Commit graph

376 commits

Author SHA1 Message Date
Tom Tromey
b58f47ab4c Use filtered output in ordinary commands
Many otherwise ordinary commands choose to use unfiltered output
rather than filtered.  I don't think there's any reason for this, so
this changes many such commands to use filtered output instead.

Note that complete_command is not touched due to a comment there
explaining why unfiltered output is believed to be used.
2022-01-05 11:36:33 -07:00
Joel Brobecker
4a94e36819 Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.

For the avoidance of doubt, all changes in this commits were
performed by the script.
2022-01-01 19:13:23 +04:00
Simon Marchi
46680d22de gdb: trivial changes to use array_view
Change a few relatively obvious spots using value contents to propagate
the use array_view a bit more.

Change-Id: I5338a60986f06d5969fec803d04f8423c9288a15
2021-12-03 16:42:02 -05:00
Simon Marchi
4bce7cdaf4 gdbsupport: add array_view copy function
An assertion was recently added to array_view::operator[] to ensure we
don't do out of bounds accesses.  However, when the array_view is copied
to or from using memcpy, it bypasses that safety.

To address this, add a `copy` free function that copies data from an
array view to another, ensuring that the destination and source array
views have the same size.  When copying to or from parts of an
array_view, we are expected to use gdb::array_view::slice, which does
its own bounds check.  With all that, any copy operation that goes out
of bounds should be caught by an assertion at runtime.

copy is implemented using std::copy and std::copy_backward, which, at
least on libstdc++, appears to pick memmove when copying trivial data.
So in the end there shouldn't be much difference vs using a bare memcpy,
as we do right now.  When copying non-trivial data, std::copy and
std::copy_backward assigns each element in a loop.

To properly support overlapping ranges, we must use std::copy or
std::copy_backward, depending on whether the destination is before the
source or vice-versa.  std::copy and std::copy_backward don't support
copying exactly overlapping ranges (where the source range is equal to
the destination range).  But in this case, no copy is needed anyway, so
we do nothing.

The order of parameters of the new copy function is based on std::copy
and std::copy_backward, where the source comes before the destination.

Change a few randomly selected spots to use the new function, to show
how it can be used.

Add a test for the new function, testing both with arrays of a trivial
type (int) and of a non-trivial type (foo).  Test non-overlapping
ranges as well as three kinds of overlapping ranges: source before dest,
dest before source, and dest == source.

Change-Id: Ibeaca04e0028410fd44ce82f72e60058d6230a03
2021-12-03 16:37:36 -05:00
Simon Marchi
7f74204ad9 gdb: fix length of array view returned by some value_contents functions
In commit 50888e42dc ("gdb: change functions returning value contents
to use gdb::array_view"), I believe I made a mistake with the length of
the array views returned by some functions.  All functions return a view
of `TYPE_LENGTH (value_type (type))` length.  This is not correct when
the value's enclosing type is larger than the value's type.  In that
case, the value's contents buffer is of the size of the enclosing type,
and the value's actual contents is a slice of that (as returned by
value_contents).  So, functions value_contents_all_raw,
value_contents_for_printing and value_contents_for_printing_const are
not correct.  Since they are meant to return the value's contents buffer
as a whole, they should have the size of the enclosing type.

There is nothing that uses the returned array view size at the moment,
so this didn't cause a problem.  But it became apparent when trying to
adjust some callers.

Change-Id: Ib4e8837e1069111d2b2784d3253d5f3002419e68
2021-11-16 16:27:33 -05:00
Andrew Burgess
a6e7fea128 gdb: throw OPTIMIZED_OUT_ERROR rather than GENERIC_ERROR
While reviewing this patch:

  https://sourceware.org/pipermail/gdb-patches/2021-November/183227.html

I spotted that the patch could be improved if we threw
OPTIMIZED_OUT_ERROR rather than GENERIC_ERROR in a few places.

This commit updates error_value_optimized_out and
require_not_optimized_out to throw OPTIMIZED_OUT_ERROR.

I ran the testsuite and saw no regressions.  This doesn't really
surprise me, we don't usually write code like:

  catch (const gdb_exception_error &ex)
    {
      (if ex.error == GENERIC_ERROR)
        ...
      else
        ...
    }

There are a three places where we write something like:

  catch (const gdb_exception_error &ex)
    {
      (if ex.error == OPTIMIZED_OUT_ERROR)
        ...
    }

In frame.c:unwind_pc, stack.c:info_frame_command_core, and
value.c:value_optimized_out, but if we are hitting these cases then
it's not significantly changing GDB's behaviour.
2021-11-16 17:35:03 +00:00
Simon Marchi
e06c3e112e gdb: remove TYPE_FIELD_STATIC_PHYSADDR
Remove TYPE_FIELD_STATIC_PHYSADDR replace with type::field +
field::loc_physaddr.

Change-Id: Ica9bc4a48f34750ec82ec86c298d3ecece81bcbd
2021-10-29 16:44:45 -04:00
Simon Marchi
fcbbbd90f0 gdb: remove TYPE_FIELD_STATIC_PHYSNAME
Remove TYPE_FIELD_STATIC_PHYSNAME, replace with type::field +
field::loc_physname.

Change-Id: Ie35d446b67dd1d02f39998b406001bdb7e6d5abb
2021-10-29 16:44:45 -04:00
Simon Marchi
b610c04548 gdb: remove TYPE_FIELD_BITPOS
Remove TYPE_FIELD_BITPOS, replace its uses with type::field +
field::loc_bitpos.

Change-Id: Iccd8d5a77e5352843a837babaa6bd284162e0320
2021-10-29 16:44:44 -04:00
Simon Marchi
2ad53ea10c gdb: remove TYPE_FIELD_LOC_KIND
Remove TYPE_FIELD_LOC_KIND, replace its uses with type::field +
field::loc_kind.

Change-Id: Ib124a26365df82ac1d23df7962d954192913bd90
2021-10-29 16:44:21 -04:00
Simon Marchi
5612b5d21e gdb: fix value.c build on 32-bits
When building on ARM (32-bits), we errors like this:

    /home/smarchi/src/binutils-gdb/gdb/value.c: In function 'gdb::array_view<const unsigned char> value_contents_for_printing(value*)':
    /home/smarchi/src/binutils-gdb/gdb/value.c:1252:35: error: narrowing conversion of 'length' from 'ULONGEST' {aka 'long long unsigned int'} to 'size_t' {aka 'unsigned int'} [-Werror=narrowing]
     1252 |   return {value->contents.get (), length};
          |                                   ^~~~~~

Fix that by using gdb::make_array_view, which does the appropriate
conversion.

Change-Id: I7d6f2e75d7440d248b8fb18f8272ee92954b404d
2021-10-27 09:41:59 -04:00
Simon Marchi
50888e42dc gdb: change functions returning value contents to use gdb::array_view
The bug fixed by this [1] patch was caused by an out-of-bounds access to
a value's content.  The code gets the value's content (just a pointer)
and then indexes it with a non-sensical index.

This made me think of changing functions that return value contents to
return array_views instead of a plain pointer.  This has the advantage
that when GDB is built with _GLIBCXX_DEBUG, accesses to the array_view
are checked, making bugs more apparent / easier to find.

This patch changes the return types of these functions, and updates
callers to call .data() on the result, meaning it's not changing
anything in practice.  Additional work will be needed (which can be done
little by little) to make callers propagate the use of array_view and
reap the benefits.

[1] https://sourceware.org/pipermail/gdb-patches/2021-September/182306.html

Change-Id: I5151f888f169e1c36abe2cbc57620110673816f3
2021-10-25 14:51:44 -04:00
Tom Tromey
acbf4a58ef Remove 'varsize-limit'
This makes the Ada-specific "varsize-limit" a synonym for
"max-value-size", and removes the Ada-specific checks of the limit.

I am not certain of the history here, but it seems to me that this
code is fully obsolete now.  And, removing this makes it possible to
index large Ada arrays without triggering an error.  A new test case
is included to demonstrate this.
2021-10-05 12:35:24 -06:00
Tom Tromey
3e44c3049f Allow lazy 'zero' value
This changes value_zero to create a lazy value.  In many cases,
value_zero is called in expression evaluation to wrap a type in a
non-eval context.  It seems senseless to allocate a buffer in these
cases.

A new 'is_zero' flag is added so we can preserve the existing
assertions in value_fetch_lazy.

A subsequent patch will add a test where creating a zero value would
fail, due to the variable size check.  However, the contents of this
value are never needed, and so creating a lazy value avoids the error
case.
2021-10-05 12:34:55 -06:00
Tom Tromey
a519e8ffe2 Add lval_funcs::is_optimized_out
This adds an is_optimized_out function pointer to lval_funcs, and
changes value_optimized_out to call it.  This new function lets gdb
determine if a value is optimized out without necessarily fetching the
value.  This is needed for a subsequent patch, where an attempt to
access a lazy value would fail due to the value size limit -- however,
the access was only needed to determine the optimized-out state.
2021-10-05 12:34:55 -06:00
Simon Marchi
33d16dd987 gdb: remove TYPE_FIELD_NAME and FIELD_NAME macros
Remove the `TYPE_FIELD_NAME` and `FIELD_NAME` macros, changing all the
call sites to use field::name directly.

Change-Id: I6900ae4e1ffab1396e24fb3298e94bf123826ca6
2021-09-30 22:05:57 -04:00
Tom Tromey
809f3be12c Change pointer_type to a method of struct type
I noticed that pointer_type is declared in language.h and defined in
language.c.  However, it really has to do with types, so it should
have been in gdbtypes.h all along.

This patch changes it to be a method on struct type.  And, I went
through uses of TYPE_IS_REFERENCE and updated many spots to use the
new method as well.  (I didn't update ones that were in arch-specific
code, as I couldn't readily test that.)
2021-09-23 15:11:00 -06:00
Zoran Zaric
efa86d3c26 Make value_copy also copy the stack data member
Fixing a bug where the value_copy function did not copy the stack data
and initialized members of the struct value. This is needed for the
next patch where the DWARF expression evaluator is changed to return a
single struct value object.

        * value.c (value_copy): Change to also copy the stack data
          and initialized members.
2021-08-05 16:40:42 +01:00
Andrew Burgess
ca89bdf8b2 gdb: remove VALUE_FRAME_ID and fix another frame debug issue
This commit was originally part of this patch series:

  (v1): https://sourceware.org/pipermail/gdb-patches/2021-May/179357.html
  (v2): https://sourceware.org/pipermail/gdb-patches/2021-June/180208.html
  (v3): https://sourceware.org/pipermail/gdb-patches/2021-July/181028.html

However, that series is being held up in review, so I wanted to break
out some of the non-related fixes in order to get these merged.

