
||
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
|
||
break;
|
||
}
|
||
if (op[1] == 0)
|
||
{
|
||
as_warn (_("instruction %s: result is always true"),
|
||
ip->insn_mo->name);
|
||
macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
|
||
op[0], 0, BFD_RELOC_LO16);
|
||
break;
|
||
}
|
||
if (CPU_HAS_SEQ (mips_opts.arch)
|
||
&& -512 <= imm_expr.X_add_number
|
||
&& imm_expr.X_add_number < 512)
|
||
{
|
||
macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
|
||
(int) imm_expr.X_add_number);
|
||
break;
|
||
}
|
||
if (imm_expr.X_add_number >= 0
|
||
&& imm_expr.X_add_number < 0x10000)
|
||
{
|
||
macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
|
||
BFD_RELOC_LO16);
|
||
}
|
||
else if (imm_expr.X_add_number > -0x8000
|
||
&& imm_expr.X_add_number < 0)
|
||
{
|
||
imm_expr.X_add_number = -imm_expr.X_add_number;
|
||
macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
|
||
"t,r,j", op[0], op[1], BFD_RELOC_LO16);
|
||
}
|
||
else if (CPU_HAS_SEQ (mips_opts.arch))
|
||
{
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
|
||
used_at = 1;
|
||
}
|
||
macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
|
||
break;
|
||
|
||
case M_SUB_I:
|
||
s = "addi";
|
||
s2 = "sub";
|
||
goto do_subi;
|
||
case M_SUBU_I:
|
||
s = "addiu";
|
||
s2 = "subu";
|
||
goto do_subi;
|
||
case M_DSUB_I:
|
||
dbl = 1;
|
||
s = "daddi";
|
||
s2 = "dsub";
|
||
if (!mips_opts.micromips)
|
||
goto do_subi;
|
||
if (imm_expr.X_add_number > -0x200
|
||
&& imm_expr.X_add_number <= 0x200)
|
||
{
|
||
macro_build (NULL, s, "t,r,.", op[0], op[1],
|
||
(int) -imm_expr.X_add_number);
|
||
break;
|
||
}
|
||
goto do_subi_i;
|
||
case M_DSUBU_I:
|
||
dbl = 1;
|
||
s = "daddiu";
|
||
s2 = "dsubu";
|
||
do_subi:
|
||
if (imm_expr.X_add_number > -0x8000
|
||
&& imm_expr.X_add_number <= 0x8000)
|
||
{
|
||
imm_expr.X_add_number = -imm_expr.X_add_number;
|
||
macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
|
||
break;
|
||
}
|
||
do_subi_i:
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, dbl);
|
||
macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
|
||
break;
|
||
|
||
case M_TEQ_I:
|
||
s = "teq";
|
||
goto trap;
|
||
case M_TGE_I:
|
||
s = "tge";
|
||
goto trap;
|
||
case M_TGEU_I:
|
||
s = "tgeu";
|
||
goto trap;
|
||
case M_TLT_I:
|
||
s = "tlt";
|
||
goto trap;
|
||
case M_TLTU_I:
|
||
s = "tltu";
|
||
goto trap;
|
||
case M_TNE_I:
|
||
s = "tne";
|
||
trap:
|
||
used_at = 1;
|
||
load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
|
||
macro_build (NULL, s, "s,t", op[0], AT);
|
||
break;
|
||
|
||
case M_TRUNCWS:
|
||
case M_TRUNCWD:
|
||
gas_assert (!mips_opts.micromips);
|
||
gas_assert (mips_opts.isa == ISA_MIPS1);
|
||
used_at = 1;
|
||
|
||
/*
|
||
* Is the double cfc1 instruction a bug in the mips assembler;
|
||
* or is there a reason for it?
|
||
*/
|
||
start_noreorder ();
|
||
macro_build (NULL, "cfc1", "t,G", op[2], RA);
|
||
macro_build (NULL, "cfc1", "t,G", op[2], RA);
|
||
macro_build (NULL, "nop", "");
|
||
expr1.X_add_number = 3;
|
||
macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
|
||
expr1.X_add_number = 2;
|
||
macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
|
||
macro_build (NULL, "ctc1", "t,G", AT, RA);
|
||
macro_build (NULL, "nop", "");
|
||
macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
|
||
op[0], op[1]);
|
||
macro_build (NULL, "ctc1", "t,G", op[2], RA);
|
||
macro_build (NULL, "nop", "");
|
||
end_noreorder ();
|
||
break;
|
||
|
||
case M_ULH_AB:
|
||
s = "lb";
|
||
s2 = "lbu";
|
||
off = 1;
|
||
goto uld_st;
|
||
case M_ULHU_AB:
|
||
s = "lbu";
|
||
s2 = "lbu";
|
||
off = 1;
|
||
goto uld_st;
|
||
case M_ULW_AB:
|
||
s = "lwl";
|
||
s2 = "lwr";
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
off = 3;
|
||
goto uld_st;
|
||
case M_ULD_AB:
|
||
s = "ldl";
|
||
s2 = "ldr";
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
off = 7;
|
||
goto uld_st;
|
||
case M_USH_AB:
|
||
s = "sb";
|
||
s2 = "sb";
|
||
off = 1;
|
||
ust = 1;
|
||
goto uld_st;
|
||
case M_USW_AB:
|
||
s = "swl";
|
||
s2 = "swr";
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
off = 3;
|
||
ust = 1;
|
||
goto uld_st;
|
||
case M_USD_AB:
|
||
s = "sdl";
|
||
s2 = "sdr";
|
||
offbits = (mips_opts.micromips ? 12 : 16);
|
||
off = 7;
|
||
ust = 1;
|
||
|
||
uld_st:
|
||
breg = op[2];
|
||
large_offset = !small_offset_p (off, align, offbits);
|
||
ep = &offset_expr;
|
||
expr1.X_add_number = 0;
|
||
if (large_offset)
|
||
{
|
||
used_at = 1;
|
||
tempreg = AT;
|
||
if (small_offset_p (0, align, 16))
|
||
macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
|
||
offset_reloc[0], offset_reloc[1], offset_reloc[2]);
|
||
else
|
||
{
|
||
load_address (tempreg, ep, &used_at);
|
||
if (breg != 0)
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
|
||
tempreg, tempreg, breg);
|
||
}
|
||
offset_reloc[0] = BFD_RELOC_LO16;
|
||
offset_reloc[1] = BFD_RELOC_UNUSED;
|
||
offset_reloc[2] = BFD_RELOC_UNUSED;
|
||
breg = tempreg;
|
||
tempreg = op[0];
|
||
ep = &expr1;
|
||
}
|
||
else if (!ust && op[0] == breg)
|
||
{
|
||
used_at = 1;
|
||
tempreg = AT;
|
||
}
|
||
else
|
||
tempreg = op[0];
|
||
|
||
if (off == 1)
|
||
goto ulh_sh;
|
||
|
||
if (!target_big_endian)
|
||
ep->X_add_number += off;
|
||
if (offbits == 12)
|
||
macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
|
||
else
|
||
macro_build (ep, s, "t,o(b)", tempreg, -1,
|
||
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
|
||
|
||
if (!target_big_endian)
|
||
ep->X_add_number -= off;
|
||
else
|
||
ep->X_add_number += off;
|
||
if (offbits == 12)
|
||
macro_build (NULL, s2, "t,~(b)",
|
||
tempreg, (int) ep->X_add_number, breg);
|
||
else
|
||
macro_build (ep, s2, "t,o(b)", tempreg, -1,
|
||
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
|
||
|
||
/* If necessary, move the result in tempreg to the final destination. */
|
||
if (!ust && op[0] != tempreg)
|
||
{
|
||
/* Protect second load's delay slot. */
|
||
load_delay_nop ();
|
||
move_register (op[0], tempreg);
|
||
}
|
||
break;
|
||
|
||
ulh_sh:
|
||
used_at = 1;
|
||
if (target_big_endian == ust)
|
||
ep->X_add_number += off;
|
||
tempreg = ust || large_offset ? op[0] : AT;
|
||
macro_build (ep, s, "t,o(b)", tempreg, -1,
|
||
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
|
||
|
||
/* For halfword transfers we need a temporary register to shuffle
|
||
bytes. Unfortunately for M_USH_A we have none available before
|
||
the next store as AT holds the base address. We deal with this
|
||
case by clobbering TREG and then restoring it as with ULH. */
|
||
tempreg = ust == large_offset ? op[0] : AT;
|
||
if (ust)
|
||
macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
|
||
|
||
if (target_big_endian == ust)
|
||
ep->X_add_number -= off;
|
||
else
|
||
ep->X_add_number += off;
|
||
macro_build (ep, s2, "t,o(b)", tempreg, -1,
|
||
offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
|
||
|
||
/* For M_USH_A re-retrieve the LSB. */
|
||
if (ust && large_offset)
|
||
{
|
||
if (target_big_endian)
|
||
ep->X_add_number += off;
|
||
else
|
||
ep->X_add_number -= off;
|
||
macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
|
||
offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
|
||
}
|
||
/* For ULH and M_USH_A OR the LSB in. */
|
||
if (!ust || large_offset)
|
||
{
|
||
tempreg = !large_offset ? AT : op[0];
|
||
macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
|
||
macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* FIXME: Check if this is one of the itbl macros, since they
|
||
are added dynamically. */
|
||
as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
|
||
break;
|
||
}
|
||
if (!mips_opts.at && used_at)
|
||
as_bad (_("macro used $at after \".set noat\""));
|
||
}
|
||
|
||
/* Implement macros in mips16 mode. */
|
||
|
||
static void
|
||
mips16_macro (struct mips_cl_insn *ip)
|
||
{
|
||
const struct mips_operand_array *operands;
|
||
int mask;
|
||
int tmp;
|
||
expressionS expr1;
|
||
int dbl;
|
||
const char *s, *s2, *s3;
|
||
unsigned int op[MAX_OPERANDS];
|
||
unsigned int i;
|
||
|
||
mask = ip->insn_mo->mask;
|
||
|
||
operands = insn_operands (ip);
|
||
for (i = 0; i < MAX_OPERANDS; i++)
|
||
if (operands->operand[i])
|
||
op[i] = insn_extract_operand (ip, operands->operand[i]);
|
||
else
|
||
op[i] = -1;
|
||
|
||
expr1.X_op = O_constant;
|
||
expr1.X_op_symbol = NULL;
|
||
expr1.X_add_symbol = NULL;
|
||
expr1.X_add_number = 1;
|
||
|
||
dbl = 0;
|
||
|
||
switch (mask)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case M_DDIV_3:
|
||
dbl = 1;
|
||
case M_DIV_3:
|
||
s = "mflo";
|
||
goto do_div3;
|
||
case M_DREM_3:
|
||
dbl = 1;
|
||
case M_REM_3:
|
||
s = "mfhi";
|
||
do_div3:
|
||
start_noreorder ();
|
||
macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
|
||
expr1.X_add_number = 2;
|
||
macro_build (&expr1, "bnez", "x,p", op[2]);
|
||
macro_build (NULL, "break", "6", 7);
|
||
|
||
/* FIXME: The normal code checks for of -1 / -0x80000000 here,
|
||
since that causes an overflow. We should do that as well,
|
||
but I don't see how to do the comparisons without a temporary
|
||
register. */
|
||
end_noreorder ();
|
||
macro_build (NULL, s, "x", op[0]);
|
||
break;
|
||
|
||
case M_DIVU_3:
|
||
s = "divu";
|
||
s2 = "mflo";
|
||
goto do_divu3;
|
||
case M_REMU_3:
|
||
s = "divu";
|
||
s2 = "mfhi";
|
||
goto do_divu3;
|
||
case M_DDIVU_3:
|
||
s = "ddivu";
|
||
s2 = "mflo";
|
||
goto do_divu3;
|
||
case M_DREMU_3:
|
||
s = "ddivu";
|
||
s2 = "mfhi";
|
||
do_divu3:
|
||
start_noreorder ();
|
||
macro_build (NULL, s, "0,x,y", op[1], op[2]);
|
||
expr1.X_add_number = 2;
|
||
macro_build (&expr1, "bnez", "x,p", op[2]);
|
||
macro_build (NULL, "break", "6", 7);
|
||
end_noreorder ();
|
||
macro_build (NULL, s2, "x", op[0]);
|
||
break;
|
||
|
||
case M_DMUL:
|
||
dbl = 1;
|
||
case M_MUL:
|
||
macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
|
||
macro_build (NULL, "mflo", "x", op[0]);
|
||
break;
|
||
|
||
case M_DSUBU_I:
|
||
dbl = 1;
|
||
goto do_subu;
|
||
case M_SUBU_I:
|
||
do_subu:
|
||
imm_expr.X_add_number = -imm_expr.X_add_number;
|
||
macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
|
||
break;
|
||
|
||
case M_SUBU_I_2:
|
||
imm_expr.X_add_number = -imm_expr.X_add_number;
|
||
macro_build (&imm_expr, "addiu", "x,k", op[0]);
|
||
break;
|
||
|
||
case M_DSUBU_I_2:
|
||
imm_expr.X_add_number = -imm_expr.X_add_number;
|
||
macro_build (&imm_expr, "daddiu", "y,j", op[0]);
|
||
break;
|
||
|
||
case M_BEQ:
|
||
s = "cmp";
|
||
s2 = "bteqz";
|
||
goto do_branch;
|
||
case M_BNE:
|
||
s = "cmp";
|
||
s2 = "btnez";
|
||
goto do_branch;
|
||
case M_BLT:
|
||
s = "slt";
|
||
s2 = "btnez";
|
||
goto do_branch;
|
||
case M_BLTU:
|
||
s = "sltu";
|
||
s2 = "btnez";
|
||
goto do_branch;
|
||
case M_BLE:
|
||
s = "slt";
|
||
s2 = "bteqz";
|
||
goto do_reverse_branch;
|
||
case M_BLEU:
|
||
s = "sltu";
|
||
s2 = "bteqz";
|
||
goto do_reverse_branch;
|
||
case M_BGE:
|
||
s = "slt";
|
||
s2 = "bteqz";
|
||
goto do_branch;
|
||
case M_BGEU:
|
||
s = "sltu";
|
||
s2 = "bteqz";
|
||
goto do_branch;
|
||
case M_BGT:
|
||
s = "slt";
|
||
s2 = "btnez";
|
||
goto do_reverse_branch;
|
||
case M_BGTU:
|
||
s = "sltu";
|
||
s2 = "btnez";
|
||
|
||
do_reverse_branch:
|
||
tmp = op[1];
|
||
op[1] = op[0];
|
||
op[0] = tmp;
|
||
|
||
do_branch:
|
||
macro_build (NULL, s, "x,y", op[0], op[1]);
|
||
macro_build (&offset_expr, s2, "p");
|
||
break;
|
||
|
||
case M_BEQ_I:
|
||
s = "cmpi";
|
||
s2 = "bteqz";
|
||
s3 = "x,U";
|
||
goto do_branch_i;
|
||
case M_BNE_I:
|
||
s = "cmpi";
|
||
s2 = "btnez";
|
||
s3 = "x,U";
|
||
goto do_branch_i;
|
||
case M_BLT_I:
|
||
s = "slti";
|
||
s2 = "btnez";
|
||
s3 = "x,8";
|
||
goto do_branch_i;
|
||
case M_BLTU_I:
|
||
s = "sltiu";
|
||
s2 = "btnez";
|
||
s3 = "x,8";
|
||
goto do_branch_i;
|
||
case M_BLE_I:
|
||
s = "slti";
|
||
s2 = "btnez";
|
||
s3 = "x,8";
|
||
goto do_addone_branch_i;
|
||
case M_BLEU_I:
|
||
s = "sltiu";
|
||
s2 = "btnez";
|
||
s3 = "x,8";
|
||
goto do_addone_branch_i;
|
||
case M_BGE_I:
|
||
s = "slti";
|
||
s2 = "bteqz";
|
||
s3 = "x,8";
|
||
goto do_branch_i;
|
||
case M_BGEU_I:
|
||
s = "sltiu";
|
||
s2 = "bteqz";
|
||
s3 = "x,8";
|
||
goto do_branch_i;
|
||
case M_BGT_I:
|
||
s = "slti";
|
||
s2 = "bteqz";
|
||
s3 = "x,8";
|
||
goto do_addone_branch_i;
|
||
case M_BGTU_I:
|
||
s = "sltiu";
|
||
s2 = "bteqz";
|
||
s3 = "x,8";
|
||
|
||
do_addone_branch_i:
|
||
++imm_expr.X_add_number;
|
||
|
||
do_branch_i:
|
||
macro_build (&imm_expr, s, s3, op[0]);
|
||
macro_build (&offset_expr, s2, "p");
|
||
break;
|
||
|
||
case M_ABS:
|
||
expr1.X_add_number = 0;
|
||
macro_build (&expr1, "slti", "x,8", op[1]);
|
||
if (op[0] != op[1])
|
||
macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
|
||
expr1.X_add_number = 2;
|
||
macro_build (&expr1, "bteqz", "p");
|
||
macro_build (NULL, "neg", "x,w", op[0], op[0]);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
|
||
opcode bits in *OPCODE_EXTRA. */
|
||
|
||
static struct mips_opcode *
|
||
mips_lookup_insn (struct hash_control *hash, const char *start,
|
||
ssize_t length, unsigned int *opcode_extra)
|
||
{
|
||
char *name, *dot, *p;
|
||
unsigned int mask, suffix;
|
||
ssize_t opend;
|
||
struct mips_opcode *insn;
|
||
|
||
/* Make a copy of the instruction so that we can fiddle with it. */
|
||
name = alloca (length + 1);
|
||
memcpy (name, start, length);
|
||
name[length] = '\0';
|
||
|
||
/* Look up the instruction as-is. */
|
||
insn = (struct mips_opcode *) hash_find (hash, name);
|
||
if (insn)
|
||
return insn;
|
||
|
||
dot = strchr (name, '.');
|
||
if (dot && dot[1])
|
||
{
|
||
/* Try to interpret the text after the dot as a VU0 channel suffix. */
|
||
p = mips_parse_vu0_channels (dot + 1, &mask);
|
||
if (*p == 0 && mask != 0)
|
||
{
|
||
*dot = 0;
|
||
insn = (struct mips_opcode *) hash_find (hash, name);
|
||
*dot = '.';
|
||
if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
|
||
{
|
||
*opcode_extra |= mask << mips_vu0_channel_mask.lsb;
|
||
return insn;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (mips_opts.micromips)
|
||
{
|
||
/* See if there's an instruction size override suffix,
|
||
either `16' or `32', at the end of the mnemonic proper,
|
||
that defines the operation, i.e. before the first `.'
|
||
character if any. Strip it and retry. */
|
||
opend = dot != NULL ? dot - name : length;
|
||
if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
|
||
suffix = 2;
|
||
else if (name[opend - 2] == '3' && name[opend - 1] == '2')
|
||
suffix = 4;
|
||
else
|
||
suffix = 0;
|
||
if (suffix)
|
||
{
|
||
memcpy (name + opend - 2, name + opend, length - opend + 1);
|
||
insn = (struct mips_opcode *) hash_find (hash, name);
|
||
if (insn)
|
||
{
|
||
forced_insn_length = suffix;
|
||
return insn;
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Assemble an instruction into its binary format. If the instruction
|
||
is a macro, set imm_expr and offset_expr to the values associated
|
||
with "I" and "A" operands respectively. Otherwise store the value
|
||
of the relocatable field (if any) in offset_expr. In both cases
|
||
set offset_reloc to the relocation operators applied to offset_expr. */
|
||
|
||
static void
|
||
mips_ip (char *str, struct mips_cl_insn *insn)
|
||
{
|
||
const struct mips_opcode *first, *past;
|
||
struct hash_control *hash;
|
||
char format;
|
||
size_t end;
|
||
struct mips_operand_token *tokens;
|
||
unsigned int opcode_extra;
|
||
|
||
if (mips_opts.micromips)
|
||
{
|
||
hash = micromips_op_hash;
|
||
past = µmips_opcodes[bfd_micromips_num_opcodes];
|
||
}
|
||
else
|
||
{
|
||
hash = op_hash;
|
||
past = &mips_opcodes[NUMOPCODES];
|
||
}
|
||
forced_insn_length = 0;
|
||
opcode_extra = 0;
|
||
|
||
/* We first try to match an instruction up to a space or to the end. */
|
||
for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
|
||
continue;
|
||
|
||
first = mips_lookup_insn (hash, str, end, &opcode_extra);
|
||
if (first == NULL)
|
||
{
|
||
set_insn_error (0, _("unrecognized opcode"));
|
||
return;
|
||
}
|
||
|
||
if (strcmp (first->name, "li.s") == 0)
|
||
format = 'f';
|
||
else if (strcmp (first->name, "li.d") == 0)
|
||
format = 'd';
|
||
else
|
||
format = 0;
|
||
tokens = mips_parse_arguments (str + end, format);
|
||
if (!tokens)
|
||
return;
|
||
|
||
if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
|
||
&& !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
|
||
set_insn_error (0, _("invalid operands"));
|
||
|
||
obstack_free (&mips_operand_tokens, tokens);
|
||
}
|
||
|
||
/* As for mips_ip, but used when assembling MIPS16 code.
|
||
Also set forced_insn_length to the resulting instruction size in
|
||
bytes if the user explicitly requested a small or extended instruction. */
|
||
|
||
static void
|
||
mips16_ip (char *str, struct mips_cl_insn *insn)
|
||
{
|
||
char *end, *s, c;
|
||
struct mips_opcode *first;
|
||
struct mips_operand_token *tokens;
|
||
|
||
forced_insn_length = 0;
|
||
|
||
for (s = str; ISLOWER (*s); ++s)
|
||
;
|
||
end = s;
|
||
c = *end;
|
||
switch (c)
|
||
{
|
||
case '\0':
|
||
break;
|
||
|
||
case ' ':
|
||
s++;
|
||
break;
|
||
|
||
case '.':
|
||
if (s[1] == 't' && s[2] == ' ')
|
||
{
|
||
forced_insn_length = 2;
|
||
s += 3;
|
||
break;
|
||
}
|
||
else if (s[1] == 'e' && s[2] == ' ')
|
||
{
|
||
forced_insn_length = 4;
|
||
s += 3;
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
default:
|
||
set_insn_error (0, _("unrecognized opcode"));
|
||
return;
|
||
}
|
||
|
||
if (mips_opts.noautoextend && !forced_insn_length)
|
||
forced_insn_length = 2;
|
||
|
||
*end = 0;
|
||
first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
|
||
*end = c;
|
||
|
||
if (!first)
|
||
{
|
||
set_insn_error (0, _("unrecognized opcode"));
|
||
return;
|
||
}
|
||
|
||
tokens = mips_parse_arguments (s, 0);
|
||
if (!tokens)
|
||
return;
|
||
|
||
if (!match_mips16_insns (insn, first, tokens))
|
||
set_insn_error (0, _("invalid operands"));
|
||
|
||
obstack_free (&mips_operand_tokens, tokens);
|
||
}
|
||
|
||
/* Marshal immediate value VAL for an extended MIPS16 instruction.
