
Today, GDB only allows a single displaced stepping operation to happen per inferior at a time. There is a single displaced stepping buffer per inferior, whose address is fixed (obtained with gdbarch_displaced_step_location), managed by infrun.c. In the case of the AMD ROCm target [1] (in the context of which this work has been done), it is typical to have thousands of threads (or waves, in SMT terminology) executing the same code, hitting the same breakpoint (possibly conditional) and needing to to displaced step it at the same time. The limitation of only one displaced step executing at a any given time becomes a real bottleneck. To fix this bottleneck, we want to make it possible for threads of a same inferior to execute multiple displaced steps in parallel. This patch builds the foundation for that. In essence, this patch moves the task of preparing a displaced step and cleaning up after to gdbarch functions. This allows using different schemes for allocating and managing displaced stepping buffers for different platforms. The gdbarch decides how to assign a buffer to a thread that needs to execute a displaced step. On the ROCm target, we are able to allocate one displaced stepping buffer per thread, so a thread will never have to wait to execute a displaced step. On Linux, the entry point of the executable if used as the displaced stepping buffer, since we assume that this code won't get used after startup. From what I saw (I checked with a binary generated against glibc and musl), on AMD64 we have enough space there to fit two displaced stepping buffers. A subsequent patch makes AMD64/Linux use two buffers. In addition to having multiple displaced stepping buffers, there is also the idea of sharing displaced stepping buffers between threads. Two threads doing displaced steps for the same PC could use the same buffer at the same time. Two threads stepping over the same instruction (same opcode) at two different PCs may also be able to share a displaced stepping buffer. This is an idea for future patches, but the architecture built by this patch is made to allow this. Now, the implementation details. The main part of this patch is moving the responsibility of preparing and finishing a displaced step to the gdbarch. Before this patch, preparing a displaced step is driven by the displaced_step_prepare_throw function. It does some calls to the gdbarch to do some low-level operations, but the high-level logic is there. The steps are roughly: - Ask the gdbarch for the displaced step buffer location - Save the existing bytes in the displaced step buffer - Ask the gdbarch to copy the instruction into the displaced step buffer - Set the pc of the thread to the beginning of the displaced step buffer Similarly, the "fixup" phase, executed after the instruction was successfully single-stepped, is driven by the infrun code (function displaced_step_finish). The steps are roughly: - Restore the original bytes in the displaced stepping buffer - Ask the gdbarch to fixup the instruction result (adjust the target's registers or memory to do as if the instruction had been executed in its original location) The displaced_step_inferior_state::step_thread field indicates which thread (if any) is currently using the displaced stepping buffer, so it is used by displaced_step_prepare_throw to check if the displaced stepping buffer is free to use or not. This patch defers the whole task of preparing and cleaning up after a displaced step to the gdbarch. Two new main gdbarch methods are added, with the following semantics: - gdbarch_displaced_step_prepare: Prepare for the given thread to execute a displaced step of the instruction located at its current PC. Upon return, everything should be ready for GDB to resume the thread (with either a single step or continue, as indicated by gdbarch_displaced_step_hw_singlestep) to make it displaced step the instruction. - gdbarch_displaced_step_finish: Called when the thread stopped after having started a displaced step. Verify if the instruction was executed, if so apply any fixup required to compensate for the fact that the instruction was executed at a different place than its original pc. Release any resources that were