
Currently, when we add a new python sub-system to GDB, e.g. py-inferior.c, we end up having to create a new function like gdbpy_initialize_inferior, which then has to be called from the function do_start_initialization in python.c. In some cases (py-micmd.c and py-tui.c), we have two functions gdbpy_initialize_*, and gdbpy_finalize_*, with the second being called from finalize_python which is also in python.c. This commit proposes a mechanism to manage these initialization and finalization calls, this means that adding a new Python subsystem will no longer require changes to python.c or python-internal.h, instead, the initialization and finalization functions will be registered directly from the sub-system file, e.g. py-inferior.c, or py-micmd.c. The initialization and finalization functions are managed through a new class gdbpy_initialize_file in python-internal.h. This class contains a single global vector of all the initialization and finalization functions. In each Python sub-system we create a new gdbpy_initialize_file object, the object constructor takes care of registering the two callback functions. Now from python.c we can call static functions on the gdbpy_initialize_file class which take care of walking the callback list and invoking each callback in turn. To slightly simplify the Python sub-system files I added a new macro GDBPY_INITIALIZE_FILE, which hides the need to create an object. We can now just do this: GDBPY_INITIALIZE_FILE (gdbpy_initialize_registers); One possible problem with this change is that there is now no guaranteed ordering of how the various sub-systems are initialized (or finalized). To try and avoid dependencies creeping in I have added a use of the environment variable GDB_REVERSE_INIT_FUNCTIONS, this is the same environment variable used in the generated init.c file. Just like with init.c, when this environment variable is set we reverse the list of Python initialization (and finalization) functions. As there is already a test that starts GDB with the environment variable set then this should offer some level of protection against dependencies creeping in - though for full protection I guess we'd need to run all gdb.python/*.exp tests with the variable set. I have tested this patch with the environment variable set, and saw no regressions, so I think we are fine right now. One other change of note was for gdbpy_initialize_gdb_readline, this function previously returned void. In order to make this function have the correct signature I've updated its return type to int, and we now return 0 to indicate success. All of the other initialize (and finalize) functions have been made static within their respective sub-system files. There should be no user visible changes after this commit.
743 lines
23 KiB
C
743 lines
23 KiB
C
/* MI Command Set for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 2019-2023 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* GDB/MI commands implemented in Python. */
|
|
|
|
#include "defs.h"
|
|
#include "python-internal.h"
|
|
#include "arch-utils.h"
|
|
#include "charset.h"
|
|
#include "language.h"
|
|
#include "mi/mi-cmds.h"
|
|
#include "mi/mi-parse.h"
|
|
#include "cli/cli-cmds.h"
|
|
#include <string>
|
|
|
|
/* Debugging of Python MI commands. */
|
|
|
|
static bool pymicmd_debug;
|
|
|
|
/* Implementation of "show debug py-micmd". */
|
|
|
|
static void
|
|
show_pymicmd_debug (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
gdb_printf (file, _("Python MI command debugging is %s.\n"), value);
|
|
}
|
|
|
|
/* Print a "py-micmd" debug statement. */
|
|
|
|
#define pymicmd_debug_printf(fmt, ...) \
|
|
debug_prefixed_printf_cond (pymicmd_debug, "py-micmd", fmt, ##__VA_ARGS__)
|
|
|
|
/* Print a "py-micmd" enter/exit debug statements. */
|
|
|
|
#define PYMICMD_SCOPED_DEBUG_ENTER_EXIT \
|
|
scoped_debug_enter_exit (pymicmd_debug, "py-micmd")
|
|
|
|
struct mi_command_py;
|
|
|
|
/* Representation of a Python gdb.MICommand object. */
|
|
|
|
struct micmdpy_object
|
|
{
|
|
PyObject_HEAD
|
|
|
|
/* The object representing this command in the MI command table. This
|
|
pointer can be nullptr if the command is not currently installed into
|
|
the MI command table (see gdb.MICommand.installed property). */
|
|
struct mi_command_py *mi_command;
|
|
|
|
/* The string representing the name of this command, without the leading
|
|
dash. This string is never nullptr once the Python object has been
|
|
initialised.
