Now that defs.h, server.h and common-defs.h are included via the
`-include` option, it is no longer necessary for source files to include
them. Remove all the inclusions of these files I could find. Update
the generation scripts where relevant.
Change-Id: Ia026cff269c1b7ae7386dd3619bc9bb6a5332837
Approved-By: Pedro Alves <pedro@palves.net>
We currently pass frames to function by value, as `frame_info_ptr`.
This is somewhat expensive:
- the size of `frame_info_ptr` is 64 bytes, which is a bit big to pass
by value
- the constructors and destructor link/unlink the object in the global
`frame_info_ptr::frame_list` list. This is an `intrusive_list`, so
it's not so bad: it's just assigning a few points, there's no memory
allocation as if it was `std::list`, but still it's useless to do
that over and over.
As suggested by Tom Tromey, change many function signatures to accept
`const frame_info_ptr &` instead of `frame_info_ptr`.
Some functions reassign their `frame_info_ptr` parameter, like:
void
the_func (frame_info_ptr frame)
{
for (; frame != nullptr; frame = get_prev_frame (frame))
{
...
}
}
I wondered what to do about them, do I leave them as-is or change them
(and need to introduce a separate local variable that can be
re-assigned). I opted for the later for consistency. It might not be
clear why some functions take `const frame_info_ptr &` while others take
`frame_info_ptr`. Also, if a function took a `frame_info_ptr` because
it did re-assign its parameter, I doubt that we would think to change it
to `const frame_info_ptr &` should the implementation change such that
it doesn't need to take `frame_info_ptr` anymore. It seems better to
have a simple rule and apply it everywhere.
Change-Id: I59d10addef687d157f82ccf4d54f5dde9a963fd0
Approved-By: Andrew Burgess <aburgess@redhat.com>
This commit is the result of the following actions:
- Running gdb/copyright.py to update all of the copyright headers to
include 2024,
- Manually updating a few files the copyright.py script told me to
update, these files had copyright headers embedded within the
file,
- Regenerating gdbsupport/Makefile.in to refresh it's copyright
date,
- Using grep to find other files that still mentioned 2023. If
these files were updated last year from 2022 to 2023 then I've
updated them this year to 2024.
I'm sure I've probably missed some dates. Feel free to fix them up as
you spot them.
The next patch introduces a new variant of gdbarch_pseudo_register_write
that takes a frame instead of a regcache for implementations to write
raw registers. Rename to old one to make it clear it's deprecated.
Change-Id: If8872c89c6f8a1edfcab983eb064248fd5ff3115
Reviewed-By: John Baldwin <jhb@FreeBSD.org>
Some functions related to the handling of registers in frames accept
"this frame", for which we want to read or write the register values,
while other functions accept "the next frame", which is the frame next
to that. The later is needed because we sometimes need to read register
values for a frame that does not exist yet (usually when trying to
unwind that frame-to-be).
value_of_register and value_of_register_lazy both take "this frame",
even if what they ultimately want internally is "the next frame". This
is annoying if you are in a spot that currently has "the next frame" and
need to call one of these functions (which happens later in this
series). You need to get the previous frame only for those functions to
get the next frame again. This is more manipulations, more chances of
mistake.
I propose to change these functions (and a few more functions in the
subsequent patches) to operate on "the next frame". Things become a bit
less awkward when all these functions agree on which frame they take.
So, in this patch, change value_of_register_lazy and value_of_register
to take "the next frame" instead of "this frame". This adds a lot of
get_next_frame_sentinel_okay, but if we convert the user registers API
to also use "the next frame" instead of "this frame", it will get simple
again.
Change-Id: Iaa24815e648fbe5ae3c214c738758890a91819cd
Reviewed-By: John Baldwin <jhb@FreeBSD.org>
This turns the remaining value_contents functions -- value_contents,
value_contents_all, value_contents_for_printing, and
value_contents_for_printing_const -- into methods of value. It also
converts the static functions require_not_optimized_out and
require_available to be private methods.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
It's currently not clear how the ownership of gdbarch_tdep objects
works. In fact, nothing ever takes ownership of it. This is mostly
fine because we never free gdbarch objects, and thus we never free
gdbarch_tdep objects. There is an exception to that however: when
initialization fails, we do free the gdbarch object that is not going to
be used, and we free the tdep too. Currently, i386 and s390 do it.
To make things clearer, change gdbarch_alloc so that it takes ownership
of the tdep. The tdep is thus automatically freed if the gdbarch is
freed.