|
||
NBITS is the number of significant bits in VAL. */
|
||
|
||
static unsigned long
|
||
mips16_immed_extend (offsetT val, unsigned int nbits)
|
||
{
|
||
int extval;
|
||
if (nbits == 16)
|
||
{
|
||
extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
|
||
val &= 0x1f;
|
||
}
|
||
else if (nbits == 15)
|
||
{
|
||
extval = ((val >> 11) & 0xf) | (val & 0x7f0);
|
||
val &= 0xf;
|
||
}
|
||
else
|
||
{
|
||
extval = ((val & 0x1f) << 6) | (val & 0x20);
|
||
val = 0;
|
||
}
|
||
return (extval << 16) | val;
|
||
}
|
||
|
||
/* Like decode_mips16_operand, but require the operand to be defined and
|
||
require it to be an integer. */
|
||
|
||
static const struct mips_int_operand *
|
||
mips16_immed_operand (int type, bfd_boolean extended_p)
|
||
{
|
||
const struct mips_operand *operand;
|
||
|
||
operand = decode_mips16_operand (type, extended_p);
|
||
if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
|
||
abort ();
|
||
return (const struct mips_int_operand *) operand;
|
||
}
|
||
|
||
/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
|
||
|
||
static bfd_boolean
|
||
mips16_immed_in_range_p (const struct mips_int_operand *operand,
|
||
bfd_reloc_code_real_type reloc, offsetT sval)
|
||
{
|
||
int min_val, max_val;
|
||
|
||
min_val = mips_int_operand_min (operand);
|
||
max_val = mips_int_operand_max (operand);
|
||
if (reloc != BFD_RELOC_UNUSED)
|
||
{
|
||
if (min_val < 0)
|
||
sval = SEXT_16BIT (sval);
|
||
else
|
||
sval &= 0xffff;
|
||
}
|
||
|
||
return (sval >= min_val
|
||
&& sval <= max_val
|
||
&& (sval & ((1 << operand->shift) - 1)) == 0);
|
||
}
|
||
|
||
/* Install immediate value VAL into MIPS16 instruction *INSN,
|
||
extending it if necessary. The instruction in *INSN may
|
||
already be extended.
|
||
|
||
RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
|
||
if none. In the former case, VAL is a 16-bit number with no
|
||
defined signedness.
|
||
|
||
TYPE is the type of the immediate field. USER_INSN_LENGTH
|
||
is the length that the user requested, or 0 if none. */
|
||
|
||
static void
|
||
mips16_immed (char *file, unsigned int line, int type,
|
||
bfd_reloc_code_real_type reloc, offsetT val,
|
||
unsigned int user_insn_length, unsigned long *insn)
|
||
{
|
||
const struct mips_int_operand *operand;
|
||
unsigned int uval, length;
|
||
|
||
operand = mips16_immed_operand (type, FALSE);
|
||
if (!mips16_immed_in_range_p (operand, reloc, val))
|
||
{
|
||
/* We need an extended instruction. */
|
||
if (user_insn_length == 2)
|
||
as_bad_where (file, line, _("invalid unextended operand value"));
|
||
else
|
||
*insn |= MIPS16_EXTEND;
|
||
}
|
||
else if (user_insn_length == 4)
|
||
{
|
||
/* The operand doesn't force an unextended instruction to be extended.
|
||
Warn if the user wanted an extended instruction anyway. */
|
||
*insn |= MIPS16_EXTEND;
|
||
as_warn_where (file, line,
|
||
_("extended operand requested but not required"));
|
||
}
|
||
|
||
length = mips16_opcode_length (*insn);
|
||
if (length == 4)
|
||
{
|
||
operand = mips16_immed_operand (type, TRUE);
|
||
if (!mips16_immed_in_range_p (operand, reloc, val))
|
||
as_bad_where (file, line,
|
||
_("operand value out of range for instruction"));
|
||
}
|
||
uval = ((unsigned int) val >> operand->shift) - operand->bias;
|
||
if (length == 2)
|
||
*insn = mips_insert_operand (&operand->root, *insn, uval);
|
||
else
|
||
*insn |= mips16_immed_extend (uval, operand->root.size);
|
||
}
|
||
|
||
struct percent_op_match
|
||
{
|
||
const char *str;
|
||
bfd_reloc_code_real_type reloc;
|
||
};
|
||
|
||
static const struct percent_op_match mips_percent_op[] =
|
||
{
|
||
{"%lo", BFD_RELOC_LO16},
|
||
{"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
|
||
{"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
|
||
{"%call16", BFD_RELOC_MIPS_CALL16},
|
||
{"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
|
||
{"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
|
||
{"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
|
||
{"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
|
||
{"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
|
||
{"%got", BFD_RELOC_MIPS_GOT16},
|
||
{"%gp_rel", BFD_RELOC_GPREL16},
|
||
{"%half", BFD_RELOC_16},
|
||
{"%highest", BFD_RELOC_MIPS_HIGHEST},
|
||
{"%higher", BFD_RELOC_MIPS_HIGHER},
|
||
{"%neg", BFD_RELOC_MIPS_SUB},
|
||
{"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
|
||
{"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
|
||
{"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
|
||
{"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
|
||
{"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
|
||
{"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
|
||
{"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
|
||
{"%hi", BFD_RELOC_HI16_S}
|
||
};
|
||
|
||
static const struct percent_op_match mips16_percent_op[] =
|
||
{
|
||
{"%lo", BFD_RELOC_MIPS16_LO16},
|
||
{"%gprel", BFD_RELOC_MIPS16_GPREL},
|
||
{"%got", BFD_RELOC_MIPS16_GOT16},
|
||
{"%call16", BFD_RELOC_MIPS16_CALL16},
|
||
{"%hi", BFD_RELOC_MIPS16_HI16_S},
|
||
{"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
|
||
{"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
|
||
{"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
|
||
{"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
|
||
{"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
|
||
{"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
|
||
{"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
|
||
};
|
||
|
||
|
||
/* Return true if *STR points to a relocation operator. When returning true,
|
||
move *STR over the operator and store its relocation code in *RELOC.
|
||
Leave both *STR and *RELOC alone when returning false. */
|
||
|
||
static bfd_boolean
|
||
parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
|
||
{
|
||
const struct percent_op_match *percent_op;
|
||
size_t limit, i;
|
||
|
||
if (mips_opts.mips16)
|
||
{
|
||
percent_op = mips16_percent_op;
|
||
limit = ARRAY_SIZE (mips16_percent_op);
|
||
}
|
||
else
|
||
{
|
||
percent_op = mips_percent_op;
|
||
limit = ARRAY_SIZE (mips_percent_op);
|
||
}
|
||
|
||
for (i = 0; i < limit; i++)
|
||
if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
|
||
{
|
||
int len = strlen (percent_op[i].str);
|
||
|
||
if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
|
||
continue;
|
||
|
||
*str += strlen (percent_op[i].str);
|
||
*reloc = percent_op[i].reloc;
|
||
|
||
/* Check whether the output BFD supports this relocation.
|
||
If not, issue an error and fall back on something safe. */
|
||
if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
|
||
{
|
||
as_bad (_("relocation %s isn't supported by the current ABI"),
|
||
percent_op[i].str);
|
||
*reloc = BFD_RELOC_UNUSED;
|
||
}
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/* Parse string STR as a 16-bit relocatable operand. Store the
|
||
expression in *EP and the relocations in the array starting
|
||
at RELOC. Return the number of relocation operators used.
|
||
|
||
On exit, EXPR_END points to the first character after the expression. */
|
||
|
||
static size_t
|
||
my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
|
||
char *str)
|
||
{
|
||
bfd_reloc_code_real_type reversed_reloc[3];
|
||
size_t reloc_index, i;
|
||
int crux_depth, str_depth;
|
||
char *crux;
|
||
|
||
/* Search for the start of the main expression, recoding relocations
|
||
in REVERSED_RELOC. End the loop with CRUX pointing to the start
|
||
of the main expression and with CRUX_DEPTH containing the number
|
||
of open brackets at that point. */
|
||
reloc_index = -1;
|
||
str_depth = 0;
|
||
do
|
||
{
|
||
reloc_index++;
|
||
crux = str;
|
||
crux_depth = str_depth;
|
||
|
||
/* Skip over whitespace and brackets, keeping count of the number
|
||
of brackets. */
|
||
while (*str == ' ' || *str == '\t' || *str == '(')
|
||
if (*str++ == '(')
|
||
str_depth++;
|
||
}
|
||
while (*str == '%'
|
||
&& reloc_index < (HAVE_NEWABI ? 3 : 1)
|
||
&& parse_relocation (&str, &reversed_reloc[reloc_index]));
|
||
|
||
my_getExpression (ep, crux);
|
||
str = expr_end;
|
||
|
||
/* Match every open bracket. */
|
||
while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
|
||
if (*str++ == ')')
|
||
crux_depth--;
|
||
|
||
if (crux_depth > 0)
|
||
as_bad (_("unclosed '('"));
|
||
|
||
expr_end = str;
|
||
|
||
if (reloc_index != 0)
|
||
{
|
||
prev_reloc_op_frag = frag_now;
|
||
for (i = 0; i < reloc_index; i++)
|
||
reloc[i] = reversed_reloc[reloc_index - 1 - i];
|
||
}
|
||
|
||
return reloc_index;
|
||
}
|
||
|
||
static void
|
||
my_getExpression (expressionS *ep, char *str)
|
||
{
|
||
char *save_in;
|
||
|
||
save_in = input_line_pointer;
|
||
input_line_pointer = str;
|
||
expression (ep);
|
||
expr_end = input_line_pointer;
|
||
input_line_pointer = save_in;
|
||
}
|
||
|
||
char *
|
||
md_atof (int type, char *litP, int *sizeP)
|
||
{
|
||
return ieee_md_atof (type, litP, sizeP, target_big_endian);
|
||
}
|
||
|
||
void
|
||
md_number_to_chars (char *buf, valueT val, int n)
|
||
{
|
||
if (target_big_endian)
|
||
number_to_chars_bigendian (buf, val, n);
|
||
else
|
||
number_to_chars_littleendian (buf, val, n);
|
||
}
|
||
|
||
static int support_64bit_objects(void)
|
||
{
|
||
const char **list, **l;
|
||
int yes;
|
||
|
||
list = bfd_target_list ();
|
||
for (l = list; *l != NULL; l++)
|
||
if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
|
||
|| strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
|
||
break;
|
||
yes = (*l != NULL);
|
||
free (list);
|
||
return yes;
|
||
}
|
||
|
||
/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
|
||
NEW_VALUE. Warn if another value was already specified. Note:
|
||
we have to defer parsing the -march and -mtune arguments in order
|
||
to handle 'from-abi' correctly, since the ABI might be specified
|
||
in a later argument. */
|
||
|
||
static void
|
||
mips_set_option_string (const char **string_ptr, const char *new_value)
|
||
{
|
||
if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
|
||
as_warn (_("a different %s was already specified, is now %s"),
|
||
string_ptr == &mips_arch_string ? "-march" : "-mtune",
|
||
new_value);
|
||
|
||
*string_ptr = new_value;
|
||
}
|
||
|
||
int
|
||
md_parse_option (int c, char *arg)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
|
||
if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
|
||
{
|
||
file_ase_explicit |= mips_set_ase (&mips_ases[i],
|
||
c == mips_ases[i].option_on);
|
||
return 1;
|
||
}
|
||
|
||
switch (c)
|
||
{
|
||
case OPTION_CONSTRUCT_FLOATS:
|
||
mips_disable_float_construction = 0;
|
||
break;
|
||
|
||
case OPTION_NO_CONSTRUCT_FLOATS:
|
||
mips_disable_float_construction = 1;
|
||
break;
|
||
|
||
case OPTION_TRAP:
|
||
mips_trap = 1;
|
||
break;
|
||
|
||
case OPTION_BREAK:
|
||
mips_trap = 0;
|
||
break;
|
||
|
||
case OPTION_EB:
|
||
target_big_endian = 1;
|
||
break;
|
||
|
||
case OPTION_EL:
|
||
target_big_endian = 0;
|
||
break;
|
||
|
||
case 'O':
|
||
if (arg == NULL)
|
||
mips_optimize = 1;
|
||
else if (arg[0] == '0')
|
||
mips_optimize = 0;
|
||
else if (arg[0] == '1')
|
||
mips_optimize = 1;
|
||
else
|
||
mips_optimize = 2;
|
||
break;
|
||
|
||
case 'g':
|
||
if (arg == NULL)
|
||
mips_debug = 2;
|
||
else
|
||
mips_debug = atoi (arg);
|
||
break;
|
||
|
||
case OPTION_MIPS1:
|
||
file_mips_isa = ISA_MIPS1;
|
||
break;
|
||
|
||
case OPTION_MIPS2:
|
||
file_mips_isa = ISA_MIPS2;
|
||
break;
|
||
|
||
case OPTION_MIPS3:
|
||
file_mips_isa = ISA_MIPS3;
|
||
break;
|
||
|
||
case OPTION_MIPS4:
|
||
file_mips_isa = ISA_MIPS4;
|
||
break;
|
||
|
||
case OPTION_MIPS5:
|
||
file_mips_isa = ISA_MIPS5;
|
||
break;
|
||
|
||
case OPTION_MIPS32:
|
||
file_mips_isa = ISA_MIPS32;
|
||
break;
|
||
|
||
case OPTION_MIPS32R2:
|
||
file_mips_isa = ISA_MIPS32R2;
|
||
break;
|
||
|
||
case OPTION_MIPS64R2:
|
||
file_mips_isa = ISA_MIPS64R2;
|
||
break;
|
||
|
||
case OPTION_MIPS64:
|
||
file_mips_isa = ISA_MIPS64;
|
||
break;
|
||
|
||
case OPTION_MTUNE:
|
||
mips_set_option_string (&mips_tune_string, arg);
|
||
break;
|
||
|
||
case OPTION_MARCH:
|
||
mips_set_option_string (&mips_arch_string, arg);
|
||
break;
|
||
|
||
case OPTION_M4650:
|
||
mips_set_option_string (&mips_arch_string, "4650");
|
||
mips_set_option_string (&mips_tune_string, "4650");
|
||
break;
|
||
|
||
case OPTION_NO_M4650:
|
||
break;
|
||
|
||
case OPTION_M4010:
|
||
mips_set_option_string (&mips_arch_string, "4010");
|
||
mips_set_option_string (&mips_tune_string, "4010");
|
||
break;
|
||
|
||
case OPTION_NO_M4010:
|
||
break;
|
||
|
||
case OPTION_M4100:
|
||
mips_set_option_string (&mips_arch_string, "4100");
|
||
mips_set_option_string (&mips_tune_string, "4100");
|
||
break;
|
||
|
||
case OPTION_NO_M4100:
|
||
break;
|
||
|
||
case OPTION_M3900:
|
||
mips_set_option_string (&mips_arch_string, "3900");
|
||
mips_set_option_string (&mips_tune_string, "3900");
|
||
break;
|
||
|
||
case OPTION_NO_M3900:
|
||
break;
|
||
|
||
case OPTION_MICROMIPS:
|
||
if (mips_opts.mips16 == 1)
|
||
{
|
||
as_bad (_("-mmicromips cannot be used with -mips16"));
|
||
return 0;
|
||
}
|
||
mips_opts.micromips = 1;
|
||
mips_no_prev_insn ();
|
||
break;
|
||
|
||
case OPTION_NO_MICROMIPS:
|
||
mips_opts.micromips = 0;
|
||
mips_no_prev_insn ();
|
||
break;
|
||
|
||
case OPTION_MIPS16:
|
||
if (mips_opts.micromips == 1)
|
||
{
|
||
as_bad (_("-mips16 cannot be used with -micromips"));
|
||
return 0;
|
||
}
|
||
mips_opts.mips16 = 1;
|
||
mips_no_prev_insn ();
|
||
break;
|
||
|
||
case OPTION_NO_MIPS16:
|
||
mips_opts.mips16 = 0;
|
||
mips_no_prev_insn ();
|
||
break;
|
||
|
||
case OPTION_FIX_24K:
|
||
mips_fix_24k = 1;
|
||
break;
|
||
|
||
case OPTION_NO_FIX_24K:
|
||
mips_fix_24k = 0;
|
||
break;
|
||
|
||
case OPTION_FIX_RM7000:
|
||
mips_fix_rm7000 = 1;
|
||
break;
|
||
|
||
case OPTION_NO_FIX_RM7000:
|
||
mips_fix_rm7000 = 0;
|
||
break;
|
||
|
||
case OPTION_FIX_LOONGSON2F_JUMP:
|
||
mips_fix_loongson2f_jump = TRUE;
|
||
break;
|
||
|
||
case OPTION_NO_FIX_LOONGSON2F_JUMP:
|
||
mips_fix_loongson2f_jump = FALSE;
|
||
break;
|
||
|
||
case OPTION_FIX_LOONGSON2F_NOP:
|
||
mips_fix_loongson2f_nop = TRUE;
|
||
break;
|
||
|
||
case OPTION_NO_FIX_LOONGSON2F_NOP:
|
||
mips_fix_loongson2f_nop = FALSE;
|
||
break;
|
||
|
||
case OPTION_FIX_VR4120:
|
||
mips_fix_vr4120 = 1;
|
||
break;
|
||
|
||
case OPTION_NO_FIX_VR4120:
|
||
mips_fix_vr4120 = 0;
|
||
break;
|
||
|
||
case OPTION_FIX_VR4130:
|
||
mips_fix_vr4130 = 1;
|
||
break;
|
||
|
||
case OPTION_NO_FIX_VR4130:
|
||
mips_fix_vr4130 = 0;
|
||
break;
|
||
|
||
case OPTION_FIX_CN63XXP1:
|
||
mips_fix_cn63xxp1 = TRUE;
|
||
break;
|
||
|
||
case OPTION_NO_FIX_CN63XXP1:
|
||
mips_fix_cn63xxp1 = FALSE;
|
||
break;
|
||
|
||
case OPTION_RELAX_BRANCH:
|
||
mips_relax_branch = 1;
|
||
break;
|
||
|
||
case OPTION_NO_RELAX_BRANCH:
|
||
mips_relax_branch = 0;
|
||
break;
|
||
|
||
case OPTION_INSN32:
|
||
mips_opts.insn32 = TRUE;
|
||
break;
|
||
|
||
case OPTION_NO_INSN32:
|
||
mips_opts.insn32 = FALSE;
|
||
break;
|
||
|
||
case OPTION_MSHARED:
|
||
mips_in_shared = TRUE;
|
||
break;
|
||
|
||
case OPTION_MNO_SHARED:
|
||
mips_in_shared = FALSE;
|
||
break;
|
||
|
||
case OPTION_MSYM32:
|
||
mips_opts.sym32 = TRUE;
|
||
break;
|
||
|
||
case OPTION_MNO_SYM32:
|
||
mips_opts.sym32 = FALSE;
|
||
break;
|
||
|
||
/* When generating ELF code, we permit -KPIC and -call_shared to
|
||
select SVR4_PIC, and -non_shared to select no PIC. This is
|
||
intended to be compatible with Irix 5. */
|
||
case OPTION_CALL_SHARED:
|
||
mips_pic = SVR4_PIC;
|
||
mips_abicalls = TRUE;
|
||
break;
|
||
|
||
case OPTION_CALL_NONPIC:
|
||
mips_pic = NO_PIC;
|
||
mips_abicalls = TRUE;
|
||
break;
|
||
|
||
case OPTION_NON_SHARED:
|
||
mips_pic = NO_PIC;
|
||
mips_abicalls = FALSE;
|
||
break;
|
||
|
||
/* The -xgot option tells the assembler to use 32 bit offsets
|
||
when accessing the got in SVR4_PIC mode. It is for Irix
|
||
compatibility. */
|
||
case OPTION_XGOT:
|
||
mips_big_got = 1;
|
||
break;
|
||
|
||
case 'G':
|
||
g_switch_value = atoi (arg);
|
||
g_switch_seen = 1;
|
||
break;
|
||
|
||
/* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
|
||
and -mabi=64. */
|
||
case OPTION_32:
|
||
mips_abi = O32_ABI;
|
||
break;
|
||
|
||
case OPTION_N32:
|
||
mips_abi = N32_ABI;
|
||
break;
|
||
|
||
case OPTION_64:
|
||
mips_abi = N64_ABI;
|
||
if (!support_64bit_objects())
|
||
as_fatal (_("no compiled in support for 64 bit object file format"));
|
||
break;
|
||
|
||
case OPTION_GP32:
|
||
file_mips_gp32 = 1;
|
||
break;
|
||
|
||
case OPTION_GP64:
|
||
file_mips_gp32 = 0;
|
||
break;
|
||
|
||
case OPTION_FP32:
|
||
file_mips_fp32 = 1;
|
||
break;
|
||
|
||
case OPTION_FP64:
|
||
file_mips_fp32 = 0;
|
||
break;
|
||
|
||
case OPTION_SINGLE_FLOAT:
|
||
file_mips_single_float = 1;
|
||
break;
|
||
|
||
case OPTION_DOUBLE_FLOAT:
|
||
file_mips_single_float = 0;
|
||
break;
|
||
|
||
case OPTION_SOFT_FLOAT:
|
||
file_mips_soft_float = 1;
|
||
break;
|
||
|
||
case OPTION_HARD_FLOAT:
|
||
file_mips_soft_float = 0;
|
||
break;
|
||
|
||
case OPTION_MABI:
|
||
if (strcmp (arg, "32") == 0)
|
||
mips_abi = O32_ABI;
|
||
else if (strcmp (arg, "o64") == 0)
|
||
mips_abi = O64_ABI;
|
||
else if (strcmp (arg, "n32") == 0)
|
||
mips_abi = N32_ABI;
|
||
else if (strcmp (arg, "64") == 0)
|
||
{
|
||
mips_abi = N64_ABI;
|
||
if (! support_64bit_objects())
|
||
as_fatal (_("no compiled in support for 64 bit object file "
|
||
"format"));
|
||
}
|
||
else if (strcmp (arg, "eabi") == 0)
|
||
mips_abi = EABI_ABI;
|
||
else
|
||
{
|
||
as_fatal (_("invalid abi -mabi=%s"), arg);
|
||
return 0;
|
||
}
|
||
break;
|
||
|
||
case OPTION_M7000_HILO_FIX:
|
||
mips_7000_hilo_fix = TRUE;
|
||
break;
|
||
|
||
case OPTION_MNO_7000_HILO_FIX:
|
||
mips_7000_hilo_fix = FALSE;
|
||
break;
|
||
|
||
case OPTION_MDEBUG:
|
||
mips_flag_mdebug = TRUE;
|
||
break;
|
||
|
||
case OPTION_NO_MDEBUG:
|
||
mips_flag_mdebug = FALSE;
|
||
break;
|
||
|
||
case OPTION_PDR:
|
||
mips_flag_pdr = TRUE;
|
||
break;
|
||
|
||
case OPTION_NO_PDR:
|
||
mips_flag_pdr = FALSE;
|
||
break;
|
||
|
||
case OPTION_MVXWORKS_PIC:
|
||
mips_pic = VXWORKS_PIC;
|
||
break;
|
||
|
||
case OPTION_NAN:
|
||
if (strcmp (arg, "2008") == 0)
|
||
mips_flag_nan2008 = TRUE;
|
||
else if (strcmp (arg, "legacy") == 0)
|
||
mips_flag_nan2008 = FALSE;
|
||
else
|
||
{
|
||
as_fatal (_("invalid NaN setting -mnan=%s"), arg);
|
||
return 0;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Set up globals to generate code for the ISA or processor
|
||
described by INFO. */
|
||
|
||
static void
|
||
mips_set_architecture (const struct mips_cpu_info *info)
|
||
{
|
||
if (info != 0)
|
||
{
|
||
file_mips_arch = info->cpu;
|
||
mips_opts.arch = info->cpu;
|
||
mips_opts.isa = info->isa;
|
||
}
|
||
}
|
||
|
||
|
||
/* Likewise for tuning. */
|
||
|
||
static void
|
||
mips_set_tune (const struct mips_cpu_info *info)
|
||
{
|
||
if (info != 0)
|
||
mips_tune = info->cpu;
|
||
}
|
||
|
||
|
||
void
|
||
mips_after_parse_args (void)
|
||
{
|
||
const struct mips_cpu_info *arch_info = 0;
|
||
const struct mips_cpu_info *tune_info = 0;
|
||
|
||
/* GP relative stuff not working for PE */
|
||
if (strncmp (TARGET_OS, "pe", 2) == 0)
|
||
{
|
||
if (g_switch_seen && g_switch_value != 0)
|
||
as_bad (_("-G not supported in this configuration"));
|
||
g_switch_value = 0;
|
||
}
|
||
|
||
if (mips_abi == NO_ABI)
|
||
mips_abi = MIPS_DEFAULT_ABI;
|
||
|
||
/* The following code determines the architecture and register size.