|
|
|
|
The memory for this string was allocated with malloc, and needs to be
|
|
deallocated with free when the Python object is deallocated.
|
|
|
|
When the MI_COMMAND field is not nullptr, then the mi_command_py
|
|
object's name will point back to this string. */
|
|
char *mi_command_name;
|
|
};
|
|
|
|
/* The MI command implemented in Python. */
|
|
|
|
struct mi_command_py : public mi_command
|
|
{
|
|
/* Constructs a new mi_command_py object. NAME is command name without
|
|
leading dash. OBJECT is a reference to a Python object implementing
|
|
the command. This object must inherit from gdb.MICommand and must
|
|
implement the invoke method. */
|
|
|
|
mi_command_py (const char *name, micmdpy_object *object)
|
|
: mi_command (name, nullptr),
|
|
m_pyobj (gdbpy_ref<micmdpy_object>::new_reference (object))
|
|
{
|
|
pymicmd_debug_printf ("this = %p", this);
|
|
m_pyobj->mi_command = this;
|
|
}
|
|
|
|
~mi_command_py ()
|
|
{
|
|
/* The Python object representing a MI command contains a pointer back
|
|
to this c++ object. We can safely set this pointer back to nullptr
|
|
now, to indicate the Python object no longer references a valid c++
|
|
object.
|
|
|
|
However, the Python object also holds the storage for our name
|
|
string. We can't clear that here as our parent's destructor might
|
|
still want to reference that string. Instead we rely on the Python
|
|
object deallocator to free that memory, and reset the pointer. */
|
|
m_pyobj->mi_command = nullptr;
|
|
|
|
pymicmd_debug_printf ("this = %p", this);
|
|
};
|
|
|
|
/* Validate that CMD_OBJ, a non-nullptr pointer, is installed into the MI
|
|
command table correctly. This function looks up the command in the MI
|
|
command table and checks that the object we get back references
|
|
CMD_OBJ. This function is only intended for calling within a
|
|
gdb_assert. This function performs many assertions internally, and
|
|
then always returns true. */
|
|
static void validate_installation (micmdpy_object *cmd_obj);
|
|
|
|
/* Update M_PYOBJ to NEW_PYOBJ. The pointer from M_PYOBJ that points
|
|
back to this object is swapped with the pointer in NEW_PYOBJ, which
|
|
must be nullptr, so that NEW_PYOBJ now points back to this object.
|
|
Additionally our parent's name string is stored in M_PYOBJ, so we
|
|
swap the name string with NEW_PYOBJ.