Change all gdbarch initialization functions to pass a new gdbarch_tdep
object to gdbarch_alloc and then retrieve a non-owning reference from
the gdbarch object.
Before this patch, the xtensa architecture had a single global instance
of xtensa_gdbarch_tdep. Since we need to pass a dynamically allocated
gdbarch_tdep_base instance to gdbarch_alloc, remove this global
instance, and dynamically allocate one as needed, like we do for all
other architectures. Make the `rmap` array externally visible and
rename it to the less collision-prone `xtensa_rmap` name.
Change-Id: Id3d70493ef80ce4bdff701c57636f4c79ed8aea2
Approved-By: Andrew Burgess <aburgess@redhat.com>
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
Currently, every internal_error call must be passed __FILE__/__LINE__
explicitly, like:
internal_error (__FILE__, __LINE__, "foo %d", var);
The need to pass in explicit __FILE__/__LINE__ is there probably
because the function predates widespread and portable variadic macros
availability. We can use variadic macros nowadays, and in fact, we
already use them in several places, including the related
gdb_assert_not_reached.
So this patch renames the internal_error function to something else,
and then reimplements internal_error as a variadic macro that expands
__FILE__/__LINE__ itself.
The result is that we now should call internal_error like so:
internal_error ("foo %d", var);
Likewise for internal_warning.
The patch adjusts all calls sites. 99% of the adjustments were done
with a perl/sed script.
The non-mechanical changes are in gdbsupport/errors.h,
gdbsupport/gdb_assert.h, and gdb/gdbarch.py.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
Change-Id: Ia6f372c11550ca876829e8fd85048f4502bdcf06
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:
sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
problems.
The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did
Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
After the previous few commit, gdbarch_register_name no longer returns
nullptr. This commit audits all the calls to gdbarch_register_name
and removes any code that checks the result against nullptr.
There should be no visible change after this commit.
Building on the previous commits, this commit goes through the various
gdbarch_register_name methods and removes all the remaining 'return
NULL' cases, I claim that these either couldn't be hit, or should be
returning the empty string.
In all cases the return of NULL was used if the register number being
passed to gdbarch_register_name was "invalid", i.e. negative, or
greater than the total number of declared registers. I don't believe
either of these cases can occur, and the previous commit asserts that
this is the case. As a result we can simplify the code by removing
these checks. In many cases, where the register names are held in an
array, I was able to add a static assert that the array contains the
correct number of strings, after that, a direct access into the array
is fine.
I don't have any means of testing these changes.
I built GDB for all targets on a x86-64/GNU-Linux system, and
then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run"
the binary on the native target. I got this error:
(gdb) show architecture
The target architecture is set to "auto" (currently "i386").
(gdb) file /tmp/hello.rv32.exe
Reading symbols from /tmp/hello.rv32.exe...
(gdb) show architecture
The target architecture is set to "auto" (currently "riscv:rv32").
(gdb) run
Starting program: /tmp/hello.rv32.exe
../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed.
What's going on here is this; initially the architecture is i386, this
is based on the default architecture, which is set based on the native
target. After loading the RISC-V executable the architecture of the
current inferior is updated based on the architecture of the
executable.
When we "run", GDB does a fork & exec, with the inferior being
controlled through ptrace. GDB sees an initial stop from the inferior
as soon as the inferior comes to life. In response to this stop GDB
ends up calling save_stop_reason (linux-nat.c), which ends up trying
to read register from the inferior, to do this we end up calling
target_ops::fetch_registers, which, for the x86-64 native target,
calls amd64_linux_nat_target::fetch_registers.
After this I eventually end up in i387_supply_fxsave, different x86
based targets will end in different functions to fetch registers, but
it doesn't really matter which function we end up in, the problem is
this line, which is repeated in many places:
i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
The problem here is that the ARCH in this line comes from the current
inferior, which, as we discussed above, will be a RISC-V gdbarch, the
tdep field will actually be of type riscv_gdbarch_tdep, not
i386_gdbarch_tdep. After this cast we are relying on undefined
behaviour, in my case I happen to trigger an assert, but this might
not always be the case.
The thing I tried that exposed this problem was of course, trying to
start an executable of the wrong architecture on a native target. I
don't think that the correct solution for this problem is to detect,
at the point of cast, that the gdbarch_tdep object is of the wrong
type, but, I did wonder, is there a way that we could protect
ourselves from incorrectly casting the gdbarch_tdep object?
I think that there is something we can do here, and this commit is the
first step in that direction, though no actual check is added by this
commit.
