binutils-gdb/gdb/psympriv.h
Tom Tromey 8a6d423450 Change representation of psymbol to flush out accessors
This is the psymbol analog to the patch to change the representation
of minimal symbols:

    https://sourceware.org/ml/gdb-patches/2013-10/msg00524.html

It has the same rationale: namely, that we're going to change the code
to apply psymbol offsets at runtime.  This will be done by adding an
argument to the SYMBOL_VALUE_ADDRESS macro -- but since we can't
convert all the symbol types at once, we need a new approach.

Because gdb now is in C++, this patch changes partial_symbol to
inherit from general_symbol_info, rather than renaming the field.
This simplifies code in some places.

Also, as noted before, these macros implement a kind of "phony
polymorphism" that is not actually useful in practice; so this patch
removes the macros in favor of simply referring directly to members.
In a few cases -- obj_section in this patch and the symbol address in
the future -- methods will be used instead.

Note that this removes the blanket memset from add_psymbol_to_bcache.
This hasn't really been needed since bcache was modified to allow
holes in objects and since psymtab took advantage of that.  This
deletion was required due to changing partial_symbol to derive from
general_symbol_info.

gdb/ChangeLog
2018-07-26  Tom Tromey  <tom@tromey.com>

	* dwarf-index-write.c (write_psymbols, debug_names::insert)
	(debug_names::write_psymbols): Update.
	* psympriv.h (struct partial_symbol): Derive from
	general_symbol_info.
	<obj_section>: New method.
	(PSYMBOL_DOMAIN, PSYMBOL_CLASS): Remove.n
	* psymtab.c (find_pc_sect_psymtab_closer, find_pc_sect_psymtab)
	(find_pc_sect_psymbol, fixup_psymbol_section)
	(match_partial_symbol, lookup_partial_symbol, relocate_psymtabs)
	(print_partial_symbols, recursively_search_psymtabs)
	(compare_psymbols, psymbol_hash, psymbol_compare)
	(add_psymbol_to_bcache, maintenance_check_psymtabs)
	(psymbol_name_matches, psym_fill_psymbol_map): Update.
2018-07-26 09:18:29 -06:00