|
|
|
|
Before this call M_PYOBJ is the Python object representing this MI
|
|
command object. After this call has completed, NEW_PYOBJ now
|
|
represents this MI command object. */
|
|
void swap_python_object (micmdpy_object *new_pyobj)
|
|
{
|
|
/* Current object has a backlink, new object doesn't have a backlink. */
|
|
gdb_assert (m_pyobj->mi_command != nullptr);
|
|
gdb_assert (new_pyobj->mi_command == nullptr);
|
|
|
|
/* Clear the current M_PYOBJ's backlink, set NEW_PYOBJ's backlink. */
|
|
std::swap (new_pyobj->mi_command, m_pyobj->mi_command);
|
|
|
|
/* Both object have names. */
|
|
gdb_assert (m_pyobj->mi_command_name != nullptr);
|
|
gdb_assert (new_pyobj->mi_command_name != nullptr);
|
|
|
|
/* mi_command::m_name is the string owned by the current object. */
|
|
gdb_assert (m_pyobj->mi_command_name == this->name ());
|
|
|
|
/* The name in mi_command::m_name is owned by the current object. Rather
|
|
than changing the value of mi_command::m_name (which is not accessible
|
|
from here) to point to the name owned by the new object, swap the names
|
|
of the two objects, since we know they are identical strings. */
|
|
gdb_assert (strcmp (new_pyobj->mi_command_name,
|
|
m_pyobj->mi_command_name) == 0);
|
|
std::swap (new_pyobj->mi_command_name, m_pyobj->mi_command_name);
|
|
|
|
/* Take a reference to the new object, drop the reference to the current
|
|
object. */
|
|
m_pyobj = gdbpy_ref<micmdpy_object>::new_reference (new_pyobj);
|
|
}
|
|
|
|
/* Called when the MI command is invoked. */
|
|
virtual void invoke(struct mi_parse *parse) const override;
|
|
|
|
private:
|
|
/* The Python object representing this MI command. */
|
|
gdbpy_ref<micmdpy_object> m_pyobj;
|
|
};
|
|
|
|
using mi_command_py_up = std::unique_ptr<mi_command_py>;
|
|
|
|
extern PyTypeObject micmdpy_object_type
|
|
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("micmdpy_object");
|
|
|
|
/* Holds a Python object containing the string 'invoke'. */
|
|
|
|
static PyObject *invoke_cst;
|
|
|
|
/* Convert KEY_OBJ into a string that can be used as a field name in MI
|
|
output. KEY_OBJ must be a Python string object, and must only contain
|
|
characters suitable for use as an MI field name.
|
|
|
|
If KEY_OBJ is not a string, or if KEY_OBJ contains invalid characters,
|
|
then an error is thrown. Otherwise, KEY_OBJ is converted to a string
|
|
and returned. */
|
|
|
|
static gdb::unique_xmalloc_ptr<char>
|
|
py_object_to_mi_key (PyObject *key_obj)
|
|
{
|
|
/* The key must be a string. */
|
|
if (!PyUnicode_Check (key_obj))
|
|
{
|
|
gdbpy_ref<> key_repr (PyObject_Repr (key_obj));
|
|
gdb::unique_xmalloc_ptr<char> key_repr_string;
|
|
if (key_repr != nullptr)
|
|
key_repr_string = python_string_to_target_string (key_repr.get ());
|
|
if (key_repr_string == nullptr)
|
|
gdbpy_handle_exception ();
|
|
|
|
gdbpy_error (_("non-string object used as key: %s"),
|
|
key_repr_string.get ());
|
|
}
|
|
|
|
gdb::unique_xmalloc_ptr<char> key_string
|
|
= python_string_to_target_string (key_obj);
|
|
if (key_string == nullptr)
|
|
gdbpy_handle_exception ();
|
|
|
|
/* Predicate function, returns true if NAME is a valid field name for use
|
|
in MI result output, otherwise, returns false. */
|
|
auto is_valid_key_name = [] (const char *name) -> bool
|
|
{
|
|
gdb_assert (name != nullptr);
|
|
|
|
if (*name == '\0' || !isalpha (*name))
|
|
return false;
|
|
|
|
for (; *name != '\0'; ++name)
|
|
if (!isalnum (*name) && *name != '_' && *name != '-')
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
|
|
if (!is_valid_key_name (key_string.get ()))
|
|
{
|
|
if (*key_string.get () == '\0')
|
|
gdbpy_error (_("Invalid empty key in MI result"));
|
|
else
|
|
gdbpy_error (_("Invalid key in MI result: %s"), key_string.get ());
|
|
}
|
|
|
|
return key_string;
|
|
}
|
|
|
|
/* Serialize RESULT and print it in MI format to the current_uiout.
|
|
FIELD_NAME is used as the name of this result field.
|
|
|
|
RESULT can be a dictionary, a sequence, an iterator, or an object that
|
|
can be converted to a string, these are converted to the matching MI
|
|
output format (dictionaries as tuples, sequences and iterators as lists,
|
|
and strings as named fields).