This commit can be split into two parts:
(1) In gdbarch.h and arch-utils.c. In these files I have modified
gdbarch_tdep (the function) so that it now takes a template argument,
like this:
template<typename TDepType>
static inline TDepType *
gdbarch_tdep (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch);
return static_cast<TDepType *> (tdep);
}
After this change we are no better protected, but the cast is now
done within the gdbarch_tdep function rather than at the call sites,
this leads to the second, much larger change in this commit,
(2) Everywhere gdbarch_tdep is called, we make changes like this:
- i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
+ i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
There should be no functional change after this commit.
In the next commit I will build on this change to add an assertion in
gdbarch_tdep that checks we are casting to the correct type.
Move 'struct reggroup' into the reggroups.h header. Remove the
reggroup_name and reggroup_type accessor functions, and just use the
name/type member functions within 'struct reggroup', update all uses
of these removed functions.
There should be no user visible changes after this commit.
Convert the reggroup_new and reggroup_gdbarch_new functions to return
a 'const regggroup *', and fix up all the fallout.
There should be no user visible changes after this commit.
There's a set of 7 default register groups. If we don't add any
gdbarch specific register groups during gdbarch initialisation, then
when we iterate over the register groups using reggroup_next and
reggroup_prev we will make use of these 7 default groups. See the use
of default_groups in gdb/reggroups.c for details on this.
However, if the gdbarch adds its own groups during gdbarch
initialisation, then these groups will be used in preference to the
default groups.
A problem arises though if the particular architecture makes use of
the target description mechanism. If the default target
description(s) (i.e. those internal to GDB that are used when the user
doesn't provide their own) don't mention any additional register
groups then the default register groups will be used.
But if the target description does mention additional groups then the
default groups are not used, and instead, the groups from the target
description are used.
The problem with this is that what usually happens is that the target
description will mention additional groups, e.g. groups for special
registers. Most architectures that use target descriptions work
around this by adding all (or most) of the default register groups in
all cases. See i386_add_reggroups, aarch64_add_reggroups,
riscv_add_reggroups, xtensa_add_reggroups, and others.
In this patch, my suggestion is that we should just add the default
register groups for every architecture, always. This change is in
gdb/reggroups.c.
All the remaining changes are me updating the various architectures to
not add the default groups themselves.
So, where will this change be visible to the user? I think the
following commands will possibly change:
* info registers / info all-registers:
The user can provide a register group to these commands. For example,
on csky, we previously never added the 'vector' group. Now, as a
default group, this will be available, but (presumably) will not
contain any registers. I don't think this is necessarily a bad
thing, there's something to be said for having some consistent
defaults available. There are other architectures that didn't add
all 7 of the defaults, which will now have gained additional groups.
* maint print reggroups
This prints the set of all available groups. As a maintenance
command I'm less concerned with the output changing here.
Obviously, for the architectures that didn't previously add all the
defaults, this list just got bigger.
* maint print register-groups
This prints all the registers, and the groups they are in. If the
defaults were not previously being added then a register (obviously)
can't appear in one of the default groups. Now the groups are
available then registers might be in more groups than previously.
However, this is again a maintenance command, so I'm less concerned
about this changing.
Change gdbarch_register_reggroup_p to take a 'const struct reggroup *'
argument. This requires a change to the gdb/gdbarch-components.py
script, regeneration of gdbarch.{c,h}, and then updates to all the
architectures that implement this method.
There should be no user visible changes after this commit.
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
The bug fixed by this [1] patch was caused by an out-of-bounds access to
a value's content. The code gets the value's content (just a pointer)
and then indexes it with a non-sensical index.
This made me think of changing functions that return value contents to
return array_views instead of a plain pointer. This has the advantage
that when GDB is built with _GLIBCXX_DEBUG, accesses to the array_view
are checked, making bugs more apparent / easier to find.
This patch changes the return types of these functions, and updates
callers to call .data() on the result, meaning it's not changing
anything in practice. Additional work will be needed (which can be done
little by little) to make callers propagate the use of array_view and
reap the benefits.
[1] https://sourceware.org/pipermail/gdb-patches/2021-September/182306.html
Change-Id: I5151f888f169e1c36abe2cbc57620110673816f3
I wrote this while debugging a problem where the expected unwinder for a
frame wasn't used. It adds messages to show which unwinders are
considered for a frame, why they are not selected (if an exception is
thrown), and finally which unwinder is selected in the end.
To be able to show a meaningful, human-readable name for the unwinders,
add a "name" field to struct frame_unwind, and update all instances to
include a name.
