binutils-gdb modified for the FreeChainXenon project
![]() The h8300 sim has its own implementation for memory handling that I'd like to replace with the common sim memory code. However, it's got a weird bit of code it calls "eightbit mem" that makes this not as easy as it would otherwise be. The code has this comment: /* These define the size of main memory for the simulator. Note the size of main memory for the H8/300H is only 256k. Keeping it small makes the simulator run much faster and consume less memory. The linker knows about the limited size of the simulator's main memory on the H8/300H (via the h8300h.sc linker script). So if you change H8300H_MSIZE, be sure to fix the linker script too. Also note that there's a separate "eightbit" area aside from main memory. For simplicity, the simulator assumes any data memory reference outside of main memory refers to the eightbit area (in theory, this can only happen when simulating H8/300H programs). We make no attempt to catch overlapping addresses, wrapped addresses, etc etc. */ I've read the H8/300 Programming Manual and the H8/300H Software Manual and can't find documentation on it. The closest I can find is the bits about the exception vectors, but that sounds like a convention where the first 256 bytes of memory are used for a special purpose. The sim will actually allocate a sep memory buffer of 256 bytes and you address it by accessing anywhere outside of main memory. e.g. I would expect code to access it like: uint32_t *data = (void *)0; data[0] = reset_exception_vector; not like the sim expects like: uint8_t *data = (void *)0x1000000; data[0] = ...; The gcc manual has an "eightbit_data" attribute: Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified variable should be placed into the eight-bit data section. The compiler generates more efficient code for certain operations on data in the eight-bit data area. Note the eight-bit data area is limited to 256 bytes of data. And the gcc code implies that it's accessed via special addressing: eightbit_data: This variable lives in the 8-bit data area and can be referenced with 8-bit absolute memory addresses. I'm fairly certain these are referring to the 8-bit addressing modes that allow access to 0xff00 - 0xffff with only an 8-bit immediate. They aren't completely separate address spaces which this eightbit memory buffer occupies. But the sim doesn't access its eightbit memory based on specific insns, it does it purely on the addresses requested. Unfortunately, much of this code was authored by Michael Snyder, so I can't ask him :(. I asked Renesas support and they didn't know: https://renesasrulz.com/the_vault/f/archive-forum/6952/question-about-eightbit-memory So I've come to the conclusion that this was a little sim-specific hack done for <some convenience> and has no relation to real hardware. And as such, let's drop it until someone notices and can provide a reason for why we need to support it. |
||
---|---|---|
bfd | ||
binutils | ||
config | ||
contrib | ||
cpu | ||
elfcpp | ||
etc | ||
gas | ||
gdb | ||
gdbserver | ||
gdbsupport | ||
gnulib | ||
gold | ||
gprof | ||
include | ||
intl | ||
ld | ||
libctf | ||
libdecnumber | ||
libiberty | ||
opcodes | ||
readline | ||
sim | ||
texinfo | ||
zlib | ||
.cvsignore | ||
.gitattributes | ||
.gitignore | ||
ar-lib | ||
ChangeLog | ||
compile | ||
config-ml.in | ||
config.guess | ||
config.rpath | ||
config.sub | ||
configure | ||
configure.ac | ||
COPYING | ||
COPYING.LIB | ||
COPYING.LIBGLOSS | ||
COPYING.NEWLIB | ||
COPYING3 | ||
COPYING3.LIB | ||
depcomp | ||
djunpack.bat | ||
install-sh | ||
libtool.m4 | ||
ltgcc.m4 | ||
ltmain.sh | ||
ltoptions.m4 | ||
ltsugar.m4 | ||
ltversion.m4 | ||
lt~obsolete.m4 | ||
MAINTAINERS | ||
Makefile.def | ||
Makefile.in | ||
Makefile.tpl | ||
makefile.vms | ||
missing | ||
mkdep | ||
mkinstalldirs | ||
move-if-change | ||
multilib.am | ||
README | ||
README-maintainer-mode | ||
setup.com | ||
src-release.sh | ||
symlink-tree | ||
test-driver | ||
ylwrap |
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.