|
|
|
|
If anything goes wrong while formatting the output then an error is
|
|
thrown.
|
|
|
|
This function is the recursive inner core of serialize_mi_result, and
|
|
should only be called from that function. */
|
|
|
|
static void
|
|
serialize_mi_result_1 (PyObject *result, const char *field_name)
|
|
{
|
|
struct ui_out *uiout = current_uiout;
|
|
|
|
if (PyDict_Check (result))
|
|
{
|
|
PyObject *key, *value;
|
|
Py_ssize_t pos = 0;
|
|
ui_out_emit_tuple tuple_emitter (uiout, field_name);
|
|
while (PyDict_Next (result, &pos, &key, &value))
|
|
{
|
|
gdb::unique_xmalloc_ptr<char> key_string
|
|
(py_object_to_mi_key (key));
|
|
serialize_mi_result_1 (value, key_string.get ());
|
|
}
|
|
}
|
|
else if (PySequence_Check (result) && !PyUnicode_Check (result))
|
|
{
|
|
ui_out_emit_list list_emitter (uiout, field_name);
|
|
Py_ssize_t len = PySequence_Size (result);
|
|
if (len == -1)
|
|
gdbpy_handle_exception ();
|
|
for (Py_ssize_t i = 0; i < len; ++i)
|
|
{
|
|
gdbpy_ref<> item (PySequence_ITEM (result, i));
|
|
if (item == nullptr)
|
|
gdbpy_handle_exception ();
|
|
serialize_mi_result_1 (item.get (), nullptr);
|
|
}
|
|
}
|
|
else if (PyIter_Check (result))
|
|
{
|
|
gdbpy_ref<> item;
|
|
ui_out_emit_list list_emitter (uiout, field_name);
|
|
while (true)
|
|
{
|
|
item.reset (PyIter_Next (result));
|
|
if (item == nullptr)
|
|
{
|
|
if (PyErr_Occurred () != nullptr)
|
|
gdbpy_handle_exception ();
|
|
break;
|
|
}
|
|
serialize_mi_result_1 (item.get (), nullptr);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gdb::unique_xmalloc_ptr<char> string (gdbpy_obj_to_string (result));
|
|
if (string == nullptr)
|
|
gdbpy_handle_exception ();
|
|
uiout->field_string (field_name, string.get ());
|
|
}
|
|
}
|
|
|
|
/* Serialize RESULT and print it in MI format to the current_uiout.
|
|
|
|
This function handles the top-level result initially returned from the
|
|
invoke method of the Python command implementation. At the top-level
|
|
the result must be a dictionary. The values within this dictionary can
|
|
be a wider range of types. Handling the values of the top-level
|
|
dictionary is done by serialize_mi_result_1, see that function for more
|
|
details.
|
|
|
|
If anything goes wrong while parsing and printing the MI output then an
|
|
error is thrown. */
|
|
|
|
static void
|
|
serialize_mi_result (PyObject *result)
|
|
{
|
|
/* At the top-level, the result must be a dictionary. */
|
|
|
|
if (!PyDict_Check (result))
|
|
gdbpy_error (_("Result from invoke must be a dictionary"));
|
|
|
|
PyObject *key, *value;
|
|
Py_ssize_t pos = 0;
|
|
while (PyDict_Next (result, &pos, &key, &value))
|
|
{
|
|
gdb::unique_xmalloc_ptr<char> key_string
|
|
(py_object_to_mi_key (key));
|
|
serialize_mi_result_1 (value, key_string.get ());
|
|
}
|
|
}
|
|
|
|
/* Called when the MI command is invoked. PARSE contains the parsed
|
|
command line arguments from the user. */
|