Here's an example of the output:
[frame] frame_unwind_find_by_frame: this_frame=0
[frame] frame_unwind_try_unwinder: trying unwinder "dummy"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "dwarf2 tailcall"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "inline"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "jit"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "python"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "amd64 epilogue"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "i386 epilogue"
[frame] frame_unwind_try_unwinder: no
[frame] frame_unwind_try_unwinder: trying unwinder "dwarf2"
[frame] frame_unwind_try_unwinder: yes
gdb/ChangeLog:
* frame-unwind.h (struct frame_unwind) <name>: New. Update
instances everywhere to include this field.
* frame-unwind.c (frame_unwind_try_unwinder,
frame_unwind_find_by_frame): Add debug messages.
Change-Id: I813f17777422425f0d08b22499817b23922e8ddb
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
While working on something else, I noticed that tdesc_data_cleanup
took a void* parameter. Looking more into this, I found that
tdesc_use_registers expected a transfer of ownership.
I think it's better to express this sort of thing via the type system,
when possible. This patch changes tdesc_data_alloc to return a unique
pointer, changes tdesc_use_registers to accept an rvalue reference,
and then adapts all the users.
Note that a deleter structure is introduced to avoid having to move
tdesc_arch_data to the header file.
2020-09-17 Tom Tromey <tromey@adacore.com>
* tic6x-tdep.c (tic6x_gdbarch_init): Update.
* target-descriptions.h (struct tdesc_arch_data_deleter): New.
(tdesc_arch_data_up): New typedef.
(tdesc_use_registers, tdesc_data_alloc): Update.
(tdesc_data_cleanup): Don't declare.
* target-descriptions.c (tdesc_data_alloc): Return a
tdesc_arch_data_up.
(tdesc_arch_data_deleter::operator()): Rename from
tdesc_data_cleanup. Change argument type.
(tdesc_use_registers): Change early_data to an rvalue reference.
(tdesc_use_registers): Don't use delete.
* sparc-tdep.c (sparc32_gdbarch_init): Update.
* s390-tdep.c (s390_gdbarch_init): Update.
* rx-tdep.c (rx_gdbarch_init): Update.
* rs6000-tdep.c (rs6000_gdbarch_init): Update.
* riscv-tdep.c (riscv_gdbarch_init): Update.
* or1k-tdep.c (or1k_gdbarch_init): Update.
* nios2-tdep.c (nios2_gdbarch_init): Update.
* nds32-tdep.c (nds32_gdbarch_init): Update.
* mips-tdep.c (mips_gdbarch_init): Update.
* microblaze-tdep.c (microblaze_gdbarch_init): Update.
* m68k-tdep.c (m68k_gdbarch_init): Update.
* i386-tdep.c (i386_gdbarch_init): Update.
* arm-tdep.c (arm_gdbarch_init): Update.
* arc-tdep.c (arc_tdesc_init): Update.
(arc_gdbarch_init): Update.
* aarch64-tdep.c (aarch64_gdbarch_init): Update.
Remove the `TYPE_FIELD_TYPE` macro, changing all the call sites to use
`type::field` and `field::type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD_TYPE): Remove. Change all call sites
to use type::field and field::type instead.
Change-Id: Ifda6226a25c811cfd334a756a9fbc5c0afdddff3
Remove `TYPE_NFIELDS`, changing all the call sites to use
`type::num_fields` directly. This is quite a big diff, but this was
mostly done using sed and coccinelle. A few call sites were done by
hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NFIELDS): Remove. Change all cal sites to use
type::num_fields instead.
Change-Id: Ib73be4c36f9e770e0f729bac3b5257d7cb2f9591
Remove TYPE_CODE, changing all the call sites to use type::code
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use
type::code instead.
Make use of the default gdbarch methods for gdbarch_dummy_id,
gdbarch_unwind_pc, and gdbarch_unwind_sp where possible.
I have not tested this change but, by inspecting the code, I believe
the default methods are equivalent to the code being deleted.
gdb/ChangeLog:
* nds32-tdep.c (nds32_dummy_id): Delete.
(nds32_unwind_pc): Delete.
(nds32_unwind_sp): Delete.
(nds32_gdbarch_init): Don't register deleted functions with
gdbarch.
The general type_align method should be a suitable alternative to
nds32_type_align, so switch to use that.