This commit addresses two semi-related issues, both of which are
problems exposed by using 'set debug frame on'.

The first issue is in frame.c in get_prev_frame_always_1, and was
introduced by this commit:

  commit a05a883fba
  Date:   Tue Jun 29 12:03:50 2021 -0400

      gdb: introduce frame_debug_printf

This commit replaced fprint_frame with frame_info::to_string.
However, the former could handle taking a nullptr while the later, a
member function, obviously requires a non-nullptr in order to make the
function call.  In one place we are not-guaranteed to have a
non-nullptr, and so, there is the possibility of triggering undefined
behaviour.

The second issue addressed in this commit has existed for a while in
GDB, and would cause this assertion:

  gdb/frame.c:622: internal-error: frame_id get_frame_id(frame_info*): Assertion `fi->this_id.p != frame_id_status::COMPUTING' failed.

We attempt to get the frame_id for a frame while we are computing the
frame_id for that same frame.

What happens is that when GDB stops we create a frame_info object for
the sentinel frame (frame #-1) and then we attempt to unwind this
frame to create a frame_info object for frame #0.

In the test case used here to expose the issue we have created a
Python frame unwinder.  In the Python unwinder we attemt to read the
program counter register.

Reading this register will initially create a lazy register value.
The frame-id stored in the lazy register value will be for the
sentinel frame (lazy register values hold the frame-id for the frame
from which the register will be unwound).

However, the Python unwinder does actually want to examine the value
of the program counter, and so the lazy register value is resolved
into a non-lazy value.  This sends GDB into value_fetch_lazy_register
in value.c.

Now, inside this function, if 'set debug frame on' is in effect, then
we want to print something like:

  frame=%d, regnum=%d(%s), ....

Where 'frame=%d' will be the relative frame level of the frame for
which the register is being fetched, so, in this case we would expect
to see 'frame=0', i.e. we are reading a register as it would be in
frame #0.  But, remember, the lazy register value actually holds the
frame-id for frame #-1 (the sentinel frame).

So, to get the frame_info for frame #0 we used to call:

  frame = frame_find_by_id (VALUE_FRAME_ID (val));

Where VALUE_FRAME_ID is:

  #define VALUE_FRAME_ID(val) (get_prev_frame_id_by_id (VALUE_NEXT_FRAME_ID (val)))

That is, we start with the frame-id for the next frame as obtained by
VALUE_NEXT_FRAME_ID, then call get_prev_frame_id_by_id to get the
frame-id of the previous frame.

The get_prev_frame_id_by_id function finds the frame_info for the
given frame-id (in this case frame #-1), calls get_prev_frame to get
the previous frame, and then calls get_frame_id.

The problem here is that calling get_frame_id requires that we know
the frame unwinder, so then have to try each frame unwinder in turn,
which would include the Python unwinder.... which is where we started,
and thus we have a loop!

To prevent this loop GDB has an assertion in place, which is what
actually triggers.

Solving the assertion failure is pretty easy, if we consider the code
in value_fetch_lazy_register and get_prev_frame_id_by_id then what we
do is:

  1. Start with a frame_id taken from a value,
  2. Lookup the corresponding frame,
  3. Find the previous frame,
  4. Get the frame_id for that frame, and
  5. Lookup the corresponding frame
  6. Print the frame's level

Notice that steps 3 and 5 give us the exact same result, step 4 is
just wasted effort.  We could shorten this process such that we drop
steps 4 and 5, thus:

  1. Start with a frame_id taken from a value,
  2. Lookup the corresponding frame,
  3. Find the previous frame,
  6. Print the frame's level

This will give the exact same frame as a result, and this is what I
have done in this patch by removing the use of VALUE_FRAME_ID from
value_fetch_lazy_register.

Out of curiosity I looked to see how widely VALUE_FRAME_ID was used,
and saw it was only used in one other place in valops.c:value_assign,
where, once again, we take the result of VALUE_FRAME_ID and pass it to
frame_find_by_id, thus introducing a redundant frame_id lookup.

I don't think the value_assign case risks triggering the assertion
though, as we are unlikely to call value_assign while computing the
frame_id for a frame, however, we could make value_assign slightly
more efficient, with no real additional complexity, by removing the
use of VALUE_FRAME_ID.

So, in this commit, I completely remove VALUE_FRAME_ID, and replace it
with a use of VALUE_NEXT_FRAME_ID, followed by a direct call to
get_prev_frame_always, this should make no difference in either case,
and resolves the assertion issue from value.c.

As I said, this patch was originally part of another series, the
original test relied on the fixes in that original series.  However, I
was able to create an alternative test for this issue by enabling
frame debug within an existing test script.

This commit probably fixes bug PR gdb/27938, though the bug doesn't
have a reproducer attached so it is not possible to know for sure.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=27938
2021-07-27 09:20:39 +01:00
Simon Marchi
a05a883fba gdb: introduce frame_debug_printf
Introduce frame_debug_printf, to convert the "frame" debug messages to
the new system.  Replace fprint_frame with a frame_info::to_string
method that returns a string, like what was done with
frame_id::to_string.  This makes it easier to use with
frame_debug_printf.

gdb/ChangeLog:

	* frame.h (frame_debug_printf): New.
	* frame.c: Use frame_debug_printf throughout when printing frame
	debug messages.
	* amd64-windows-tdep.c: Likewise.
	* value.c: Likewise.

gdb/testsuite/ChangeLog:

	* gdb.dwarf2/dw2-reg-undefined.exp: Update regexp.

Change-Id: I3c230b0814ea81c23af3e1aca1aac8d4ba91d726
2021-06-29 12:03:50 -04:00
Simon Marchi
5e84b7eefb gdb: remove add_alias_cmd overload that accepts a string
Same idea as previous patch, but for add_alias_cmd.  Remove the overload
that accepts the target command as a string (the target command name),
leaving only the one that takes the cmd_list_element.

gdb/ChangeLog:

	* command.h (add_alias_cmd): Accept target as
	cmd_list_element.  Update callers.

Change-Id: I546311f411e9e7da9302322d6ffad4e6c56df266
2021-05-27 14:00:08 -04:00
Marco Barisione
2f822da535 gdb: generate the prefix name for prefix commands on demand
Previously, the prefixname field of struct cmd_list_element was manually
set for prefix commands.  This seems verbose and error prone as it
required every single call to functions adding prefix commands to
specify the prefix name while the same information can be easily
generated.

Historically, this was not possible as the prefix field was null for
many commands, but this was fixed in commit
3f4d92ebdf by Philippe Waroquiers, so
we can rely on the prefix field being set when generating the prefix
name.

This commit also fixes a use after free in this scenario:
* A command gets created via Python (using the gdb.Command class).
  The prefix name member is dynamically allocated.
* An alias to the new command is created. The alias's prefixname is set
  to point to the prefixname for the original command with a direct
  assignment.
* A new command with the same name as the Python command is created.
* The object for the original Python command gets freed and its
  prefixname gets freed as well.
* The alias is updated to point to the new command, but its prefixname
  is not updated so it keeps pointing to the freed one.

gdb/ChangeLog:

	* command.h (add_prefix_cmd): Remove the prefixname argument as
	it can now be generated automatically.  Update all callers.
	(add_basic_prefix_cmd): Ditto.
	(add_show_prefix_cmd): Ditto.
	(add_prefix_cmd_suppress_notification): Ditto.
	(add_abbrev_prefix_cmd): Ditto.
	* cli/cli-decode.c (add_prefix_cmd): Ditto.
	(add_basic_prefix_cmd): Ditto.
	(add_show_prefix_cmd): Ditto.
	(add_prefix_cmd_suppress_notification): Ditto.
	(add_prefix_cmd_suppress_notification): Ditto.
	(add_abbrev_prefix_cmd): Ditto.
	* cli/cli-decode.h (struct cmd_list_element): Replace the
	prefixname member variable with a method which generates the
	prefix name at runtime.  Update all code reading the prefix
	name to use the method, and remove all code setting it.
	* python/py-cmd.c (cmdpy_destroyer): Remove code to free the
	prefixname member as it's now a method.
	(cmdpy_function): Determine if the command is a prefix by
	looking at prefixlist, not prefixname.
2021-05-12 11:19:22 +01:00
Simon Marchi
328d42d87e gdb: remove current_top_target function
The current_top_target function is a hidden dependency on the current
inferior.  Since I'd like to slowly move towards reducing our dependency
on the global current state, remove this function and make callers use

  current_inferior ()->top_target ()

There is no expected change in behavior, but this one step towards
making those callers use the inferior from their context, rather than
refer to the global current inferior.

gdb/ChangeLog:

	* target.h (current_top_target): Remove, make callers use the
	current inferior instead.
	* target.c (current_top_target): Remove.

Change-Id: Iccd457036f84466cdaa3865aa3f9339a24ea001d
2021-03-24 18:08:24 -04:00
Tom Tromey
3dd93bf837 Remove some null checks
When not parsing for completion, parse_expression ensures that the
resulting expression has operations.  This patch removes a couple of
unnecessary checks for this situation.

gdb/ChangeLog
2021-03-08  Tom Tromey  <tom@tromey.com>

	* printcmd.c (set_command): Remove null check.
	* value.c (init_if_undefined_command): Remove null check.
2021-03-08 07:28:44 -07:00
Tom Tromey
1eaebe02cf Remove union exp_element
This removes union exp_element functions that either create such
elements or walk them.  struct expression no longer holds
exp_elements.  A couple of language_defn methods are also removed, as
they are obsolete.