allocated for this displaced step. Upon return, everything should be ready for GDB to resume the thread in its "normal" code path. The displaced_step_prepare_throw function now pretty much just offloads to gdbarch_displaced_step_prepare and the displaced_step_finish function offloads to gdbarch_displaced_step_finish. The gdbarch_displaced_step_location method is now unnecessary, so is removed. Indeed, the core of GDB doesn't know how many displaced step buffers there are nor where they are. To keep the existing behavior for existing architectures, the logic that was previously implemented in infrun.c for preparing and finishing a displaced step is moved to displaced-stepping.c, to the displaced_step_buffer class. Architectures are modified to implement the new gdbarch methods using this class. The behavior is not expected to change. The other important change (which arises from the above) is that the core of GDB no longer prevents concurrent displaced steps. Before this patch, start_step_over walks the global step over chain and tries to initiate a step over (whether it is in-line or displaced). It follows these rules: - if an in-line step is in progress (in any inferior), don't start any other step over - if a displaced step is in progress for an inferior, don't start another displaced step for that inferior After starting a displaced step for a given inferior, it won't start another displaced step for that inferior. In the new code, start_step_over simply tries to initiate step overs for all the threads in the list. But because threads may be added back to the global list as it iterates the global list, trying to initiate step overs, start_step_over now starts by stealing the global queue into a local queue and iterates on the local queue. In the typical case, each thread will either: - have initiated a displaced step and be resumed - have been added back by the global step over queue by displaced_step_prepare_throw, because the gdbarch will have returned that there aren't enough resources (i.e. buffers) to initiate a displaced step for that thread Lastly, if start_step_over initiates an in-line step, it stops iterating, and moves back whatever remaining threads it had in its local step over queue to the global step over queue. Two other gdbarch methods are added, to handle some slightly annoying corner cases. They feel awkwardly specific to these cases, but I don't see any way around them: - gdbarch_displaced_step_copy_insn_closure_by_addr: in arm_pc_is_thumb, arm-tdep.c wants to get the closure for a given buffer address. - gdbarch_displaced_step_restore_all_in_ptid: when a process forks (at least on Linux), the address space is copied. If some displaced step buffers were in use at the time of the fork, we need to restore the original bytes in the child's address space. These two adjustments are also made in infrun.c: - prepare_for_detach: there may be multiple threads doing displaced steps when we detach, so wait until all of them are done - handle_inferior_event: when we handle a fork event for a given thread, it's possible that other threads are doing a displaced step at the same time. Make sure to restore the displaced step buffer contents in the child for them. [1] https://github.com/ROCm-Developer-Tools/ROCgdb gdb/ChangeLog: * displaced-stepping.h (struct displaced_step_copy_insn_closure): Adjust comments. (struct displaced_step_inferior_state) <step_thread, step_gdbarch, step_closure, step_original, step_copy, step_saved_copy>: Remove fields. (struct displaced_step_thread_state): New. (struct displaced_step_buffer): New. * displaced-stepping.c (displaced_step_buffer::prepare): New. (write_memory_ptid): Move from infrun.c. (displaced_step_instruction_executed_successfully): New, factored out of displaced_step_finish. (displaced_step_buffer::finish): New. (displaced_step_buffer::copy_insn_closure_by_addr): New. (displaced_step_buffer::restore_in_ptid): New. * gdbarch.sh (displaced_step_location): Remove. (displaced_step_prepare, displaced_step_finish, displaced_step_copy_insn_closure_by_addr, displaced_step_restore_all_in_ptid): New. * gdbarch.c: Re-generate. * gdbarch.h: Re-generate. * gdbthread.h (class thread_info) <displaced_step_state>: New field. (thread_step_over_chain_remove): New declaration. (thread_step_over_chain_next): New declaration. (thread_step_over_chain_length): New declaration. * thread.c (thread_step_over_chain_remove): Make non-static. (thread_step_over_chain_next): New. (global_thread_step_over_chain_next): Use thread_step_over_chain_next. (thread_step_over_chain_length): New. (global_thread_step_over_chain_enqueue): Add debug print. (global_thread_step_over_chain_remove): Add debug print. * infrun.h (get_displaced_step_copy_insn_closure_by_addr): Remove. * infrun.c (get_displaced_stepping_state): New. (displaced_step_in_progress_any_inferior): Remove. (displaced_step_in_progress_thread): Adjust. (displaced_step_in_progress): Adjust. (displaced_step_in_progress_any_thread): New. (get_displaced_step_copy_insn_closure_by_addr): Remove. (gdbarch_supports_displaced_stepping): Use gdbarch_displaced_step_prepare_p. (displaced_step_reset): Change parameter from inferior to thread. (displaced_step_prepare_throw): Implement using gdbarch_displaced_step_prepare. (write_memory_ptid): Move to displaced-step.c. (displaced_step_restore): Remove. (displaced_step_finish): Implement using gdbarch_displaced_step_finish. (start_step_over): Allow starting more than one displaced step. (prepare_for_detach): Handle possibly multiple threads doing displaced steps. (handle_inferior_event): Handle possibility that fork event happens while another thread displaced steps. * linux-tdep.h (linux_displaced_step_prepare): New. (linux_displaced_step_finish): New. (linux_displaced_step_copy_insn_closure_by_addr): New. (linux_displaced_step_restore_all_in_ptid): New. (linux_init_abi): Add supports_displaced_step parameter. * linux-tdep.c (struct linux_info) <disp_step_buf>: New field. (linux_displaced_step_prepare): New. (linux_displaced_step_finish): New. (linux_displaced_step_copy_insn_closure_by_addr): New. (linux_displaced_step_restore_all_in_ptid): New. (linux_init_abi): Add supports_displaced_step parameter, register displaced step methods if true. (_initialize_linux_tdep): Register inferior_execd observer. * amd64-linux-tdep.c (amd64_linux_init_abi_common): Add supports_displaced_step parameter, adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. (amd64_linux_init_abi): Adjust call to amd64_linux_init_abi_common. (amd64_x32_linux_init_abi): Likewise. * aarch64-linux-tdep.c (aarch64_linux_init_abi): Adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. * arm-linux-tdep.c (arm_linux_init_abi): Likewise. * i386-linux-tdep.c (i386_linux_init_abi): Likewise. * alpha-linux-tdep.c (alpha_linux_init_abi): Adjust call to linux_init_abi. * arc-linux-tdep.c (arc_linux_init_osabi): Likewise. * bfin-linux-tdep.c (bfin_linux_init_abi): Likewise. * cris-linux-tdep.c (cris_linux_init_abi): Likewise. * csky-linux-tdep.c (csky_linux_init_abi): Likewise. * frv-linux-tdep.c (frv_linux_init_abi): Likewise. * hppa-linux-tdep.c (hppa_linux_init_abi): Likewise. * ia64-linux-tdep.c (ia64_linux_init_abi): Likewise. * m32r-linux-tdep.c (m32r_linux_init_abi): Likewise. * m68k-linux-tdep.c (m68k_linux_init_abi): Likewise. * microblaze-linux-tdep.c (microblaze_linux_init_abi): Likewise. * mips-linux-tdep.c (mips_linux_init_abi): Likewise. * mn10300-linux-tdep.c (am33_linux_init_osabi): Likewise. * nios2-linux-tdep.c (nios2_linux_init_abi): Likewise. * or1k-linux-tdep.c (or1k_linux_init_abi): Likewise. * riscv-linux-tdep.c (riscv_linux_init_abi): Likewise. * s390-linux-tdep.c (s390_linux_init_abi_any): Likewise. * sh-linux-tdep.c (sh_linux_init_abi): Likewise. * sparc-linux-tdep.c (sparc32_linux_init_abi): Likewise. * sparc64-linux-tdep.c (sparc64_linux_init_abi): Likewise. * tic6x-linux-tdep.c (tic6x_uclinux_init_abi): Likewise. * tilegx-linux-tdep.c (tilegx_linux_init_abi): Likewise. * xtensa-linux-tdep.c (xtensa_linux_init_abi): Likewise. * ppc-linux-tdep.c (ppc_linux_init_abi): Adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. * arm-tdep.c (arm_pc_is_thumb): Call gdbarch_displaced_step_copy_insn_closure_by_addr instead of get_displaced_step_copy_insn_closure_by_addr. * rs6000-aix-tdep.c (rs6000_aix_init_osabi): Adjust calls to clear gdbarch methods. * rs6000-tdep.c (struct ppc_inferior_data): New structure. (get_ppc_per_inferior): New function. (ppc_displaced_step_prepare): New function. (ppc_displaced_step_finish): New function. (ppc_displaced_step_restore_all_in_ptid): New function. (rs6000_gdbarch_init): Register new gdbarch methods. * s390-tdep.c (s390_gdbarch_init): Don't call set_gdbarch_displaced_step_location, set new gdbarch methods. gdb/testsuite/ChangeLog: * gdb.arch/amd64-disp-step-avx.exp: Adjust pattern. * gdb.threads/forking-threads-plus-breakpoint.exp: Likewise. * gdb.threads/non-stop-fair-events.exp: Likewise. Change-Id: I387cd235a442d0620ec43608fd3dc0097fcbf8c8