|
||
Similar code was added to GCC 3.3 (see override_options() in
|
||
config/mips/mips.c). The GAS and GCC code should be kept in sync
|
||
as much as possible. */
|
||
|
||
if (mips_arch_string != 0)
|
||
arch_info = mips_parse_cpu ("-march", mips_arch_string);
|
||
|
||
if (file_mips_isa != ISA_UNKNOWN)
|
||
{
|
||
/* Handle -mipsN. At this point, file_mips_isa contains the
|
||
ISA level specified by -mipsN, while arch_info->isa contains
|
||
the -march selection (if any). */
|
||
if (arch_info != 0)
|
||
{
|
||
/* -march takes precedence over -mipsN, since it is more descriptive.
|
||
There's no harm in specifying both as long as the ISA levels
|
||
are the same. */
|
||
if (file_mips_isa != arch_info->isa)
|
||
as_bad (_("-%s conflicts with the other architecture options,"
|
||
" which imply -%s"),
|
||
mips_cpu_info_from_isa (file_mips_isa)->name,
|
||
mips_cpu_info_from_isa (arch_info->isa)->name);
|
||
}
|
||
else
|
||
arch_info = mips_cpu_info_from_isa (file_mips_isa);
|
||
}
|
||
|
||
if (arch_info == 0)
|
||
{
|
||
arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
|
||
gas_assert (arch_info);
|
||
}
|
||
|
||
if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
|
||
as_bad (_("-march=%s is not compatible with the selected ABI"),
|
||
arch_info->name);
|
||
|
||
mips_set_architecture (arch_info);
|
||
|
||
/* Optimize for file_mips_arch, unless -mtune selects a different processor. */
|
||
if (mips_tune_string != 0)
|
||
tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
|
||
|
||
if (tune_info == 0)
|
||
mips_set_tune (arch_info);
|
||
else
|
||
mips_set_tune (tune_info);
|
||
|
||
if (file_mips_gp32 >= 0)
|
||
{
|
||
/* The user specified the size of the integer registers. Make sure
|
||
it agrees with the ABI and ISA. */
|
||
if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
|
||
as_bad (_("-mgp64 used with a 32-bit processor"));
|
||
else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
|
||
as_bad (_("-mgp32 used with a 64-bit ABI"));
|
||
else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
|
||
as_bad (_("-mgp64 used with a 32-bit ABI"));
|
||
}
|
||
else
|
||
{
|
||
/* Infer the integer register size from the ABI and processor.
|
||
Restrict ourselves to 32-bit registers if that's all the
|
||
processor has, or if the ABI cannot handle 64-bit registers. */
|
||
file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
|
||
|| !ISA_HAS_64BIT_REGS (mips_opts.isa));
|
||
}
|
||
|
||
switch (file_mips_fp32)
|
||
{
|
||
default:
|
||
case -1:
|
||
/* No user specified float register size.
|
||
??? GAS treats single-float processors as though they had 64-bit
|
||
float registers (although it complains when double-precision
|
||
instructions are used). As things stand, saying they have 32-bit
|
||
registers would lead to spurious "register must be even" messages.
|
||
So here we assume float registers are never smaller than the
|
||
integer ones. */
|
||
if (file_mips_gp32 == 0)
|
||
/* 64-bit integer registers implies 64-bit float registers. */
|
||
file_mips_fp32 = 0;
|
||
else if ((mips_opts.ase & FP64_ASES)
|
||
&& ISA_HAS_64BIT_FPRS (mips_opts.isa))
|
||
/* -mips3d and -mdmx imply 64-bit float registers, if possible. */
|
||
file_mips_fp32 = 0;
|
||
else
|
||
/* 32-bit float registers. */
|
||
file_mips_fp32 = 1;
|
||
break;
|
||
|
||
/* The user specified the size of the float registers. Check if it
|
||
agrees with the ABI and ISA. */
|
||
case 0:
|
||
if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
|
||
as_bad (_("-mfp64 used with a 32-bit fpu"));
|
||
else if (ABI_NEEDS_32BIT_REGS (mips_abi)
|
||
&& !ISA_HAS_MXHC1 (mips_opts.isa))
|
||
as_warn (_("-mfp64 used with a 32-bit ABI"));
|
||
break;
|
||
case 1:
|
||
if (ABI_NEEDS_64BIT_REGS (mips_abi))
|
||
as_warn (_("-mfp32 used with a 64-bit ABI"));
|
||
break;
|
||
}
|
||
|
||
/* End of GCC-shared inference code. */
|
||
|
||
/* This flag is set when we have a 64-bit capable CPU but use only
|
||
32-bit wide registers. Note that EABI does not use it. */
|
||
if (ISA_HAS_64BIT_REGS (mips_opts.isa)
|
||
&& ((mips_abi == NO_ABI && file_mips_gp32 == 1)
|
||
|| mips_abi == O32_ABI))
|
||
mips_32bitmode = 1;
|
||
|
||
if (mips_opts.isa == ISA_MIPS1 && mips_trap)
|
||
as_bad (_("trap exception not supported at ISA 1"));
|
||
|
||
/* If the selected architecture includes support for ASEs, enable
|
||
generation of code for them. */
|
||
if (mips_opts.mips16 == -1)
|
||
mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
|
||
if (mips_opts.micromips == -1)
|
||
mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
|
||
|
||
/* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
|
||
ASEs from being selected implicitly. */
|
||
if (file_mips_fp32 == 1)
|
||
file_ase_explicit |= ASE_MIPS3D | ASE_MDMX;
|
||
|
||
/* If the user didn't explicitly select or deselect a particular ASE,
|
||
use the default setting for the CPU. */
|
||
mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
|
||
|
||
file_mips_isa = mips_opts.isa;
|
||
file_ase = mips_opts.ase;
|
||
mips_opts.gp32 = file_mips_gp32;
|
||
mips_opts.fp32 = file_mips_fp32;
|
||
mips_opts.soft_float = file_mips_soft_float;
|
||
mips_opts.single_float = file_mips_single_float;
|
||
|
||
mips_check_isa_supports_ases ();
|
||
|
||
if (mips_flag_mdebug < 0)
|
||
mips_flag_mdebug = 0;
|
||
}
|
||
|
||
void
|
||
mips_init_after_args (void)
|
||
{
|
||
/* initialize opcodes */
|
||
bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
|
||
mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
|
||
}
|
||
|
||
long
|
||
md_pcrel_from (fixS *fixP)
|
||
{
|
||
valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
|
||
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
|
||
/* Return the address of the delay slot. */
|
||
return addr + 2;
|
||
|
||
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
|
||
case BFD_RELOC_MICROMIPS_JMP:
|
||
case BFD_RELOC_16_PCREL_S2:
|
||
case BFD_RELOC_MIPS_JMP:
|
||
/* Return the address of the delay slot. */
|
||
return addr + 4;
|
||
|
||
case BFD_RELOC_32_PCREL:
|
||
return addr;
|
||
|
||
default:
|
||
/* We have no relocation type for PC relative MIPS16 instructions. */
|
||
if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
_("PC relative MIPS16 instruction references"
|
||
" a different section"));
|
||
return addr;
|
||
}
|
||
}
|
||
|
||
/* This is called before the symbol table is processed. In order to
|
||
work with gcc when using mips-tfile, we must keep all local labels.
|
||
However, in other cases, we want to discard them. If we were
|
||
called with -g, but we didn't see any debugging information, it may
|
||
mean that gcc is smuggling debugging information through to
|
||
mips-tfile, in which case we must generate all local labels. */
|
||
|
||
void
|
||
mips_frob_file_before_adjust (void)
|
||
{
|
||
#ifndef NO_ECOFF_DEBUGGING
|
||
if (ECOFF_DEBUGGING
|
||
&& mips_debug != 0
|
||
&& ! ecoff_debugging_seen)
|
||
flag_keep_locals = 1;
|
||
#endif
|
||
}
|
||
|
||
/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
|
||
the corresponding LO16 reloc. This is called before md_apply_fix and
|
||
tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
|
||
relocation operators.
|
||
|
||
For our purposes, a %lo() expression matches a %got() or %hi()
|
||
expression if:
|
||
|
||
(a) it refers to the same symbol; and
|
||
(b) the offset applied in the %lo() expression is no lower than
|
||
the offset applied in the %got() or %hi().
|
||
|
||
(b) allows us to cope with code like:
|
||
|
||
lui $4,%hi(foo)
|
||
lh $4,%lo(foo+2)($4)
|
||
|
||
...which is legal on RELA targets, and has a well-defined behaviour
|
||
if the user knows that adding 2 to "foo" will not induce a carry to
|
||
the high 16 bits.
|
||
|
||
When several %lo()s match a particular %got() or %hi(), we use the
|
||
following rules to distinguish them:
|
||
|
||
(1) %lo()s with smaller offsets are a better match than %lo()s with
|
||
higher offsets.
|
||
|
||
(2) %lo()s with no matching %got() or %hi() are better than those
|
||
that already have a matching %got() or %hi().
|
||
|
||
(3) later %lo()s are better than earlier %lo()s.
|
||
|
||
These rules are applied in order.
|
||
|
||
(1) means, among other things, that %lo()s with identical offsets are
|
||
chosen if they exist.
|
||
|
||
(2) means that we won't associate several high-part relocations with
|
||
the same low-part relocation unless there's no alternative. Having
|
||
several high parts for the same low part is a GNU extension; this rule
|
||
allows careful users to avoid it.
|
||
|
||
(3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
|
||
with the last high-part relocation being at the front of the list.
|
||
It therefore makes sense to choose the last matching low-part
|
||
relocation, all other things being equal. It's also easier
|
||
to code that way. */
|
||
|
||
void
|
||
mips_frob_file (void)
|
||
{
|
||
struct mips_hi_fixup *l;
|
||
bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
|
||
|
||
for (l = mips_hi_fixup_list; l != NULL; l = l->next)
|
||
{
|
||
segment_info_type *seginfo;
|
||
bfd_boolean matched_lo_p;
|
||
fixS **hi_pos, **lo_pos, **pos;
|
||
|
||
gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
|
||
|
||
/* If a GOT16 relocation turns out to be against a global symbol,
|
||
there isn't supposed to be a matching LO. Ignore %gots against
|
||
constants; we'll report an error for those later. */
|
||
if (got16_reloc_p (l->fixp->fx_r_type)
|
||
&& !(l->fixp->fx_addsy
|
||
&& pic_need_relax (l->fixp->fx_addsy, l->seg)))
|
||
continue;
|
||
|
||
/* Check quickly whether the next fixup happens to be a matching %lo. */
|
||
if (fixup_has_matching_lo_p (l->fixp))
|
||
continue;
|
||
|
||
seginfo = seg_info (l->seg);
|
||
|
||
/* Set HI_POS to the position of this relocation in the chain.
|
||
Set LO_POS to the position of the chosen low-part relocation.
|
||
MATCHED_LO_P is true on entry to the loop if *POS is a low-part
|
||
relocation that matches an immediately-preceding high-part
|
||
relocation. */
|
||
hi_pos = NULL;
|
||
lo_pos = NULL;
|
||
matched_lo_p = FALSE;
|
||
looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
|
||
|
||
for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
|
||
{
|
||
if (*pos == l->fixp)
|
||
hi_pos = pos;
|
||
|
||
if ((*pos)->fx_r_type == looking_for_rtype
|
||
&& symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
|
||
&& (*pos)->fx_offset >= l->fixp->fx_offset
|
||
&& (lo_pos == NULL
|
||
|| (*pos)->fx_offset < (*lo_pos)->fx_offset
|
||
|| (!matched_lo_p
|
||
&& (*pos)->fx_offset == (*lo_pos)->fx_offset)))
|
||
lo_pos = pos;
|
||
|
||
matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
|
||
&& fixup_has_matching_lo_p (*pos));
|
||
}
|
||
|
||
/* If we found a match, remove the high-part relocation from its
|
||
current position and insert it before the low-part relocation.
|
||
Make the offsets match so that fixup_has_matching_lo_p()
|
||
will return true.
|
||
|
||
We don't warn about unmatched high-part relocations since some
|
||
versions of gcc have been known to emit dead "lui ...%hi(...)"
|
||
instructions. */
|
||
if (lo_pos != NULL)
|
||
{
|
||
l->fixp->fx_offset = (*lo_pos)->fx_offset;
|
||
if (l->fixp->fx_next != *lo_pos)
|
||
{
|
||
*hi_pos = l->fixp->fx_next;
|
||
l->fixp->fx_next = *lo_pos;
|
||
*lo_pos = l->fixp;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
int
|
||
mips_force_relocation (fixS *fixp)
|
||
{
|
||
if (generic_force_reloc (fixp))
|
||
return 1;
|
||
|
||
/* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
|
||
so that the linker relaxation can update targets. */
|
||
if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
|
||
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
|
||
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Read the instruction associated with RELOC from BUF. */
|
||
|
||
static unsigned int
|
||
read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
|
||
{
|
||
if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
|
||
return read_compressed_insn (buf, 4);
|
||
else
|
||
return read_insn (buf);
|
||
}
|
||
|
||
/* Write instruction INSN to BUF, given that it has been relocated
|
||
by RELOC. */
|
||
|
||
static void
|
||
write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
|
||
unsigned long insn)
|
||
{
|
||
if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
|
||
write_compressed_insn (buf, insn, 4);
|
||
else
|
||
write_insn (buf, insn);
|
||
}
|
||
|
||
/* Apply a fixup to the object file. */
|
||
|
||
void
|
||
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
|
||
{
|
||
char *buf;
|
||
unsigned long insn;
|
||
reloc_howto_type *howto;
|
||
|
||
/* We ignore generic BFD relocations we don't know about. */
|
||
howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
|
||
if (! howto)
|
||
return;
|
||
|
||
gas_assert (fixP->fx_size == 2
|
||
|| fixP->fx_size == 4
|
||
|| fixP->fx_r_type == BFD_RELOC_16
|
||
|| fixP->fx_r_type == BFD_RELOC_64
|
||
|| fixP->fx_r_type == BFD_RELOC_CTOR
|
||
|| fixP->fx_r_type == BFD_RELOC_MIPS_SUB
|
||
|| fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
|
||
|| fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
|
||
|
||
buf = fixP->fx_frag->fr_literal + fixP->fx_where;
|
||
|
||
gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
|
||
|| fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
|
||
|| fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
|
||
|| fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
|
||
|| fixP->fx_r_type == BFD_RELOC_32_PCREL);
|
||
|
||
/* Don't treat parts of a composite relocation as done. There are two
|
||
reasons for this:
|
||
|
||
(1) The second and third parts will be against 0 (RSS_UNDEF) but
|
||
should nevertheless be emitted if the first part is.
|
||
|
||
(2) In normal usage, composite relocations are never assembly-time
|
||
constants. The easiest way of dealing with the pathological
|
||
exceptions is to generate a relocation against STN_UNDEF and
|
||
leave everything up to the linker. */
|
||
if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
|
||
fixP->fx_done = 1;
|
||
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
case BFD_RELOC_MIPS_TLS_GD:
|
||
case BFD_RELOC_MIPS_TLS_LDM:
|
||
case BFD_RELOC_MIPS_TLS_DTPREL32:
|
||
case BFD_RELOC_MIPS_TLS_DTPREL64:
|
||
case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
|
||
case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
|
||
case BFD_RELOC_MIPS_TLS_GOTTPREL:
|
||
case BFD_RELOC_MIPS_TLS_TPREL32:
|
||
case BFD_RELOC_MIPS_TLS_TPREL64:
|
||
case BFD_RELOC_MIPS_TLS_TPREL_HI16:
|
||
case BFD_RELOC_MIPS_TLS_TPREL_LO16:
|
||
case BFD_RELOC_MICROMIPS_TLS_GD:
|
||
case BFD_RELOC_MICROMIPS_TLS_LDM:
|
||
case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
|
||
case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
|
||
case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
|
||
case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
|
||
case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
|
||
case BFD_RELOC_MIPS16_TLS_GD:
|
||
case BFD_RELOC_MIPS16_TLS_LDM:
|
||
case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
|
||
case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
|
||
case BFD_RELOC_MIPS16_TLS_GOTTPREL:
|
||
case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
|
||
case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
|
||
if (!fixP->fx_addsy)
|
||
{
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
_("TLS relocation against a constant"));
|
||
break;
|
||
}
|
||
S_SET_THREAD_LOCAL (fixP->fx_addsy);
|
||
/* fall through */
|
||
|
||
case BFD_RELOC_MIPS_JMP:
|
||
case BFD_RELOC_MIPS_SHIFT5:
|
||
case BFD_RELOC_MIPS_SHIFT6:
|
||
case BFD_RELOC_MIPS_GOT_DISP:
|
||
case BFD_RELOC_MIPS_GOT_PAGE:
|
||
case BFD_RELOC_MIPS_GOT_OFST:
|
||
case BFD_RELOC_MIPS_SUB:
|
||
case BFD_RELOC_MIPS_INSERT_A:
|
||
case BFD_RELOC_MIPS_INSERT_B:
|
||
case BFD_RELOC_MIPS_DELETE:
|
||
case BFD_RELOC_MIPS_HIGHEST:
|
||
case BFD_RELOC_MIPS_HIGHER:
|
||
case BFD_RELOC_MIPS_SCN_DISP:
|
||
case BFD_RELOC_MIPS_REL16:
|
||
case BFD_RELOC_MIPS_RELGOT:
|
||
case BFD_RELOC_MIPS_JALR:
|
||
case BFD_RELOC_HI16:
|
||
case BFD_RELOC_HI16_S:
|
||
case BFD_RELOC_LO16:
|
||
case BFD_RELOC_GPREL16:
|
||
case BFD_RELOC_MIPS_LITERAL:
|
||
case BFD_RELOC_MIPS_CALL16:
|
||
case BFD_RELOC_MIPS_GOT16:
|
||
case BFD_RELOC_GPREL32:
|
||
case BFD_RELOC_MIPS_GOT_HI16:
|
||
case BFD_RELOC_MIPS_GOT_LO16:
|
||
case BFD_RELOC_MIPS_CALL_HI16:
|
||
case BFD_RELOC_MIPS_CALL_LO16:
|
||
case BFD_RELOC_MIPS16_GPREL:
|
||
case BFD_RELOC_MIPS16_GOT16:
|
||
case BFD_RELOC_MIPS16_CALL16:
|
||
case BFD_RELOC_MIPS16_HI16:
|
||
case BFD_RELOC_MIPS16_HI16_S:
|
||
case BFD_RELOC_MIPS16_LO16:
|
||
case BFD_RELOC_MIPS16_JMP:
|
||
case BFD_RELOC_MICROMIPS_JMP:
|
||
case BFD_RELOC_MICROMIPS_GOT_DISP:
|
||
case BFD_RELOC_MICROMIPS_GOT_PAGE:
|
||
case BFD_RELOC_MICROMIPS_GOT_OFST:
|
||
case BFD_RELOC_MICROMIPS_SUB:
|
||
case BFD_RELOC_MICROMIPS_HIGHEST:
|
||
case BFD_RELOC_MICROMIPS_HIGHER:
|
||
case BFD_RELOC_MICROMIPS_SCN_DISP:
|
||
case BFD_RELOC_MICROMIPS_JALR:
|
||
case BFD_RELOC_MICROMIPS_HI16:
|
||
case BFD_RELOC_MICROMIPS_HI16_S:
|
||
case BFD_RELOC_MICROMIPS_LO16:
|
||
case BFD_RELOC_MICROMIPS_GPREL16:
|
||
case BFD_RELOC_MICROMIPS_LITERAL:
|
||
case BFD_RELOC_MICROMIPS_CALL16:
|
||
case BFD_RELOC_MICROMIPS_GOT16:
|
||
case BFD_RELOC_MICROMIPS_GOT_HI16:
|
||
case BFD_RELOC_MICROMIPS_GOT_LO16:
|
||
case BFD_RELOC_MICROMIPS_CALL_HI16:
|
||
case BFD_RELOC_MICROMIPS_CALL_LO16:
|
||
case BFD_RELOC_MIPS_EH:
|
||
if (fixP->fx_done)
|
||
{
|
||
offsetT value;
|
||
|
||
if (calculate_reloc (fixP->fx_r_type, *valP, &value))
|
||
{
|
||
insn = read_reloc_insn (buf, fixP->fx_r_type);
|
||
if (mips16_reloc_p (fixP->fx_r_type))
|
||
insn |= mips16_immed_extend (value, 16);
|
||
else
|
||
insn |= (value & 0xffff);
|
||
write_reloc_insn (buf, fixP->fx_r_type, insn);
|
||
}
|
||
else
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
_("unsupported constant in relocation"));
|
||
}
|
||
break;
|
||
|
||
case BFD_RELOC_64:
|
||
/* This is handled like BFD_RELOC_32, but we output a sign
|
||
extended value if we are only 32 bits. */
|
||
if (fixP->fx_done)
|
||
{
|
||
if (8 <= sizeof (valueT))
|
||
md_number_to_chars (buf, *valP, 8);
|
||
else
|
||
{
|
||
valueT hiv;
|
||
|
||
if ((*valP & 0x80000000) != 0)
|
||
hiv = 0xffffffff;
|
||
else
|
||
hiv = 0;
|
||
md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
|
||
md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case BFD_RELOC_RVA:
|
||
case BFD_RELOC_32:
|
||
case BFD_RELOC_32_PCREL:
|
||
case BFD_RELOC_16:
|
||
/* If we are deleting this reloc entry, we must fill in the
|
||
value now. This can happen if we have a .word which is not
|
||
resolved when it appears but is later defined. */
|
||
if (fixP->fx_done)
|
||
md_number_to_chars (buf, *valP, fixP->fx_size);
|
||
break;
|
||
|
||
case BFD_RELOC_16_PCREL_S2:
|
||
if ((*valP & 0x3) != 0)
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
_("branch to misaligned address (%lx)"), (long) *valP);
|
||
|
||
/* We need to save the bits in the instruction since fixup_segment()
|
||
might be deleting the relocation entry (i.e., a branch within
|
||
the current segment). */
|
||
if (! fixP->fx_done)
|
||
break;
|
||
|
||
/* Update old instruction data. */
|
||
insn = read_insn (buf);
|
||
|
||
if (*valP + 0x20000 <= 0x3ffff)
|
||
{
|
||
insn |= (*valP >> 2) & 0xffff;
|
||
write_insn (buf, insn);
|
||
}
|
||
else if (mips_pic == NO_PIC
|
||
&& fixP->fx_done
|
||
&& fixP->fx_frag->fr_address >= text_section->vma
|
||
&& (fixP->fx_frag->fr_address
|
||
< text_section->vma + bfd_get_section_size (text_section))
|
||
&& ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
|
||
|| (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
|
||
|| (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
|
||
{
|
||
/* The branch offset is too large. If this is an
|
||
unconditional branch, and we are not generating PIC code,
|
||
we can convert it to an absolute jump instruction. */
|
||
if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
|
||
insn = 0x0c000000; /* jal */
|
||
else
|
||
insn = 0x08000000; /* j */
|
||
fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
|
||
fixP->fx_done = 0;
|
||
fixP->fx_addsy = section_symbol (text_section);
|
||
*valP += md_pcrel_from (fixP);
|
||
write_insn (buf, insn);
|
||
}
|
||
else
|
||
{
|
||
/* If we got here, we have branch-relaxation disabled,
|
||
and there's nothing we can do to fix this instruction
|
||
without turning it into a longer sequence. */
|
||
as_bad_where (fixP->fx_file, fixP->fx_line,
|
||
_("branch out of range"));
|
||
}
|
||
break;
|
||
|
||
case BFD_RELOC_MICROMIPS_7_PCREL_S1:
|
||
case BFD_RELOC_MICROMIPS_10_PCREL_S1:
|
||
case BFD_RELOC_MICROMIPS_16_PCREL_S1:
|
||
/* We adjust the offset back to even. */
|
||
if ((*valP & 0x1) != 0)
|
||
--(*valP);
|
||
|
||
if (! fixP->fx_done)
|
||
break;
|
||
|
||
/* Should never visit here, because we keep the relocation. */
|
||
abort ();
|
||
break;
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
fixP->fx_done = 0;
|
||
if (fixP->fx_addsy
|
||
&& !S_IS_DEFINED (fixP->fx_addsy)
|
||
&& !S_IS_WEAK (fixP->fx_addsy))
|
||
S_SET_WEAK (fixP->fx_addsy);
|
||
break;
|
||
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
fixP->fx_done = 0;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Remember value for tc_gen_reloc. */
|
||
fixP->fx_addnumber = *valP;
|
||
}
|
||
|
||
static symbolS *
|
||
get_symbol (void)
|
||
{
|
||
int c;
|
||
char *name;
|
||
symbolS *p;
|
||
|
||
name = input_line_pointer;
|
||
c = get_symbol_end ();
|
||
p = (symbolS *) symbol_find_or_make (name);
|
||
*input_line_pointer = c;
|
||
return p;
|
||
}
|
||
|
||
/* Align the current frag to a given power of two. If a particular
|
||
fill byte should be used, FILL points to an integer that contains
|
||
that byte, otherwise FILL is null.