Note that this patch also removes the print_expression code.  The only
in-tree caller of this was from dump_prefix_expression, which is only
called when expression debugging is enabled.  Implementing this would
involve a fair amount of code, and it seems to me that prefix dumping
is preferable anyway, as it is unambiguous.  So, I have not
reimplemented this feature.

gdb/ChangeLog
2021-03-08  Tom Tromey  <tom@tromey.com>

	* value.h (evaluate_subexp_with_coercion): Don't declare.
	* parse.c (exp_descriptor_standard): Remove.
	(expr_builder::expr_builder, expr_builder::release): Update.
	(expression::expression): Remove size_t parameter.
	(expression::~expression): Simplify.
	(expression::resize): Remove.
	(write_exp_elt, write_exp_elt_opcode, write_exp_elt_sym)
	(write_exp_elt_msym, write_exp_elt_block, write_exp_elt_objfile)
	(write_exp_elt_longcst, write_exp_elt_floatcst)
	(write_exp_elt_type, write_exp_elt_intern, write_exp_string)
	(write_exp_string_vector, write_exp_bitstring): Remove.
	* p-lang.h (class pascal_language) <opcode_print_table,
	op_print_tab>: Remove.
	* p-lang.c (pascal_language::op_print_tab): Remove.
	* opencl-lang.c (class opencl_language) <opcode_print_table>:
	Remove.
	* objc-lang.c (objc_op_print_tab): Remove.
	(class objc_language) <opcode_print_table>: Remove.
	* m2-lang.h (class m2_language) <opcode_print_table,
	op_print_tab>: Remove.
	* m2-lang.c (m2_language::op_print_tab): Remove.
	* language.h (struct language_defn) <post_parser, expression_ops,
	opcode_print_table>: Remove.
	* language.c (language_defn::expression_ops)
	(auto_or_unknown_language::opcode_print_table): Remove.
	* go-lang.h (class go_language) <opcode_print_table,
	op_print_tab>: Remove.
	* go-lang.c (go_language::op_print_tab): Remove.
	* f-lang.h (class f_language) <opcode_print_table>: Remove
	<op_print_tab>: Remove.
	* f-lang.c (f_language::op_print_tab): Remove.
	* expression.h (union exp_element): Remove.
	(struct expression): Remove size_t parameter from constructor.
	<resize>: Remove.
	<first_opcode>: Update.
	<nelts, elts>: Remove.
	(EXP_ELEM_TO_BYTES, BYTES_TO_EXP_ELEM): Remove.
	(evaluate_subexp_standard, print_expression, op_string)
	(dump_raw_expression): Don't declare.
	* expprint.c (print_expression, print_subexp)
	(print_subexp_funcall, print_subexp_standard, op_string)
	(dump_raw_expression, dump_subexp, dump_subexp_body)
	(dump_subexp_body_funcall, dump_subexp_body_standard): Remove.
	(dump_prefix_expression): Update.
	* eval.c (evaluate_subexp): Remove.
	(evaluate_expression, evaluate_type): Update.
	(evaluate_subexpression_type): Remove.
	(fetch_subexp_value): Remove "pc" parameter.  Update.
	(extract_field_op, evaluate_struct_tuple, evaluate_funcall)
	(evaluate_subexp_standard, evaluate_subexp_for_address)
	(evaluate_subexp_with_coercion, evaluate_subexp_for_sizeof)
	(evaluate_subexp_for_cast): Remove.
	(parse_and_eval_type): Update.
	* dtrace-probe.c (dtrace_probe::compile_to_ax): Update.
	* d-lang.c (d_op_print_tab): Remove.
	(class d_language) <opcode_print_table>: Remove.
	* c-lang.h (c_op_print_tab): Don't declare.
	* c-lang.c (c_op_print_tab): Remove.
	(class c_language, class cplus_language, class asm_language, class
	minimal_language) <opcode_print_table>: Remove.
	* breakpoint.c (update_watchpoint, watchpoint_check)
	(watchpoint_exp_is_const, watch_command_1): Update.
	* ax-gdb.h (union exp_element): Don't declare.
	* ax-gdb.c (const_var_ref, const_expr, maybe_const_expr)
	(gen_repeat, gen_sizeof, gen_expr_for_cast, gen_expr)
	(gen_expr_binop_rest): Remove.
	(gen_trace_for_expr, gen_eval_for_expr, gen_printf): Update.
	* ada-lang.c (ada_op_print_tab): Remove.
	(class ada_language) <post_parser, opcode_print_table>: Remove.
2021-03-08 07:28:41 -07:00
Tom Tromey
413403fc34 Add an expr::operation_up to struct expression
This adds an expr::operation_up to struct expression, and then
modifies various parts of GDB to use this member when it is non-null.
The list of such spots was a bit surprising to me, and found only
after writing most of the code and then noticing what no longer
compiled.

In a few spots, new accessor methods are added to operation
subclasses, so that code that dissects an expression will work with
the new scheme.

After this change, code that constructs an expression can be switched
to the new form without breaking.

gdb/ChangeLog
2021-03-08  Tom Tromey  <tom@tromey.com>

	* ada-exp.h (class ada_var_value_operation) <get_symbol>: Remove;
	now in superclass.
	* value.h (fetch_subexp_value): Add "op" parameter.
	* value.c (init_if_undefined_command): Update.
	* tracepoint.c (validate_actionline, encode_actions_1): Update.
	* stap-probe.c (stap_probe::compile_to_ax): Update.
	* printcmd.c (set_command): Update.
	* ppc-linux-nat.c (ppc_linux_nat_target::check_condition):
	Update.
	* parser-defs.h (struct expr_builder) <set_operation>: New
	method.
	* parse.c (parse_exp_in_context, exp_uses_objfile): Update.
	* expression.h (struct expression) <first_opcode>: Update.
	<op>: New member.
	* expprint.c (dump_raw_expression, dump_prefix_expression):
	Update.
	* expop.h (class var_value_operation) <get_symbol>: New method.
	(class register_operation) <get_name>: New method.
	(class equal_operation): No longer a typedef, now a subclass.
	(class unop_memval_operation) <get_type>: New method.
	(class assign_operation) <get_lhs>: New method.
	(class unop_cast_operation) <get_type>: New method.
	* eval.c (evaluate_expression, evaluate_type)
	(evaluate_subexpression_type): Update.
	(fetch_subexp_value): Add "op" parameter.
	(parse_and_eval_type): Update.
	* dtrace-probe.c (dtrace_probe::compile_to_ax): Update.
	* breakpoint.c (update_watchpoint, watchpoint_check)
	(watchpoint_exp_is_const, watch_command_1): Update.
	* ax-gdb.c (gen_trace_for_expr, gen_eval_for_expr, gen_printf):
	Update.
2021-03-08 07:28:37 -07:00
Tom Tromey
f73e424f7b Avoid crash from coerce_unspec_val_to_type
With a certain Ada program, ada-lang.c:coerce_unspec_val_to_type can
cause a crash.  This function may copy a value, and in the particular
case in the crash, the new value's type is smaller than the original
type.  This causes coerce_unspec_val_to_type to create a lazy value --
but the original value is also not_lval, so later, when the value is
un-lazied, gdb asserts.

As with the previous patch, we believe there is a compiler bug here,
but it is difficult to reproduce, so we're not completely certain.

In the particular case we saw, the original value has record type, and
the record holds some variable-length arrays.  This leads to the
type's length being 0.  At the same time, the value is optimized out.

This patch changes coerce_unspec_val_to_type to handle an
optimized-out value correctly.

It also slightly restructures this code to avoid a crash should a
not_lval value wind up here.  This is a purely defensive change.

This change also made it clear that value_contents_copy_raw can now be
made static, so that is also done.

gdb/ChangeLog
2021-02-09  Tom Tromey  <tromey@adacore.com>

	* ada-lang.c (coerce_unspec_val_to_type): Avoid making lazy
	not_lval value.
	* value.c (value_contents_copy_raw): Now static.
	* value.h (value_contents_copy_raw): Don't declare.
2021-02-09 12:15:39 -07:00
Simon Marchi
8ee511afd8 gdb: rename get_type_arch to type::arch
... and update all users.

gdb/ChangeLog:

	* gdbtypes.h (get_type_arch): Rename to...
	(struct type) <arch>: ... this, update all users.

Change-Id: I0e3ef938a0afe798ac0da74a9976bbd1d082fc6f
2021-01-28 10:12:10 -05:00
Simon Marchi
6ac373717c gdb: rename type::{arch,objfile} -> type::{arch_owner,objfile_owner}
I think this makes the names of the methods clearer, especially for the
arch.  The type::arch method (which gets the arch owner, or NULL if the
type is not arch owned) is easily confused with the get_type_arch method
(which returns an arch no matter what).  The name "arch_owner" will make
it intuitive that the method returns NULL if the type is not arch-owned.

Also, this frees the type::arch name, so we will be able to morph the
get_type_arch function into the type::arch method.

gdb/ChangeLog:

	* gdbtypes.h (struct type) <arch>: Rename to...
	<arch_owner>: ... this, update all users.
	<objfile>: Rename to...
	<objfile_owner>: ... this, update all users.

Change-Id: Ie7c28684c7b565adec05a7619c418c69429bd8c0
2021-01-28 10:09:02 -05:00
Simon Marchi
344e9841d9 gdb: remove TYPE_OBJFILE macro
Change all users to use the type::objfile method instead.

gdb/ChangeLog:

	* gdbtypes.h (TYPE_OBJFILE): Remove, change all users to use the
	type::objfile method instead.

Change-Id: I6b3f580913fb1fb0cf986b176dba8db68e1fabf9
2021-01-22 12:23:53 -05:00
Andrew Burgess
3c8c6de21d gdb: user variables with components of dynamic type
Consider this Fortran type:

  type :: some_type
     integer, allocatable :: array_one (:,:)
     integer :: a_field
     integer, allocatable :: array_two (:,:)
  end type some_type

And a variable declared:

  type(some_type) :: some_var

Now within GDB we try this:

  (gdb) set $a = some_var
  (gdb) p $a
  $1 = ( array_one =
  ../../src/gdb/value.c:3968: internal-error: Unexpected lazy value type.

Normally, when an internalvar ($a in this case) is created, it is
non-lazy, the value is immediately copied out of the inferior into
GDB's memory.

When printing the internalvar ($a) GDB will extract each field in
turn, so in this case `array_one`.  As the original internalvar is
non-lazy then the extracted field will also be non-lazy, with its
contents immediately copied from the parent internalvar.

However, when the field has a dynamic type this is not the case, in
value_primitive_field we see that any field with dynamic type is
always created lazy.  Further, the content of this field will usually
not have been captured in the contents buffer of the original value, a
field with dynamic location is effectively a pointer value contained
within the parent value, with rules in the DWARF for how to
dereference the pointer.

So, we end up with a lazy lval_internalvar_component representing a
field within an lval_internalvar.  This eventually ends up in
value_fetch_lazy, which currently does not support
lval_internalvar_component, and we see the error above.

My original plan for how to handle this involved extending
value_fetch_lazy to handle lval_internalvar_component.  However, when
I did this I ran into another error:

  (gdb) set $a = some_var
  (gdb) p $a
  $1 = ( array_one = ((1, 1) (1, 1) (1, 1)), a_field = 5, array_two = ((0, 0, 0) (0, 0, 0)) )
  (gdb) p $a%array_one
  $2 = ((1, 1) (1, 1) (1, 1))
  (gdb) p $a%array_one(1,1)
  ../../src/gdb/value.c:1547: internal-error: void set_value_address(value*, CORE_ADDR): Assertion `value->lval == lval_memory' failed.