|
|
|
void
|
|
mi_command_py::invoke (struct mi_parse *parse) const
|
|
{
|
|
PYMICMD_SCOPED_DEBUG_ENTER_EXIT;
|
|
|
|
pymicmd_debug_printf ("this = %p, name = %s", this, name ());
|
|
|
|
mi_parse_argv (parse->args, parse);
|
|
|
|
if (parse->argv == nullptr)
|
|
error (_("Problem parsing arguments: %s %s"), parse->command, parse->args);
|
|
|
|
|
|
gdbpy_enter enter_py;
|
|
|
|
/* Place all the arguments into a list which we pass as a single argument
|
|
to the MI command's invoke method. */
|
|
gdbpy_ref<> argobj (PyList_New (parse->argc));
|
|
if (argobj == nullptr)
|
|
gdbpy_handle_exception ();
|
|
|
|
for (int i = 0; i < parse->argc; ++i)
|
|
{
|
|
gdbpy_ref<> str (PyUnicode_Decode (parse->argv[i],
|
|
strlen (parse->argv[i]),
|
|
host_charset (), nullptr));
|
|
if (PyList_SetItem (argobj.get (), i, str.release ()) < 0)
|
|
gdbpy_handle_exception ();
|
|
}
|
|
|
|
gdb_assert (this->m_pyobj != nullptr);
|
|
gdb_assert (PyErr_Occurred () == nullptr);
|
|
gdbpy_ref<> result
|
|
(PyObject_CallMethodObjArgs ((PyObject *) this->m_pyobj.get (), invoke_cst,
|
|
argobj.get (), nullptr));
|
|
if (result == nullptr)
|
|
gdbpy_handle_exception ();
|
|
|
|
if (result != Py_None)
|
|
serialize_mi_result (result.get ());
|
|
}
|
|
|
|
/* See declaration above. */
|
|
|
|
void
|
|
mi_command_py::validate_installation (micmdpy_object *cmd_obj)
|
|
{
|
|
gdb_assert (cmd_obj != nullptr);
|
|
mi_command_py *cmd = cmd_obj->mi_command;
|
|
gdb_assert (cmd != nullptr);
|
|
const char *name = cmd_obj->mi_command_name;
|
|
gdb_assert (name != nullptr);
|
|
gdb_assert (name == cmd->name ());
|
|
mi_command *mi_cmd = mi_cmd_lookup (name);
|
|
gdb_assert (mi_cmd == cmd);
|
|
gdb_assert (cmd->m_pyobj == cmd_obj);
|
|
}
|
|
|
|
/* Return CMD as an mi_command_py if it is a Python MI command, else
|
|
nullptr. */
|
|
|
|
static mi_command_py *
|
|
as_mi_command_py (mi_command *cmd)
|
|
{
|
|
return dynamic_cast<mi_command_py *> (cmd);
|
|
}
|
|
|
|
/* Uninstall OBJ, making the MI command represented by OBJ unavailable for
|
|
use by the user. On success 0 is returned, otherwise -1 is returned
|
|
and a Python exception will be set. */
|
|
|
|
static int
|
|
micmdpy_uninstall_command (micmdpy_object *obj)
|
|
{
|
|
PYMICMD_SCOPED_DEBUG_ENTER_EXIT;
|
|
|
|
gdb_assert (obj->mi_command != nullptr);
|
|
gdb_assert (obj->mi_command_name != nullptr);
|
|
|
|
pymicmd_debug_printf ("name = %s", obj->mi_command_name);
|
|
|
|
/* Remove the command from the internal MI table of commands. This will
|
|
cause the mi_command_py object to be deleted, which will clear the
|
|
backlink in OBJ. */
|
|
bool removed = remove_mi_cmd_entry (obj->mi_command->name ());
|
|
gdb_assert (removed);
|
|
gdb_assert (obj->mi_command == nullptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Install OBJ as a usable MI command. Return 0 on success, and -1 on
|
|
error, in which case, a Python error will have been set.