|
||
|
||
This function used to have the comment:
|
||
|
||
The MIPS assembler also automatically adjusts any preceding label.
|
||
|
||
The implementation therefore applied the adjustment to a maximum of
|
||
one label. However, other label adjustments are applied to batches
|
||
of labels, and adjusting just one caused problems when new labels
|
||
were added for the sake of debugging or unwind information.
|
||
We therefore adjust all preceding labels (given as LABELS) instead. */
|
||
|
||
static void
|
||
mips_align (int to, int *fill, struct insn_label_list *labels)
|
||
{
|
||
mips_emit_delays ();
|
||
mips_record_compressed_mode ();
|
||
if (fill == NULL && subseg_text_p (now_seg))
|
||
frag_align_code (to, 0);
|
||
else
|
||
frag_align (to, fill ? *fill : 0, 0);
|
||
record_alignment (now_seg, to);
|
||
mips_move_labels (labels, FALSE);
|
||
}
|
||
|
||
/* Align to a given power of two. .align 0 turns off the automatic
|
||
alignment used by the data creating pseudo-ops. */
|
||
|
||
static void
|
||
s_align (int x ATTRIBUTE_UNUSED)
|
||
{
|
||
int temp, fill_value, *fill_ptr;
|
||
long max_alignment = 28;
|
||
|
||
/* o Note that the assembler pulls down any immediately preceding label
|
||
to the aligned address.
|
||
o It's not documented but auto alignment is reinstated by
|
||
a .align pseudo instruction.
|
||
o Note also that after auto alignment is turned off the mips assembler
|
||
issues an error on attempt to assemble an improperly aligned data item.
|
||
We don't. */
|
||
|
||
temp = get_absolute_expression ();
|
||
if (temp > max_alignment)
|
||
as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
|
||
else if (temp < 0)
|
||
{
|
||
as_warn (_("alignment negative, 0 assumed"));
|
||
temp = 0;
|
||
}
|
||
if (*input_line_pointer == ',')
|
||
{
|
||
++input_line_pointer;
|
||
fill_value = get_absolute_expression ();
|
||
fill_ptr = &fill_value;
|
||
}
|
||
else
|
||
fill_ptr = 0;
|
||
if (temp)
|
||
{
|
||
segment_info_type *si = seg_info (now_seg);
|
||
struct insn_label_list *l = si->label_list;
|
||
/* Auto alignment should be switched on by next section change. */
|
||
auto_align = 1;
|
||
mips_align (temp, fill_ptr, l);
|
||
}
|
||
else
|
||
{
|
||
auto_align = 0;
|
||
}
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
s_change_sec (int sec)
|
||
{
|
||
segT seg;
|
||
|
||
/* The ELF backend needs to know that we are changing sections, so
|
||
that .previous works correctly. We could do something like check
|
||
for an obj_section_change_hook macro, but that might be confusing
|
||
as it would not be appropriate to use it in the section changing
|
||
functions in read.c, since obj-elf.c intercepts those. FIXME:
|
||
This should be cleaner, somehow. */
|
||
obj_elf_section_change_hook ();
|
||
|
||
mips_emit_delays ();
|
||
|
||
switch (sec)
|
||
{
|
||
case 't':
|
||
s_text (0);
|
||
break;
|
||
case 'd':
|
||
s_data (0);
|
||
break;
|
||
case 'b':
|
||
subseg_set (bss_section, (subsegT) get_absolute_expression ());
|
||
demand_empty_rest_of_line ();
|
||
break;
|
||
|
||
case 'r':
|
||
seg = subseg_new (RDATA_SECTION_NAME,
|
||
(subsegT) get_absolute_expression ());
|
||
bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
|
||
| SEC_READONLY | SEC_RELOC
|
||
| SEC_DATA));
|
||
if (strncmp (TARGET_OS, "elf", 3) != 0)
|
||
record_alignment (seg, 4);
|
||
demand_empty_rest_of_line ();
|
||
break;
|
||
|
||
case 's':
|
||
seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
|
||
bfd_set_section_flags (stdoutput, seg,
|
||
SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
|
||
if (strncmp (TARGET_OS, "elf", 3) != 0)
|
||
record_alignment (seg, 4);
|
||
demand_empty_rest_of_line ();
|
||
break;
|
||
|
||
case 'B':
|
||
seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
|
||
bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
|
||
if (strncmp (TARGET_OS, "elf", 3) != 0)
|
||
record_alignment (seg, 4);
|
||
demand_empty_rest_of_line ();
|
||
break;
|
||
}
|
||
|
||
auto_align = 1;
|
||
}
|
||
|
||
void
|
||
s_change_section (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
char *section_name;
|
||
char c;
|
||
char next_c = 0;
|
||
int section_type;
|
||
int section_flag;
|
||
int section_entry_size;
|
||
int section_alignment;
|
||
|
||
section_name = input_line_pointer;
|
||
c = get_symbol_end ();
|
||
if (c)
|
||
next_c = *(input_line_pointer + 1);
|
||
|
||
/* Do we have .section Name<,"flags">? */
|
||
if (c != ',' || (c == ',' && next_c == '"'))
|
||
{
|
||
/* just after name is now '\0'. */
|
||
*input_line_pointer = c;
|
||
input_line_pointer = section_name;
|
||
obj_elf_section (ignore);
|
||
return;
|
||
}
|
||
input_line_pointer++;
|
||
|
||
/* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
|
||
if (c == ',')
|
||
section_type = get_absolute_expression ();
|
||
else
|
||
section_type = 0;
|
||
if (*input_line_pointer++ == ',')
|
||
section_flag = get_absolute_expression ();
|
||
else
|
||
section_flag = 0;
|
||
if (*input_line_pointer++ == ',')
|
||
section_entry_size = get_absolute_expression ();
|
||
else
|
||
section_entry_size = 0;
|
||
if (*input_line_pointer++ == ',')
|
||
section_alignment = get_absolute_expression ();
|
||
else
|
||
section_alignment = 0;
|
||
/* FIXME: really ignore? */
|
||
(void) section_alignment;
|
||
|
||
section_name = xstrdup (section_name);
|
||
|
||
/* When using the generic form of .section (as implemented by obj-elf.c),
|
||
there's no way to set the section type to SHT_MIPS_DWARF. Users have
|
||
traditionally had to fall back on the more common @progbits instead.
|
||
|
||
There's nothing really harmful in this, since bfd will correct
|
||
SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
|
||
means that, for backwards compatibility, the special_section entries
|
||
for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
|
||
|
||
Even so, we shouldn't force users of the MIPS .section syntax to
|
||
incorrectly label the sections as SHT_PROGBITS. The best compromise
|
||
seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
|
||
generic type-checking code. */
|
||
if (section_type == SHT_MIPS_DWARF)
|
||
section_type = SHT_PROGBITS;
|
||
|
||
obj_elf_change_section (section_name, section_type, section_flag,
|
||
section_entry_size, 0, 0, 0);
|
||
|
||
if (now_seg->name != section_name)
|
||
free (section_name);
|
||
}
|
||
|
||
void
|
||
mips_enable_auto_align (void)
|
||
{
|
||
auto_align = 1;
|
||
}
|
||
|
||
static void
|
||
s_cons (int log_size)
|
||
{
|
||
segment_info_type *si = seg_info (now_seg);
|
||
struct insn_label_list *l = si->label_list;
|
||
|
||
mips_emit_delays ();
|
||
if (log_size > 0 && auto_align)
|
||
mips_align (log_size, 0, l);
|
||
cons (1 << log_size);
|
||
mips_clear_insn_labels ();
|
||
}
|
||
|
||
static void
|
||
s_float_cons (int type)
|
||
{
|
||
segment_info_type *si = seg_info (now_seg);
|
||
struct insn_label_list *l = si->label_list;
|
||
|
||
mips_emit_delays ();
|
||
|
||
if (auto_align)
|
||
{
|
||
if (type == 'd')
|
||
mips_align (3, 0, l);
|
||
else
|
||
mips_align (2, 0, l);
|
||
}
|
||
|
||
float_cons (type);
|
||
mips_clear_insn_labels ();
|
||
}
|
||
|
||
/* Handle .globl. We need to override it because on Irix 5 you are
|
||
permitted to say
|
||
.globl foo .text
|
||
where foo is an undefined symbol, to mean that foo should be
|
||
considered to be the address of a function. */
|
||
|
||
static void
|
||
s_mips_globl (int x ATTRIBUTE_UNUSED)
|
||
{
|
||
char *name;
|
||
int c;
|
||
symbolS *symbolP;
|
||
flagword flag;
|
||
|
||
do
|
||
{
|
||
name = input_line_pointer;
|
||
c = get_symbol_end ();
|
||
symbolP = symbol_find_or_make (name);
|
||
S_SET_EXTERNAL (symbolP);
|
||
|
||
*input_line_pointer = c;
|
||
SKIP_WHITESPACE ();
|
||
|
||
/* On Irix 5, every global symbol that is not explicitly labelled as
|
||
being a function is apparently labelled as being an object. */
|
||
flag = BSF_OBJECT;
|
||
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer]
|
||
&& (*input_line_pointer != ','))
|
||
{
|
||
char *secname;
|
||
asection *sec;
|
||
|
||
secname = input_line_pointer;
|
||
c = get_symbol_end ();
|
||
sec = bfd_get_section_by_name (stdoutput, secname);
|
||
if (sec == NULL)
|
||
as_bad (_("%s: no such section"), secname);
|
||
*input_line_pointer = c;
|
||
|
||
if (sec != NULL && (sec->flags & SEC_CODE) != 0)
|
||
flag = BSF_FUNCTION;
|
||
}
|
||
|
||
symbol_get_bfdsym (symbolP)->flags |= flag;
|
||
|
||
c = *input_line_pointer;
|
||
if (c == ',')
|
||
{
|
||
input_line_pointer++;
|
||
SKIP_WHITESPACE ();
|
||
if (is_end_of_line[(unsigned char) *input_line_pointer])
|
||
c = '\n';
|
||
}
|
||
}
|
||
while (c == ',');
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
s_option (int x ATTRIBUTE_UNUSED)
|
||
{
|
||
char *opt;
|
||
char c;
|
||
|
||
opt = input_line_pointer;
|
||
c = get_symbol_end ();
|
||
|
||
if (*opt == 'O')
|
||
{
|
||
/* FIXME: What does this mean? */
|
||
}
|
||
else if (strncmp (opt, "pic", 3) == 0)
|
||
{
|
||
int i;
|
||
|
||
i = atoi (opt + 3);
|
||
if (i == 0)
|
||
mips_pic = NO_PIC;
|
||
else if (i == 2)
|
||
{
|
||
mips_pic = SVR4_PIC;
|
||
mips_abicalls = TRUE;
|
||
}
|
||
else
|
||
as_bad (_(".option pic%d not supported"), i);
|
||
|
||
if (mips_pic == SVR4_PIC)
|
||
{
|
||
if (g_switch_seen && g_switch_value != 0)
|
||
as_warn (_("-G may not be used with SVR4 PIC code"));
|
||
g_switch_value = 0;
|
||
bfd_set_gp_size (stdoutput, 0);
|
||
}
|
||
}
|
||
else
|
||
as_warn (_("unrecognized option \"%s\""), opt);
|
||
|
||
*input_line_pointer = c;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* This structure is used to hold a stack of .set values. */
|
||
|
||
struct mips_option_stack
|
||
{
|
||
struct mips_option_stack *next;
|
||
struct mips_set_options options;
|
||
};
|
||
|
||
static struct mips_option_stack *mips_opts_stack;
|
||
|
||
/* Handle the .set pseudo-op. */
|
||
|
||
static void
|
||
s_mipsset (int x ATTRIBUTE_UNUSED)
|
||
{
|
||
char *name = input_line_pointer, ch;
|
||
const struct mips_ase *ase;
|
||
|
||
while (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
++input_line_pointer;
|
||
ch = *input_line_pointer;
|
||
*input_line_pointer = '\0';
|
||
|
||
if (strcmp (name, "reorder") == 0)
|
||
{
|
||
if (mips_opts.noreorder)
|
||
end_noreorder ();
|
||
}
|
||
else if (strcmp (name, "noreorder") == 0)
|
||
{
|
||
if (!mips_opts.noreorder)
|
||
start_noreorder ();
|
||
}
|
||
else if (strncmp (name, "at=", 3) == 0)
|
||
{
|
||
char *s = name + 3;
|
||
|
||
if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
|
||
as_bad (_("unrecognized register name `%s'"), s);
|
||
}
|
||
else if (strcmp (name, "at") == 0)
|
||
{
|
||
mips_opts.at = ATREG;
|
||
}
|
||
else if (strcmp (name, "noat") == 0)
|
||
{
|
||
mips_opts.at = ZERO;
|
||
}
|
||
else if (strcmp (name, "macro") == 0)
|
||
{
|
||
mips_opts.warn_about_macros = 0;
|
||
}
|
||
else if (strcmp (name, "nomacro") == 0)
|
||
{
|
||
if (mips_opts.noreorder == 0)
|
||
as_bad (_("`noreorder' must be set before `nomacro'"));
|
||
mips_opts.warn_about_macros = 1;
|
||
}
|
||
else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
|
||
{
|
||
mips_opts.nomove = 0;
|
||
}
|
||
else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
|
||
{
|
||
mips_opts.nomove = 1;
|
||
}
|
||
else if (strcmp (name, "bopt") == 0)
|
||
{
|
||
mips_opts.nobopt = 0;
|
||
}
|
||
else if (strcmp (name, "nobopt") == 0)
|
||
{
|
||
mips_opts.nobopt = 1;
|
||
}
|
||
else if (strcmp (name, "gp=default") == 0)
|
||
mips_opts.gp32 = file_mips_gp32;
|
||
else if (strcmp (name, "gp=32") == 0)
|
||
mips_opts.gp32 = 1;
|
||
else if (strcmp (name, "gp=64") == 0)
|
||
{
|
||
if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
|
||
as_warn (_("%s isa does not support 64-bit registers"),
|
||
mips_cpu_info_from_isa (mips_opts.isa)->name);
|
||
mips_opts.gp32 = 0;
|
||
}
|
||
else if (strcmp (name, "fp=default") == 0)
|
||
mips_opts.fp32 = file_mips_fp32;
|
||
else if (strcmp (name, "fp=32") == 0)
|
||
mips_opts.fp32 = 1;
|
||
else if (strcmp (name, "fp=64") == 0)
|
||
{
|
||
if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
|
||
as_warn (_("%s isa does not support 64-bit floating point registers"),
|
||
mips_cpu_info_from_isa (mips_opts.isa)->name);
|
||
mips_opts.fp32 = 0;
|
||
}
|
||
else if (strcmp (name, "softfloat") == 0)
|
||
mips_opts.soft_float = 1;
|
||
else if (strcmp (name, "hardfloat") == 0)
|
||
mips_opts.soft_float = 0;
|
||
else if (strcmp (name, "singlefloat") == 0)
|
||
mips_opts.single_float = 1;
|
||
else if (strcmp (name, "doublefloat") == 0)
|
||
mips_opts.single_float = 0;
|
||
else if (strcmp (name, "mips16") == 0
|
||
|| strcmp (name, "MIPS-16") == 0)
|
||
{
|
||
if (mips_opts.micromips == 1)
|
||
as_fatal (_("`mips16' cannot be used with `micromips'"));
|
||
mips_opts.mips16 = 1;
|
||
}
|
||
else if (strcmp (name, "nomips16") == 0
|
||
|| strcmp (name, "noMIPS-16") == 0)
|
||
mips_opts.mips16 = 0;
|
||
else if (strcmp (name, "micromips") == 0)
|
||
{
|
||
if (mips_opts.mips16 == 1)
|
||
as_fatal (_("`micromips' cannot be used with `mips16'"));
|
||
mips_opts.micromips = 1;
|
||
}
|
||
else if (strcmp (name, "nomicromips") == 0)
|
||
mips_opts.micromips = 0;
|
||
else if (name[0] == 'n'
|
||
&& name[1] == 'o'
|
||
&& (ase = mips_lookup_ase (name + 2)))
|
||
mips_set_ase (ase, FALSE);
|
||
else if ((ase = mips_lookup_ase (name)))
|
||
mips_set_ase (ase, TRUE);
|
||
else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
|
||
{
|
||
int reset = 0;
|
||
|
||
/* Permit the user to change the ISA and architecture on the fly.
|
||
Needless to say, misuse can cause serious problems. */
|
||
if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
|
||
{
|
||
reset = 1;
|
||
mips_opts.isa = file_mips_isa;
|
||
mips_opts.arch = file_mips_arch;
|
||
}
|
||
else if (strncmp (name, "arch=", 5) == 0)
|
||
{
|
||
const struct mips_cpu_info *p;
|
||
|
||
p = mips_parse_cpu("internal use", name + 5);
|
||
if (!p)
|
||
as_bad (_("unknown architecture %s"), name + 5);
|
||
else
|
||
{
|
||
mips_opts.arch = p->cpu;
|
||
mips_opts.isa = p->isa;
|
||
}
|
||
}
|
||
else if (strncmp (name, "mips", 4) == 0)
|
||
{
|
||
const struct mips_cpu_info *p;
|
||
|
||
p = mips_parse_cpu("internal use", name);
|
||
if (!p)
|
||
as_bad (_("unknown ISA level %s"), name + 4);
|
||
else
|
||
{
|
||
mips_opts.arch = p->cpu;
|
||
mips_opts.isa = p->isa;
|
||
}
|
||
}
|
||
else
|
||
as_bad (_("unknown ISA or architecture %s"), name);
|
||
|
||
switch (mips_opts.isa)
|
||
{
|
||
case 0:
|
||
break;
|
||
case ISA_MIPS1:
|
||
case ISA_MIPS2:
|
||
case ISA_MIPS32:
|
||
case ISA_MIPS32R2:
|
||
mips_opts.gp32 = 1;
|
||
mips_opts.fp32 = 1;
|
||
break;
|
||
case ISA_MIPS3:
|
||
case ISA_MIPS4:
|
||
case ISA_MIPS5:
|
||
case ISA_MIPS64:
|
||
case ISA_MIPS64R2:
|
||
mips_opts.gp32 = 0;
|
||
if (mips_opts.arch == CPU_R5900)
|
||
{
|
||
mips_opts.fp32 = 1;
|
||
}
|
||
else
|
||
{
|
||
mips_opts.fp32 = 0;
|
||
}
|
||
break;
|
||
default:
|
||
as_bad (_("unknown ISA level %s"), name + 4);
|
||
break;
|
||
}
|
||
if (reset)
|
||
{
|
||
mips_opts.gp32 = file_mips_gp32;
|
||
mips_opts.fp32 = file_mips_fp32;
|
||
}
|
||
}
|
||
else if (strcmp (name, "autoextend") == 0)
|
||
mips_opts.noautoextend = 0;
|
||
else if (strcmp (name, "noautoextend") == 0)
|
||
mips_opts.noautoextend = 1;
|
||
else if (strcmp (name, "insn32") == 0)
|
||
mips_opts.insn32 = TRUE;
|
||
else if (strcmp (name, "noinsn32") == 0)
|
||
mips_opts.insn32 = FALSE;
|
||
else if (strcmp (name, "push") == 0)
|
||
{
|
||
struct mips_option_stack *s;
|
||
|
||
s = (struct mips_option_stack *) xmalloc (sizeof *s);
|
||
s->next = mips_opts_stack;
|
||
s->options = mips_opts;
|
||
mips_opts_stack = s;
|
||
}
|
||
else if (strcmp (name, "pop") == 0)
|
||
{
|
||
struct mips_option_stack *s;
|
||
|
||
s = mips_opts_stack;
|
||
if (s == NULL)
|
||
as_bad (_(".set pop with no .set push"));
|
||
else
|
||
{
|
||
/* If we're changing the reorder mode we need to handle
|
||
delay slots correctly. */
|
||
if (s->options.noreorder && ! mips_opts.noreorder)
|
||
start_noreorder ();
|
||
else if (! s->options.noreorder && mips_opts.noreorder)
|
||
end_noreorder ();
|
||
|
||
mips_opts = s->options;
|
||
mips_opts_stack = s->next;
|
||
free (s);
|
||
}
|
||
}
|
||
else if (strcmp (name, "sym32") == 0)
|
||
mips_opts.sym32 = TRUE;
|
||
else if (strcmp (name, "nosym32") == 0)
|
||
mips_opts.sym32 = FALSE;
|
||
else if (strchr (name, ','))
|
||
{
|
||
/* Generic ".set" directive; use the generic handler. */
|
||
*input_line_pointer = ch;
|
||
input_line_pointer = name;
|
||
s_set (0);
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
as_warn (_("tried to set unrecognized symbol: %s\n"), name);
|
||
}
|
||
mips_check_isa_supports_ases ();
|
||
*input_line_pointer = ch;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .abicalls pseudo-op. I believe this is equivalent to
|
||
.option pic2. It means to generate SVR4 PIC calls. */
|
||
|
||
static void
|
||
s_abicalls (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
mips_pic = SVR4_PIC;
|
||
mips_abicalls = TRUE;
|
||
|
||
if (g_switch_seen && g_switch_value != 0)
|
||
as_warn (_("-G may not be used with SVR4 PIC code"));
|
||
g_switch_value = 0;
|
||
|
||
bfd_set_gp_size (stdoutput, 0);
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .cpload pseudo-op. This is used when generating SVR4
|
||
PIC code. It sets the $gp register for the function based on the
|
||
function address, which is in the register named in the argument.