The problem now is inside set_value_component_location, where we
attempt to set the address for a component if the original parent
value has a dynamic location.  GDB does not expect to ever set the
address on anything other than an lval_memory value (which seems
reasonable).

In order to resolve this issue I initially thought about how an
internalvar should "capture" the value of a program variable at the
moment the var is created.  In an ideal world (I think) GDB would be
able to do this even for values with dynamic type.  So in our above
example doing `set $a = some_var` would capture the content of
'some_var', but also the content of 'array_one', and also 'array_two',
even though these content regions are not contained within the region
of 'some_var'.

Supporting this would require GDB values to be able to carry around
multiple non-contiguous regions of memory as content in some way,
which sounds like a pretty huge change to a core part of GDB.

So, I wondered if there was some other solution that wouldn't require
such a huge change.

What if values with a dynamic location were though of like points with
automatic dereferencing?  Given this C structure:

  struct foo_t {
    int *val;
  }

  struct foo_t my_foo;

Then in GDB:

  (gdb) $a = my_foo

We would expect GDB to capture the pointer value in '$a', but not the
value pointed at by the pointer.  So maybe it's not that unreasonable
to think that given a dynamically typed field GDB will capture the
address of the content, but not the actual content itself.

That's what this patch does.

The approach is to catch this case in set_value_component_location.
When we create a component location (of an lval_internalvar) that has
a dynamic data location, the lval_internalvar_component is changed
into an lval_memory.  After this, both of the above issues are
resolved.  In the first case, the lval_memory is still lazy, but
value_fetch_lazy knows how to handle that.  In the second case, when
we access an element of the array we are now accessing an element of
an lval_memory, not an lval_internalvar_component, and calling
set_value_address on an lval_memory is fine.

gdb/ChangeLog:

	* value.c (set_value_component_location): Adjust the VALUE_LVAL
	for internalvar components that have a dynamic location.

gdb/testsuite/ChangeLog:

	* gdb.fortran/intvar-dynamic-types.exp: New file.
	* gdb.fortran/intvar-dynamic-types.f90: New file.
2021-01-08 11:52:56 +00:00
Joel Brobecker
3666a04883 Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...

gdb/ChangeLog

        Update copyright year range in copyright header of all GDB files.
2021-01-01 12:12:21 +04:00
Tom Tromey
2adab65cc0 Introduce expression::first_opcode
This adds a new helper method, expression::first_opcode, that extracts
the outermost opcode of an expression.  This simplifies some patches
in the expression rewrite series.

Note that this patch requires the earlier patch to avoid manual
dissection of OP_TYPE operations.

2020-12-15  Tom Tromey  <tom@tromey.com>

	* varobj.c (varobj_create): Use first_opcode.
	* value.c (init_if_undefined_command): Use first_opcode.
	* typeprint.c (whatis_exp): Use first_opcode.
	* tracepoint.c (validate_actionline): Use first_opcode.
	(encode_actions_1): Use first_opcode.
	* stack.c (return_command): Use first_opcode.
	* expression.h (struct expression) <first_opcode>: New method.
	* eval.c (parse_and_eval_type): Use first_opcode.
	* dtrace-probe.c (dtrace_process_dof_probe): Use first_opcode.
2020-12-15 18:24:02 -07:00
Tom Tromey
91f8721328 Constify value_internal_function_name
I noticed that value_internal_function_name should have a const return
type.  This patch makes this change.

gdb/ChangeLog
2020-12-04  Tom Tromey  <tromey@adacore.com>

	* value.c (value_internal_function_name): Make return type const.
	* value.h (value_internal_function_name): Make return type const.
2020-12-04 08:17:18 -07:00
Joel Brobecker
e6fcee3a73 Make function fixed_point_scaling_factor a method of struct type
This logically connects this function to the object it inspects.

gdb/ChangeLog:

        * gdbtypes.h (struct type) <fixed_point_scaling_factor>: New method,
        replacing fixed_point_scaling_factor.  All callers updated
        throughout this project.
        (fixed_point_scaling_factor): Delete declaration.
        * gdbtypes.c (type::fixed_point_scaling_factor): Replaces
        fixed_point_scaling_factor.  Adjust implementation accordingly.
2020-11-23 21:49:13 -05:00
Joel Brobecker
d19937a74c Make fixed_point_type_base_type a method of struct type
As suggested by Simon, to logically connect this function to
the object it inspects.

Note that, logically, this method should be "const". Unfortunately,
the implementation iterates on struct type objects starting with "this",
and thus trying to declare the method "const" triggers a compilation
error.

gdb/ChangeLog:

        * gdbtypes.h (struct type) <fixed_point_type_base_type> New method,
        replacing the fixed_point_type_base_type function. All callers
        updated throughout this project.
        (fixed_point_type_base_type): Remove declaration.
        * gdbtypes.c (type::fixed_point_type_base_type): Replaces
        fixed_point_type_base_type.  Adjust implementation accordingly.
2020-11-23 21:48:23 -05:00
Joel Brobecker
c9f0b43fe4 gmp-utils: Convert the read/write methods to using gdb::array_view
This commit changes the interfaces of some of the methods declared
in gmp-utils to take a gdb::array_view of gdb_byte instead of a
(gdb_byte *, size) couple.

This makes these methods' API probably more C++-idiomatic.

        * gmp-utils.h (gdb_mpz::read): Change buf and len parameters
        into one single gdb::array_view parameter.
        (gdb_mpz::write): Likewise.
        (gdb_mpq::read_fixed_point, gdb_mpq::write_fixed_point): Likewise.
        * gmp-utils.c (gdb_mpz::read): Change buf and len parameters
        into one single gdb::array_view parameter.
        Adjust implementation accordingly.
        (gdb_mpz::write): Likewise.
        (gdb_mpq::read_fixed_point, gdb_mpq::write_fixed_point): Likewise.
        * unittests/gmp-utils-selftests.c: Adapt following changes above.
        * valarith.c, valops.c, valprint.c, value.c: Likewise.
2020-11-23 21:46:38 -05:00
Joel Brobecker
0958441403 Add support for printing value of DWARF-based fixed-point type objects
This commit introduces a new kind of type, meant to describe
fixed-point types, using a new code added specifically for
this purpose (TYPE_CODE_FIXED_POINT).

It then adds handling of fixed-point base types in the DWARF reader.

And finally, as a first step, this commit adds support for printing
the value of fixed-point type objects.

Note that this commit has a known issue: Trying to print the value
of a fixed-point object with a format letter (e.g. "print /x NAME")
causes the wrong value to be printed because the scaling factor
is not applied. Since the fix for this issue is isolated, and
this is not a regression, the fix will be made in a pach of its own.
This is meant to simplify review and archeology.

Also, other functionalities related to fixed-point type handling
(ptype, arithmetics, etc), will be added piecemeal as well, for
the same reasons (faciliate reviews and archeology). Related to this,
the testcase gdb.ada/fixed_cmp.exp is adjusted to compile the test
program with -fgnat-encodings=all, so as to force the use of GNAT
encodings, rather than rely on the compiler's default to use them.
The intent is to enhance this testcase to also test the pure DWARF
approach using -fgnat-encodings=minimal as soon as the corresponding
suport gets added in. Thus, the modification to the testcase is made
in a way that it prepares this testcase to be tested in both modes.

gdb/ChangeLog:

        * ada-valprint.c (ada_value_print_1): Add fixed-point type handling.
        * dwarf2/read.c (get_dwarf2_rational_constant)
        (get_dwarf2_unsigned_rational_constant, finish_fixed_point_type)
        (has_zero_over_zero_small_attribute): New functions.
        read_base_type, set_die_type): Add fixed-point type handling.
        * gdb-gdb.py.in: Add fixed-point type handling.
        * gdbtypes.c: #include "gmp-utils.h".
        (create_range_type, set_type_code): Add fixed-point type handling.
        (init_fixed_point_type): New function.
        (is_integral_type, is_scalar_type): Add fixed-point type handling.
        (print_fixed_point_type_info): New function.
        (recursive_dump_type, copy_type_recursive): Add fixed-point type
        handling.
        (fixed_point_type_storage): New typedef.
        (fixed_point_objfile_key): New static global.
        (allocate_fixed_point_type_info, is_fixed_point_type): New functions.
        (fixed_point_type_base_type, fixed_point_scaling_factor): New
        functions.
        * gdbtypes.h: #include "gmp-utils.h".
        (enum type_code) <TYPE_SPECIFIC_FIXED_POINT>: New enum.
        (union type_specific) <fixed_point_info>: New field.
        (struct fixed_point_type_info): New struct.
        (INIT_FIXED_POINT_SPECIFIC, TYPE_FIXED_POINT_INFO): New macros.
        (init_fixed_point_type, is_fixed_point_type)
        (fixed_point_type_base_type, fixed_point_scaling_factor)
        (allocate_fixed_point_type_info): Add declarations.
        * valprint.c (generic_val_print_fixed_point): New function.
        (generic_value_print): Add fixed-point type handling.
        * value.c (value_as_address, unpack_long): Add fixed-point type
        handling.

gdb/testsuite/ChangeLog:

        * gdb.ada/fixed_cmp.exp: Force compilation to use -fgnat-encodings=all.
        * gdb.ada/fixed_points.exp: Add fixed-point variables printing tests.
        * gdb.ada/fixed_points/pck.ads, gdb.ada/fixed_points/pck.adb:
        New files.
        * gdb.ada/fixed_points/fixed_points.adb: Add use of package Pck.

        * gdb.dwarf2/dw2-fixed-point.c, gdb.dwarf2/dw2-fixed-point.exp:
        New files.
2020-11-15 03:12:52 -05:00
Tom Tromey
baf20f7627 Make internalvar_name return a const char *
This changes internalvar_name to return a const char *.

gdb/ChangeLog
2020-11-10  Tom Tromey  <tom@tromey.com>

	* value.h (internalvar_name): Update.
	* value.c (internalvar_name): Make return type const.
2020-11-10 15:46:19 -07:00
Simon Marchi
dda83cd783 gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
Many spots incorrectly use only spaces for indentation (for example,
there are a lot of spots in ada-lang.c).  I've always found it awkward
when I needed to edit one of these spots: do I keep the original wrong
indentation, or do I fix it?  What if the lines around it are also
wrong, do I fix them too?  I probably don't want to fix them in the same
patch, to avoid adding noise to my patch.

So I propose to fix as much as possible once and for all (hopefully).