|
|
|
|
After successful completion the command name associated with OBJ will
|
|
be installed in the MI command table (so it can be found if the user
|
|
enters that command name), additionally, OBJ will have been added to
|
|
the gdb._mi_commands dictionary (using the command name as its key),
|
|
this will ensure that OBJ remains live even if the user gives up all
|
|
references. */
|
|
|
|
static int
|
|
micmdpy_install_command (micmdpy_object *obj)
|
|
{
|
|
PYMICMD_SCOPED_DEBUG_ENTER_EXIT;
|
|
|
|
gdb_assert (obj->mi_command == nullptr);
|
|
gdb_assert (obj->mi_command_name != nullptr);
|
|
|
|
pymicmd_debug_printf ("name = %s", obj->mi_command_name);
|
|
|
|
/* Look up this command name in MI_COMMANDS, a command with this name may
|
|
already exist. */
|
|
mi_command *cmd = mi_cmd_lookup (obj->mi_command_name);
|
|
mi_command_py *cmd_py = as_mi_command_py (cmd);
|
|
|
|
if (cmd != nullptr && cmd_py == nullptr)
|
|
{
|
|
/* There is already an MI command registered with that name, and it's not
|
|
a Python one. Forbid replacing a non-Python MI command. */
|
|
PyErr_SetString (PyExc_RuntimeError,
|
|
_("unable to add command, name is already in use"));
|
|
return -1;
|
|
}
|
|
|
|
if (cmd_py != nullptr)
|
|
{
|
|
/* There is already a Python MI command registered with that name, swap
|
|
in the new gdb.MICommand implementation. */
|
|
cmd_py->swap_python_object (obj);
|
|
}
|
|
else
|
|
{
|
|
/* There's no MI command registered with that name at all, create one. */
|
|
mi_command_py_up mi_cmd (new mi_command_py (obj->mi_command_name, obj));
|
|
|
|
/* Add the command to the gdb internal MI command table. */
|
|
bool result = insert_mi_cmd_entry (std::move (mi_cmd));
|
|
gdb_assert (result);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Implement gdb.MICommand.__init__. The init method takes the name of
|
|
the MI command as the first argument, which must be a string, starting
|
|
with a single dash. */
|
|
|
|
static int
|
|
micmdpy_init (PyObject *self, PyObject *args, PyObject *kwargs)
|
|
{
|
|
PYMICMD_SCOPED_DEBUG_ENTER_EXIT;
|
|
|
|
micmdpy_object *cmd = (micmdpy_object *) self;
|
|
|
|
static const char *keywords[] = { "name", nullptr };
|
|
const char *name;
|
|
|
|
if (!gdb_PyArg_ParseTupleAndKeywords (args, kwargs, "s", keywords,
|
|
&name))
|
|
return -1;
|
|
|
|
/* Validate command name */
|
|
const int name_len = strlen (name);
|
|
if (name_len == 0)
|
|
{
|
|
PyErr_SetString (PyExc_ValueError, _("MI command name is empty."));
|
|
return -1;
|
|
}
|
|
else if ((name_len < 2) || (name[0] != '-') || !isalnum (name[1]))
|
|
{
|
|
PyErr_SetString (PyExc_ValueError,
|
|
_("MI command name does not start with '-'"
|
|
" followed by at least one letter or digit."));
|
|
return -1;
|
|
}
|
|
else
|
|
{
|
|
for (int i = 2; i < name_len; i++)
|
|
{
|
|
if (!isalnum (name[i]) && name[i] != '-')
|
|
{
|
|
PyErr_Format
|
|
(PyExc_ValueError,
|
|
_("MI command name contains invalid character: %c."),
|
|
name[i]);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Skip over the leading dash. For the rest of this function the
|
|
dash is not important. */
|
|
++name;
|
|
}
|
|
|
|
/* If this object already has a name set, then this object has been
|
|
initialized before. We handle this case a little differently. */
|
|
if (cmd->mi_command_name != nullptr)
|
|
{
|
|
/* First, we don't allow the user to change the MI command name.