|
||
This uses a relocation against _gp_disp, which is handled specially
|
||
by the linker. The result is:
|
||
lui $gp,%hi(_gp_disp)
|
||
addiu $gp,$gp,%lo(_gp_disp)
|
||
addu $gp,$gp,.cpload argument
|
||
The .cpload argument is normally $25 == $t9.
|
||
|
||
The -mno-shared option changes this to:
|
||
lui $gp,%hi(__gnu_local_gp)
|
||
addiu $gp,$gp,%lo(__gnu_local_gp)
|
||
and the argument is ignored. This saves an instruction, but the
|
||
resulting code is not position independent; it uses an absolute
|
||
address for __gnu_local_gp. Thus code assembled with -mno-shared
|
||
can go into an ordinary executable, but not into a shared library. */
|
||
|
||
static void
|
||
s_cpload (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
expressionS ex;
|
||
int reg;
|
||
int in_shared;
|
||
|
||
/* If we are not generating SVR4 PIC code, or if this is NewABI code,
|
||
.cpload is ignored. */
|
||
if (mips_pic != SVR4_PIC || HAVE_NEWABI)
|
||
{
|
||
s_ignore (0);
|
||
return;
|
||
}
|
||
|
||
if (mips_opts.mips16)
|
||
{
|
||
as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
|
||
ignore_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
/* .cpload should be in a .set noreorder section. */
|
||
if (mips_opts.noreorder == 0)
|
||
as_warn (_(".cpload not in noreorder section"));
|
||
|
||
reg = tc_get_register (0);
|
||
|
||
/* If we need to produce a 64-bit address, we are better off using
|
||
the default instruction sequence. */
|
||
in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
|
||
|
||
ex.X_op = O_symbol;
|
||
ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
|
||
"__gnu_local_gp");
|
||
ex.X_op_symbol = NULL;
|
||
ex.X_add_number = 0;
|
||
|
||
/* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
|
||
symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
|
||
|
||
mips_mark_labels ();
|
||
mips_assembling_insn = TRUE;
|
||
|
||
macro_start ();
|
||
macro_build_lui (&ex, mips_gp_register);
|
||
macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
|
||
mips_gp_register, BFD_RELOC_LO16);
|
||
if (in_shared)
|
||
macro_build (NULL, "addu", "d,v,t", mips_gp_register,
|
||
mips_gp_register, reg);
|
||
macro_end ();
|
||
|
||
mips_assembling_insn = FALSE;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
|
||
.cpsetup $reg1, offset|$reg2, label
|
||
|
||
If offset is given, this results in:
|
||
sd $gp, offset($sp)
|
||
lui $gp, %hi(%neg(%gp_rel(label)))
|
||
addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
|
||
daddu $gp, $gp, $reg1
|
||
|
||
If $reg2 is given, this results in:
|
||
daddu $reg2, $gp, $0
|
||
lui $gp, %hi(%neg(%gp_rel(label)))
|
||
addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
|
||
daddu $gp, $gp, $reg1
|
||
$reg1 is normally $25 == $t9.
|
||
|
||
The -mno-shared option replaces the last three instructions with
|
||
lui $gp,%hi(_gp)
|
||
addiu $gp,$gp,%lo(_gp) */
|
||
|
||
static void
|
||
s_cpsetup (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
expressionS ex_off;
|
||
expressionS ex_sym;
|
||
int reg1;
|
||
|
||
/* If we are not generating SVR4 PIC code, .cpsetup is ignored.
|
||
We also need NewABI support. */
|
||
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
|
||
{
|
||
s_ignore (0);
|
||
return;
|
||
}
|
||
|
||
if (mips_opts.mips16)
|
||
{
|
||
as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
|
||
ignore_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
reg1 = tc_get_register (0);
|
||
SKIP_WHITESPACE ();
|
||
if (*input_line_pointer != ',')
|
||
{
|
||
as_bad (_("missing argument separator ',' for .cpsetup"));
|
||
return;
|
||
}
|
||
else
|
||
++input_line_pointer;
|
||
SKIP_WHITESPACE ();
|
||
if (*input_line_pointer == '$')
|
||
{
|
||
mips_cpreturn_register = tc_get_register (0);
|
||
mips_cpreturn_offset = -1;
|
||
}
|
||
else
|
||
{
|
||
mips_cpreturn_offset = get_absolute_expression ();
|
||
mips_cpreturn_register = -1;
|
||
}
|
||
SKIP_WHITESPACE ();
|
||
if (*input_line_pointer != ',')
|
||
{
|
||
as_bad (_("missing argument separator ',' for .cpsetup"));
|
||
return;
|
||
}
|
||
else
|
||
++input_line_pointer;
|
||
SKIP_WHITESPACE ();
|
||
expression (&ex_sym);
|
||
|
||
mips_mark_labels ();
|
||
mips_assembling_insn = TRUE;
|
||
|
||
macro_start ();
|
||
if (mips_cpreturn_register == -1)
|
||
{
|
||
ex_off.X_op = O_constant;
|
||
ex_off.X_add_symbol = NULL;
|
||
ex_off.X_op_symbol = NULL;
|
||
ex_off.X_add_number = mips_cpreturn_offset;
|
||
|
||
macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
|
||
BFD_RELOC_LO16, SP);
|
||
}
|
||
else
|
||
macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
|
||
mips_gp_register, 0);
|
||
|
||
if (mips_in_shared || HAVE_64BIT_SYMBOLS)
|
||
{
|
||
macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
|
||
-1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
|
||
BFD_RELOC_HI16_S);
|
||
|
||
macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
|
||
mips_gp_register, -1, BFD_RELOC_GPREL16,
|
||
BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
|
||
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
|
||
mips_gp_register, reg1);
|
||
}
|
||
else
|
||
{
|
||
expressionS ex;
|
||
|
||
ex.X_op = O_symbol;
|
||
ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
|
||
ex.X_op_symbol = NULL;
|
||
ex.X_add_number = 0;
|
||
|
||
/* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
|
||
symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
|
||
|
||
macro_build_lui (&ex, mips_gp_register);
|
||
macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
|
||
mips_gp_register, BFD_RELOC_LO16);
|
||
}
|
||
|
||
macro_end ();
|
||
|
||
mips_assembling_insn = FALSE;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
s_cplocal (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
/* If we are not generating SVR4 PIC code, or if this is not NewABI code,
|
||
.cplocal is ignored. */
|
||
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
|
||
{
|
||
s_ignore (0);
|
||
return;
|
||
}
|
||
|
||
if (mips_opts.mips16)
|
||
{
|
||
as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
|
||
ignore_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
mips_gp_register = tc_get_register (0);
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .cprestore pseudo-op. This stores $gp into a given
|
||
offset from $sp. The offset is remembered, and after making a PIC
|
||
call $gp is restored from that location. */
|
||
|
||
static void
|
||
s_cprestore (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
expressionS ex;
|
||
|
||
/* If we are not generating SVR4 PIC code, or if this is NewABI code,
|
||
.cprestore is ignored. */
|
||
if (mips_pic != SVR4_PIC || HAVE_NEWABI)
|
||
{
|
||
s_ignore (0);
|
||
return;
|
||
}
|
||
|
||
if (mips_opts.mips16)
|
||
{
|
||
as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
|
||
ignore_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
mips_cprestore_offset = get_absolute_expression ();
|
||
mips_cprestore_valid = 1;
|
||
|
||
ex.X_op = O_constant;
|
||
ex.X_add_symbol = NULL;
|
||
ex.X_op_symbol = NULL;
|
||
ex.X_add_number = mips_cprestore_offset;
|
||
|
||
mips_mark_labels ();
|
||
mips_assembling_insn = TRUE;
|
||
|
||
macro_start ();
|
||
macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
|
||
SP, HAVE_64BIT_ADDRESSES);
|
||
macro_end ();
|
||
|
||
mips_assembling_insn = FALSE;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
|
||
was given in the preceding .cpsetup, it results in:
|
||
ld $gp, offset($sp)
|
||
|
||
If a register $reg2 was given there, it results in:
|
||
daddu $gp, $reg2, $0 */
|
||
|
||
static void
|
||
s_cpreturn (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
expressionS ex;
|
||
|
||
/* If we are not generating SVR4 PIC code, .cpreturn is ignored.
|
||
We also need NewABI support. */
|
||
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
|
||
{
|
||
s_ignore (0);
|
||
return;
|
||
}
|
||
|
||
if (mips_opts.mips16)
|
||
{
|
||
as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
|
||
ignore_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
mips_mark_labels ();
|
||
mips_assembling_insn = TRUE;
|
||
|
||
macro_start ();
|
||
if (mips_cpreturn_register == -1)
|
||
{
|
||
ex.X_op = O_constant;
|
||
ex.X_add_symbol = NULL;
|
||
ex.X_op_symbol = NULL;
|
||
ex.X_add_number = mips_cpreturn_offset;
|
||
|
||
macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
|
||
}
|
||
else
|
||
macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
|
||
mips_cpreturn_register, 0);
|
||
macro_end ();
|
||
|
||
mips_assembling_insn = FALSE;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
|
||
pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
|
||
DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
|
||
debug information or MIPS16 TLS. */
|
||
|
||
static void
|
||
s_tls_rel_directive (const size_t bytes, const char *dirstr,
|
||
bfd_reloc_code_real_type rtype)
|
||
{
|
||
expressionS ex;
|
||
char *p;
|
||
|
||
expression (&ex);
|
||
|
||
if (ex.X_op != O_symbol)
|
||
{
|
||
as_bad (_("unsupported use of %s"), dirstr);
|
||
ignore_rest_of_line ();
|
||
}
|
||
|
||
p = frag_more (bytes);
|
||
md_number_to_chars (p, 0, bytes);
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
|
||
demand_empty_rest_of_line ();
|
||
mips_clear_insn_labels ();
|
||
}
|
||
|
||
/* Handle .dtprelword. */
|
||
|
||
static void
|
||
s_dtprelword (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
|
||
}
|
||
|
||
/* Handle .dtpreldword. */
|
||
|
||
static void
|
||
s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
|
||
}
|
||
|
||
/* Handle .tprelword. */
|
||
|
||
static void
|
||
s_tprelword (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
|
||
}
|
||
|
||
/* Handle .tpreldword. */
|
||
|
||
static void
|
||
s_tpreldword (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
|
||
}
|
||
|
||
/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
|
||
code. It sets the offset to use in gp_rel relocations. */
|
||
|
||
static void
|
||
s_gpvalue (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
/* If we are not generating SVR4 PIC code, .gpvalue is ignored.
|
||
We also need NewABI support. */
|
||
if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
|
||
{
|
||
s_ignore (0);
|
||
return;
|
||
}
|
||
|
||
mips_gprel_offset = get_absolute_expression ();
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .gpword pseudo-op. This is used when generating PIC
|
||
code. It generates a 32 bit GP relative reloc. */
|
||
|
||
static void
|
||
s_gpword (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
segment_info_type *si;
|
||
struct insn_label_list *l;
|
||
expressionS ex;
|
||
char *p;
|
||
|
||
/* When not generating PIC code, this is treated as .word. */
|
||
if (mips_pic != SVR4_PIC)
|
||
{
|
||
s_cons (2);
|
||
return;
|
||
}
|
||
|
||
si = seg_info (now_seg);
|
||
l = si->label_list;
|
||
mips_emit_delays ();
|
||
if (auto_align)
|
||
mips_align (2, 0, l);
|
||
|
||
expression (&ex);
|
||
mips_clear_insn_labels ();
|
||
|
||
if (ex.X_op != O_symbol || ex.X_add_number != 0)
|
||
{
|
||
as_bad (_("unsupported use of .gpword"));
|
||
ignore_rest_of_line ();
|
||
}
|
||
|
||
p = frag_more (4);
|
||
md_number_to_chars (p, 0, 4);
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
|
||
BFD_RELOC_GPREL32);
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
s_gpdword (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
segment_info_type *si;
|
||
struct insn_label_list *l;
|
||
expressionS ex;
|
||
char *p;
|
||
|
||
/* When not generating PIC code, this is treated as .dword. */
|
||
if (mips_pic != SVR4_PIC)
|
||
{
|
||
s_cons (3);
|
||
return;
|
||
}
|
||
|
||
si = seg_info (now_seg);
|
||
l = si->label_list;
|
||
mips_emit_delays ();
|
||
if (auto_align)
|
||
mips_align (3, 0, l);
|
||
|
||
expression (&ex);
|
||
mips_clear_insn_labels ();
|
||
|
||
if (ex.X_op != O_symbol || ex.X_add_number != 0)
|
||
{
|
||
as_bad (_("unsupported use of .gpdword"));
|
||
ignore_rest_of_line ();
|
||
}
|
||
|
||
p = frag_more (8);
|
||
md_number_to_chars (p, 0, 8);
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
|
||
BFD_RELOC_GPREL32)->fx_tcbit = 1;
|
||
|
||
/* GPREL32 composed with 64 gives a 64-bit GP offset. */
|
||
fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
|
||
FALSE, BFD_RELOC_64)->fx_tcbit = 1;
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .ehword pseudo-op. This is used when generating unwinding
|
||
tables. It generates a R_MIPS_EH reloc. */
|
||
|
||
static void
|
||
s_ehword (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
expressionS ex;
|
||
char *p;
|
||
|
||
mips_emit_delays ();
|
||
|
||
expression (&ex);
|
||
mips_clear_insn_labels ();
|
||
|
||
if (ex.X_op != O_symbol || ex.X_add_number != 0)
|
||
{
|
||
as_bad (_("unsupported use of .ehword"));
|
||
ignore_rest_of_line ();
|
||
}
|
||
|
||
p = frag_more (4);
|
||
md_number_to_chars (p, 0, 4);
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
|
||
BFD_RELOC_MIPS_EH);
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .cpadd pseudo-op. This is used when dealing with switch
|
||
tables in SVR4 PIC code. */
|
||
|
||
static void
|
||
s_cpadd (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
int reg;
|
||
|
||
/* This is ignored when not generating SVR4 PIC code. */
|
||
if (mips_pic != SVR4_PIC)
|
||
{
|
||
s_ignore (0);
|
||
return;
|
||
}
|
||
|
||
mips_mark_labels ();
|
||
mips_assembling_insn = TRUE;
|
||
|
||
/* Add $gp to the register named as an argument. */
|
||
macro_start ();
|
||
reg = tc_get_register (0);
|
||
macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
|
||
macro_end ();
|
||
|
||
mips_assembling_insn = FALSE;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .insn pseudo-op. This marks instruction labels in
|
||
mips16/micromips mode. This permits the linker to handle them specially,
|
||
such as generating jalx instructions when needed. We also make
|
||
them odd for the duration of the assembly, in order to generate the
|
||
right sort of code. We will make them even in the adjust_symtab
|
||
routine, while leaving them marked. This is convenient for the
|
||
debugger and the disassembler. The linker knows to make them odd
|
||
again. */
|
||
|
||
static void
|
||
s_insn (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
mips_mark_labels ();
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle the .nan pseudo-op. */
|
||
|
||
static void
|
||
s_nan (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
static const char str_legacy[] = "legacy";
|
||
static const char str_2008[] = "2008";
|
||
size_t i;
|
||
|
||
for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
|
||
|
||
if (i == sizeof (str_2008) - 1
|
||
&& memcmp (input_line_pointer, str_2008, i) == 0)
|
||
mips_flag_nan2008 = TRUE;
|
||
else if (i == sizeof (str_legacy) - 1
|
||
&& memcmp (input_line_pointer, str_legacy, i) == 0)
|
||
mips_flag_nan2008 = FALSE;
|
||
else
|
||
as_bad (_("bad .nan directive"));
|
||
|
||
input_line_pointer += i;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Handle a .stab[snd] directive. Ideally these directives would be
|
||
implemented in a transparent way, so that removing them would not
|
||
have any effect on the generated instructions. However, s_stab
|
||
internally changes the section, so in practice we need to decide
|
||
now whether the preceding label marks compressed code. We do not
|
||
support changing the compression mode of a label after a .stab*
|
||
directive, such as in:
|
||
|
||
foo:
|
||
.stabs ...
|
||
.set mips16
|
||
|
||
so the current mode wins. */
|
||
|
||
static void
|
||
s_mips_stab (int type)
|
||
{
|
||
mips_mark_labels ();
|
||
s_stab (type);
|
||
}
|
||
|
||
/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
|
||
|
||
static void
|
||
s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
char *name;
|
||
int c;
|
||
symbolS *symbolP;
|
||
expressionS exp;
|
||
|
||
name = input_line_pointer;
|
||
c = get_symbol_end ();
|
||
symbolP = symbol_find_or_make (name);
|
||
S_SET_WEAK (symbolP);
|
||
*input_line_pointer = c;
|
||
|
||
SKIP_WHITESPACE ();
|
||
|
||
if (! is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
if (S_IS_DEFINED (symbolP))
|
||
{
|
||
as_bad (_("ignoring attempt to redefine symbol %s"),
|
||
S_GET_NAME (symbolP));
|
||
ignore_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
if (*input_line_pointer == ',')
|
||
{
|
||
++input_line_pointer;
|
||
SKIP_WHITESPACE ();
|
||
}
|
||
|
||
expression (&exp);
|
||
if (exp.X_op != O_symbol)
|
||
{
|
||
as_bad (_("bad .weakext directive"));
|
||
ignore_rest_of_line ();
|
||
return;
|
||
}
|
||
symbol_set_value_expression (symbolP, &exp);
|
||
}
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* Parse a register string into a number. Called from the ECOFF code
|
||
to parse .frame. The argument is non-zero if this is the frame
|
||
register, so that we can record it in mips_frame_reg. */
|
||
|
||
int
|
||
tc_get_register (int frame)
|
||
{
|
||
unsigned int reg;
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
|
||
reg = 0;
|
||
if (frame)
|
||
{
|
||
mips_frame_reg = reg != 0 ? reg : SP;
|
||
mips_frame_reg_valid = 1;
|
||
mips_cprestore_valid = 0;
|
||
}
|
||
return reg;
|
||
}
|
||
|
||
valueT
|
||
md_section_align (asection *seg, valueT addr)
|
||
{
|
||
int align = bfd_get_section_alignment (stdoutput, seg);
|
||
|
||
/* We don't need to align ELF sections to the full alignment.
|
||
However, Irix 5 may prefer that we align them at least to a 16
|
||
byte boundary. We don't bother to align the sections if we
|
||
are targeted for an embedded system. */
|
||
if (strncmp (TARGET_OS, "elf", 3) == 0)
|
||
return addr;
|
||
if (align > 4)
|
||
align = 4;
|
||
|
||
return ((addr + (1 << align) - 1) & (-1 << align));
|
||
}
|
||
|
||
/* Utility routine, called from above as well. If called while the
|
||
input file is still being read, it's only an approximation. (For
|
||
example, a symbol may later become defined which appeared to be
|
||
undefined earlier.) */
|
||
|
||
static int
|
||
nopic_need_relax (symbolS *sym, int before_relaxing)
|
||
{
|
||
if (sym == 0)
|
||
return 0;
|
||
|
||
if (g_switch_value > 0)
|
||
{
|
||
const char *symname;
|
||
int change;
|
||
|
||
/* Find out whether this symbol can be referenced off the $gp
|
||
register. It can be if it is smaller than the -G size or if
|
||
it is in the .sdata or .sbss section. Certain symbols can
|
||
not be referenced off the $gp, although it appears as though
|
||
they can. */
|
||
symname = S_GET_NAME (sym);
|
||
if (symname != (const char *) NULL
|
||
&& (strcmp (symname, "eprol") == 0
|
||
|| strcmp (symname, "etext") == 0
|
||
|| strcmp (symname, "_gp") == 0
|
||
|| strcmp (symname, "edata") == 0
|
||
|| strcmp (symname, "_fbss") == 0
|
||
|| strcmp (symname, "_fdata") == 0
|
||
|| strcmp (symname, "_ftext") == 0
|
||
|| strcmp (symname, "end") == 0
|
||
|| strcmp (symname, "_gp_disp") == 0))
|
||
change = 1;
|
||
else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
|
||
&& (0
|
||
#ifndef NO_ECOFF_DEBUGGING
|
||
|| (symbol_get_obj (sym)->ecoff_extern_size != 0
|
||
&& (symbol_get_obj (sym)->ecoff_extern_size
|
||
<= g_switch_value))
|
||
#endif
|
||
/* We must defer this decision until after the whole
|
||
file has been read, since there might be a .extern
|
||
after the first use of this symbol. */
|
||
|| (before_relaxing
|
||
#ifndef NO_ECOFF_DEBUGGING
|
||
&& symbol_get_obj (sym)->ecoff_extern_size == 0
|
||
#endif
|
||
&& S_GET_VALUE (sym) == 0)
|
||
|| (S_GET_VALUE (sym) != 0
|
||
&& S_GET_VALUE (sym) <= g_switch_value)))
|
||
change = 0;
|
||
else
|
||
{
|
||
const char *segname;
|
||
|
||
segname = segment_name (S_GET_SEGMENT (sym));
|
||
gas_assert (strcmp (segname, ".lit8") != 0
|
||
&& strcmp (segname, ".lit4") != 0);
|
||
change = (strcmp (segname, ".sdata") != 0
|
||
&& strcmp (segname, ".sbss") != 0
|
||
&& strncmp (segname, ".sdata.", 7) != 0
|
||
&& strncmp (segname, ".sbss.", 6) != 0
|
||
&& strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
|
||
&& strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
|
||
}
|
||
return change;
|
||
}
|
||
else
|
||
/* We are not optimizing for the $gp register. */
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Return true if the given symbol should be considered local for SVR4 PIC. */
|
||
|
||
static bfd_boolean
|
||
pic_need_relax (symbolS *sym, asection *segtype)
|
||
{
|
||
asection *symsec;
|
||
|
||
/* Handle the case of a symbol equated to another symbol. */
|
||
while (symbol_equated_reloc_p (sym))
|
||
{
|
||
symbolS *n;
|
||
|
||
/* It's possible to get a loop here in a badly written program. */
|
||
n = symbol_get_value_expression (sym)->X_add_symbol;
|
||
if (n == sym)
|
||
break;
|
||
sym = n;
|
||
}
|
||
|
||
if (symbol_section_p (sym))
|
||
return TRUE;
|
||
|
||
symsec = S_GET_SEGMENT (sym);
|
||
|
||
/* This must duplicate the test in adjust_reloc_syms. */
|
||
return (!bfd_is_und_section (symsec)
|
||
&& !bfd_is_abs_section (symsec)
|
||
&& !bfd_is_com_section (symsec)
|
||
&& !s_is_linkonce (sym, segtype)
|
||
/* A global or weak symbol is treated as external. */
|
||
&& (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
|
||
}
|
||
|
||
|
||
/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
|
||
extended opcode. SEC is the section the frag is in. */
|
||
|
||
static int
|
||
mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
|
||
{
|
||
int type;
|
||
const struct mips_int_operand *operand;
|
||
offsetT val;
|
||
segT symsec;
|
||
fragS *sym_frag;
|
||
|
||
if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
|
||
return 0;
|
||
if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
|
||
return 1;
|
||
|
||
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
|
||
operand = mips16_immed_operand (type, FALSE);
|
||
|
||
sym_frag = symbol_get_frag (fragp->fr_symbol);
|
||
val = S_GET_VALUE (fragp->fr_symbol);
|
||
symsec = S_GET_SEGMENT (fragp->fr_symbol);
|
||
|
||
if (operand->root.type == OP_PCREL)
|
||
{
|
||
const struct mips_pcrel_operand *pcrel_op;
|
||
addressT addr;
|
||
offsetT maxtiny;
|
||
|
||
/* We won't have the section when we are called from
|
||
mips_relax_frag. However, we will always have been called
|
||
from md_estimate_size_before_relax first. If this is a
|
||
branch to a different section, we mark it as such. If SEC is
|
||
NULL, and the frag is not marked, then it must be a branch to
|
||
the same section. */
|
||
pcrel_op = (const struct mips_pcrel_operand *) operand;
|
||
if (sec == NULL)
|
||
{
|
||
if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
/* Must have been called from md_estimate_size_before_relax. */
|
||
if (symsec != sec)
|
||
{
|
||
fragp->fr_subtype =
|
||
RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
|
||
|
||
/* FIXME: We should support this, and let the linker
|
||
catch branches and loads that are out of range. */
|
||
as_bad_where (fragp->fr_file, fragp->fr_line,
|
||
_("unsupported PC relative reference to different section"));
|
||
|
||
return 1;
|
||
}
|
||
if (fragp != sym_frag && sym_frag->fr_address == 0)
|
||
/* Assume non-extended on the first relaxation pass.