269 lines
8.9 KiB
C++

/* Private partial symbol table definitions.
Copyright (C) 2009-2018 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef PSYMPRIV_H
#define PSYMPRIV_H
#include "psymtab.h"
#include "objfiles.h"
/* A partial_symbol records the name, domain, and address class of
symbols whose types we have not parsed yet. For functions, it also
contains their memory address, so we can find them from a PC value.
Each partial_symbol sits in a partial_symtab, all of which are chained
on a partial symtab list and which points to the corresponding
normal symtab once the partial_symtab has been referenced. */
/* This structure is space critical. See space comments at the top of
symtab.h. */
struct partial_symbol : public general_symbol_info
{
/* Return the section for this partial symbol, or nullptr if no
section has been set. */
struct obj_section *obj_section (struct objfile *objfile) const
{
if (section >= 0)
return &objfile->sections[section];
return nullptr;
}
/* Name space code. */
ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
/* Address class (for info_symbols). Note that we don't allow
synthetic "aclass" values here at present, simply because there's
no need. */
ENUM_BITFIELD(address_class) aclass : SYMBOL_ACLASS_BITS;
};
/* A convenience enum to give names to some constants used when
searching psymtabs. This is internal to psymtab and should not be
used elsewhere. */
enum psymtab_search_status
{
PST_NOT_SEARCHED,
PST_SEARCHED_AND_FOUND,
PST_SEARCHED_AND_NOT_FOUND
};
/* Each source file that has not been fully read in is represented by
a partial_symtab. This contains the information on where in the
executable the debugging symbols for a specific file are, and a
list of names of global symbols which are located in this file.
They are all chained on partial symtab lists.
Even after the source file has been read into a symtab, the
partial_symtab remains around. They are allocated on an obstack,
objfile_obstack. */
struct partial_symtab
{
/* Chain of all existing partial symtabs. */
struct partial_symtab *next;
/* Name of the source file which this partial_symtab defines,
or if the psymtab is anonymous then a descriptive name for
debugging purposes, or "". It must not be NULL. */
const char *filename;
/* Full path of the source file. NULL if not known. */
char *fullname;
/* Directory in which it was compiled, or NULL if we don't know. */
const char *dirname;
/* Range of text addresses covered by this file; texthigh is the
beginning of the next section. Do not use if PSYMTABS_ADDRMAP_SUPPORTED
is set. */
CORE_ADDR textlow;
CORE_ADDR texthigh;
/* If NULL, this is an ordinary partial symbol table.
If non-NULL, this holds a single includer of this partial symbol
table, and this partial symbol table is a shared one.
A shared psymtab is one that is referenced by multiple other
psymtabs, and which conceptually has its contents directly
included in those.
Shared psymtabs have special semantics. When a search finds a
symbol in a shared table, we instead return one of the non-shared
tables that include this one.
A shared psymtabs can be referred to by other shared ones.
The psymtabs that refer to a shared psymtab will list the shared
psymtab in their 'dependencies' array.
In DWARF terms, a shared psymtab is a DW_TAG_partial_unit; but
of course using a name based on that would be too confusing, so
"shared" was chosen instead.
Only a single user is needed because, when expanding a shared
psymtab, we only need to expand its "canonical" non-shared user.
The choice of which one should be canonical is left to the
debuginfo reader; it can be arbitrary. */
struct partial_symtab *user;
/* Array of pointers to all of the partial_symtab's which this one
depends on. Since this array can only be set to previous or
the current (?) psymtab, this dependency tree is guaranteed not
to have any loops. "depends on" means that symbols must be read
for the dependencies before being read for this psymtab; this is
for type references in stabs, where if foo.c includes foo.h, declarations
in foo.h may use type numbers defined in foo.c. For other debugging
formats there may be no need to use dependencies. */
struct partial_symtab **dependencies;
int number_of_dependencies;
/* Global symbol list. This list will be sorted after readin to
improve access. Binary search will be the usual method of
finding a symbol within it. globals_offset is an integer offset
within global_psymbols[]. */
int globals_offset;
int n_global_syms;
/* Static symbol list. This list will *not* be sorted after readin;
to find a symbol in it, exhaustive search must be used. This is
reasonable because searches through this list will eventually
lead to either the read in of a files symbols for real (assumed
to take a *lot* of time; check) or an error (and we don't care
how long errors take). This is an offset and size within
static_psymbols[]. */
int statics_offset;
int n_static_syms;
/* Non-zero if the symtab corresponding to this psymtab has been
readin. This is located here so that this structure packs better
on 64-bit systems. */
unsigned char readin;
/* True iff objfile->psymtabs_addrmap is properly populated for this
partial_symtab. For discontiguous overlapping psymtabs is the only usable
info in PSYMTABS_ADDRMAP. */
unsigned char psymtabs_addrmap_supported;
/* True if the name of this partial symtab is not a source file name. */
unsigned char anonymous;
/* A flag that is temporarily used when searching psymtabs. */
ENUM_BITFIELD (psymtab_search_status) searched_flag : 2;
/* Pointer to compunit eventually allocated for this source file, 0 if
!readin or if we haven't looked for the symtab after it was readin. */
struct compunit_symtab *compunit_symtab;
/* Pointer to function which will read in the symtab corresponding to
this psymtab. */
void (*read_symtab) (struct partial_symtab *, struct objfile *);
/* Information that lets read_symtab() locate the part of the symbol table
that this psymtab corresponds to. This information is private to the
format-dependent symbol reading routines. For further detail examine
the various symbol reading modules. */
void *read_symtab_private;
};
/* Add any kind of symbol to a partial_symbol vector. */
extern void add_psymbol_to_list (const char *, int,
int, domain_enum,
enum address_class,
std::vector<partial_symbol *> *,
CORE_ADDR,
enum language, struct objfile *);
extern void init_psymbol_list (struct objfile *, int);
extern struct partial_symtab *start_psymtab_common (struct objfile *,
const char *, CORE_ADDR,
std::vector<partial_symbol *> &,
std::vector<partial_symbol *> &);
extern void end_psymtab_common (struct objfile *, struct partial_symtab *);
extern struct partial_symtab *allocate_psymtab (const char *,
struct objfile *)
ATTRIBUTE_NONNULL (1);
extern void discard_psymtab (struct objfile *, struct partial_symtab *);
/* Used when recording partial symbol tables. On destruction,
discards any partial symbol tables that have been built. However,
the tables can be kept by calling the "keep" method. */
class psymtab_discarder
{
public:
psymtab_discarder (struct objfile *objfile)
: m_objfile (objfile),
m_psymtab (objfile->psymtabs)
{
}
~psymtab_discarder ()
{
if (m_objfile != NULL)
while (m_objfile->psymtabs != m_psymtab)
discard_psymtab (m_objfile, m_objfile->psymtabs);
}
/* Keep any partial symbol tables that were built. */
void keep ()
{
m_objfile = NULL;
}
private:
/* The objfile. If NULL this serves as a sentinel to indicate that
the psymtabs should be kept. */
struct objfile *m_objfile;
/* How far back to free. */
struct partial_symtab *m_psymtab;
};
/* Traverse all psymtabs in one objfile. */
#define ALL_OBJFILE_PSYMTABS(objfile, p) \
for ((p) = (objfile) -> psymtabs; (p) != NULL; (p) = (p) -> next)
#endif /* PSYMPRIV_H */