|
|
Supporting this would be tricky as we would need to delete the
|
|
mi_command_py from the MI command table, however, the user might
|
|
be trying to perform this reinitialization from within the very
|
|
command we're about to delete... it all gets very messy.
|
|
|
|
So, for now at least, we don't allow this. This doesn't seem like
|
|
an excessive restriction. */
|
|
if (strcmp (cmd->mi_command_name, name) != 0)
|
|
{
|
|
PyErr_SetString
|
|
(PyExc_ValueError,
|
|
_("can't reinitialize object with a different command name"));
|
|
return -1;
|
|
}
|
|
|
|
/* If there's already an object registered with the MI command table,
|
|
then we're done. That object must be a mi_command_py, which
|
|
should reference back to this micmdpy_object. */
|
|
if (cmd->mi_command != nullptr)
|
|
{
|
|
mi_command_py::validate_installation (cmd);
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
cmd->mi_command_name = xstrdup (name);
|
|
|
|
/* Now we can install this mi_command_py in the MI command table. */
|
|
return micmdpy_install_command (cmd);
|
|
}
|
|
|
|
/* Called when a gdb.MICommand object is deallocated. */
|
|
|
|
static void
|
|
micmdpy_dealloc (PyObject *obj)
|
|
{
|
|
PYMICMD_SCOPED_DEBUG_ENTER_EXIT;
|
|
|
|
micmdpy_object *cmd = (micmdpy_object *) obj;
|
|
|
|
/* If the Python object failed to initialize, then the name field might
|
|
be nullptr. */
|
|
pymicmd_debug_printf ("obj = %p, name = %s", cmd,
|
|
(cmd->mi_command_name == nullptr
|
|
? "(null)" : cmd->mi_command_name));
|
|
|
|
/* As the mi_command_py object holds a reference to the micmdpy_object,
|
|
the only way the dealloc function can be called is if the mi_command_py
|
|
object has been deleted, in which case the following assert will
|
|
hold. */
|
|
gdb_assert (cmd->mi_command == nullptr);
|
|
|
|
/* Free the memory that holds the command name. */
|
|
xfree (cmd->mi_command_name);
|
|
cmd->mi_command_name = nullptr;
|
|
|
|
/* Finally, free the memory for this Python object. */
|
|
Py_TYPE (obj)->tp_free (obj);
|
|
}
|
|
|
|
/* Python initialization for the MI commands components. */
|
|
|
|
static int CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION
|
|
gdbpy_initialize_micommands ()
|
|
{
|
|
micmdpy_object_type.tp_new = PyType_GenericNew;
|
|
if (PyType_Ready (&micmdpy_object_type) < 0)
|
|
return -1;
|
|
|
|
if (gdb_pymodule_addobject (gdb_module, "MICommand",
|
|
(PyObject *) &micmdpy_object_type)
|
|
< 0)
|
|
return -1;
|
|
|
|
invoke_cst = PyUnicode_FromString ("invoke");
|
|
if (invoke_cst == nullptr)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Cleanup just before GDB shuts down the Python interpreter. */
|
|
|
|
static void
|
|
gdbpy_finalize_micommands ()
|
|
{
|
|
/* mi_command_py objects hold references to micmdpy_object objects. They must
|
|
be dropped before the Python interpreter is finalized. Do so by removing
|
|
those MI command entries, thus deleting the mi_command_py objects. */
|
|
remove_mi_cmd_entries ([] (mi_command *cmd)
|
|
{
|
|
return as_mi_command_py (cmd) != nullptr;
|
|
});
|
|
}
|
|
|
|
/* Get the gdb.MICommand.name attribute, returns a string, the name of this
|
|
MI command. */
|
|
|
|
static PyObject *
|
|
micmdpy_get_name (PyObject *self, void *closure)