|
||
The address we have calculated will be bogus if this is
|
||
a forward branch to another frag, as the forward frag
|
||
will have fr_address == 0. */
|
||
return 0;
|
||
}
|
||
|
||
/* In this case, we know for sure that the symbol fragment is in
|
||
the same section. If the relax_marker of the symbol fragment
|
||
differs from the relax_marker of this fragment, we have not
|
||
yet adjusted the symbol fragment fr_address. We want to add
|
||
in STRETCH in order to get a better estimate of the address.
|
||
This particularly matters because of the shift bits. */
|
||
if (stretch != 0
|
||
&& sym_frag->relax_marker != fragp->relax_marker)
|
||
{
|
||
fragS *f;
|
||
|
||
/* Adjust stretch for any alignment frag. Note that if have
|
||
been expanding the earlier code, the symbol may be
|
||
defined in what appears to be an earlier frag. FIXME:
|
||
This doesn't handle the fr_subtype field, which specifies
|
||
a maximum number of bytes to skip when doing an
|
||
alignment. */
|
||
for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
|
||
{
|
||
if (f->fr_type == rs_align || f->fr_type == rs_align_code)
|
||
{
|
||
if (stretch < 0)
|
||
stretch = - ((- stretch)
|
||
& ~ ((1 << (int) f->fr_offset) - 1));
|
||
else
|
||
stretch &= ~ ((1 << (int) f->fr_offset) - 1);
|
||
if (stretch == 0)
|
||
break;
|
||
}
|
||
}
|
||
if (f != NULL)
|
||
val += stretch;
|
||
}
|
||
|
||
addr = fragp->fr_address + fragp->fr_fix;
|
||
|
||
/* The base address rules are complicated. The base address of
|
||
a branch is the following instruction. The base address of a
|
||
PC relative load or add is the instruction itself, but if it
|
||
is in a delay slot (in which case it can not be extended) use
|
||
the address of the instruction whose delay slot it is in. */
|
||
if (pcrel_op->include_isa_bit)
|
||
{
|
||
addr += 2;
|
||
|
||
/* If we are currently assuming that this frag should be
|
||
extended, then, the current address is two bytes
|
||
higher. */
|
||
if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
|
||
addr += 2;
|
||
|
||
/* Ignore the low bit in the target, since it will be set
|
||
for a text label. */
|
||
val &= -2;
|
||
}
|
||
else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
|
||
addr -= 4;
|
||
else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
|
||
addr -= 2;
|
||
|
||
val -= addr & -(1 << pcrel_op->align_log2);
|
||
|
||
/* If any of the shifted bits are set, we must use an extended
|
||
opcode. If the address depends on the size of this
|
||
instruction, this can lead to a loop, so we arrange to always
|
||
use an extended opcode. We only check this when we are in
|
||
the main relaxation loop, when SEC is NULL. */
|
||
if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
|
||
{
|
||
fragp->fr_subtype =
|
||
RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
|
||
return 1;
|
||
}
|
||
|
||
/* If we are about to mark a frag as extended because the value
|
||
is precisely the next value above maxtiny, then there is a
|
||
chance of an infinite loop as in the following code:
|
||
la $4,foo
|
||
.skip 1020
|
||
.align 2
|
||
foo:
|
||
In this case when the la is extended, foo is 0x3fc bytes
|
||
away, so the la can be shrunk, but then foo is 0x400 away, so
|
||
the la must be extended. To avoid this loop, we mark the
|
||
frag as extended if it was small, and is about to become
|
||
extended with the next value above maxtiny. */
|
||
maxtiny = mips_int_operand_max (operand);
|
||
if (val == maxtiny + (1 << operand->shift)
|
||
&& ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
|
||
&& sec == NULL)
|
||
{
|
||
fragp->fr_subtype =
|
||
RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
|
||
return 1;
|
||
}
|
||
}
|
||
else if (symsec != absolute_section && sec != NULL)
|
||
as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
|
||
|
||
return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
|
||
}
|
||
|
||
/* Compute the length of a branch sequence, and adjust the
|
||
RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
|
||
worst-case length is computed, with UPDATE being used to indicate
|
||
whether an unconditional (-1), branch-likely (+1) or regular (0)
|
||
branch is to be computed. */
|
||
static int
|
||
relaxed_branch_length (fragS *fragp, asection *sec, int update)
|
||
{
|
||
bfd_boolean toofar;
|
||
int length;
|
||
|
||
if (fragp
|
||
&& S_IS_DEFINED (fragp->fr_symbol)
|
||
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
|
||
{
|
||
addressT addr;
|
||
offsetT val;
|
||
|
||
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
|
||
|
||
addr = fragp->fr_address + fragp->fr_fix + 4;
|
||
|
||
val -= addr;
|
||
|
||
toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
|
||
}
|
||
else if (fragp)
|
||
/* If the symbol is not defined or it's in a different segment,
|
||
assume the user knows what's going on and emit a short
|
||
branch. */
|
||
toofar = FALSE;
|
||
else
|
||
toofar = TRUE;
|
||
|
||
if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
|
||
fragp->fr_subtype
|
||
= RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
|
||
RELAX_BRANCH_UNCOND (fragp->fr_subtype),
|
||
RELAX_BRANCH_LIKELY (fragp->fr_subtype),
|
||
RELAX_BRANCH_LINK (fragp->fr_subtype),
|
||
toofar);
|
||
|
||
length = 4;
|
||
if (toofar)
|
||
{
|
||
if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
|
||
length += 8;
|
||
|
||
if (mips_pic != NO_PIC)
|
||
{
|
||
/* Additional space for PIC loading of target address. */
|
||
length += 8;
|
||
if (mips_opts.isa == ISA_MIPS1)
|
||
/* Additional space for $at-stabilizing nop. */
|
||
length += 4;
|
||
}
|
||
|
||
/* If branch is conditional. */
|
||
if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
|
||
length += 8;
|
||
}
|
||
|
||
return length;
|
||
}
|
||
|
||
/* Compute the length of a branch sequence, and adjust the
|
||
RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
|
||
worst-case length is computed, with UPDATE being used to indicate
|
||
whether an unconditional (-1), or regular (0) branch is to be
|
||
computed. */
|
||
|
||
static int
|
||
relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
|
||
{
|
||
bfd_boolean toofar;
|
||
int length;
|
||
|
||
if (fragp
|
||
&& S_IS_DEFINED (fragp->fr_symbol)
|
||
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
|
||
{
|
||
addressT addr;
|
||
offsetT val;
|
||
|
||
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
|
||
/* Ignore the low bit in the target, since it will be set
|
||
for a text label. */
|
||
if ((val & 1) != 0)
|
||
--val;
|
||
|
||
addr = fragp->fr_address + fragp->fr_fix + 4;
|
||
|
||
val -= addr;
|
||
|
||
toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
|
||
}
|
||
else if (fragp)
|
||
/* If the symbol is not defined or it's in a different segment,
|
||
assume the user knows what's going on and emit a short
|
||
branch. */
|
||
toofar = FALSE;
|
||
else
|
||
toofar = TRUE;
|
||
|
||
if (fragp && update
|
||
&& toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
|
||
fragp->fr_subtype = (toofar
|
||
? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
|
||
: RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
|
||
|
||
length = 4;
|
||
if (toofar)
|
||
{
|
||
bfd_boolean compact_known = fragp != NULL;
|
||
bfd_boolean compact = FALSE;
|
||
bfd_boolean uncond;
|
||
|
||
if (compact_known)
|
||
compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
|
||
if (fragp)
|
||
uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
|
||
else
|
||
uncond = update < 0;
|
||
|
||
/* If label is out of range, we turn branch <br>:
|
||
|
||
<br> label # 4 bytes
|
||
0:
|
||
|
||
into:
|
||
|
||
j label # 4 bytes
|
||
nop # 2 bytes if compact && !PIC
|
||
0:
|
||
*/
|
||
if (mips_pic == NO_PIC && (!compact_known || compact))
|
||
length += 2;
|
||
|
||
/* If assembling PIC code, we further turn:
|
||
|
||
j label # 4 bytes
|
||
|
||
into:
|
||
|
||
lw/ld at, %got(label)(gp) # 4 bytes
|
||
d/addiu at, %lo(label) # 4 bytes
|
||
jr/c at # 2 bytes
|
||
*/
|
||
if (mips_pic != NO_PIC)
|
||
length += 6;
|
||
|
||
/* If branch <br> is conditional, we prepend negated branch <brneg>:
|
||
|
||
<brneg> 0f # 4 bytes
|
||
nop # 2 bytes if !compact
|
||
*/
|
||
if (!uncond)
|
||
length += (compact_known && compact) ? 4 : 6;
|
||
}
|
||
|
||
return length;
|
||
}
|
||
|
||
/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
|
||
bit accordingly. */
|
||
|
||
static int
|
||
relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
|
||
{
|
||
bfd_boolean toofar;
|
||
|
||
if (fragp
|
||
&& S_IS_DEFINED (fragp->fr_symbol)
|
||
&& sec == S_GET_SEGMENT (fragp->fr_symbol))
|
||
{
|
||
addressT addr;
|
||
offsetT val;
|
||
int type;
|
||
|
||
val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
|
||
/* Ignore the low bit in the target, since it will be set
|
||
for a text label. */
|
||
if ((val & 1) != 0)
|
||
--val;
|
||
|
||
/* Assume this is a 2-byte branch. */
|
||
addr = fragp->fr_address + fragp->fr_fix + 2;
|
||
|
||
/* We try to avoid the infinite loop by not adding 2 more bytes for
|
||
long branches. */
|
||
|
||
val -= addr;
|
||
|
||
type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
|
||
if (type == 'D')
|
||
toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
|
||
else if (type == 'E')
|
||
toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
/* If the symbol is not defined or it's in a different segment,
|
||
we emit a normal 32-bit branch. */
|
||
toofar = TRUE;
|
||
|
||
if (fragp && update
|
||
&& toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
|
||
fragp->fr_subtype
|
||
= toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
|
||
: RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
|
||
|
||
if (toofar)
|
||
return 4;
|
||
|
||
return 2;
|
||
}
|
||
|
||
/* Estimate the size of a frag before relaxing. Unless this is the
|
||
mips16, we are not really relaxing here, and the final size is
|
||
encoded in the subtype information. For the mips16, we have to
|
||
decide whether we are using an extended opcode or not. */
|
||
|
||
int
|
||
md_estimate_size_before_relax (fragS *fragp, asection *segtype)
|
||
{
|
||
int change;
|
||
|
||
if (RELAX_BRANCH_P (fragp->fr_subtype))
|
||
{
|
||
|
||
fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
|
||
|
||
return fragp->fr_var;
|
||
}
|
||
|
||
if (RELAX_MIPS16_P (fragp->fr_subtype))
|
||
/* We don't want to modify the EXTENDED bit here; it might get us
|
||
into infinite loops. We change it only in mips_relax_frag(). */
|
||
return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
|
||
|
||
if (RELAX_MICROMIPS_P (fragp->fr_subtype))
|
||
{
|
||
int length = 4;
|
||
|
||
if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
|
||
length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
|
||
if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
|
||
length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
|
||
fragp->fr_var = length;
|
||
|
||
return length;
|
||
}
|
||
|
||
if (mips_pic == NO_PIC)
|
||
change = nopic_need_relax (fragp->fr_symbol, 0);
|
||
else if (mips_pic == SVR4_PIC)
|
||
change = pic_need_relax (fragp->fr_symbol, segtype);
|
||
else if (mips_pic == VXWORKS_PIC)
|
||
/* For vxworks, GOT16 relocations never have a corresponding LO16. */
|
||
change = 0;
|
||
else
|
||
abort ();
|
||
|
||
if (change)
|
||
{
|
||
fragp->fr_subtype |= RELAX_USE_SECOND;
|
||
return -RELAX_FIRST (fragp->fr_subtype);
|
||
}
|
||
else
|
||
return -RELAX_SECOND (fragp->fr_subtype);
|
||
}
|
||
|
||
/* This is called to see whether a reloc against a defined symbol
|
||
should be converted into a reloc against a section. */
|
||
|
||
int
|
||
mips_fix_adjustable (fixS *fixp)
|
||
{
|
||
if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|
||
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
return 0;
|
||
|
||
if (fixp->fx_addsy == NULL)
|
||
return 1;
|
||
|
||
/* If symbol SYM is in a mergeable section, relocations of the form
|
||
SYM + 0 can usually be made section-relative. The mergeable data
|
||
is then identified by the section offset rather than by the symbol.
|
||
|
||
However, if we're generating REL LO16 relocations, the offset is split
|
||
between the LO16 and parterning high part relocation. The linker will
|
||
need to recalculate the complete offset in order to correctly identify
|
||
the merge data.
|
||
|
||
The linker has traditionally not looked for the parterning high part
|
||
relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
|
||
placed anywhere. Rather than break backwards compatibility by changing
|
||
this, it seems better not to force the issue, and instead keep the
|
||
original symbol. This will work with either linker behavior. */
|
||
if ((lo16_reloc_p (fixp->fx_r_type)
|
||
|| reloc_needs_lo_p (fixp->fx_r_type))
|
||
&& HAVE_IN_PLACE_ADDENDS
|
||
&& (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
|
||
return 0;
|
||
|
||
/* There is no place to store an in-place offset for JALR relocations.
|
||
Likewise an in-range offset of limited PC-relative relocations may
|
||
overflow the in-place relocatable field if recalculated against the
|
||
start address of the symbol's containing section. */
|
||
if (HAVE_IN_PLACE_ADDENDS
|
||
&& (limited_pcrel_reloc_p (fixp->fx_r_type)
|
||
|| jalr_reloc_p (fixp->fx_r_type)))
|
||
return 0;
|
||
|
||
/* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
|
||
to a floating-point stub. The same is true for non-R_MIPS16_26
|
||
relocations against MIPS16 functions; in this case, the stub becomes
|
||
the function's canonical address.
|
||
|
||
Floating-point stubs are stored in unique .mips16.call.* or
|
||
.mips16.fn.* sections. If a stub T for function F is in section S,
|
||
the first relocation in section S must be against F; this is how the
|
||
linker determines the target function. All relocations that might
|
||
resolve to T must also be against F. We therefore have the following
|
||
restrictions, which are given in an intentionally-redundant way:
|
||
|
||
1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
|
||
symbols.
|
||
|
||
2. We cannot reduce a stub's relocations against non-MIPS16 symbols
|
||
if that stub might be used.
|
||
|
||
3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
|
||
symbols.
|
||
|
||
4. We cannot reduce a stub's relocations against MIPS16 symbols if
|
||
that stub might be used.
|
||
|
||
There is a further restriction:
|
||
|
||
5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
|
||
R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
|
||
targets with in-place addends; the relocation field cannot
|
||
encode the low bit.
|
||
|
||
For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
|
||
against a MIPS16 symbol. We deal with (5) by by not reducing any
|
||
such relocations on REL targets.
|
||
|
||
We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
|
||
relocation against some symbol R, no relocation against R may be
|
||
reduced. (Note that this deals with (2) as well as (1) because
|
||
relocations against global symbols will never be reduced on ELF
|
||
targets.) This approach is a little simpler than trying to detect
|
||
stub sections, and gives the "all or nothing" per-symbol consistency
|
||
that we have for MIPS16 symbols. */
|
||
if (fixp->fx_subsy == NULL
|
||
&& (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
|
||
|| *symbol_get_tc (fixp->fx_addsy)
|
||
|| (HAVE_IN_PLACE_ADDENDS
|
||
&& ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
|
||
&& jmp_reloc_p (fixp->fx_r_type))))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Translate internal representation of relocation info to BFD target
|
||
format. */
|
||
|
||
arelent **
|
||
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
|
||
{
|
||
static arelent *retval[4];
|
||
arelent *reloc;
|
||
bfd_reloc_code_real_type code;
|
||
|
||
memset (retval, 0, sizeof(retval));
|
||
reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
|
||
reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
|
||
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
|
||
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
||
|
||
if (fixp->fx_pcrel)
|
||
{
|
||
gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
|
||
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
|
||
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
|
||
|| fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
|
||
|| fixp->fx_r_type == BFD_RELOC_32_PCREL);
|
||
|
||
/* At this point, fx_addnumber is "symbol offset - pcrel address".