The only change this will introduce is related to static fields in a
struct or union, the existing code doesn't take account of static
fields when computing the alignment for structs of unions, though this
is probably a bug - which would probably be exposed by the test case
gdb.cp/many-args.exp, though I don't have any way to test this target
right now.
gdb/ChangeLog:
* nds32-tdep.c (nds32_type_align): Delete.
(nds32_push_dummy_call): Use type_align instead.
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
Remove regcache_raw_write, update all callers to use regcache::raw_write
instead.
gdb/ChangeLog:
* regcache.h (regcache_raw_write): Remove, update callers to use
regcache::raw_write instead.
* regcache.c (regcache_raw_write): Remove.
Remove regcache_raw_read, update all callers to use
readable_regcache::raw_read instead.
gdb/ChangeLog:
* regcache.h (regcache_raw_read): Remove, update callers to use
readable_regcache::raw_read instead.
* regcache.c (regcache_raw_read): Remove.
pseudo registers are either from raw registers or memory, so
gdbarch methods pseudo_register_read and pseudo_register_read_value
should have regcache object which only have read methods. In other
words, we should disallow writing to regcache in these two gdbarch
methods. In order to apply this restriction, this patch adds a new
class readable_regcache, derived from reg_buffer, and it only has
raw_read and cooked_read methods. regcache is derived from
readable_regcache. This patch also passes readable_regcache instead of
regcache to gdbarch methods pseudo_register_read and
pseudo_register_read_value.
This patch moves raw_read* and cooked_read* methods to readable_regcache,
which is straightforward. One thing not straightforward is that I split
regcache::xfer_part to readable_regcache::read_part and regcache::write_part,
because readable_regcache can only have methods to read.
readable_regcache is an abstract base class, and it has a pure virtual
function raw_update, because I don't want readable_regcache know where
these raw registers are from. They can be from either the target
(readwrite regcache) or the regcache itself (readonly regcache).
gdb:
2018-02-21 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_pseudo_register_read_value): Change
parameter type to 'readable_regcache *'.
* amd64-tdep.c (amd64_pseudo_register_read_value): Likewise.
* arm-tdep.c (arm_neon_quad_read): Likewise.
(arm_pseudo_read): Likewise.
* avr-tdep.c (avr_pseudo_register_read): Likewise.
* bfin-tdep.c (bfin_pseudo_register_read): Likewise.
* frv-tdep.c (frv_pseudo_register_read): Likewise.
* gdbarch.c: Re-generated.
* gdbarch.h: Re-generated.
* gdbarch.sh (pseudo_register_read): Change parameter type to
'readable_regcache *'.
(pseudo_register_read_value): Likewise.
* h8300-tdep.c (pseudo_from_raw_register): Likewise.
(h8300_pseudo_register_read): Likewise.
* hppa-tdep.c (hppa_pseudo_register_read): Likewise.
* i386-tdep.c (i386_mmx_regnum_to_fp_regnum): Likewise.
(i386_pseudo_register_read_into_value): Likewise.
(i386_pseudo_register_read_value): Likewise.
* i386-tdep.h (i386_pseudo_register_read_into_value): Update
declaration.
* ia64-tdep.c (ia64_pseudo_register_read): Likewise.
* m32c-tdep.c (m32c_raw_read): Likewise.
(m32c_read_flg): Likewise.
(m32c_banked_register): Likewise.
(m32c_banked_read): Likewise.
(m32c_sb_read): Likewise.
(m32c_part_read): Likewise.
(m32c_cat_read): Likewise.
(m32c_r3r2r1r0_read): Likewise.
(m32c_pseudo_register_read): Likewise.
* m68hc11-tdep.c (m68hc11_pseudo_register_read): Likewise.
* mep-tdep.c (mep_pseudo_cr32_read): Likewise.
(mep_pseudo_cr64_read): Likewise.
(mep_pseudo_register_read): Likewise.
* mips-tdep.c (mips_pseudo_register_read): Likewise.
* msp430-tdep.c (msp430_pseudo_register_read): Likewise.
* nds32-tdep.c (nds32_pseudo_register_read): Likewise.
* regcache.c (regcache::raw_read): Move it to readable_regcache.
(regcache::cooked_read): Likewise.
(regcache::cooked_read_value): Likewise.
(regcache_cooked_read_signed):
(regcache::cooked_read): Likewise.
* regcache.h (readable_regcache): New class.
(regcache): Inherit readable_regcache. Move some methods to
readable_regcache.
* rl78-tdep.c (rl78_pseudo_register_read): Change
parameter type to 'readable_regcache *'.
* rs6000-tdep.c (do_regcache_raw_read): Remove.