One typical counter argument for this is that it makes code archeology
more difficult, because git-blame will show this commit as the last
change for these lines.  My counter counter argument is: when
git-blaming, you often need to do "blame the file at the parent commit"
anyway, to go past some other refactor that touched the line you are
interested in, but is not the change you are looking for.  So you
already need a somewhat efficient way to do this.

Using some interactive tool, rather than plain git-blame, makes this
trivial.  For example, I use "tig blame <file>", where going back past
the commit that changed the currently selected line is one keystroke.
It looks like Magit in Emacs does it too (though I've never used it).
Web viewers of Github and Gitlab do it too.  My point is that it won't
really make archeology more difficult.

The other typical counter argument is that it will cause conflicts with
existing patches.  That's true... but it's a one time cost, and those
are not conflicts that are difficult to resolve.  I have also tried "git
rebase --ignore-whitespace", it seems to work well.  Although that will
re-introduce the faulty indentation, so one needs to take care of fixing
the indentation in the patch after that (which is easy).

gdb/ChangeLog:

	* aarch64-linux-tdep.c: Fix indentation.
	* aarch64-ravenscar-thread.c: Fix indentation.
	* aarch64-tdep.c: Fix indentation.
	* aarch64-tdep.h: Fix indentation.
	* ada-lang.c: Fix indentation.
	* ada-lang.h: Fix indentation.
	* ada-tasks.c: Fix indentation.
	* ada-typeprint.c: Fix indentation.
	* ada-valprint.c: Fix indentation.
	* ada-varobj.c: Fix indentation.
	* addrmap.c: Fix indentation.
	* addrmap.h: Fix indentation.
	* agent.c: Fix indentation.
	* aix-thread.c: Fix indentation.
	* alpha-bsd-nat.c: Fix indentation.
	* alpha-linux-tdep.c: Fix indentation.
	* alpha-mdebug-tdep.c: Fix indentation.
	* alpha-nbsd-tdep.c: Fix indentation.
	* alpha-obsd-tdep.c: Fix indentation.
	* alpha-tdep.c: Fix indentation.
	* amd64-bsd-nat.c: Fix indentation.
	* amd64-darwin-tdep.c: Fix indentation.
	* amd64-linux-nat.c: Fix indentation.
	* amd64-linux-tdep.c: Fix indentation.
	* amd64-nat.c: Fix indentation.
	* amd64-obsd-tdep.c: Fix indentation.
	* amd64-tdep.c: Fix indentation.
	* amd64-windows-tdep.c: Fix indentation.
	* annotate.c: Fix indentation.
	* arc-tdep.c: Fix indentation.
	* arch-utils.c: Fix indentation.
	* arch/arm-get-next-pcs.c: Fix indentation.
	* arch/arm.c: Fix indentation.
	* arm-linux-nat.c: Fix indentation.
	* arm-linux-tdep.c: Fix indentation.
	* arm-nbsd-tdep.c: Fix indentation.
	* arm-pikeos-tdep.c: Fix indentation.
	* arm-tdep.c: Fix indentation.
	* arm-tdep.h: Fix indentation.
	* arm-wince-tdep.c: Fix indentation.
	* auto-load.c: Fix indentation.
	* auxv.c: Fix indentation.
	* avr-tdep.c: Fix indentation.
	* ax-gdb.c: Fix indentation.
	* ax-general.c: Fix indentation.
	* bfin-linux-tdep.c: Fix indentation.
	* block.c: Fix indentation.
	* block.h: Fix indentation.
	* blockframe.c: Fix indentation.
	* bpf-tdep.c: Fix indentation.
	* break-catch-sig.c: Fix indentation.
	* break-catch-syscall.c: Fix indentation.
	* break-catch-throw.c: Fix indentation.
	* breakpoint.c: Fix indentation.
	* breakpoint.h: Fix indentation.
	* bsd-uthread.c: Fix indentation.
	* btrace.c: Fix indentation.
	* build-id.c: Fix indentation.
	* buildsym-legacy.h: Fix indentation.
	* buildsym.c: Fix indentation.
	* c-typeprint.c: Fix indentation.
	* c-valprint.c: Fix indentation.
	* c-varobj.c: Fix indentation.
	* charset.c: Fix indentation.
	* cli/cli-cmds.c: Fix indentation.
	* cli/cli-decode.c: Fix indentation.
	* cli/cli-decode.h: Fix indentation.
	* cli/cli-script.c: Fix indentation.
	* cli/cli-setshow.c: Fix indentation.
	* coff-pe-read.c: Fix indentation.
	* coffread.c: Fix indentation.
	* compile/compile-cplus-types.c: Fix indentation.
	* compile/compile-object-load.c: Fix indentation.
	* compile/compile-object-run.c: Fix indentation.
	* completer.c: Fix indentation.
	* corefile.c: Fix indentation.
	* corelow.c: Fix indentation.
	* cp-abi.h: Fix indentation.
	* cp-namespace.c: Fix indentation.
	* cp-support.c: Fix indentation.
	* cp-valprint.c: Fix indentation.
	* cris-linux-tdep.c: Fix indentation.
	* cris-tdep.c: Fix indentation.
	* darwin-nat-info.c: Fix indentation.
	* darwin-nat.c: Fix indentation.
	* darwin-nat.h: Fix indentation.
	* dbxread.c: Fix indentation.
	* dcache.c: Fix indentation.
	* disasm.c: Fix indentation.
	* dtrace-probe.c: Fix indentation.
	* dwarf2/abbrev.c: Fix indentation.
	* dwarf2/attribute.c: Fix indentation.
	* dwarf2/expr.c: Fix indentation.
	* dwarf2/frame.c: Fix indentation.
	* dwarf2/index-cache.c: Fix indentation.
	* dwarf2/index-write.c: Fix indentation.
	* dwarf2/line-header.c: Fix indentation.
	* dwarf2/loc.c: Fix indentation.
	* dwarf2/macro.c: Fix indentation.
	* dwarf2/read.c: Fix indentation.
	* dwarf2/read.h: Fix indentation.
	* elfread.c: Fix indentation.
	* eval.c: Fix indentation.
	* event-top.c: Fix indentation.
	* exec.c: Fix indentation.
	* exec.h: Fix indentation.
	* expprint.c: Fix indentation.
	* f-lang.c: Fix indentation.
	* f-typeprint.c: Fix indentation.
	* f-valprint.c: Fix indentation.
	* fbsd-nat.c: Fix indentation.
	* fbsd-tdep.c: Fix indentation.
	* findvar.c: Fix indentation.
	* fork-child.c: Fix indentation.
	* frame-unwind.c: Fix indentation.
	* frame-unwind.h: Fix indentation.
	* frame.c: Fix indentation.
	* frv-linux-tdep.c: Fix indentation.
	* frv-tdep.c: Fix indentation.
	* frv-tdep.h: Fix indentation.
	* ft32-tdep.c: Fix indentation.
	* gcore.c: Fix indentation.
	* gdb_bfd.c: Fix indentation.
	* gdbarch.sh: Fix indentation.
	* gdbarch.c: Re-generate
	* gdbarch.h: Re-generate.
	* gdbcore.h: Fix indentation.
	* gdbthread.h: Fix indentation.
	* gdbtypes.c: Fix indentation.
	* gdbtypes.h: Fix indentation.
	* glibc-tdep.c: Fix indentation.
	* gnu-nat.c: Fix indentation.
	* gnu-nat.h: Fix indentation.
	* gnu-v2-abi.c: Fix indentation.
	* gnu-v3-abi.c: Fix indentation.
	* go32-nat.c: Fix indentation.
	* guile/guile-internal.h: Fix indentation.
	* guile/scm-cmd.c: Fix indentation.
	* guile/scm-frame.c: Fix indentation.
	* guile/scm-iterator.c: Fix indentation.
	* guile/scm-math.c: Fix indentation.
	* guile/scm-ports.c: Fix indentation.
	* guile/scm-pretty-print.c: Fix indentation.
	* guile/scm-value.c: Fix indentation.
	* h8300-tdep.c: Fix indentation.
	* hppa-linux-nat.c: Fix indentation.
	* hppa-linux-tdep.c: Fix indentation.
	* hppa-nbsd-nat.c: Fix indentation.
	* hppa-nbsd-tdep.c: Fix indentation.
	* hppa-obsd-nat.c: Fix indentation.
	* hppa-tdep.c: Fix indentation.
	* hppa-tdep.h: Fix indentation.
	* i386-bsd-nat.c: Fix indentation.
	* i386-darwin-nat.c: Fix indentation.
	* i386-darwin-tdep.c: Fix indentation.
	* i386-dicos-tdep.c: Fix indentation.
	* i386-gnu-nat.c: Fix indentation.
	* i386-linux-nat.c: Fix indentation.
	* i386-linux-tdep.c: Fix indentation.
	* i386-nto-tdep.c: Fix indentation.
	* i386-obsd-tdep.c: Fix indentation.
	* i386-sol2-nat.c: Fix indentation.
	* i386-tdep.c: Fix indentation.
	* i386-tdep.h: Fix indentation.
	* i386-windows-tdep.c: Fix indentation.
	* i387-tdep.c: Fix indentation.
	* i387-tdep.h: Fix indentation.
	* ia64-libunwind-tdep.c: Fix indentation.
	* ia64-libunwind-tdep.h: Fix indentation.
	* ia64-linux-nat.c: Fix indentation.
	* ia64-linux-tdep.c: Fix indentation.
	* ia64-tdep.c: Fix indentation.
	* ia64-tdep.h: Fix indentation.
	* ia64-vms-tdep.c: Fix indentation.
	* infcall.c: Fix indentation.
	* infcmd.c: Fix indentation.
	* inferior.c: Fix indentation.
	* infrun.c: Fix indentation.
	* iq2000-tdep.c: Fix indentation.
	* language.c: Fix indentation.
	* linespec.c: Fix indentation.
	* linux-fork.c: Fix indentation.
	* linux-nat.c: Fix indentation.
	* linux-tdep.c: Fix indentation.
	* linux-thread-db.c: Fix indentation.
	* lm32-tdep.c: Fix indentation.
	* m2-lang.c: Fix indentation.
	* m2-typeprint.c: Fix indentation.
	* m2-valprint.c: Fix indentation.
	* m32c-tdep.c: Fix indentation.
	* m32r-linux-tdep.c: Fix indentation.
	* m32r-tdep.c: Fix indentation.
	* m68hc11-tdep.c: Fix indentation.
	* m68k-bsd-nat.c: Fix indentation.
	* m68k-linux-nat.c: Fix indentation.
	* m68k-linux-tdep.c: Fix indentation.
	* m68k-tdep.c: Fix indentation.
	* machoread.c: Fix indentation.
	* macrocmd.c: Fix indentation.
	* macroexp.c: Fix indentation.
	* macroscope.c: Fix indentation.
	* macrotab.c: Fix indentation.
	* macrotab.h: Fix indentation.
	* main.c: Fix indentation.
	* mdebugread.c: Fix indentation.
	* mep-tdep.c: Fix indentation.
	* mi/mi-cmd-catch.c: Fix indentation.
	* mi/mi-cmd-disas.c: Fix indentation.
	* mi/mi-cmd-env.c: Fix indentation.
	* mi/mi-cmd-stack.c: Fix indentation.
	* mi/mi-cmd-var.c: Fix indentation.
	* mi/mi-cmds.c: Fix indentation.
	* mi/mi-main.c: Fix indentation.
	* mi/mi-parse.c: Fix indentation.
	* microblaze-tdep.c: Fix indentation.
	* minidebug.c: Fix indentation.
	* minsyms.c: Fix indentation.
	* mips-linux-nat.c: Fix indentation.
	* mips-linux-tdep.c: Fix indentation.
	* mips-nbsd-tdep.c: Fix indentation.
	* mips-tdep.c: Fix indentation.
	* mn10300-linux-tdep.c: Fix indentation.
	* mn10300-tdep.c: Fix indentation.
	* moxie-tdep.c: Fix indentation.
	* msp430-tdep.c: Fix indentation.
	* namespace.h: Fix indentation.
	* nat/fork-inferior.c: Fix indentation.
	* nat/gdb_ptrace.h: Fix indentation.
	* nat/linux-namespaces.c: Fix indentation.
	* nat/linux-osdata.c: Fix indentation.
	* nat/netbsd-nat.c: Fix indentation.
	* nat/x86-dregs.c: Fix indentation.
	* nbsd-nat.c: Fix indentation.
	* nbsd-tdep.c: Fix indentation.
	* nios2-linux-tdep.c: Fix indentation.
	* nios2-tdep.c: Fix indentation.
	* nto-procfs.c: Fix indentation.
	* nto-tdep.c: Fix indentation.
	* objfiles.c: Fix indentation.
	* objfiles.h: Fix indentation.
	* opencl-lang.c: Fix indentation.
	* or1k-tdep.c: Fix indentation.
	* osabi.c: Fix indentation.
	* osabi.h: Fix indentation.
	* osdata.c: Fix indentation.
	* p-lang.c: Fix indentation.
	* p-typeprint.c: Fix indentation.
	* p-valprint.c: Fix indentation.
	* parse.c: Fix indentation.
	* ppc-linux-nat.c: Fix indentation.
	* ppc-linux-tdep.c: Fix indentation.
	* ppc-nbsd-nat.c: Fix indentation.
	* ppc-nbsd-tdep.c: Fix indentation.
	* ppc-obsd-nat.c: Fix indentation.
	* ppc-ravenscar-thread.c: Fix indentation.
	* ppc-sysv-tdep.c: Fix indentation.
	* ppc64-tdep.c: Fix indentation.
	* printcmd.c: Fix indentation.
	* proc-api.c: Fix indentation.
	* producer.c: Fix indentation.
	* producer.h: Fix indentation.
	* prologue-value.c: Fix indentation.
	* prologue-value.h: Fix indentation.
	* psymtab.c: Fix indentation.
	* python/py-arch.c: Fix indentation.
	* python/py-bpevent.c: Fix indentation.
	* python/py-event.c: Fix indentation.
	* python/py-event.h: Fix indentation.
	* python/py-finishbreakpoint.c: Fix indentation.
	* python/py-frame.c: Fix indentation.
	* python/py-framefilter.c: Fix indentation.
	* python/py-inferior.c: Fix indentation.
	* python/py-infthread.c: Fix indentation.
	* python/py-objfile.c: Fix indentation.
	* python/py-prettyprint.c: Fix indentation.
	* python/py-registers.c: Fix indentation.
	* python/py-signalevent.c: Fix indentation.
	* python/py-stopevent.c: Fix indentation.
	* python/py-stopevent.h: Fix indentation.
	* python/py-threadevent.c: Fix indentation.
	* python/py-tui.c: Fix indentation.
	* python/py-unwind.c: Fix indentation.
	* python/py-value.c: Fix indentation.
	* python/py-xmethods.c: Fix indentation.
	* python/python-internal.h: Fix indentation.
	* python/python.c: Fix indentation.
	* ravenscar-thread.c: Fix indentation.
	* record-btrace.c: Fix indentation.
	* record-full.c: Fix indentation.
	* record.c: Fix indentation.
	* reggroups.c: Fix indentation.
	* regset.h: Fix indentation.
	* remote-fileio.c: Fix indentation.
	* remote.c: Fix indentation.
	* reverse.c: Fix indentation.
	* riscv-linux-tdep.c: Fix indentation.
	* riscv-ravenscar-thread.c: Fix indentation.
	* riscv-tdep.c: Fix indentation.
	* rl78-tdep.c: Fix indentation.
	* rs6000-aix-tdep.c: Fix indentation.
	* rs6000-lynx178-tdep.c: Fix indentation.
	* rs6000-nat.c: Fix indentation.
	* rs6000-tdep.c: Fix indentation.
	* rust-lang.c: Fix indentation.
	* rx-tdep.c: Fix indentation.
	* s12z-tdep.c: Fix indentation.
	* s390-linux-tdep.c: Fix indentation.
	* score-tdep.c: Fix indentation.
	* ser-base.c: Fix indentation.
	* ser-mingw.c: Fix indentation.
	* ser-uds.c: Fix indentation.
	* ser-unix.c: Fix indentation.
	* serial.c: Fix indentation.
	* sh-linux-tdep.c: Fix indentation.
	* sh-nbsd-tdep.c: Fix indentation.
	* sh-tdep.c: Fix indentation.
	* skip.c: Fix indentation.
	* sol-thread.c: Fix indentation.
	* solib-aix.c: Fix indentation.
	* solib-darwin.c: Fix indentation.
	* solib-frv.c: Fix indentation.
	* solib-svr4.c: Fix indentation.
	* solib.c: Fix indentation.
	* source.c: Fix indentation.
	* sparc-linux-tdep.c: Fix indentation.
	* sparc-nbsd-tdep.c: Fix indentation.
	* sparc-obsd-tdep.c: Fix indentation.
	* sparc-ravenscar-thread.c: Fix indentation.
	* sparc-tdep.c: Fix indentation.
	* sparc64-linux-tdep.c: Fix indentation.
	* sparc64-nbsd-tdep.c: Fix indentation.
	* sparc64-obsd-tdep.c: Fix indentation.
	* sparc64-tdep.c: Fix indentation.
	* stabsread.c: Fix indentation.
	* stack.c: Fix indentation.
	* stap-probe.c: Fix indentation.
	* stubs/ia64vms-stub.c: Fix indentation.
	* stubs/m32r-stub.c: Fix indentation.
	* stubs/m68k-stub.c: Fix indentation.
	* stubs/sh-stub.c: Fix indentation.
	* stubs/sparc-stub.c: Fix indentation.
	* symfile-mem.c: Fix indentation.
	* symfile.c: Fix indentation.
	* symfile.h: Fix indentation.
	* symmisc.c: Fix indentation.
	* symtab.c: Fix indentation.
	* symtab.h: Fix indentation.
	* target-float.c: Fix indentation.
	* target.c: Fix indentation.
	* target.h: Fix indentation.
	* tic6x-tdep.c: Fix indentation.
	* tilegx-linux-tdep.c: Fix indentation.
	* tilegx-tdep.c: Fix indentation.
	* top.c: Fix indentation.
	* tracefile-tfile.c: Fix indentation.
	* tracepoint.c: Fix indentation.
	* tui/tui-disasm.c: Fix indentation.
	* tui/tui-io.c: Fix indentation.
	* tui/tui-regs.c: Fix indentation.
	* tui/tui-stack.c: Fix indentation.
	* tui/tui-win.c: Fix indentation.
	* tui/tui-winsource.c: Fix indentation.
	* tui/tui.c: Fix indentation.
	* typeprint.c: Fix indentation.
	* ui-out.h: Fix indentation.
	* unittests/copy_bitwise-selftests.c: Fix indentation.
	* unittests/memory-map-selftests.c: Fix indentation.
	* utils.c: Fix indentation.
	* v850-tdep.c: Fix indentation.
	* valarith.c: Fix indentation.
	* valops.c: Fix indentation.
	* valprint.c: Fix indentation.
	* valprint.h: Fix indentation.
	* value.c: Fix indentation.
	* value.h: Fix indentation.
	* varobj.c: Fix indentation.
	* vax-tdep.c: Fix indentation.
	* windows-nat.c: Fix indentation.
	* windows-tdep.c: Fix indentation.
	* xcoffread.c: Fix indentation.
	* xml-syscall.c: Fix indentation.
	* xml-tdesc.c: Fix indentation.
	* xstormy16-tdep.c: Fix indentation.
	* xtensa-config.c: Fix indentation.
	* xtensa-linux-nat.c: Fix indentation.
	* xtensa-linux-tdep.c: Fix indentation.
	* xtensa-tdep.c: Fix indentation.

