binutils-gdb/gdb/thread-iter.c
Pedro Alves 08bdefb58b gdb: make inferior_list use intrusive_list
Change inferior_list, the global list of inferiors, to use
intrusive_list.  I think most other changes are somewhat obvious
fallouts from this change.

There is a small change in behavior in scoped_mock_context.  Before this
patch, constructing a scoped_mock_context would replace the whole
inferior list with only the new mock inferior.  Tests using two
scoped_mock_contexts therefore needed to manually link the two inferiors
together, as the second scoped_mock_context would bump the first mock
inferior from the thread list.  With this patch, a scoped_mock_context
adds its mock inferior to the inferior list on construction, and removes
it on destruction.  This means that tests run with mock inferiors in the
inferior list in addition to any pre-existing inferiors (there is always
at least one).  There is no possible pid clash problem, since each
scoped mock inferior uses its own process target, and pids are per
process target.

Co-Authored-By: Simon Marchi <simon.marchi@efficios.com>
Change-Id: I7eb6a8f867d4dcf8b8cd2dcffd118f7270756018
2021-07-12 20:46:52 -04:00

146 lines
3.6 KiB
C

/* Thread iterators and ranges for GDB, the GNU debugger.
Copyright (C) 2018-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbthread.h"
#include "inferior.h"
/* See thread-iter.h. */
all_threads_iterator::all_threads_iterator (begin_t)
{
/* Advance M_INF/M_THR to the first thread's position. */
for (inferior &inf : inferior_list)
{
auto thr_iter = inf.thread_list.begin ();
if (thr_iter != inf.thread_list.end ())
{
m_inf = &inf;
m_thr = &*thr_iter;
return;
}
}
m_inf = nullptr;
m_thr = nullptr;
}
/* See thread-iter.h. */
void
all_threads_iterator::advance ()
{
intrusive_list<inferior>::iterator inf_iter (m_inf);
intrusive_list<thread_info>::iterator thr_iter (m_thr);
/* The loop below is written in the natural way as-if we'd always
start at the beginning of the inferior list. This fast forwards
the algorithm to the actual current position. */
goto start;
for (; inf_iter != inferior_list.end (); ++inf_iter)
{
m_inf = &*inf_iter;
thr_iter = m_inf->thread_list.begin ();
while (thr_iter != m_inf->thread_list.end ())
{
m_thr = &*thr_iter;
return;
start:
++thr_iter;
}
}
m_thr = nullptr;
}
/* See thread-iter.h. */
bool
all_matching_threads_iterator::m_inf_matches ()
{
return ((m_filter_target == nullptr
|| m_filter_target == m_inf->process_target ())
&& (m_filter_ptid == minus_one_ptid
|| m_filter_ptid.pid () == m_inf->pid));
}
/* See thread-iter.h. */
all_matching_threads_iterator::all_matching_threads_iterator
(process_stratum_target *filter_target, ptid_t filter_ptid)
: m_filter_target (filter_target),
m_filter_ptid (filter_ptid)
{
gdb_assert ((filter_target == nullptr && filter_ptid == minus_one_ptid)
|| filter_target->stratum () == process_stratum);
for (inferior &inf : inferior_list)
{
m_inf = &inf;
if (m_inf_matches ())
for (auto thr_iter = m_inf->thread_list.begin ();
thr_iter != m_inf->thread_list.end ();
++thr_iter)
{
if (thr_iter->ptid.matches (m_filter_ptid))
{
m_thr = &*thr_iter;
return;
}
}
}
m_thr = nullptr;
}
/* See thread-iter.h. */
void
all_matching_threads_iterator::advance ()
{
intrusive_list<inferior>::iterator inf_iter (m_inf);
intrusive_list<thread_info>::iterator thr_iter (m_thr);
/* The loop below is written in the natural way as-if we'd always
start at the beginning of the inferior list. This fast forwards
the algorithm to the actual current position. */
goto start;
for (; inf_iter != inferior_list.end (); ++inf_iter)
{
m_inf = &*inf_iter;
if (m_inf_matches ())
{
thr_iter = m_inf->thread_list.begin ();
while (thr_iter != m_inf->thread_list.end ())
{
if (thr_iter->ptid.matches (m_filter_ptid))
{
m_thr = &*thr_iter;
return;
}
start:
++thr_iter;
}
}
}
m_thr = nullptr;
}