(e500_pseudo_register_read): Change parameter type to
'readable_regcache *'.
(dfp_pseudo_register_read): Likewise.
(vsx_pseudo_register_read): Likewise.
(efpr_pseudo_register_read): Likewise.
* s390-tdep.c (s390_pseudo_register_read): Likewise.
* sh-tdep.c (sh_pseudo_register_read): Likewise.
* sh64-tdep.c (pseudo_register_read_portions): Likewise.
(sh64_pseudo_register_read): Likewise.
* sparc-tdep.c (sparc32_pseudo_register_read): Likewise.
* sparc64-tdep.c (sparc64_pseudo_register_read): Likewise.
* spu-tdep.c (spu_pseudo_register_read_spu): Likewise.
(spu_pseudo_register_read): Likewise.
* xtensa-tdep.c (xtensa_register_read_masked): Likewise.
(xtensa_pseudo_register_read): Likewise.
The patch later in this series will move regcache's raw_read and
cooked_read methods to a new class regcache_read, and regcache is
dervied from it. Also pass regcache_read instead of regcache to gdbarch
methods pseudo_register_read and pseudo_register_read_value. In order
to prepare for this change, this patch changes regcache_raw_read to
regcache->raw_read. On the other hand, since we are in C++, I prefer
using class method (regcache->raw_read).
gdb:
2018-01-22 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_pseudo_read_value): Call regcache
method raw_read instead of regcache_raw_read.
* amd64-tdep.c (amd64_pseudo_register_read_value): Likewise.
* arm-tdep.c (arm_neon_quad_read): Likewise.
* avr-tdep.c (avr_pseudo_register_read): Likewise.
* bfin-tdep.c (bfin_pseudo_register_read): Likewise.
* frv-tdep.c (frv_pseudo_register_read): Likewise.
* h8300-tdep.c (h8300_pseudo_register_read): Likewise.
* i386-tdep.c (i386_mmx_regnum_to_fp_regnum): Likewise.
(i386_pseudo_register_read_into_value): Likewise.
* mep-tdep.c (mep_pseudo_cr32_read): Likewise.
* msp430-tdep.c (msp430_pseudo_register_read): Likewise.
* nds32-tdep.c (nds32_pseudo_register_read): Likewise.
* rl78-tdep.c (rl78_pseudo_register_read): Likewise.
* s390-linux-tdep.c (s390_pseudo_register_read): Likewise.
* sparc-tdep.c (sparc32_pseudo_register_read): Likewise.
* sparc64-tdep.c (sparc64_pseudo_register_read): Likewise.
* spu-tdep.c (spu_pseudo_register_read_spu): Likewise.
* xtensa-tdep.c (xtensa_pseudo_register_read): Likewise.
As an update to commit ede5f15146 ("gdbarch.h: Change
gdbarch_info::tdep_info's type to void *") replace the definition of the
`tdep_info' member in `struct gdbarch_info' with an anonymous union,
comprising the original member, with its type reverted to `struct
gdbarch_tdep_info *', a `tdesc_data' member of a `struct tdesc_arch_data
*' type and an `id' member of an `int *' type. Remove now unnecessary
casts throughout use places then, making code easier to read an less
prone to errors, which may happen with casting.
gdb/
* gdbarch.sh (gdbarch_info): Replace the `tdep_info' member with
a union of `tdep_info', `tdesc_data' and `id'.
* aarch64-tdep.c (aarch64_gdbarch_init): Use `info.tdesc_data'
rather than `info.tdep_info'.
* amd64-linux-tdep.c (amd64_linux_init_abi): Likewise.
* i386-linux-tdep.c (i386_linux_init_abi): Likewise.
* i386-tdep.c (i386_gdbarch_init): Likewise.
* mips-linux-tdep.c (mips_linux_init_abi): Likewise.
* mips-tdep.c (mips_gdbarch_init): Likewise.
* nds32-tdep.c (nds32_gdbarch_init): Likewise.
* rs6000-tdep.c (rs6000_gdbarch_init): Likewise.
* ppc-linux-tdep.c (ppu2spu_sniffer): Use `info.id' rather than
`info.tdep_info'.
(ppc_linux_init_abi): Use `info.tdesc_data' rather than
`info.tdep_info'.
* sparc-tdep.c (sparc32_gdbarch_init): Likewise.
* spu-multiarch.c (spu_gdbarch): Use `info.id' rather than
`info.tdep_info'.
* spu-tdep.c (spu_gdbarch_init): Likewise.
* gdbarch.h: Regenerate.