gdbserver/ChangeLog:

	* ax.cc: Fix indentation.
	* dll.cc: Fix indentation.
	* inferiors.h: Fix indentation.
	* linux-low.cc: Fix indentation.
	* linux-nios2-low.cc: Fix indentation.
	* linux-ppc-ipa.cc: Fix indentation.
	* linux-ppc-low.cc: Fix indentation.
	* linux-x86-low.cc: Fix indentation.
	* linux-xtensa-low.cc: Fix indentation.
	* regcache.cc: Fix indentation.
	* server.cc: Fix indentation.
	* tracepoint.cc: Fix indentation.

gdbsupport/ChangeLog:

	* common-exceptions.h: Fix indentation.
	* event-loop.cc: Fix indentation.
	* fileio.cc: Fix indentation.
	* filestuff.cc: Fix indentation.
	* gdb-dlfcn.cc: Fix indentation.
	* gdb_string_view.h: Fix indentation.
	* job-control.cc: Fix indentation.
	* signals.cc: Fix indentation.

Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-11-02 10:28:45 -05:00
Tom Tromey
20a5fcbd5b Handle bit offset and bit size in base types
PR symtab/25470 points out that the Zig programming language allows
integers of various bit sizes (including zero), not just sizes that
are a multiple of 8.

This is supported in DWARF by applying both a byte size and a
DW_AT_bit_size.

This patch adds support for this feature to integer and boolean types.
Other base types are not handled -- for floating-point types, this
didn't seem to make sense, and for character types I didn't see much
need.  (These can be added later if desired.)