537 lines
15 KiB
C
537 lines
15 KiB
C
/* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
|
||
|
||
Copyright (C) 2004-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "gdbcore.h"
|
||
#include "osabi.h"
|
||
#include "target.h"
|
||
#include "objfiles.h"
|
||
#include "solib-svr4.h"
|
||
#include "glibc-tdep.h"
|
||
#include "frame-unwind.h"
|
||
#include "trad-frame.h"
|
||
#include "dwarf2/frame.h"
|
||
#include "value.h"
|
||
#include "regset.h"
|
||
#include "regcache.h"
|
||
#include "hppa-tdep.h"
|
||
#include "linux-tdep.h"
|
||
#include "elf/common.h"
|
||
|
||
/* Map DWARF DBX register numbers to GDB register numbers. */
|
||
static int
|
||
hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
||
{
|
||
/* The general registers and the sar are the same in both sets. */
|
||
if (reg >= 0 && reg <= 32)
|
||
return reg;
|
||
|
||
/* fr4-fr31 (left and right halves) are mapped from 72. */
|
||
if (reg >= 72 && reg <= 72 + 28 * 2)
|
||
return HPPA_FP4_REGNUM + (reg - 72);
|
||
|
||
return -1;
|
||
}
|
||
|
||
static void
|
||
hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
|
||
{
|
||
/* Probably this should be done by the kernel, but it isn't. */
|
||
regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
|
||
regcache_cooked_write_unsigned (regcache,
|
||
HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
|
||
}
|
||
|
||
/* An instruction to match. */
|
||
struct insn_pattern
|
||
{
|
||
unsigned int data; /* See if it matches this.... */
|
||
unsigned int mask; /* ... with this mask. */
|
||
};
|
||
|
||
static struct insn_pattern hppa_sigtramp[] = {
|
||
/* ldi 0, %r25 or ldi 1, %r25 */
|
||
{ 0x34190000, 0xfffffffd },
|
||
/* ldi __NR_rt_sigreturn, %r20 */
|
||
{ 0x3414015a, 0xffffffff },
|
||
/* be,l 0x100(%sr2, %r0), %sr0, %r31 */
|
||
{ 0xe4008200, 0xffffffff },
|
||
/* nop */
|
||
{ 0x08000240, 0xffffffff },
|
||
{ 0, 0 }
|
||
};
|
||
|
||
#define HPPA_MAX_INSN_PATTERN_LEN (4)
|
||
|
||
/* Return non-zero if the instructions at PC match the series
|
||
described in PATTERN, or zero otherwise. PATTERN is an array of
|
||
'struct insn_pattern' objects, terminated by an entry whose mask is
|
||
zero.
|
||
|
||
When the match is successful, fill INSN[i] with what PATTERN[i]
|
||
matched. */
|
||
static int
|
||
insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc,
|
||
struct insn_pattern *pattern,
|
||
unsigned int *insn)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int i;
|
||
CORE_ADDR npc = pc;
|
||
|
||
for (i = 0; pattern[i].mask; i++)
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
target_read_memory (npc, buf, 4);
|
||
insn[i] = extract_unsigned_integer (buf, 4, byte_order);
|
||
if ((insn[i] & pattern[i].mask) == pattern[i].data)
|
||
npc += 4;
|
||
else
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Signal frames. */
|
||
|
||
/* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
|
||
|
||
Unfortunately, because of various bugs and changes to the kernel,
|
||
we have several cases to deal with.
|
||
|
||
In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
|
||
the beginning of the trampoline and struct rt_sigframe.
|
||
|
||
In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
|
||
the 4th word in the trampoline structure. This is wrong, it should point
|
||
at the 5th word. This is fixed in 2.6.5-rc2-pa4.
|
||
|
||
To detect these cases, we first take pc, align it to 64-bytes
|
||
to get the beginning of the signal frame, and then check offsets 0, 4
|
||
and 5 to see if we found the beginning of the trampoline. This will
|
||
tell us how to locate the sigcontext structure.