|
|
{
|
|
struct micmdpy_object *micmd_obj = (struct micmdpy_object *) self;
|
|
|
|
gdb_assert (micmd_obj->mi_command_name != nullptr);
|
|
std::string name_str = string_printf ("-%s", micmd_obj->mi_command_name);
|
|
return PyUnicode_FromString (name_str.c_str ());
|
|
}
|
|
|
|
/* Get the gdb.MICommand.installed property. Returns true if this MI
|
|
command is installed into the MI command table, otherwise returns
|
|
false. */
|
|
|
|
static PyObject *
|
|
micmdpy_get_installed (PyObject *self, void *closure)
|
|
{
|
|
struct micmdpy_object *micmd_obj = (struct micmdpy_object *) self;
|
|
|
|
if (micmd_obj->mi_command == nullptr)
|
|
Py_RETURN_FALSE;
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
/* Set the gdb.MICommand.installed property. The property can be set to
|
|
either true or false. Setting the property to true will cause the
|
|
command to be installed into the MI command table (if it isn't
|
|
already), while setting this property to false will cause the command
|
|
to be removed from the MI command table (if it is present). */
|
|
|
|
static int
|
|
micmdpy_set_installed (PyObject *self, PyObject *newvalue, void *closure)
|
|
{
|
|
struct micmdpy_object *micmd_obj = (struct micmdpy_object *) self;
|
|
|
|
bool installed_p = PyObject_IsTrue (newvalue);
|
|
if (installed_p == (micmd_obj->mi_command != nullptr))
|
|
return 0;
|
|
|
|
if (installed_p)
|
|
return micmdpy_install_command (micmd_obj);
|
|
else
|
|
return micmdpy_uninstall_command (micmd_obj);
|
|
}
|
|
|
|
/* The gdb.MICommand properties. */
|
|
|
|
static gdb_PyGetSetDef micmdpy_object_getset[] = {
|
|
{ "name", micmdpy_get_name, nullptr, "The command's name.", nullptr },
|
|
{ "installed", micmdpy_get_installed, micmdpy_set_installed,
|
|
"Is this command installed for use.", nullptr },
|
|
{ nullptr } /* Sentinel. */
|
|
};
|
|
|
|
/* The gdb.MICommand descriptor. */
|
|
|
|
PyTypeObject micmdpy_object_type = {
|
|
PyVarObject_HEAD_INIT (nullptr, 0) "gdb.MICommand", /*tp_name */
|
|
sizeof (micmdpy_object), /*tp_basicsize */
|
|
0, /*tp_itemsize */
|
|
micmdpy_dealloc, /*tp_dealloc */
|
|
0, /*tp_print */
|
|
0, /*tp_getattr */
|
|
0, /*tp_setattr */
|
|
0, /*tp_compare */
|
|
0, /*tp_repr */
|
|
0, /*tp_as_number */
|
|
0, /*tp_as_sequence */
|
|
0, /*tp_as_mapping */
|
|
0, /*tp_hash */
|
|
0, /*tp_call */
|
|
0, /*tp_str */
|
|
0, /*tp_getattro */
|
|
0, /*tp_setattro */
|
|
0, /*tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags */
|
|
"GDB mi-command object", /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
0, /* tp_methods */
|
|
0, /* tp_members */
|
|
micmdpy_object_getset, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
micmdpy_init, /* tp_init */
|
|
0, /* tp_alloc */
|
|
};
|
|
|
|
void _initialize_py_micmd ();
|
|
void
|
|
_initialize_py_micmd ()
|
|
{
|
|
add_setshow_boolean_cmd
|
|
("py-micmd", class_maintenance, &pymicmd_debug,
|
|
_("Set Python micmd debugging."),
|
|
_("Show Python micmd debugging."),
|
|
_("When on, Python micmd debugging is enabled."),
|
|
nullptr,
|
|
show_pymicmd_debug,
|
|
&setdebuglist, &showdebuglist);
|
|
}
|
|
|
|
GDBPY_INITIALIZE_FILE (gdbpy_initialize_micommands, gdbpy_finalize_micommands);
|