|
||
Relocations want only the symbol offset. */
|
||
reloc->addend = fixp->fx_addnumber + reloc->address;
|
||
}
|
||
else
|
||
reloc->addend = fixp->fx_addnumber;
|
||
|
||
/* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
|
||
entry to be used in the relocation's section offset. */
|
||
if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
{
|
||
reloc->address = reloc->addend;
|
||
reloc->addend = 0;
|
||
}
|
||
|
||
code = fixp->fx_r_type;
|
||
|
||
reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
|
||
if (reloc->howto == NULL)
|
||
{
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("cannot represent %s relocation in this object file"
|
||
" format"),
|
||
bfd_get_reloc_code_name (code));
|
||
retval[0] = NULL;
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Relax a machine dependent frag. This returns the amount by which
|
||
the current size of the frag should change. */
|
||
|
||
int
|
||
mips_relax_frag (asection *sec, fragS *fragp, long stretch)
|
||
{
|
||
if (RELAX_BRANCH_P (fragp->fr_subtype))
|
||
{
|
||
offsetT old_var = fragp->fr_var;
|
||
|
||
fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
|
||
|
||
return fragp->fr_var - old_var;
|
||
}
|
||
|
||
if (RELAX_MICROMIPS_P (fragp->fr_subtype))
|
||
{
|
||
offsetT old_var = fragp->fr_var;
|
||
offsetT new_var = 4;
|
||
|
||
if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
|
||
new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
|
||
if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
|
||
new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
|
||
fragp->fr_var = new_var;
|
||
|
||
return new_var - old_var;
|
||
}
|
||
|
||
if (! RELAX_MIPS16_P (fragp->fr_subtype))
|
||
return 0;
|
||
|
||
if (mips16_extended_frag (fragp, NULL, stretch))
|
||
{
|
||
if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
|
||
return 0;
|
||
fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
|
||
return 2;
|
||
}
|
||
else
|
||
{
|
||
if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
|
||
return 0;
|
||
fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
|
||
return -2;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Convert a machine dependent frag. */
|
||
|
||
void
|
||
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
|
||
{
|
||
if (RELAX_BRANCH_P (fragp->fr_subtype))
|
||
{
|
||
char *buf;
|
||
unsigned long insn;
|
||
expressionS exp;
|
||
fixS *fixp;
|
||
|
||
buf = fragp->fr_literal + fragp->fr_fix;
|
||
insn = read_insn (buf);
|
||
|
||
if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
|
||
{
|
||
/* We generate a fixup instead of applying it right now
|
||
because, if there are linker relaxations, we're going to
|
||
need the relocations. */
|
||
exp.X_op = O_symbol;
|
||
exp.X_add_symbol = fragp->fr_symbol;
|
||
exp.X_add_number = fragp->fr_offset;
|
||
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
|
||
BFD_RELOC_16_PCREL_S2);
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
buf = write_insn (buf, insn);
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
as_warn_where (fragp->fr_file, fragp->fr_line,
|
||
_("relaxed out-of-range branch into a jump"));
|
||
|
||
if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
|
||
goto uncond;
|
||
|
||
if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
|
||
{
|
||
/* Reverse the branch. */
|
||
switch ((insn >> 28) & 0xf)
|
||
{
|
||
case 4:
|
||
if ((insn & 0xff000000) == 0x47000000
|
||
|| (insn & 0xff600000) == 0x45600000)
|
||
{
|
||
/* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
|
||
reversed by tweaking bit 23. */
|
||
insn ^= 0x00800000;
|
||
}
|
||
else
|
||
{
|
||
/* bc[0-3][tf]l? instructions can have the condition
|
||
reversed by tweaking a single TF bit, and their
|
||
opcodes all have 0x4???????. */
|
||
gas_assert ((insn & 0xf3e00000) == 0x41000000);
|
||
insn ^= 0x00010000;
|
||
}
|
||
break;
|
||
|
||
case 0:
|
||
/* bltz 0x04000000 bgez 0x04010000
|
||
bltzal 0x04100000 bgezal 0x04110000 */
|
||
gas_assert ((insn & 0xfc0e0000) == 0x04000000);
|
||
insn ^= 0x00010000;
|
||
break;
|
||
|
||
case 1:
|
||
/* beq 0x10000000 bne 0x14000000
|
||
blez 0x18000000 bgtz 0x1c000000 */
|
||
insn ^= 0x04000000;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
if (RELAX_BRANCH_LINK (fragp->fr_subtype))
|
||
{
|
||
/* Clear the and-link bit. */
|
||
gas_assert ((insn & 0xfc1c0000) == 0x04100000);
|
||
|
||
/* bltzal 0x04100000 bgezal 0x04110000
|
||
bltzall 0x04120000 bgezall 0x04130000 */
|
||
insn &= ~0x00100000;
|
||
}
|
||
|
||
/* Branch over the branch (if the branch was likely) or the
|
||
full jump (not likely case). Compute the offset from the
|
||
current instruction to branch to. */
|
||
if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
|
||
i = 16;
|
||
else
|
||
{
|
||
/* How many bytes in instructions we've already emitted? */
|
||
i = buf - fragp->fr_literal - fragp->fr_fix;
|
||
/* How many bytes in instructions from here to the end? */
|
||
i = fragp->fr_var - i;
|
||
}
|
||
/* Convert to instruction count. */
|
||
i >>= 2;
|
||
/* Branch counts from the next instruction. */
|
||
i--;
|
||
insn |= i;
|
||
/* Branch over the jump. */
|
||
buf = write_insn (buf, insn);
|
||
|
||
/* nop */
|
||
buf = write_insn (buf, 0);
|
||
|
||
if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
|
||
{
|
||
/* beql $0, $0, 2f */
|
||
insn = 0x50000000;
|
||
/* Compute the PC offset from the current instruction to
|
||
the end of the variable frag. */
|
||
/* How many bytes in instructions we've already emitted? */
|
||
i = buf - fragp->fr_literal - fragp->fr_fix;
|
||
/* How many bytes in instructions from here to the end? */
|
||
i = fragp->fr_var - i;
|
||
/* Convert to instruction count. */
|
||
i >>= 2;
|
||
/* Don't decrement i, because we want to branch over the
|
||
delay slot. */
|
||
insn |= i;
|
||
|
||
buf = write_insn (buf, insn);
|
||
buf = write_insn (buf, 0);
|
||
}
|
||
|
||
uncond:
|
||
if (mips_pic == NO_PIC)
|
||
{
|
||
/* j or jal. */
|
||
insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
|
||
? 0x0c000000 : 0x08000000);
|
||
exp.X_op = O_symbol;
|
||
exp.X_add_symbol = fragp->fr_symbol;
|
||
exp.X_add_number = fragp->fr_offset;
|
||
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
|
||
FALSE, BFD_RELOC_MIPS_JMP);
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
buf = write_insn (buf, insn);
|
||
}
|
||
else
|
||
{
|
||
unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
|
||
|
||
/* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
|
||
insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
|
||
insn |= at << OP_SH_RT;
|
||
exp.X_op = O_symbol;
|
||
exp.X_add_symbol = fragp->fr_symbol;
|
||
exp.X_add_number = fragp->fr_offset;
|
||
|
||
if (fragp->fr_offset)
|
||
{
|
||
exp.X_add_symbol = make_expr_symbol (&exp);
|
||
exp.X_add_number = 0;
|
||
}
|
||
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
|
||
FALSE, BFD_RELOC_MIPS_GOT16);
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
buf = write_insn (buf, insn);
|
||
|
||
if (mips_opts.isa == ISA_MIPS1)
|
||
/* nop */
|
||
buf = write_insn (buf, 0);
|
||
|
||
/* d/addiu $at, $at, <sym> R_MIPS_LO16 */
|
||
insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
|
||
insn |= at << OP_SH_RS | at << OP_SH_RT;
|
||
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
|
||
FALSE, BFD_RELOC_LO16);
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
buf = write_insn (buf, insn);
|
||
|
||
/* j(al)r $at. */
|
||
if (RELAX_BRANCH_LINK (fragp->fr_subtype))
|
||
insn = 0x0000f809;
|
||
else
|
||
insn = 0x00000008;
|
||
insn |= at << OP_SH_RS;
|
||
|
||
buf = write_insn (buf, insn);
|
||
}
|
||
}
|
||
|
||
fragp->fr_fix += fragp->fr_var;
|
||
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
|
||
return;
|
||
}
|
||
|
||
/* Relax microMIPS branches. */
|
||
if (RELAX_MICROMIPS_P (fragp->fr_subtype))
|
||
{
|
||
char *buf = fragp->fr_literal + fragp->fr_fix;
|
||
bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
|
||
bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
|
||
int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
|
||
bfd_boolean short_ds;
|
||
unsigned long insn;
|
||
expressionS exp;
|
||
fixS *fixp;
|
||
|
||
exp.X_op = O_symbol;
|
||
exp.X_add_symbol = fragp->fr_symbol;
|
||
exp.X_add_number = fragp->fr_offset;
|
||
|
||
fragp->fr_fix += fragp->fr_var;
|
||
|
||
/* Handle 16-bit branches that fit or are forced to fit. */
|
||
if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
|
||
{
|
||
/* We generate a fixup instead of applying it right now,
|
||
because if there is linker relaxation, we're going to
|
||
need the relocations. */
|
||
if (type == 'D')
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
|
||
BFD_RELOC_MICROMIPS_10_PCREL_S1);
|
||
else if (type == 'E')
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
|
||
BFD_RELOC_MICROMIPS_7_PCREL_S1);
|
||
else
|
||
abort ();
|
||
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
/* These relocations can have an addend that won't fit in
|
||
2 octets. */
|
||
fixp->fx_no_overflow = 1;
|
||
|
||
return;
|
||
}
|
||
|
||
/* Handle 32-bit branches that fit or are forced to fit. */
|
||
if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
|
||
|| !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
|
||
{
|
||
/* We generate a fixup instead of applying it right now,
|
||
because if there is linker relaxation, we're going to
|
||
need the relocations. */
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
|
||
BFD_RELOC_MICROMIPS_16_PCREL_S1);
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
if (type == 0)
|
||
return;
|
||
}
|
||
|
||
/* Relax 16-bit branches to 32-bit branches. */
|
||
if (type != 0)
|
||
{
|
||
insn = read_compressed_insn (buf, 2);
|
||
|
||
if ((insn & 0xfc00) == 0xcc00) /* b16 */
|
||
insn = 0x94000000; /* beq */
|
||
else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
|
||
{
|
||
unsigned long regno;
|
||
|
||
regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
|
||
regno = micromips_to_32_reg_d_map [regno];
|
||
insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
|
||
insn |= regno << MICROMIPSOP_SH_RS;
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
/* Nothing else to do, just write it out. */
|
||
if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
|
||
|| !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
|
||
{
|
||
buf = write_compressed_insn (buf, insn, 4);
|
||
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
insn = read_compressed_insn (buf, 4);
|
||
|
||
/* Relax 32-bit branches to a sequence of instructions. */
|
||
as_warn_where (fragp->fr_file, fragp->fr_line,
|
||
_("relaxed out-of-range branch into a jump"));
|
||
|
||
/* Set the short-delay-slot bit. */
|
||
short_ds = al && (insn & 0x02000000) != 0;
|
||
|
||
if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
|
||
{
|
||
symbolS *l;
|
||
|
||
/* Reverse the branch. */
|
||
if ((insn & 0xfc000000) == 0x94000000 /* beq */
|
||
|| (insn & 0xfc000000) == 0xb4000000) /* bne */
|
||
insn ^= 0x20000000;
|
||
else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
|
||
|| (insn & 0xffe00000) == 0x40400000 /* bgez */
|
||
|| (insn & 0xffe00000) == 0x40800000 /* blez */
|
||
|| (insn & 0xffe00000) == 0x40c00000 /* bgtz */
|
||
|| (insn & 0xffe00000) == 0x40a00000 /* bnezc */
|
||
|| (insn & 0xffe00000) == 0x40e00000 /* beqzc */
|
||
|| (insn & 0xffe00000) == 0x40200000 /* bltzal */
|
||
|| (insn & 0xffe00000) == 0x40600000 /* bgezal */
|
||
|| (insn & 0xffe00000) == 0x42200000 /* bltzals */
|
||
|| (insn & 0xffe00000) == 0x42600000) /* bgezals */
|
||
insn ^= 0x00400000;
|
||
else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
|
||
|| (insn & 0xffe30000) == 0x43a00000 /* bc1t */
|
||
|| (insn & 0xffe30000) == 0x42800000 /* bc2f */
|
||
|| (insn & 0xffe30000) == 0x42a00000) /* bc2t */
|
||
insn ^= 0x00200000;
|
||
else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
|
||
BNZ.df */
|
||
|| (insn & 0xff600000) == 0x81600000) /* BZ.V
|
||
BNZ.V */
|
||
insn ^= 0x00800000;
|
||
else
|
||
abort ();
|
||
|
||
if (al)
|
||
{
|
||
/* Clear the and-link and short-delay-slot bits. */
|
||
gas_assert ((insn & 0xfda00000) == 0x40200000);
|
||
|
||
/* bltzal 0x40200000 bgezal 0x40600000 */
|
||
/* bltzals 0x42200000 bgezals 0x42600000 */
|
||
insn &= ~0x02200000;
|
||
}
|
||
|
||
/* Make a label at the end for use with the branch. */
|
||
l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
|
||
micromips_label_inc ();
|
||
S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
|
||
|
||
/* Refer to it. */
|
||
fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
|
||
BFD_RELOC_MICROMIPS_16_PCREL_S1);
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
/* Branch over the jump. */
|
||
buf = write_compressed_insn (buf, insn, 4);
|
||
if (!compact)
|
||
/* nop */
|
||
buf = write_compressed_insn (buf, 0x0c00, 2);
|
||
}
|
||
|
||
if (mips_pic == NO_PIC)
|
||
{
|
||
unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
|
||
|
||
/* j/jal/jals <sym> R_MICROMIPS_26_S1 */
|
||
insn = al ? jal : 0xd4000000;
|
||
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
|
||
BFD_RELOC_MICROMIPS_JMP);
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
buf = write_compressed_insn (buf, insn, 4);
|
||
if (compact)
|
||
/* nop */
|
||
buf = write_compressed_insn (buf, 0x0c00, 2);
|
||
}
|
||
else
|
||
{
|
||
unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
|
||
unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
|
||
unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
|
||
|
||
/* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
|
||
insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
|
||
insn |= at << MICROMIPSOP_SH_RT;
|
||
|
||
if (exp.X_add_number)
|
||
{
|
||
exp.X_add_symbol = make_expr_symbol (&exp);
|
||
exp.X_add_number = 0;
|
||
}
|
||
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
|
||
BFD_RELOC_MICROMIPS_GOT16);
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
buf = write_compressed_insn (buf, insn, 4);
|
||
|
||
/* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
|
||
insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
|
||
insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
|
||
|
||
fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
|
||
BFD_RELOC_MICROMIPS_LO16);
|
||
fixp->fx_file = fragp->fr_file;
|
||
fixp->fx_line = fragp->fr_line;
|
||
|
||
buf = write_compressed_insn (buf, insn, 4);
|
||
|
||
/* jr/jrc/jalr/jalrs $at */
|
||
insn = al ? jalr : jr;
|
||
insn |= at << MICROMIPSOP_SH_MJ;
|
||
|
||
buf = write_compressed_insn (buf, insn, 2);
|
||
}
|
||
|
||
gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
|
||
return;
|
||
}
|
||
|
||
if (RELAX_MIPS16_P (fragp->fr_subtype))
|
||
{
|
||
int type;
|
||
const struct mips_int_operand *operand;
|
||
offsetT val;
|
||
char *buf;
|
||
unsigned int user_length, length;
|
||
unsigned long insn;
|
||
bfd_boolean ext;
|
||
|
||
type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
|
||
operand = mips16_immed_operand (type, FALSE);
|
||
|
||
ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
|
||
val = resolve_symbol_value (fragp->fr_symbol);
|
||
if (operand->root.type == OP_PCREL)
|
||
{
|
||
const struct mips_pcrel_operand *pcrel_op;
|
||
addressT addr;
|
||
|
||
pcrel_op = (const struct mips_pcrel_operand *) operand;
|
||
addr = fragp->fr_address + fragp->fr_fix;
|
||
|
||
/* The rules for the base address of a PC relative reloc are
|
||
complicated; see mips16_extended_frag. */
|
||
if (pcrel_op->include_isa_bit)
|
||
{
|
||
addr += 2;
|
||
if (ext)
|
||
addr += 2;
|
||
/* Ignore the low bit in the target, since it will be
|
||
set for a text label. */
|
||
val &= -2;
|
||
}
|
||
else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
|
||
addr -= 4;
|
||
else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
|
||
addr -= 2;
|
||
|
||
addr &= -(1 << pcrel_op->align_log2);
|
||
val -= addr;
|
||
|
||
/* Make sure the section winds up with the alignment we have
|
||
assumed. */
|
||
if (operand->shift > 0)
|
||
record_alignment (asec, operand->shift);
|
||
}
|
||
|
||
if (ext
|
||
&& (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
|
||
|| RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
|
||
as_warn_where (fragp->fr_file, fragp->fr_line,
|
||
_("extended instruction in delay slot"));
|
||
|
||
buf = fragp->fr_literal + fragp->fr_fix;
|
||
|
||
insn = read_compressed_insn (buf, 2);
|
||
if (ext)
|
||
insn |= MIPS16_EXTEND;
|
||
|
||
if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
|
||
user_length = 4;
|
||
else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
|
||
user_length = 2;
|
||
else
|
||
user_length = 0;
|
||
|
||
mips16_immed (fragp->fr_file, fragp->fr_line, type,
|
||
BFD_RELOC_UNUSED, val, user_length, &insn);
|
||
|
||
length = (ext ? 4 : 2);
|
||
gas_assert (mips16_opcode_length (insn) == length);
|
||
write_compressed_insn (buf, insn, length);
|
||
fragp->fr_fix += length;
|
||
}
|
||
else
|
||
{
|
||
relax_substateT subtype = fragp->fr_subtype;
|
||
bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
|
||
bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
|
||
int first, second;
|
||
fixS *fixp;
|
||
|
||
first = RELAX_FIRST (subtype);
|
||
second = RELAX_SECOND (subtype);
|
||
fixp = (fixS *) fragp->fr_opcode;
|
||
|
||
/* If the delay slot chosen does not match the size of the instruction,
|
||
then emit a warning. */
|
||
if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
|
||
|| (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
|
||
{
|
||
relax_substateT s;
|
||
const char *msg;
|
||
|
||
s = subtype & (RELAX_DELAY_SLOT_16BIT
|
||
| RELAX_DELAY_SLOT_SIZE_FIRST
|
||
| RELAX_DELAY_SLOT_SIZE_SECOND);
|
||
msg = macro_warning (s);
|
||
if (msg != NULL)
|
||
as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
|
||
subtype &= ~s;
|
||
}
|
||
|
||
/* Possibly emit a warning if we've chosen the longer option. */
|
||
if (use_second == second_longer)
|
||
{
|
||
relax_substateT s;
|
||
const char *msg;
|
||
|
||
s = (subtype
|
||
& (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
|
||
msg = macro_warning (s);
|
||
if (msg != NULL)
|
||
as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
|
||
subtype &= ~s;
|
||
}
|
||
|
||
/* Go through all the fixups for the first sequence. Disable them
|
||
(by marking them as done) if we're going to use the second
|
||
sequence instead. */
|
||
while (fixp
|
||
&& fixp->fx_frag == fragp
|
||
&& fixp->fx_where < fragp->fr_fix - second)
|
||
{
|
||
if (subtype & RELAX_USE_SECOND)
|
||
fixp->fx_done = 1;
|
||
fixp = fixp->fx_next;
|
||
}
|
||
|
||
/* Go through the fixups for the second sequence. Disable them if
|
||
we're going to use the first sequence, otherwise adjust their
|
||
addresses to account for the relaxation. */
|
||
while (fixp && fixp->fx_frag == fragp)
|
||
{
|
||
if (subtype & RELAX_USE_SECOND)
|
||
fixp->fx_where -= first;
|
||
else
|
||
fixp->fx_done = 1;
|
||
fixp = fixp->fx_next;
|
||
}
|
||
|
||
/* Now modify the frag contents. */
|
||
if (subtype & RELAX_USE_SECOND)
|
||
{
|
||
char *start;
|
||
|
||
start = fragp->fr_literal + fragp->fr_fix - first - second;
|
||
memmove (start, start + first, second);
|
||
fragp->fr_fix -= first;
|
||
}
|
||
else
|
||
fragp->fr_fix -= second;
|
||
}
|
||
}
|
||
|
||
/* This function is called after the relocs have been generated.
|
||
We've been storing mips16 text labels as odd. Here we convert them
|
||
back to even for the convenience of the debugger. */
|
||
|
||
void
|
||
mips_frob_file_after_relocs (void)
|
||
{
|
||
asymbol **syms;
|
||
unsigned int count, i;
|
||
|
||
syms = bfd_get_outsymbols (stdoutput);
|
||
count = bfd_get_symcount (stdoutput);
|
||
for (i = 0; i < count; i++, syms++)
|
||
if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
|
||
&& ((*syms)->value & 1) != 0)
|
||
{
|
||
(*syms)->value &= ~1;
|
||
/* If the symbol has an odd size, it was probably computed
|
||
incorrectly, so adjust that as well. */
|
||
if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
|
||
++elf_symbol (*syms)->internal_elf_sym.st_size;
|
||
}
|
||
}
|
||
|
||
/* This function is called whenever a label is defined, including fake
|
||
labels instantiated off the dot special symbol. It is used when
|
||
handling branch delays; if a branch has a label, we assume we cannot
|
||
move it. This also bumps the value of the symbol by 1 in compressed
|
||
code. */
|
||
|
||
static void
|
||
mips_record_label (symbolS *sym)
|
||
{
|
||
segment_info_type *si = seg_info (now_seg);
|
||
struct insn_label_list *l;
|
||
|
||
if (free_insn_labels == NULL)
|
||
l = (struct insn_label_list *) xmalloc (sizeof *l);
|
||
else
|
||
{
|
||
l = free_insn_labels;
|
||
free_insn_labels = l->next;
|
||
}
|
||
|
||
l->label = sym;
|
||
l->next = si->label_list;
|
||
si->label_list = l;
|
||
}
|
||
|
||
/* This function is called as tc_frob_label() whenever a label is defined
|
||
and adds a DWARF-2 record we only want for true labels. */
|
||
|
||
void
|
||
mips_define_label (symbolS *sym)
|
||
{
|
||
mips_record_label (sym);
|
||
dwarf2_emit_label (sym);
|
||
}
|
||
|
||
/* This function is called by tc_new_dot_label whenever a new dot symbol
|
||
is defined. */
|
||
|
||
void
|
||
mips_add_dot_label (symbolS *sym)
|
||
{
|
||
mips_record_label (sym);
|
||
if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
|
||
mips_compressed_mark_label (sym);
|
||
}
|
||
|
||
/* Some special processing for a MIPS ELF file. */
|
||
|
||
void
|
||
mips_elf_final_processing (void)
|
||
{
|
||
/* Write out the register information. */
|
||
if (mips_abi != N64_ABI)
|
||
{
|
||
Elf32_RegInfo s;
|
||
|
||
s.ri_gprmask = mips_gprmask;
|
||
s.ri_cprmask[0] = mips_cprmask[0];
|
||
s.ri_cprmask[1] = mips_cprmask[1];
|
||
s.ri_cprmask[2] = mips_cprmask[2];
|
||
s.ri_cprmask[3] = mips_cprmask[3];
|
||
/* The gp_value field is set by the MIPS ELF backend. */
|
||
|
||
bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
|
||
((Elf32_External_RegInfo *)
|
||
mips_regmask_frag));
|
||
}
|
||
else
|
||
{
|
||
Elf64_Internal_RegInfo s;
|
||
|
||
s.ri_gprmask = mips_gprmask;
|
||
s.ri_pad = 0;
|
||
s.ri_cprmask[0] = mips_cprmask[0];
|
||
s.ri_cprmask[1] = mips_cprmask[1];
|
||
s.ri_cprmask[2] = mips_cprmask[2];
|
||
s.ri_cprmask[3] = mips_cprmask[3];
|
||
/* The gp_value field is set by the MIPS ELF backend. */
|
||
|
||
bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
|
||
((Elf64_External_RegInfo *)
|
||
mips_regmask_frag));
|
||
}
|
||
|
||
/* Set the MIPS ELF flag bits. FIXME: There should probably be some
|
||
sort of BFD interface for this. */
|
||
if (mips_any_noreorder)
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
|
||
if (mips_pic != NO_PIC)
|
||
{
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
|
||
}
|
||
if (mips_abicalls)
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
|
||
|
||
/* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
|
||
defined at present; this might need to change in future. */
|
||
if (file_ase_mips16)
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
|
||
if (file_ase_micromips)
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
|
||
if (file_ase & ASE_MDMX)
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
|
||
|
||
/* Set the MIPS ELF ABI flags. */
|
||
if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
|
||
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
|
||
else if (mips_abi == O64_ABI)
|
||
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
|
||
else if (mips_abi == EABI_ABI)
|
||
{
|
||
if (!file_mips_gp32)
|
||
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
|
||
else
|
||
elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
|
||
}
|
||
else if (mips_abi == N32_ABI)
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
|
||
|
||
/* Nothing to do for N64_ABI. */
|
||
|
||
if (mips_32bitmode)
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
|
||
|
||
if (mips_flag_nan2008)
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
|
||
|
||
/* 32 bit code with 64 bit FP registers. */
|
||
if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
|
||
elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
|
||
}
|
||
|
||
typedef struct proc {
|
||
symbolS *func_sym;
|
||
symbolS *func_end_sym;
|
||
unsigned long reg_mask;
|
||
unsigned long reg_offset;
|
||
unsigned long fpreg_mask;
|
||
unsigned long fpreg_offset;
|
||
unsigned long frame_offset;
|
||
unsigned long frame_reg;
|
||
unsigned long pc_reg;
|
||
} procS;
|
||
|
||
static procS cur_proc;
|
||
static procS *cur_proc_ptr;
|
||
static int numprocs;
|
||
|
||
/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
|
||
as "2", and a normal nop as "0". */
|
||
|
||
#define NOP_OPCODE_MIPS 0
|
||
#define NOP_OPCODE_MIPS16 1
|
||
#define NOP_OPCODE_MICROMIPS 2
|
||
|
||
char
|
||
mips_nop_opcode (void)
|
||
{
|
||
if (seg_info (now_seg)->tc_segment_info_data.micromips)
|
||
return NOP_OPCODE_MICROMIPS;
|
||
else if (seg_info (now_seg)->tc_segment_info_data.mips16)
|
||
return NOP_OPCODE_MIPS16;
|
||
else
|
||
return NOP_OPCODE_MIPS;
|
||
}
|
||
|
||
/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
|
||
32-bit microMIPS NOPs here (if applicable). */
|
||
|
||
void
|
||
mips_handle_align (fragS *fragp)
|
||
{
|
||
char nop_opcode;
|
||
char *p;
|
||
int bytes, size, excess;
|
||
valueT opcode;
|
||
|
||
if (fragp->fr_type != rs_align_code)
|
||
return;
|
||
|
||
p = fragp->fr_literal + fragp->fr_fix;
|
||
nop_opcode = *p;
|
||
switch (nop_opcode)
|
||
{
|
||
case NOP_OPCODE_MICROMIPS:
|
||
opcode = micromips_nop32_insn.insn_opcode;
|
||
size = 4;
|
||
break;
|
||
case NOP_OPCODE_MIPS16:
|
||
opcode = mips16_nop_insn.insn_opcode;
|
||
size = 2;
|
||
break;
|
||
case NOP_OPCODE_MIPS:
|
||
default:
|
||
opcode = nop_insn.insn_opcode;
|
||
size = 4;
|
||
break;
|
||
}
|
||
|
||
bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
|
||
excess = bytes % size;
|
||
|
||
/* Handle the leading part if we're not inserting a whole number of
|
||
instructions, and make it the end of the fixed part of the frag.