|
||
|
||
Note that with a 2.4 64-bit kernel, the signal context is not properly
|
||
passed back to userspace so the unwind will not work correctly. */
|
||
static CORE_ADDR
|
||
hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
|
||
int offs = 0;
|
||
int attempt;
|
||
/* offsets to try to find the trampoline */
|
||
static int pcoffs[] = { 0, 4*4, 5*4 };
|
||
/* offsets to the rt_sigframe structure */
|
||
static int sfoffs[] = { 4*4, 10*4, 10*4 };
|
||
CORE_ADDR sp;
|
||
|
||
/* Most of the time, this will be correct. The one case when this will
|
||
fail is if the user defined an alternate stack, in which case the
|
||
beginning of the stack will not be align_down (pc, 64). */
|
||
sp = align_down (pc, 64);
|
||
|
||
/* rt_sigreturn trampoline:
|
||
3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
|
||
3414015a ldi __NR_rt_sigreturn, %r20
|
||
e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
|
||
08000240 nop */
|
||
|
||
for (attempt = 0; attempt < ARRAY_SIZE (pcoffs); attempt++)
|
||
{
|
||
if (insns_match_pattern (gdbarch, sp + pcoffs[attempt],
|
||
hppa_sigtramp, dummy))
|
||
{
|
||
offs = sfoffs[attempt];
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (offs == 0)
|
||
{
|
||
if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy))
|
||
{
|
||
/* sigaltstack case: we have no way of knowing which offset to
|
||
use in this case; default to new kernel handling. If this is
|
||
wrong the unwinding will fail. */
|
||
attempt = 2;
|
||
sp = pc - pcoffs[attempt];
|
||
}
|
||
else
|
||
{
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* sp + sfoffs[try] points to a struct rt_sigframe, which contains
|
||
a struct siginfo and a struct ucontext. struct ucontext contains
|
||
a struct sigcontext. Return an offset to this sigcontext here. Too
|
||
bad we cannot include system specific headers :-(.
|
||
sizeof(struct siginfo) == 128
|
||
offsetof(struct ucontext, uc_mcontext) == 24. */
|
||
return sp + sfoffs[attempt] + 128 + 24;
|
||
}
|
||
|
||
struct hppa_linux_sigtramp_unwind_cache
|
||
{
|
||
CORE_ADDR base;
|
||
struct trad_frame_saved_reg *saved_regs;
|
||
};
|
||
|
||
static struct hppa_linux_sigtramp_unwind_cache *
|
||
hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
|
||
void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct hppa_linux_sigtramp_unwind_cache *info;
|
||
CORE_ADDR pc, scptr;
|
||
int i;
|
||
|
||
if (*this_cache)
|
||
return (struct hppa_linux_sigtramp_unwind_cache *) *this_cache;
|
||
|
||
info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
|
||
*this_cache = info;
|
||
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
||
|
||
pc = get_frame_pc (this_frame);
|
||
scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc);
|
||
|
||
/* structure of struct sigcontext:
|
||
|
||
struct sigcontext {
|
||
unsigned long sc_flags;
|
||
unsigned long sc_gr[32];
|
||
unsigned long long sc_fr[32];
|
||
unsigned long sc_iasq[2];
|
||
unsigned long sc_iaoq[2];
|
||
unsigned long sc_sar; */
|
||
|
||
/* Skip sc_flags. */
|
||
scptr += 4;
|
||
|
||
/* GR[0] is the psw. */
|
||
info->saved_regs[HPPA_IPSW_REGNUM].addr = scptr;
|
||
scptr += 4;
|
||
|
||
/* General registers. */
|
||
for (i = 1; i < 32; i++)
|
||
{
|
||
info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
|
||
scptr += 4;
|
||
}
|
||
|
||
/* Pad to long long boundary. */
|
||
scptr += 4;
|
||
|
||
/* FP regs; FP0-3 are not restored. */
|
||
scptr += (8 * 4);
|
||
|
||
for (i = 4; i < 32; i++)
|
||
{
|
||
info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
|
||
scptr += 4;
|
||
info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
|
||
scptr += 4;
|
||
}
|
||
|
||
/* IASQ/IAOQ. */
|
||
info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
|
||
scptr += 4;
|
||
info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
|
||
scptr += 4;
|
||
|
||
info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
|
||
scptr += 4;
|
||
info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
|
||
scptr += 4;
|
||
|
||
info->saved_regs[HPPA_SAR_REGNUM].addr = scptr;
|
||
|
||
info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
|
||
|
||
return info;
|
||
}
|
||
|
||
static void
|
||
hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
|
||
void **this_prologue_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct hppa_linux_sigtramp_unwind_cache *info
|
||
= hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
|
||
*this_id = frame_id_build (info->base, get_frame_pc (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
||
void **this_prologue_cache,
|
||
int regnum)
|
||
{
|
||
struct hppa_linux_sigtramp_unwind_cache *info
|
||
= hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
|
||
return hppa_frame_prev_register_helper (this_frame,
|
||
info->saved_regs, regnum);
|
||
}
|
||
|
||
/* hppa-linux always uses "new-style" rt-signals. The signal handler's return
|
||
address should point to a signal trampoline on the stack. The signal
|
||
trampoline is embedded in a rt_sigframe structure that is aligned on
|
||
the stack. We take advantage of the fact that sp must be 64-byte aligned,
|
||
and the trampoline is small, so by rounding down the trampoline address
|
||
we can find the beginning of the struct rt_sigframe. */
|
||
static int
|
||
hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
||
struct frame_info *this_frame,
|
||
void **this_prologue_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
|
||
if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
|
||
SIGTRAMP_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
hppa_linux_sigtramp_frame_this_id,
|
||
hppa_linux_sigtramp_frame_prev_register,
|
||
NULL,
|
||
hppa_linux_sigtramp_frame_sniffer
|
||
};
|
||
|
||
/* Attempt to find (and return) the global pointer for the given
|
||
function.