I've also added support for DW_AT_data_bit_offset at the same time.  I
don't know whether the Zig compiler requires this, but it was
described in the same section in the DWARF standard and was easy to
add.

A new test case is supplied, using the DWARF assembler.

gdb/ChangeLog
2020-09-23  Tom Tromey  <tom@tromey.com>

	PR symtab/25470:
	* value.c (unpack_long, pack_long, pack_unsigned_long): Handle bit
	offset and bit size.
	* printcmd.c (print_scalar_formatted): Handle zero-length
	integer.
	(print_scalar_formatted): Use bit_size_differs_p.
	* gdbtypes.h (enum type_specific_kind) <TYPE_SPECIFIC_INT>: New
	constant.
	(union type_specific): <int_stuff>: New member.
	(struct type) <bit_size_differs_p, bit_size, bit_offset>: New
	methods.
	* gdbtypes.c (init_integer_type, init_boolean_type): Initialize
	TYPE_SPECIFIC_FIELD.
	(recursive_dump_type, copy_type_recursive): Update.
	* dwarf2/read.c (read_base_type): Handle DW_AT_bit_size and
	DW_AT_data_bit_offset.

gdb/testsuite/ChangeLog
2020-09-23  Tom Tromey  <tom@tromey.com>

	* gdb.dwarf2/intbits.exp: New file.
	* gdb.dwarf2/intbits.c: New file.
2020-09-23 09:39:24 -06:00
Tom Tromey
6108fd1823 Use htab_up in type copying
This changes create_copied_types_hash to return an htab_up, then
modifies the callers to avoid explicit use of htab_delete.

gdb/ChangeLog
2020-09-17  Tom Tromey  <tom@tromey.com>

	* value.c (preserve_values): Update.
	* python/py-type.c (save_objfile_types): Update.
	* guile/scm-type.c (save_objfile_types): Update.
	* gdbtypes.h (create_copied_types_hash): Return htab_up.
	* gdbtypes.c (create_copied_types_hash): Return htab_up.
	* compile/compile-object-run.c (compile_object_run): Update.
2020-09-17 11:58:56 -06:00
Andrew Burgess
22c12a6c70 gdb: Convert language_data::string_lower_bound to a method
Convert language_data::string_lower_bound member variable to a virtual
method language_defn::string_lower_bound.

Over all of the languages we currently support there are currently
only two values for the lower bound, 0 or 1.  I noticed that in all
cases, if a language has C style arrays then the lower bound is 0,
otherwise the lower bound is 1.  So the default for the virtual method
in language.h makes use of this, which means languages don't have to
worry about providing a string_lower_bound method at all.

Except for Modula2.  This language is defined to not have C style
arrays, but has a string_lower_bound index of 0, this behaviour is
maintained after this commit by having Modula2 be the only language
that overrides the string_lower_bound method.

There should be no user visible changes after this commit.

gdb/ChangeLog:

	* ada-lang.c (ada_language_data): Remove string_lower_bound
	initializer.
	* c-lang.c (c_language_data): Likewise.
	(cplus_language_data): Likewise.
	(asm_language_data): Likewise.
	(minimal_language_data): Likewise.
	* d-lang.c (d_language_data): Likewise.
	* f-lang.c (f_language_data): Likewise.
	* go-lang.c (go_language_data): Likewise.
	* language.c (unknown_language_data): Likewise.
	(auto_language_data): Likewise.
	* language.h (language_data): Remove string_lower_bound field.
	(language_defn::string_lower_bound): New member function.
	* m2-lang.c (m2_language_data): Remove string_lower_bound
	initializer.
	(m2_language::string_lower_bound): New member function.
	* objc-lang.c (objc_language_data): Remove string_lower_bound
	initializer.
	* opencl-lang.c (opencl_language_data): Likewise.
	* p-lang.c (pascal_language_data): Likewise.
	* rust-lang.c (rust_language_data): Likewise.
	* valops.c (value_cstring): Update call to string_lower_bound.
	(value_string): Likewise.
	* value.c (allocate_repeated_value): Likewise.
2020-09-16 10:16:48 +01:00
Andrew Burgess
67bd3fd5e4 gdb: Convert language_data::c_style_arrays to a method
Convert language_data::c_style_arrays member variable to a virtual
method language_defn::c_style_arrays_p.

There should be no user visible changes after this commit.

gdb/ChangeLog:

	* ada-lang.c (ada_language_data): Remove c_style_arrays
	initializer.
	(ada_language::c_style_arrays_p): New member fuction.
	* c-lang.c (c_language_data): Remove c_style_arrays
	initializer.
	(cplus_language_data): Likewise.
	(asm_language_data): Likewise.
	(minimal_language_data): Likewise.
	* d-lang.c (d_language_data): Likewise.
	* eval.c (ptrmath_type_p): Update call to c_style_arrays_p.
	* f-lang.c (f_language_data): Remove c_style_arrays initializer.
	(f_language::c_style_arrays_p): New member function.
	* go-lang.c (go_language_data): Remove c_style_arrays initializer.
	* infcall.c (value_arg_coerce): Update call to c_style_arrays_p.
	* language.c (unknown_language_data): Remove c_style_arrays
	initializer.
	(auto_language_data): Likewise.
	* language.h (language_data): Remove c_style_arrays field.
	(language_defn::c_style_arrays_p): New member function.
	* m2-lang.c (m2_language_data): Remove c_style_arrays initializer.
	(m2_language::c_style_arrays_p): New member function.
	* objc-lang.c (objc_language_data): Remove c_style_arrays
	initializer.
	* opencl-lang.c (opencl_language_data): Likewise.
	* p-lang.c (pascal_language_data): Likewise.
	* rust-lang.c (rust_language_data): Likewise.
	* valarith.c (value_subscript): Update call to c_style_arrays_p,
	and update local variable to a bool.
	* valops.c (value_cast): Update call to c_style_arrays_p.
	(value_array): Likewise.
	* value.c (coerce_array): Likewise.
2020-09-16 10:16:47 +01:00
Simon Marchi
bd63c87008 gdb: remove TYPE_VECTOR
gdb/ChangeLog:

	* gdbtypes.h (TYPE_VECTOR): Remove, replace all
	uses with type::is_vector.

Change-Id: I1ac28755af44b1585c190553f9961288c8fb9137
2020-09-14 11:08:03 -04:00
Simon Marchi
c6d940a956 gdb: remove TYPE_UNSIGNED
gdb/ChangeLog:

	* gdbtypes.h (TYPE_UNSIGNED): Remove, replace all uses with
	type::is_unsigned.

Change-Id: I84f76f5cd44ff7294e421d317376a9e476bc8666
2020-09-14 11:07:57 -04:00
Luis Machado
6d8a0a5e90 Fix malloc allocation size sanity check
During debugging of PR26362, it was noticed that the malloc size check
in check_type_length_before_alloc wasn't detecting an allocation attempt
of a huge amount of bytes, making GDB run into an internal error.

This happens because we're using an int to store a type's length. When the
type length is large enough, the int will overflow and the max_value_size
check won't work anymore.

The following patch fixes this by making the length variable a ULONGEST.

Printing statements were also updated to show the correct number of bytes.

gdb/ChangeLog:

2020-08-12  Luis Machado  <luis.machado@linaro.org>

	* value.c (check_type_length_before_alloc): Use ULONGEST to store a
	type's length.
	Use %s and pulongest to print the length.
2020-08-12 17:02:32 -03:00
Andrew Burgess
e79eb02f2f gdb/fortran: resolve dynamic types when readjusting after an indirection
After dereferencing a pointer (in value_ind) or following a
reference (in coerce_ref) we call readjust_indirect_value_type to
"fixup" the type of the resulting value object.

This fixup handles cases relating to the type of the resulting object
being different (a sub-class) of the original pointers target type.

If we encounter a pointer to a dynamic type then after dereferencing a
pointer (in value_ind) the type of the object created will have had
its dynamic type resolved.  However, in readjust_indirect_value_type,
we use the target type of the original pointer to "fixup" the type of
the resulting value.  In this case, the target type will be a dynamic
type, so the resulting value object, once again has a dynamic type.

This then triggers an assertion later within GDB.

The solution I propose here is that we call resolve_dynamic_type on
the pointer's target type (within readjust_indirect_value_type) so
that the resulting value is not converted back to a dynamic type.

The test case is based on the original test in the bug report.

gdb/ChangeLog:

	PR fortran/23051
	PR fortran/26139
	* valops.c (value_ind): Pass address to
	readjust_indirect_value_type.
	* value.c (readjust_indirect_value_type): Make parameter
	non-const, and add extra address parameter.  Resolve original type
	before using it.
	* value.h (readjust_indirect_value_type): Update function
	signature and comment.

gdb/testsuite/ChangeLog:

	PR fortran/23051
	PR fortran/26139
	* gdb.fortran/class-allocatable-array.exp: New file.
	* gdb.fortran/class-allocatable-array.f90: New file.
	* gdb.fortran/pointer-to-pointer.exp: New file.
	* gdb.fortran/pointer-to-pointer.f90: New file.
2020-07-25 01:30:20 +01:00
Simon Marchi
599088e3ff gdb: remove TYPE_RANGE_DATA macro
Remove it in favor of using type::bounds directly.

gdb/ChangeLog:

	* gdbtypes.h (TYPE_RANGE_DATA): Remove.  Update callers to use
	the type::bounds method directly.

Change-Id: Id4fab22af0a94cbf505f78b01b3ee5b3d682fba2
2020-07-12 22:58:51 -04:00
Pedro Alves
6d7aa59270 Fix crash if connection drops in scoped_restore_current_thread's ctor, part 1
Running the testsuite against an Asan-enabled build of GDB makes
gdb.base/multi-target.exp expose this bug.

scoped_restore_current_thread's ctor calls get_frame_id to record the
selected frame's ID to restore later.  If the frame ID hasn't been
computed yet, it will be computed on the spot, and that will usually
require accessing the target's memory and registers, which requires
remote accesses.  If the remote connection closes while we're
computing the frame ID, the remote target exits its inferiors,
unpushes itself, and throws a TARGET_CLOSE_ERROR error.