|
||
Try to fit in a short microMIPS NOP if applicable and possible,
|
||
and use zeroes otherwise. */
|
||
gas_assert (excess < 4);
|
||
fragp->fr_fix += excess;
|
||
switch (excess)
|
||
{
|
||
case 3:
|
||
*p++ = '\0';
|
||
/* Fall through. */
|
||
case 2:
|
||
if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
|
||
{
|
||
p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
|
||
break;
|
||
}
|
||
*p++ = '\0';
|
||
/* Fall through. */
|
||
case 1:
|
||
*p++ = '\0';
|
||
/* Fall through. */
|
||
case 0:
|
||
break;
|
||
}
|
||
|
||
md_number_to_chars (p, opcode, size);
|
||
fragp->fr_var = size;
|
||
}
|
||
|
||
static void
|
||
md_obj_begin (void)
|
||
{
|
||
}
|
||
|
||
static void
|
||
md_obj_end (void)
|
||
{
|
||
/* Check for premature end, nesting errors, etc. */
|
||
if (cur_proc_ptr)
|
||
as_warn (_("missing .end at end of assembly"));
|
||
}
|
||
|
||
static long
|
||
get_number (void)
|
||
{
|
||
int negative = 0;
|
||
long val = 0;
|
||
|
||
if (*input_line_pointer == '-')
|
||
{
|
||
++input_line_pointer;
|
||
negative = 1;
|
||
}
|
||
if (!ISDIGIT (*input_line_pointer))
|
||
as_bad (_("expected simple number"));
|
||
if (input_line_pointer[0] == '0')
|
||
{
|
||
if (input_line_pointer[1] == 'x')
|
||
{
|
||
input_line_pointer += 2;
|
||
while (ISXDIGIT (*input_line_pointer))
|
||
{
|
||
val <<= 4;
|
||
val |= hex_value (*input_line_pointer++);
|
||
}
|
||
return negative ? -val : val;
|
||
}
|
||
else
|
||
{
|
||
++input_line_pointer;
|
||
while (ISDIGIT (*input_line_pointer))
|
||
{
|
||
val <<= 3;
|
||
val |= *input_line_pointer++ - '0';
|
||
}
|
||
return negative ? -val : val;
|
||
}
|
||
}
|
||
if (!ISDIGIT (*input_line_pointer))
|
||
{
|
||
printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
|
||
*input_line_pointer, *input_line_pointer);
|
||
as_warn (_("invalid number"));
|
||
return -1;
|
||
}
|
||
while (ISDIGIT (*input_line_pointer))
|
||
{
|
||
val *= 10;
|
||
val += *input_line_pointer++ - '0';
|
||
}
|
||
return negative ? -val : val;
|
||
}
|
||
|
||
/* The .file directive; just like the usual .file directive, but there
|
||
is an initial number which is the ECOFF file index. In the non-ECOFF
|
||
case .file implies DWARF-2. */
|
||
|
||
static void
|
||
s_mips_file (int x ATTRIBUTE_UNUSED)
|
||
{
|
||
static int first_file_directive = 0;
|
||
|
||
if (ECOFF_DEBUGGING)
|
||
{
|
||
get_number ();
|
||
s_app_file (0);
|
||
}
|
||
else
|
||
{
|
||
char *filename;
|
||
|
||
filename = dwarf2_directive_file (0);
|
||
|
||
/* Versions of GCC up to 3.1 start files with a ".file"
|
||
directive even for stabs output. Make sure that this
|
||
".file" is handled. Note that you need a version of GCC
|
||
after 3.1 in order to support DWARF-2 on MIPS. */
|
||
if (filename != NULL && ! first_file_directive)
|
||
{
|
||
(void) new_logical_line (filename, -1);
|
||
s_app_file_string (filename, 0);
|
||
}
|
||
first_file_directive = 1;
|
||
}
|
||
}
|
||
|
||
/* The .loc directive, implying DWARF-2. */
|
||
|
||
static void
|
||
s_mips_loc (int x ATTRIBUTE_UNUSED)
|
||
{
|
||
if (!ECOFF_DEBUGGING)
|
||
dwarf2_directive_loc (0);
|
||
}
|
||
|
||
/* The .end directive. */
|
||
|
||
static void
|
||
s_mips_end (int x ATTRIBUTE_UNUSED)
|
||
{
|
||
symbolS *p;
|
||
|
||
/* Following functions need their own .frame and .cprestore directives. */
|
||
mips_frame_reg_valid = 0;
|
||
mips_cprestore_valid = 0;
|
||
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
p = get_symbol ();
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
else
|
||
p = NULL;
|
||
|
||
if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
|
||
as_warn (_(".end not in text section"));
|
||
|
||
if (!cur_proc_ptr)
|
||
{
|
||
as_warn (_(".end directive without a preceding .ent directive"));
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
if (p != NULL)
|
||
{
|
||
gas_assert (S_GET_NAME (p));
|
||
if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
|
||
as_warn (_(".end symbol does not match .ent symbol"));
|
||
|
||
if (debug_type == DEBUG_STABS)
|
||
stabs_generate_asm_endfunc (S_GET_NAME (p),
|
||
S_GET_NAME (p));
|
||
}
|
||
else
|
||
as_warn (_(".end directive missing or unknown symbol"));
|
||
|
||
/* Create an expression to calculate the size of the function. */
|
||
if (p && cur_proc_ptr)
|
||
{
|
||
OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
|
||
expressionS *exp = xmalloc (sizeof (expressionS));
|
||
|
||
obj->size = exp;
|
||
exp->X_op = O_subtract;
|
||
exp->X_add_symbol = symbol_temp_new_now ();
|
||
exp->X_op_symbol = p;
|
||
exp->X_add_number = 0;
|
||
|
||
cur_proc_ptr->func_end_sym = exp->X_add_symbol;
|
||
}
|
||
|
||
/* Generate a .pdr section. */
|
||
if (!ECOFF_DEBUGGING && mips_flag_pdr)
|
||
{
|
||
segT saved_seg = now_seg;
|
||
subsegT saved_subseg = now_subseg;
|
||
expressionS exp;
|
||
char *fragp;
|
||
|
||
#ifdef md_flush_pending_output
|
||
md_flush_pending_output ();
|
||
#endif
|
||
|
||
gas_assert (pdr_seg);
|
||
subseg_set (pdr_seg, 0);
|
||
|
||
/* Write the symbol. */
|
||
exp.X_op = O_symbol;
|
||
exp.X_add_symbol = p;
|
||
exp.X_add_number = 0;
|
||
emit_expr (&exp, 4);
|
||
|
||
fragp = frag_more (7 * 4);
|
||
|
||
md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
|
||
md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
|
||
md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
|
||
md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
|
||
md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
|
||
md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
|
||
md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
|
||
|
||
subseg_set (saved_seg, saved_subseg);
|
||
}
|
||
|
||
cur_proc_ptr = NULL;
|
||
}
|
||
|
||
/* The .aent and .ent directives. */
|
||
|
||
static void
|
||
s_mips_ent (int aent)
|
||
{
|
||
symbolS *symbolP;
|
||
|
||
symbolP = get_symbol ();
|
||
if (*input_line_pointer == ',')
|
||
++input_line_pointer;
|
||
SKIP_WHITESPACE ();
|
||
if (ISDIGIT (*input_line_pointer)
|
||
|| *input_line_pointer == '-')
|
||
get_number ();
|
||
|
||
if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
|
||
as_warn (_(".ent or .aent not in text section"));
|
||
|
||
if (!aent && cur_proc_ptr)
|
||
as_warn (_("missing .end"));
|
||
|
||
if (!aent)
|
||
{
|
||
/* This function needs its own .frame and .cprestore directives. */
|
||
mips_frame_reg_valid = 0;
|
||
mips_cprestore_valid = 0;
|
||
|
||
cur_proc_ptr = &cur_proc;
|
||
memset (cur_proc_ptr, '\0', sizeof (procS));
|
||
|
||
cur_proc_ptr->func_sym = symbolP;
|
||
|
||
++numprocs;
|
||
|
||
if (debug_type == DEBUG_STABS)
|
||
stabs_generate_asm_func (S_GET_NAME (symbolP),
|
||
S_GET_NAME (symbolP));
|
||
}
|
||
|
||
symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
/* The .frame directive. If the mdebug section is present (IRIX 5 native)
|
||
then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
|
||
s_mips_frame is used so that we can set the PDR information correctly.
|
||
We can't use the ecoff routines because they make reference to the ecoff
|
||
symbol table (in the mdebug section). */
|
||
|
||
static void
|
||
s_mips_frame (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
if (ECOFF_DEBUGGING)
|
||
s_ignore (ignore);
|
||
else
|
||
{
|
||
long val;
|
||
|
||
if (cur_proc_ptr == (procS *) NULL)
|
||
{
|
||
as_warn (_(".frame outside of .ent"));
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
cur_proc_ptr->frame_reg = tc_get_register (1);
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (*input_line_pointer++ != ','
|
||
|| get_absolute_expression_and_terminator (&val) != ',')
|
||
{
|
||
as_warn (_("bad .frame directive"));
|
||
--input_line_pointer;
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
cur_proc_ptr->frame_offset = val;
|
||
cur_proc_ptr->pc_reg = tc_get_register (0);
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
}
|
||
|
||
/* The .fmask and .mask directives. If the mdebug section is present
|
||
(IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
|
||
embedded targets, s_mips_mask is used so that we can set the PDR
|
||
information correctly. We can't use the ecoff routines because they
|
||
make reference to the ecoff symbol table (in the mdebug section). */
|
||
|
||
static void
|
||
s_mips_mask (int reg_type)
|
||
{
|
||
if (ECOFF_DEBUGGING)
|
||
s_ignore (reg_type);
|
||
else
|
||
{
|
||
long mask, off;
|
||
|
||
if (cur_proc_ptr == (procS *) NULL)
|
||
{
|
||
as_warn (_(".mask/.fmask outside of .ent"));
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
if (get_absolute_expression_and_terminator (&mask) != ',')
|
||
{
|
||
as_warn (_("bad .mask/.fmask directive"));
|
||
--input_line_pointer;
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
off = get_absolute_expression ();
|
||
|
||
if (reg_type == 'F')
|
||
{
|
||
cur_proc_ptr->fpreg_mask = mask;
|
||
cur_proc_ptr->fpreg_offset = off;
|
||
}
|
||
else
|
||
{
|
||
cur_proc_ptr->reg_mask = mask;
|
||
cur_proc_ptr->reg_offset = off;
|
||
}
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
}
|
||
|
||
/* A table describing all the processors gas knows about. Names are
|
||
matched in the order listed.
|
||
|
||
To ease comparison, please keep this table in the same order as
|
||
gcc's mips_cpu_info_table[]. */
|
||
static const struct mips_cpu_info mips_cpu_info_table[] =
|
||
{
|
||
/* Entries for generic ISAs */
|
||
{ "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
|
||
{ "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
|
||
{ "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
|
||
{ "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
|
||
{ "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
|
||
{ "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
|
||
{ "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
|
||
{ "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
|
||
|
||
/* MIPS I */
|
||
{ "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
|
||
{ "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
|
||
{ "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
|
||
|
||
/* MIPS II */
|
||
{ "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
|
||
|
||
/* MIPS III */
|
||
{ "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
|
||
{ "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
|
||
{ "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
|
||
{ "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
|
||
{ "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
|
||
{ "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
|
||
{ "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
|
||
{ "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
|
||
{ "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
|
||
{ "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
|
||
{ "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
|
||
{ "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
|
||
{ "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
|
||
/* ST Microelectronics Loongson 2E and 2F cores */
|
||
{ "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
|
||
{ "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
|
||
|
||
/* MIPS IV */
|
||
{ "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
|
||
{ "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
|
||
{ "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
|
||
{ "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
|
||
{ "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
|
||
{ "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
|
||
{ "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
|
||
{ "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
|
||
{ "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
|
||
{ "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
|
||
{ "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
|
||
{ "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
|
||
{ "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
|
||
{ "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
|
||
{ "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
|
||
|
||
/* MIPS 32 */
|
||
{ "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
|
||
{ "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
|
||
{ "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
|
||
{ "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
|
||
|
||
/* MIPS 32 Release 2 */
|
||
{ "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
|
||
ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
|
||
ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
/* Deprecated forms of the above. */
|
||
{ "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
/* 24KE is a 24K with DSP ASE, other ASEs are optional. */
|
||
{ "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
/* Deprecated forms of the above. */
|
||
{ "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
/* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
|
||
{ "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
/* Deprecated forms of the above. */
|
||
{ "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
/* 34Kn is a 34kc without DSP. */
|
||
{ "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
/* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
|
||
{ "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
/* Deprecated forms of the above. */
|
||
{ "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
/* 1004K cores are multiprocessor versions of the 34K. */
|
||
{ "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
{ "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
|
||
|
||
/* MIPS 64 */
|
||
{ "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
|
||
{ "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
|
||
{ "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
|
||
{ "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
|
||
|
||
/* Broadcom SB-1 CPU core */
|
||
{ "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
|
||
/* Broadcom SB-1A CPU core */
|
||
{ "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
|
||
|
||
{ "loongson3a", 0, 0, ISA_MIPS64, CPU_LOONGSON_3A },
|
||
|
||
/* MIPS 64 Release 2 */
|
||
|
||
/* Cavium Networks Octeon CPU core */
|
||
{ "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
|
||
{ "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
|
||
{ "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
|
||
|
||
/* RMI Xlr */
|
||
{ "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
|
||
|
||
/* Broadcom XLP.
|
||
XLP is mostly like XLR, with the prominent exception that it is
|
||
MIPS64R2 rather than MIPS64. */
|
||
{ "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
|
||
|
||
/* End marker */
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
|
||
/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
|
||
with a final "000" replaced by "k". Ignore case.
|
||
|
||
Note: this function is shared between GCC and GAS. */
|
||
|
||
static bfd_boolean
|
||
mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
|
||
{
|
||
while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
|
||
given++, canonical++;
|
||
|
||
return ((*given == 0 && *canonical == 0)
|
||
|| (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
|
||
}
|
||
|
||
|
||
/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
|
||
CPU name. We've traditionally allowed a lot of variation here.
|
||
|
||
Note: this function is shared between GCC and GAS. */
|
||
|
||
static bfd_boolean
|
||
mips_matching_cpu_name_p (const char *canonical, const char *given)
|
||
{
|
||
/* First see if the name matches exactly, or with a final "000"
|
||
turned into "k". */
|
||
if (mips_strict_matching_cpu_name_p (canonical, given))
|
||
return TRUE;
|
||
|
||
/* If not, try comparing based on numerical designation alone.
|
||
See if GIVEN is an unadorned number, or 'r' followed by a number. */
|
||
if (TOLOWER (*given) == 'r')
|
||
given++;
|
||
if (!ISDIGIT (*given))
|
||
return FALSE;
|
||
|
||
/* Skip over some well-known prefixes in the canonical name,
|
||
hoping to find a number there too. */
|
||
if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
|
||
canonical += 2;
|
||
else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
|
||
canonical += 2;
|
||
else if (TOLOWER (canonical[0]) == 'r')
|
||
canonical += 1;
|
||
|
||
return mips_strict_matching_cpu_name_p (canonical, given);
|
||
}
|
||
|
||
|
||
/* Parse an option that takes the name of a processor as its argument.
|
||
OPTION is the name of the option and CPU_STRING is the argument.
|
||
Return the corresponding processor enumeration if the CPU_STRING is
|
||
recognized, otherwise report an error and return null.
|
||
|
||
A similar function exists in GCC. */
|
||
|
||
static const struct mips_cpu_info *
|
||
mips_parse_cpu (const char *option, const char *cpu_string)
|
||
{
|
||
const struct mips_cpu_info *p;
|
||
|
||
/* 'from-abi' selects the most compatible architecture for the given
|
||
ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
|
||
EABIs, we have to decide whether we're using the 32-bit or 64-bit
|
||
version. Look first at the -mgp options, if given, otherwise base
|
||
the choice on MIPS_DEFAULT_64BIT.
|
||
|
||
Treat NO_ABI like the EABIs. One reason to do this is that the
|
||
plain 'mips' and 'mips64' configs have 'from-abi' as their default
|
||
architecture. This code picks MIPS I for 'mips' and MIPS III for
|
||
'mips64', just as we did in the days before 'from-abi'. */
|
||
if (strcasecmp (cpu_string, "from-abi") == 0)
|
||
{
|
||
if (ABI_NEEDS_32BIT_REGS (mips_abi))
|
||
return mips_cpu_info_from_isa (ISA_MIPS1);
|
||
|
||
if (ABI_NEEDS_64BIT_REGS (mips_abi))
|
||
return mips_cpu_info_from_isa (ISA_MIPS3);
|
||
|
||
if (file_mips_gp32 >= 0)
|
||
return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
|
||
|
||
return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
|
||
? ISA_MIPS3
|
||
: ISA_MIPS1);
|
||
}
|
||
|
||
/* 'default' has traditionally been a no-op. Probably not very useful. */
|
||
if (strcasecmp (cpu_string, "default") == 0)
|
||
return 0;
|
||
|
||
for (p = mips_cpu_info_table; p->name != 0; p++)
|
||
if (mips_matching_cpu_name_p (p->name, cpu_string))
|
||
return p;
|
||
|
||
as_bad (_("bad value (%s) for %s"), cpu_string, option);
|
||
return 0;
|
||
}
|
||
|
||
/* Return the canonical processor information for ISA (a member of the
|
||
ISA_MIPS* enumeration). */
|
||
|
||
static const struct mips_cpu_info *
|
||
mips_cpu_info_from_isa (int isa)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
|
||
if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
|
||
&& isa == mips_cpu_info_table[i].isa)
|
||
return (&mips_cpu_info_table[i]);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static const struct mips_cpu_info *
|
||
mips_cpu_info_from_arch (int arch)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
|
||
if (arch == mips_cpu_info_table[i].cpu)
|
||
return (&mips_cpu_info_table[i]);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static void
|
||
show (FILE *stream, const char *string, int *col_p, int *first_p)
|
||
{
|
||
if (*first_p)
|
||
{
|
||
fprintf (stream, "%24s", "");
|
||
*col_p = 24;
|
||
}
|
||
else
|
||
{
|
||
fprintf (stream, ", ");
|
||
*col_p += 2;
|
||
}
|
||
|
||
if (*col_p + strlen (string) > 72)
|
||
{
|
||
fprintf (stream, "\n%24s", "");
|
||
*col_p = 24;
|
||
}
|
||
|
||
fprintf (stream, "%s", string);
|
||
*col_p += strlen (string);
|
||
|
||
*first_p = 0;
|
||
}
|
||
|
||
void
|
||
md_show_usage (FILE *stream)
|
||
{
|
||
int column, first;
|
||
size_t i;
|
||
|
||
fprintf (stream, _("\
|
||
MIPS options:\n\
|
||
-EB generate big endian output\n\
|
||
-EL generate little endian output\n\
|
||
-g, -g2 do not remove unneeded NOPs or swap branches\n\
|
||
-G NUM allow referencing objects up to NUM bytes\n\
|
||
implicitly with the gp register [default 8]\n"));
|
||
fprintf (stream, _("\
|
||
-mips1 generate MIPS ISA I instructions\n\
|
||
-mips2 generate MIPS ISA II instructions\n\
|
||
-mips3 generate MIPS ISA III instructions\n\
|
||
-mips4 generate MIPS ISA IV instructions\n\
|
||
-mips5 generate MIPS ISA V instructions\n\
|
||
-mips32 generate MIPS32 ISA instructions\n\
|
||
-mips32r2 generate MIPS32 release 2 ISA instructions\n\
|
||
-mips64 generate MIPS64 ISA instructions\n\
|
||
-mips64r2 generate MIPS64 release 2 ISA instructions\n\
|
||
-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
|
||
|
||
first = 1;
|
||
|
||
for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
|
||
show (stream, mips_cpu_info_table[i].name, &column, &first);
|
||
show (stream, "from-abi", &column, &first);
|
||
fputc ('\n', stream);
|
||
|
||
fprintf (stream, _("\
|
||
-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
|
||
-no-mCPU don't generate code specific to CPU.\n\
|
||
For -mCPU and -no-mCPU, CPU must be one of:\n"));
|
||
|
||
first = 1;
|
||
|
||
show (stream, "3900", &column, &first);
|
||
show (stream, "4010", &column, &first);
|
||
show (stream, "4100", &column, &first);
|
||
show (stream, "4650", &column, &first);
|
||
fputc ('\n', stream);
|
||
|
||
fprintf (stream, _("\
|
||
-mips16 generate mips16 instructions\n\
|
||
-no-mips16 do not generate mips16 instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mmicromips generate microMIPS instructions\n\
|
||
-mno-micromips do not generate microMIPS instructions\n"));
|
||
fprintf (stream, _("\
|
||
-msmartmips generate smartmips instructions\n\
|
||
-mno-smartmips do not generate smartmips instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mdsp generate DSP instructions\n\
|
||
-mno-dsp do not generate DSP instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mdspr2 generate DSP R2 instructions\n\
|
||
-mno-dspr2 do not generate DSP R2 instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mmt generate MT instructions\n\
|
||
-mno-mt do not generate MT instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mmcu generate MCU instructions\n\
|
||
-mno-mcu do not generate MCU instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mmsa generate MSA instructions\n\
|
||
-mno-msa do not generate MSA instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mvirt generate Virtualization instructions\n\
|
||
-mno-virt do not generate Virtualization instructions\n"));
|
||
fprintf (stream, _("\
|
||
-minsn32 only generate 32-bit microMIPS instructions\n\
|
||
-mno-insn32 generate all microMIPS instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
|
||
-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
|
||
-mfix-vr4120 work around certain VR4120 errata\n\
|
||
-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
|
||
-mfix-24k insert a nop after ERET and DERET instructions\n\
|
||
-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
|
||
-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
|
||
-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
|
||
-msym32 assume all symbols have 32-bit values\n\
|
||
-O0 remove unneeded NOPs, do not swap branches\n\
|
||
-O remove unneeded NOPs and swap branches\n\
|
||
--trap, --no-break trap exception on div by 0 and mult overflow\n\
|
||
--break, --no-trap break exception on div by 0 and mult overflow\n"));
|
||
fprintf (stream, _("\
|
||
-mhard-float allow floating-point instructions\n\
|
||
-msoft-float do not allow floating-point instructions\n\
|
||
-msingle-float only allow 32-bit floating-point operations\n\
|
||
-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
|
||
--[no-]construct-floats [dis]allow floating point values to be constructed\n\
|
||
--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
|
||
-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
|
||
|
||
first = 1;
|
||
|
||
show (stream, "legacy", &column, &first);
|
||
show (stream, "2008", &column, &first);
|
||
|
||
fputc ('\n', stream);
|
||
|
||
fprintf (stream, _("\
|
||
-KPIC, -call_shared generate SVR4 position independent code\n\
|
||
-call_nonpic generate non-PIC code that can operate with DSOs\n\
|
||
-mvxworks-pic generate VxWorks position independent code\n\
|
||
-non_shared do not generate code that can operate with DSOs\n\
|
||
-xgot assume a 32 bit GOT\n\
|
||
-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
|
||
-mshared, -mno-shared disable/enable .cpload optimization for\n\
|
||
position dependent (non shared) code\n\
|
||
-mabi=ABI create ABI conformant object file for:\n"));
|
||
|
||
first = 1;
|
||
|
||
show (stream, "32", &column, &first);
|
||
show (stream, "o64", &column, &first);
|
||
show (stream, "n32", &column, &first);
|
||
show (stream, "64", &column, &first);
|
||
show (stream, "eabi", &column, &first);
|
||
|
||
fputc ('\n', stream);
|
||
|
||
fprintf (stream, _("\
|
||
-32 create o32 ABI object file (default)\n\
|
||
-n32 create n32 ABI object file\n\
|
||
-64 create 64 ABI object file\n"));
|
||
}
|
||
|
||
#ifdef TE_IRIX
|
||
enum dwarf2_format
|
||
mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
|
||
{
|
||
if (HAVE_64BIT_SYMBOLS)
|
||
return dwarf2_format_64bit_irix;
|
||
else
|
||
return dwarf2_format_32bit;
|
||
}
|
||
#endif
|
||
|
||
int
|
||
mips_dwarf2_addr_size (void)
|
||
{
|
||
if (HAVE_64BIT_OBJECTS)
|
||
return 8;
|
||
else
|
||
return 4;
|
||
}
|
||
|
||
/* Standard calling conventions leave the CFA at SP on entry. */
|
||
void
|
||
mips_cfi_frame_initial_instructions (void)
|
||
{
|
||
cfi_add_CFA_def_cfa_register (SP);
|
||
}
|
||
|
||
int
|
||
tc_mips_regname_to_dw2regnum (char *regname)
|
||
{
|
||
unsigned int regnum = -1;
|
||
unsigned int reg;
|
||
|
||
if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))
|
||
regnum = reg;
|
||
|
||
return regnum;
|
||
}
|