binutils-gdb/gdb/dwarf2/cooked-index.c
Tom Tromey 20a26f4e01 Finalize each cooked index separately
After DWARF has been scanned, the cooked index code does a
"finalization" step in a worker thread.  This step combines all the
index entries into a single master list, canonicalizes C++ names, and
splits Ada names to synthesize package names.

While this step is run in the background, gdb will wait for the
results in some situations, and it turns out that this step can be
slow.  This is PR symtab/29105.

This can be sped up by parallelizing, at a small memory cost.  Now
each index is finalized on its own, in a worker thread.  The cost
comes from name canonicalization: if a given non-canonical name is
referred to by multiple indices, there will be N canonical copies (one
per index) rather than just one.

This requires changing the users of the index to iterate over multiple
results.  However, this is easily done by introducing a new "chained
range" class.

When run on gdb itself, the memory cost seems rather low -- on my
current machine, "maint space 1" reports no change due to the patch.

For performance testing, using "maint time 1" and "file" will not show
correct results.  That approach measures "time to next prompt", but
because the patch only affects background work, this shouldn't (and
doesn't) change.  Instead, a simple way to make gdb wait for the
results is to set a breakpoint.

Before:

    $ /bin/time -f%e ~/gdb/install/bin/gdb -nx -q -batch \
        -ex 'break main' /tmp/gdb
    Breakpoint 1 at 0x43ec30: file ../../binutils-gdb/gdb/gdb.c, line 28.
    2.00

After:

    $ /bin/time -f%e ./gdb/gdb -nx -q -batch \
        -ex 'break main' /tmp/gdb
    Breakpoint 1 at 0x43ec30: file ../../binutils-gdb/gdb/gdb.c, line 28.
    0.65

Regression tested on x86-64 Fedora 34.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29105
2022-05-26 07:35:30 -06:00