If that happens, GDB can currently crash, here:

> ==18555==ERROR: AddressSanitizer: heap-use-after-free on address 0x621004670aa8 at pc 0x0000007ab125 bp 0x7ffdecaecd20 sp 0x7ffdecaecd10
> READ of size 4 at 0x621004670aa8 thread T0
>     #0 0x7ab124 in dwarf2_frame_this_id src/binutils-gdb/gdb/dwarf2/frame.c:1228
>     #1 0x983ec5 in compute_frame_id src/binutils-gdb/gdb/frame.c:550
>     #2 0x9841ee in get_frame_id(frame_info*) src/binutils-gdb/gdb/frame.c:582
>     #3 0x1093faa in scoped_restore_current_thread::scoped_restore_current_thread() src/binutils-gdb/gdb/thread.c:1462
>     #4 0xaee5ba in fetch_inferior_event(void*) src/binutils-gdb/gdb/infrun.c:3968
>     #5 0xaa990b in inferior_event_handler(inferior_event_type, void*) src/binutils-gdb/gdb/inf-loop.c:43
>     #6 0xea61b6 in remote_async_serial_handler src/binutils-gdb/gdb/remote.c:14161
>     #7 0xefca8a in run_async_handler_and_reschedule src/binutils-gdb/gdb/ser-base.c:137
>     #8 0xefcd23 in fd_event src/binutils-gdb/gdb/ser-base.c:188
>     #9 0x15a7416 in handle_file_event src/binutils-gdb/gdbsupport/event-loop.cc:548
>     #10 0x15a7c36 in gdb_wait_for_event src/binutils-gdb/gdbsupport/event-loop.cc:673
>     #11 0x15a5dbb in gdb_do_one_event() src/binutils-gdb/gdbsupport/event-loop.cc:215
>     #12 0xbfe62d in start_event_loop src/binutils-gdb/gdb/main.c:356
>     #13 0xbfe935 in captured_command_loop src/binutils-gdb/gdb/main.c:416
>     #14 0xc01d39 in captured_main src/binutils-gdb/gdb/main.c:1253
>     #15 0xc01dc9 in gdb_main(captured_main_args*) src/binutils-gdb/gdb/main.c:1268
>     #16 0x414ddd in main src/binutils-gdb/gdb/gdb.c:32
>     #17 0x7f590110b82f in __libc_start_main ../csu/libc-start.c:291
>     #18 0x414bd8 in _start (build/binutils-gdb/gdb/gdb+0x414bd8)

What happens is that above, we're in dwarf2_frame_this_id, just after
the dwarf2_frame_cache call.  The "cache" variable that the
dwarf2_frame_cache function returned is already stale.  It's been
released here, from within the dwarf2_frame_cache:

(top-gdb) bt
#0  reinit_frame_cache () at src/gdb/frame.c:1855
#1  0x00000000014ff7b0 in switch_to_no_thread () at src/gdb/thread.c:1301
#2  0x0000000000f66d3e in switch_to_inferior_no_thread (inf=0x615000338180) at src/gdb/inferior.c:626
#3  0x00000000012f3826 in remote_unpush_target (target=0x6170000c5900) at src/gdb/remote.c:5521
#4  0x00000000013097e0 in remote_target::readchar (this=0x6170000c5900, timeout=2) at src/gdb/remote.c:9137
#5  0x000000000130be4d in remote_target::getpkt_or_notif_sane_1 (this=0x6170000c5900, buf=0x6170000c5918, forever=0, expecting_notif=0, is_notif=0x0) at src/gdb/remote.c:9683
#6  0x000000000130c8ab in remote_target::getpkt_sane (this=0x6170000c5900, buf=0x6170000c5918, forever=0) at src/gdb/remote.c:9790
#7  0x000000000130bc0d in remote_target::getpkt (this=0x6170000c5900, buf=0x6170000c5918, forever=0) at src/gdb/remote.c:9623
#8  0x000000000130838e in remote_target::remote_read_bytes_1 (this=0x6170000c5900, memaddr=0x7fffffffcdc0, myaddr=0x6080000ad3bc "", len_units=64, unit_size=1, xfered_len_units=0x7fff6a29b9a0) at src/gdb/remote.c:8860
#9  0x0000000001308bd2 in remote_target::remote_read_bytes (this=0x6170000c5900, memaddr=0x7fffffffcdc0, myaddr=0x6080000ad3bc "", len=64, unit_size=1, xfered_len=0x7fff6a29b9a0) at src/gdb/remote.c:8987
#10 0x0000000001311ed1 in remote_target::xfer_partial (this=0x6170000c5900, object=TARGET_OBJECT_MEMORY, annex=0x0, readbuf=0x6080000ad3bc "", writebuf=0x0, offset=140737488342464, len=64, xfered_len=0x7fff6a29b9a0) at src/gdb/remote.c:10988
#11 0x00000000014ba969 in raw_memory_xfer_partial (ops=0x6170000c5900, readbuf=0x6080000ad3bc "", writebuf=0x0, memaddr=140737488342464, len=64, xfered_len=0x7fff6a29b9a0) at src/gdb/target.c:918
#12 0x00000000014bb720 in target_xfer_partial (ops=0x6170000c5900, object=TARGET_OBJECT_RAW_MEMORY, annex=0x0, readbuf=0x6080000ad3bc "", writebuf=0x0, offset=140737488342464, len=64, xfered_len=0x7fff6a29b9a0) at src/gdb/target.c:1148
#13 0x00000000014bc3b5 in target_read_partial (ops=0x6170000c5900, object=TARGET_OBJECT_RAW_MEMORY, annex=0x0, buf=0x6080000ad3bc "", offset=140737488342464, len=64, xfered_len=0x7fff6a29b9a0) at src/gdb/target.c:1380
#14 0x00000000014bc593 in target_read (ops=0x6170000c5900, object=TARGET_OBJECT_RAW_MEMORY, annex=0x0, buf=0x6080000ad3bc "", offset=140737488342464, len=64) at src/gdb/target.c:1419
#15 0x00000000014bbd4d in target_read_raw_memory (memaddr=0x7fffffffcdc0, myaddr=0x6080000ad3bc "", len=64) at src/gdb/target.c:1252
#16 0x0000000000bf27df in dcache_read_line (dcache=0x6060001eddc0, db=0x6080000ad3a0) at src/gdb/dcache.c:336
#17 0x0000000000bf2b72 in dcache_peek_byte (dcache=0x6060001eddc0, addr=0x7fffffffcdd8, ptr=0x6020001231b0 "") at src/gdb/dcache.c:403
#18 0x0000000000bf3103 in dcache_read_memory_partial (ops=0x6170000c5900, dcache=0x6060001eddc0, memaddr=0x7fffffffcdd8, myaddr=0x6020001231b0 "", len=8, xfered_len=0x7fff6a29bf20) at src/gdb/dcache.c:484
#19 0x00000000014bafe9 in memory_xfer_partial_1 (ops=0x6170000c5900, object=TARGET_OBJECT_STACK_MEMORY, readbuf=0x6020001231b0 "", writebuf=0x0, memaddr=140737488342488, len=8, xfered_len=0x7fff6a29bf20) at src/gdb/target.c:1034
#20 0x00000000014bb212 in memory_xfer_partial (ops=0x6170000c5900, object=TARGET_OBJECT_STACK_MEMORY, readbuf=0x6020001231b0 "", writebuf=0x0, memaddr=140737488342488, len=8, xfered_len=0x7fff6a29bf20) at src/gdb/target.c:1076
#21 0x00000000014bb6b3 in target_xfer_partial (ops=0x6170000c5900, object=TARGET_OBJECT_STACK_MEMORY, annex=0x0, readbuf=0x6020001231b0 "", writebuf=0x0, offset=140737488342488, len=8, xfered_len=0x7fff6a29bf20) at src/gdb/target.c:1133
#22 0x000000000164564d in read_value_memory (val=0x60f000029440, bit_offset=0, stack=1, memaddr=0x7fffffffcdd8, buffer=0x6020001231b0 "", length=8) at src/gdb/valops.c:956
#23 0x0000000001680fff in value_fetch_lazy_memory (val=0x60f000029440) at src/gdb/value.c:3764
#24 0x0000000001681efd in value_fetch_lazy (val=0x60f000029440) at src/gdb/value.c:3910
#25 0x0000000001676143 in value_optimized_out (value=0x60f000029440) at src/gdb/value.c:1411
#26 0x0000000000e0fcb8 in frame_register_unwind (next_frame=0x6210066bfde0, regnum=16, optimizedp=0x7fff6a29c200, unavailablep=0x7fff6a29c240, lvalp=0x7fff6a29c2c0, addrp=0x7fff6a29c300, realnump=0x7fff6a29c280, bufferp=0x7fff6a29c3a0 "@\304)j\377\177") at src/gdb/frame.c:1144
#27 0x0000000000e10418 in frame_unwind_register (next_frame=0x6210066bfde0, regnum=16, buf=0x7fff6a29c3a0 "@\304)j\377\177") at src/gdb/frame.c:1196
#28 0x0000000000f00431 in i386_unwind_pc (gdbarch=0x6210043d0110, next_frame=0x6210066bfde0) at src/gdb/i386-tdep.c:1969
#29 0x0000000000e39724 in gdbarch_unwind_pc (gdbarch=0x6210043d0110, next_frame=0x6210066bfde0) at src/gdb/gdbarch.c:3056
#30 0x0000000000c2ea90 in dwarf2_tailcall_sniffer_first (this_frame=0x6210066bfde0, tailcall_cachep=0x6210066bfee0, entry_cfa_sp_offsetp=0x0) at src/gdb/dwarf2/frame-tailcall.c:423
#31 0x0000000000c36bdb in dwarf2_frame_cache (this_frame=0x6210066bfde0, this_cache=0x6210066bfdf8) at src/gdb/dwarf2/frame.c:1198
#32 0x0000000000c36eb3 in dwarf2_frame_this_id (this_frame=0x6210066bfde0, this_cache=0x6210066bfdf8, this_id=0x6210066bfe40) at src/gdb/dwarf2/frame.c:1226

Note that remote_target::readchar in frame #4 throws
TARGET_CLOSE_ERROR after the remote_unpush_target in frame #3 returns.

The problem is that the TARGET_CLOSE_ERROR is swallowed by
value_optimized_out in frame #25.

If we fix that one, then we run into dwarf2_tailcall_sniffer_first
swallowing the exception in frame #30 too.

The attached patch fixes it by making those spots swallow fewer kinds
of errors.

gdb/ChangeLog:

	* frame-tailcall.c (dwarf2_tailcall_sniffer_first): Only swallow
	NO_ENTRY_VALUE_ERROR / MEMORY_ERROR / OPTIMIZED_OUT_ERROR /
	NOT_AVAILABLE_ERROR.
	* value.c (value_optimized_out): Only swallow MEMORY_ERROR /
	OPTIMIZED_OUT_ERROR / NOT_AVAILABLE_ERROR.
2020-07-10 23:53:34 +01:00