|
||
|
||
This is a rather nasty bit of code searchs for the .dynamic section
|
||
in the objfile corresponding to the pc of the function we're trying
|
||
to call. Once it finds the addresses at which the .dynamic section
|
||
lives in the child process, it scans the Elf32_Dyn entries for a
|
||
DT_PLTGOT tag. If it finds one of these, the corresponding
|
||
d_un.d_ptr value is the global pointer. */
|
||
|
||
static CORE_ADDR
|
||
hppa_linux_find_global_pointer (struct gdbarch *gdbarch,
|
||
struct value *function)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct obj_section *faddr_sect;
|
||
CORE_ADDR faddr;
|
||
|
||
faddr = value_as_address (function);
|
||
|
||
/* Is this a plabel? If so, dereference it to get the gp value. */
|
||
if (faddr & 2)
|
||
{
|
||
int status;
|
||
gdb_byte buf[4];
|
||
|
||
faddr &= ~3;
|
||
|
||
status = target_read_memory (faddr + 4, buf, sizeof (buf));
|
||
if (status == 0)
|
||
return extract_unsigned_integer (buf, sizeof (buf), byte_order);
|
||
}
|
||
|
||
/* If the address is in the plt section, then the real function hasn't
|
||
yet been fixed up by the linker so we cannot determine the gp of
|
||
that function. */
|
||
if (in_plt_section (faddr))
|
||
return 0;
|
||
|
||
faddr_sect = find_pc_section (faddr);
|
||
if (faddr_sect != NULL)
|
||
{
|
||
struct obj_section *osect;
|
||
|
||
ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
|
||
{
|
||
if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
|
||
break;
|
||
}
|
||
|
||
if (osect < faddr_sect->objfile->sections_end)
|
||
{
|
||
CORE_ADDR addr, endaddr;
|
||
|
||
addr = obj_section_addr (osect);
|
||
endaddr = obj_section_endaddr (osect);
|
||
|
||
while (addr < endaddr)
|
||
{
|
||
int status;
|
||
LONGEST tag;
|
||
gdb_byte buf[4];
|
||
|
||
status = target_read_memory (addr, buf, sizeof (buf));
|
||
if (status != 0)
|
||
break;
|
||
tag = extract_signed_integer (buf, sizeof (buf), byte_order);
|
||
|
||
if (tag == DT_PLTGOT)
|
||
{
|
||
CORE_ADDR global_pointer;
|
||
|
||
status = target_read_memory (addr + 4, buf, sizeof (buf));
|
||
if (status != 0)
|
||
break;
|
||
global_pointer = extract_unsigned_integer (buf, sizeof (buf),
|
||
byte_order);
|
||
/* The payoff... */
|
||
return global_pointer;
|
||
}
|
||
|
||
if (tag == DT_NULL)
|
||
break;
|
||
|
||
addr += 8;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Registers saved in a coredump:
|
||
* gr0..gr31
|
||
* sr0..sr7
|
||
* iaoq0..iaoq1
|
||
* iasq0..iasq1
|
||
* sar, iir, isr, ior, ipsw
|
||
* cr0, cr24..cr31
|
||
* cr8,9,12,13
|
||
* cr10, cr15
|
||
*/
|
||
|
||
static const struct regcache_map_entry hppa_linux_gregmap[] =
|
||
{
|
||
{ 32, HPPA_R0_REGNUM },
|
||
{ 1, HPPA_SR4_REGNUM+1 },
|
||
{ 1, HPPA_SR4_REGNUM+2 },
|
||
{ 1, HPPA_SR4_REGNUM+3 },
|
||
{ 1, HPPA_SR4_REGNUM+4 },
|
||
{ 1, HPPA_SR4_REGNUM },
|
||
{ 1, HPPA_SR4_REGNUM+5 },
|
||
{ 1, HPPA_SR4_REGNUM+6 },
|
||
{ 1, HPPA_SR4_REGNUM+7 },
|
||
{ 1, HPPA_PCOQ_HEAD_REGNUM },
|
||
{ 1, HPPA_PCOQ_TAIL_REGNUM },
|
||
{ 1, HPPA_PCSQ_HEAD_REGNUM },
|
||
{ 1, HPPA_PCSQ_TAIL_REGNUM },