346 lines
9 KiB
C

/* DIE indexing
Copyright (C) 2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "dwarf2/cooked-index.h"
#include "dwarf2/read.h"
#include "cp-support.h"
#include "ada-lang.h"
#include "split-name.h"
#include <algorithm>
/* Hash function for cooked_index_entry. */
static hashval_t
hash_entry (const void *e)
{
const cooked_index_entry *entry = (const cooked_index_entry *) e;
return dwarf5_djb_hash (entry->canonical);
}
/* Equality function for cooked_index_entry. */
static int
eq_entry (const void *a, const void *b)
{
const cooked_index_entry *ae = (const cooked_index_entry *) a;
const gdb::string_view *sv = (const gdb::string_view *) b;
return (strlen (ae->canonical) == sv->length ()
&& strncasecmp (ae->canonical, sv->data (), sv->length ()) == 0);
}
/* See cooked-index.h. */
const char *
cooked_index_entry::full_name (struct obstack *storage) const
{
if ((flags & IS_LINKAGE) != 0 || parent_entry == nullptr)
return canonical;
const char *sep = nullptr;
switch (per_cu->lang)
{
case language_cplus:
case language_rust:
sep = "::";
break;
case language_go:
case language_d:
case language_ada:
sep = ".";
break;
default:
return canonical;
}
parent_entry->write_scope (storage, sep);
obstack_grow0 (storage, canonical, strlen (canonical));
return (const char *) obstack_finish (storage);
}
/* See cooked-index.h. */
void
cooked_index_entry::write_scope (struct obstack *storage,
const char *sep) const
{
if (parent_entry != nullptr)
parent_entry->write_scope (storage, sep);
obstack_grow (storage, canonical, strlen (canonical));
obstack_grow (storage, sep, strlen (sep));
}
/* See cooked-index.h. */
const cooked_index_entry *
cooked_index::add (sect_offset die_offset, enum dwarf_tag tag,
cooked_index_flag flags, const char *name,
const cooked_index_entry *parent_entry,
dwarf2_per_cu_data *per_cu)
{
cooked_index_entry *result = create (die_offset, tag, flags, name,
parent_entry, per_cu);
m_entries.push_back (result);
/* An explicitly-tagged main program should always override the
implicit "main" discovery. */
if ((flags & IS_MAIN) != 0)
m_main = result;
else if (per_cu->lang != language_ada
&& m_main == nullptr
&& strcmp (name, "main") == 0)
m_main = result;
return result;
}
/* See cooked-index.h. */
void
cooked_index::finalize ()
{
m_future = gdb::thread_pool::g_thread_pool->post_task ([this] ()
{
do_finalize ();
});
}
/* See cooked-index.h. */
gdb::unique_xmalloc_ptr<char>
cooked_index::handle_gnat_encoded_entry (cooked_index_entry *entry,
htab_t gnat_entries)
{
std::string canonical = ada_decode (entry->name, false, false);
if (canonical.empty ())
return {};
std::vector<gdb::string_view> names = split_name (canonical.c_str (),
split_style::DOT);
gdb::string_view tail = names.back ();
names.pop_back ();
const cooked_index_entry *parent = nullptr;
for (const auto &name : names)
{
uint32_t hashval = dwarf5_djb_hash (name);
void **slot = htab_find_slot_with_hash (gnat_entries, &name,
hashval, INSERT);
/* CUs are processed in order, so we only need to check the most
recent entry. */
cooked_index_entry *last = (cooked_index_entry *) *slot;
if (last == nullptr || last->per_cu != entry->per_cu)
{
gdb::unique_xmalloc_ptr<char> new_name
= make_unique_xstrndup (name.data (), name.length ());
last = create (entry->die_offset, DW_TAG_namespace,
0, new_name.get (), parent,
entry->per_cu);
last->canonical = last->name;
m_names.push_back (std::move (new_name));
*slot = last;
}
parent = last;
}
entry->parent_entry = parent;
return make_unique_xstrndup (tail.data (), tail.length ());
}
/* See cooked-index.h. */
void
cooked_index::do_finalize ()
{
auto hash_name_ptr = [] (const void *p)
{
const cooked_index_entry *entry = (const cooked_index_entry *) p;
return htab_hash_pointer (entry->name);
};
auto eq_name_ptr = [] (const void *a, const void *b) -> int
{
const cooked_index_entry *ea = (const cooked_index_entry *) a;
const cooked_index_entry *eb = (const cooked_index_entry *) b;
return ea->name == eb->name;
};
/* We can use pointer equality here because names come from
.debug_str, which will normally be unique-ified by the linker.
Also, duplicates are relatively harmless -- they just mean a bit
of extra memory is used. */
htab_up seen_names (htab_create_alloc (10, hash_name_ptr, eq_name_ptr,
nullptr, xcalloc, xfree));
htab_up gnat_entries (htab_create_alloc (10, hash_entry, eq_entry,
nullptr, xcalloc, xfree));
for (cooked_index_entry *entry : m_entries)
{
gdb_assert (entry->canonical == nullptr);
if ((entry->per_cu->lang != language_cplus
&& entry->per_cu->lang != language_ada)
|| (entry->flags & IS_LINKAGE) != 0)
entry->canonical = entry->name;
else
{
if (entry->per_cu->lang == language_ada)
{
gdb::unique_xmalloc_ptr<char> canon_name
= handle_gnat_encoded_entry (entry, gnat_entries.get ());
if (canon_name == nullptr)
entry->canonical = entry->name;
else
{
entry->canonical = canon_name.get ();
m_names.push_back (std::move (canon_name));
}
}
else
{
void **slot = htab_find_slot (seen_names.get (), entry,
INSERT);
if (*slot == nullptr)
{
gdb::unique_xmalloc_ptr<char> canon_name
= cp_canonicalize_string (entry->name);
if (canon_name == nullptr)
entry->canonical = entry->name;
else
{
entry->canonical = canon_name.get ();
m_names.push_back (std::move (canon_name));
}
}
else
{
const cooked_index_entry *other
= (const cooked_index_entry *) *slot;
entry->canonical = other->canonical;
}
}
}
}
m_names.shrink_to_fit ();
m_entries.shrink_to_fit ();
std::sort (m_entries.begin (), m_entries.end (),
[] (const cooked_index_entry *a, const cooked_index_entry *b)
{
return *a < *b;
});
}
/* See cooked-index.h. */
cooked_index::range
cooked_index::find (gdb::string_view name, bool completing)
{
wait ();
auto lower = std::lower_bound (m_entries.begin (), m_entries.end (),
name,
[=] (const cooked_index_entry *entry,
const gdb::string_view &n)
{
int cmp = strncasecmp (entry->canonical, n.data (), n.length ());
if (cmp != 0 || completing)
return cmp < 0;
return strlen (entry->canonical) < n.length ();
});
auto upper = std::upper_bound (m_entries.begin (), m_entries.end (),
name,
[=] (const gdb::string_view &n,
const cooked_index_entry *entry)
{
int cmp = strncasecmp (n.data (), entry->canonical, n.length ());
if (cmp != 0 || completing)
return cmp < 0;
return n.length () < strlen (entry->canonical);
});
return range (lower, upper);
}
cooked_index_vector::cooked_index_vector (vec_type &&vec)
: m_vector (std::move (vec))
{
for (auto &idx : m_vector)
idx->finalize ();
}
/* See cooked-index.h. */
dwarf2_per_cu_data *
cooked_index_vector::lookup (CORE_ADDR addr)
{
for (const auto &index : m_vector)
{
dwarf2_per_cu_data *result = index->lookup (addr);
if (result != nullptr)
return result;
}
return nullptr;
}
/* See cooked-index.h. */
std::vector<addrmap *>
cooked_index_vector::get_addrmaps ()
{
std::vector<addrmap *> result;
for (const auto &index : m_vector)
result.push_back (index->m_addrmap);
return result;
}
/* See cooked-index.h. */
cooked_index_vector::range
cooked_index_vector::find (gdb::string_view name, bool completing)
{
std::vector<cooked_index::range> result_range;
result_range.reserve (m_vector.size ());
for (auto &entry : m_vector)
result_range.push_back (entry->find (name, completing));
return range (std::move (result_range));
}
/* See cooked-index.h. */
const cooked_index_entry *
cooked_index_vector::get_main () const
{
const cooked_index_entry *result = nullptr;
for (const auto &index : m_vector)
{
const cooked_index_entry *entry = index->get_main ();
if (result == nullptr
|| ((result->flags & IS_MAIN) == 0
&& entry != nullptr
&& (entry->flags & IS_MAIN) != 0))
result = entry;
}
return result;
}