binutils-gdb/sim/example-synacor/interp.c
Mike Frysinger ba307cddcf sim: overhaul alignment settings management
Currently, the sim-config module will abort if alignment settings
haven't been specified by the port's configure.ac.  This is a bit
weird when we've allowed SIM_AC_OPTION_ALIGNMENT to seem like it's
optional to use.  Thus everyone invokes it.

There are 4 alignment settings, but really only 2 matters: strict
and nonstrict.  The "mixed" setting is just the default ("unset"),
and "forced" isn't used directly by anyone (it's available as a
runtime option for some ports).

The m4 macro has 2 args: the "wire" settings (which represents the
hardwired port behavior), and the default settings (which are used
if nothing else is specified).  If none are specified, then the
build won't work (see above as if SIM_AC_OPTION_ALIGNMENT wasn't
called).  If default settings are provided, then that is used, but
we allow the user to override at runtime.  Otherwise, the "wire"
settings are used and user runtime options to change are ignored.

Most ports specify a default, or set the "wire" to nonstrict.  A
few set "wire" to strict, but it's not clear that's necessary as
it doesn't make the code behavior, by default, any different.  It
might make things a little faster, but we should provide the user
the choice of the compromises to make: force a specific mode at
compile time for faster runtime, or allow the choice at runtime.
More likely it seems like an oversight when these ports were
initially created, and/or copied & pasted from existing ports.

With all that backstory, let's get to what this commit does.

First kill off the idea of a compile-time default alignment and
set it to nonstrict in the common code.  For any ports that want
strict alignment by default, that code is moved to sim_open while
initializing the sim.  That means WITH_DEFAULT_ALIGNMENT can be
completely removed.

Moving the default alignment to the runtime also allows removal
of setting the "wire" settings at configure time.  Which allows
removing of all arguments to SIM_AC_OPTION_ALIGNMENT and moving
that call to common code.

The macro logic can be reworked to not pass WITH_ALIGNMENT as -D
CPPFLAG and instead move it to config.h.

All of these taken together mean we can hoist the macro up to the
top level and share it among all sims so behavior is consistent
among all the ports.
2021-06-12 21:14:50 -04:00

180 lines
4.7 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Example synacor simulator.
Copyright (C) 2005-2021 Free Software Foundation, Inc.
Contributed by Mike Frysinger.
This file is part of simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This file contains the main glue logic between the sim core and the target
specific simulator. Normally this file will be kept small and the target
details will live in other files.
For more specific details on these functions, see the sim/sim.h header
file. */
/* This must come before any other includes. */
#include "defs.h"
#include "sim-main.h"
#include "sim-options.h"
/* This function is the main loop. It should process ticks and decode+execute
a single instruction.
Usually you do not need to change things here. */
void
sim_engine_run (SIM_DESC sd,
int next_cpu_nr, /* ignore */
int nr_cpus, /* ignore */
int siggnal) /* ignore */
{
SIM_CPU *cpu;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
cpu = STATE_CPU (sd, 0);
while (1)
{
step_once (cpu);
if (sim_events_tick (sd))
sim_events_process (sd);
}
}
/* Initialize the simulator from scratch. This is called once per lifetime of
the simulation. Think of it as a processor reset.
Usually all cpu-specific setup is handled in the initialize_cpu callback.
If you want to do cpu-independent stuff, then it should go at the end (see
where memory is initialized). */
#define DEFAULT_MEM_SIZE (16 * 1024 * 1024)
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *callback,
struct bfd *abfd, char * const *argv)
{
char c;
int i;
SIM_DESC sd = sim_state_alloc (kind, callback);
/* Set default options before parsing user options. */
current_alignment = STRICT_ALIGNMENT;
/* The cpu data is kept in a separately allocated chunk of memory. */
if (sim_cpu_alloc_all (sd, 1) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* XXX: Default to the Virtual environment. */
if (STATE_ENVIRONMENT (sd) == ALL_ENVIRONMENT)
STATE_ENVIRONMENT (sd) = VIRTUAL_ENVIRONMENT;
/* The parser will print an error message for us, so we silently return. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Check for/establish the a reference program image. */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL), abfd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Establish any remaining configuration options. */
if (sim_config (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* CPU specific initialization. */
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
{
SIM_CPU *cpu = STATE_CPU (sd, i);
initialize_cpu (sd, cpu);
}
/* Allocate external memory if none specified by user.
Use address 4 here in case the user wanted address 0 unmapped. */
if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0)
sim_do_commandf (sd, "memory-size %#x", DEFAULT_MEM_SIZE);
return sd;
}
/* Prepare to run a program that has already been loaded into memory.
Usually you do not need to change things here. */
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
char * const *argv, char * const *env)
{
SIM_CPU *cpu = STATE_CPU (sd, 0);
sim_cia addr;
/* Set the PC. */
if (abfd != NULL)
addr = bfd_get_start_address (abfd);
else
addr = 0;
sim_pc_set (cpu, addr);
/* Standalone mode (i.e. `run`) will take care of the argv for us in
sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
with `gdb`), we need to handle it because the user can change the
argv on the fly via gdb's 'run'. */
if (STATE_PROG_ARGV (sd) != argv)
{
freeargv (STATE_PROG_ARGV (sd));
STATE_PROG_ARGV (sd) = dupargv (argv);
}
return SIM_RC_OK;
}