|
||
{ 1, HPPA_SAR_REGNUM },
|
||
{ 1, HPPA_IIR_REGNUM },
|
||
{ 1, HPPA_ISR_REGNUM },
|
||
{ 1, HPPA_IOR_REGNUM },
|
||
{ 1, HPPA_IPSW_REGNUM },
|
||
{ 1, HPPA_RCR_REGNUM },
|
||
{ 8, HPPA_TR0_REGNUM },
|
||
{ 4, HPPA_PID0_REGNUM },
|
||
{ 1, HPPA_CCR_REGNUM },
|
||
{ 1, HPPA_EIEM_REGNUM },
|
||
{ 0 }
|
||
};
|
||
|
||
static const struct regcache_map_entry hppa_linux_fpregmap[] =
|
||
{
|
||
/* FIXME: Only works for 32-bit mode. In 64-bit mode there should
|
||
be 32 fpregs, 8 bytes each. */
|
||
{ 64, HPPA_FP0_REGNUM, 4 },
|
||
{ 0 }
|
||
};
|
||
|
||
/* HPPA Linux kernel register set. */
|
||
static const struct regset hppa_linux_regset =
|
||
{
|
||
hppa_linux_gregmap,
|
||
regcache_supply_regset, regcache_collect_regset
|
||
};
|
||
|
||
static const struct regset hppa_linux_fpregset =
|
||
{
|
||
hppa_linux_fpregmap,
|
||
regcache_supply_regset, regcache_collect_regset
|
||
};
|
||
|
||
static void
|
||
hppa_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
|
||
iterate_over_regset_sections_cb *cb,
|
||
void *cb_data,
|
||
const struct regcache *regcache)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
cb (".reg", 80 * tdep->bytes_per_address, 80 * tdep->bytes_per_address,
|
||
&hppa_linux_regset, NULL, cb_data);
|
||
cb (".reg2", 64 * 4, 64 * 4, &hppa_linux_fpregset, NULL, cb_data);
|
||
}
|
||
|
||
static void
|
||
hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
linux_init_abi (info, gdbarch, false);
|
||
|
||
/* GNU/Linux is always ELF. */
|
||
tdep->is_elf = 1;
|
||
|
||
tdep->find_global_pointer = hppa_linux_find_global_pointer;
|
||
|
||
set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
|
||
|
||
frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
|
||
|
||
/* GNU/Linux uses SVR4-style shared libraries. */
|
||
set_solib_svr4_fetch_link_map_offsets
|
||
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
||
|
||
tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
|
||
set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
|
||
|
||
/* GNU/Linux uses the dynamic linker included in the GNU C Library. */
|
||
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
|
||
|
||
/* On hppa-linux, currently, sizeof(long double) == 8. There has been
|
||
some discussions to support 128-bit long double, but it requires some
|
||
more work in gcc and glibc first. */
|
||
set_gdbarch_long_double_bit (gdbarch, 64);
|
||
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
||
|
||
set_gdbarch_iterate_over_regset_sections
|
||
(gdbarch, hppa_linux_iterate_over_regset_sections);
|
||
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
|
||
|
||
/* Enable TLS support. */
|
||
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
||
svr4_fetch_objfile_link_map);
|
||
}
|
||
|
||
void _initialize_hppa_linux_tdep ();
|
||
void
|
||
_initialize_hppa_linux_tdep ()
|
||
{
|
||
gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX,
|
||
hppa_linux_init_abi);
|
||
gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w,
|
||
GDB_OSABI_LINUX, hppa_linux_init_abi);
|
||
}
|