This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
Now that filtered and unfiltered output can be treated identically, we
can unify the printf family of functions. This is done under the name
"gdb_printf". Most of this patch was written by script.
Now that filtered and unfiltered output can be treated identically, we
can unify the puts family of functions. This is done under the name
"gdb_puts". Most of this patch was written by script.
Add a getter and a setter for a symbol's type. Remove the corresponding
macro and adjust all callers.
Change-Id: Ie1a137744c5bfe1df4d4f9ae5541c5299577c8de
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
The Rust compiler plans to change the encoding of a Rust 'char' type
to use DW_ATE_UTF. You can see the discussion here:
https://github.com/rust-lang/rust/pull/89887
However, this fails in gdb. I looked into this, and it turns out that
the handling of DW_ATE_UTF is currently fairly specific to C++. In
particular, the code here assumes the C++ type names, and it creates
an integer type.
This comes from commit 53e710acd ("GDB thinks char16_t and char32_t
are signed in C++"). The message says:
Both places need fixing. But since I couldn't tell why dwarf2read.c
needs to create a new type, I've made it use the per-arch built-in
types instead, so that the types are only created once per arch
instead of once per objfile. That seems to work fine.
... which is fine, but it seems to me that it's also correct to make a
new character type; and this approach is better because it preserves
the type name as well. This does use more memory, but first we
shouldn't be too concerned about the memory use of types coming from
debuginfo; and second, if we are, we should implement type interning
anyway.
Changing this code to use a character type revealed a couple of
oddities in the C/C++ handling of TYPE_CODE_CHAR. This patch fixes
these as well.
I filed PR rust/28637 for this issue, so that this patch can be
backported to the gdb 11 branch.
The bug fixed by this [1] patch was caused by an out-of-bounds access to
a value's content. The code gets the value's content (just a pointer)
and then indexes it with a non-sensical index.
This made me think of changing functions that return value contents to
return array_views instead of a plain pointer. This has the advantage
that when GDB is built with _GLIBCXX_DEBUG, accesses to the array_view
are checked, making bugs more apparent / easier to find.
This patch changes the return types of these functions, and updates
callers to call .data() on the result, meaning it's not changing
anything in practice. Additional work will be needed (which can be done
little by little) to make callers propagate the use of array_view and
reap the benefits.
[1] https://sourceware.org/pipermail/gdb-patches/2021-September/182306.html
Change-Id: I5151f888f169e1c36abe2cbc57620110673816f3
I noticed that pointer_type is declared in language.h and defined in
language.c. However, it really has to do with types, so it should
have been in gdbtypes.h all along.
This patch changes it to be a method on struct type. And, I went
through uses of TYPE_IS_REFERENCE and updated many spots to use the
new method as well. (I didn't update ones that were in arch-specific
code, as I couldn't readily test that.)
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
TYPE_CODE_MEMBERPTR and TYPE_CODE_METHODPTR are only used for C++, so
it seems to me that the generic value-printing code ought to handle
these cases -- that way, printing these objects will work even when
the current language is not C++. This patch implements this idea.
gdb/ChangeLog
2020-09-15 Tom Tromey <tom@tromey.com>
* rust-lang.c (rust_value_print_inner): Remove TYPE_CODE_MEMBERPTR
and TYPE_CODE_METHODPTR cases.
* c-valprint.c (c_value_print_memberptr): Move to valprint.c.
(c_value_print_inner): Update.
* valprint.c (generic_value_print_memberptr): New function, from
c_value_print_memberptr.
(generic_value_print): Use it. Call cplus_print_method_ptr.
Remove the `TYPE_FIELD_TYPE` macro, changing all the call sites to use
`type::field` and `field::type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD_TYPE): Remove. Change all call sites
to use type::field and field::type instead.
Change-Id: Ifda6226a25c811cfd334a756a9fbc5c0afdddff3
Remove `TYPE_NAME`, changing all the call sites to use `type::name`
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NAME): Remove. Change all cal sites to use
type::name instead.
Remove TYPE_CODE, changing all the call sites to use type::code
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use
type::code instead.
Currently, printing with array pretty formatting makes the output actually
less readable than without:
(gdb) p -array on -- {{1,2,3},{4,5,6}}
$1 = { {1,
2,
3},
{4,
5,
6}}
(gdb) p -array on -array-indexes on -- {{1,2,3},{4,5,6}}
$2 = {[0] = {[0] = 1,
[1] = 2,
[2] = 3},
[1] = {[0] = 4,
[1] = 5,
[2] = 6}}
These changes now also put the first element and the array end bracket on a new
line, similar to the structure pretty formatter:
(gdb) p -array on -- {{1,2,3},{4,5,6}}
$1 = {
{
1,
2,
3
},
{
4,
5,
6
}
}
(gdb) p -array on -array-indexes on -- {{1,2,3},{4,5,6}}
$2 = {
[0] = {
[0] = 1,
[1] = 2,
[2] = 3
},
[1] = {
[0] = 4,
[1] = 5,
[2] = 6
}
}
gdb/ChangeLog:
2020-04-29 Hannes Domani <ssbssa@yahoo.de>
PR gdb/17320
* ada-valprint.c (val_print_packed_array_elements): Move array
end bracket to new line.
(ada_val_print_string): Remove extra spaces before first array
element.
* c-valprint.c (c_value_print_array): Likewise.
* m2-valprint.c (m2_print_array_contents): Likewise.
(m2_value_print_inner): Likewise.
* p-valprint.c (pascal_value_print_inner): Likewise.
* valprint.c (generic_val_print_array): Likewise.
(value_print_array_elements): Move first array element and array
end bracket to new line.
gdb/testsuite/ChangeLog:
2020-04-29 Hannes Domani <ssbssa@yahoo.de>
PR gdb/17320
* gdb.base/pretty-array.c: New test.
* gdb.base/pretty-array.exp: New file.
GCC accepts the "i" suffix for complex numbers. I think this is nicer
to read than the current output, so this patch changes the C code to
print complex numbers this way.
gdb/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* c-valprint.c (c_decorations): Change complex suffix to "i".
gdb/testsuite/ChangeLog
2020-04-01 Tom Tromey <tom@tromey.com>
* gdb.compile/compile.exp: Update.
* gdb.compile/compile-cplus.exp: Update.
* gdb.base/varargs.exp: Update.
* gdb.base/floatn.exp: Update.
* gdb.base/endianity.exp: Update.
* gdb.base/callfuncs.exp (do_function_calls): Update.
* gdb.base/funcargs.exp (complex_args, complex_integral_args)
(complex_float_integral_args): Update.
* gdb.base/complex.exp: Update.
* gdb.base/complex-parts.exp: Update.
This adds cp_print_value_fields and c_value_print_struct, value-based
analogues of the corresponding val-printing functions. Note that the
Modula-2 printing code also calls cp_print_val_fields, and so is
updated to call the function function.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* m2-valprint.c (m2_value_print_inner): Use
cp_print_value_fields.
* cp-valprint.c (cp_print_value_fields): New function.
* c-valprint.c (c_value_print_struct): New function.
(c_value_print_inner): Use c_value_print_struct.
* c-lang.h (cp_print_value_fields): Declare.
This adds c_value_print_array, a value-based analogue of
c_val_print_array.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* c-valprint.c (c_value_print_array): New function.
(c_value_print_inner): Use it.
This adds c_value_print_memberptr, a value-based analogue of
c_val_print_memberptr.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* c-valprint.c (c_value_print_memberptr): New function.
(c_value_print_inner): Use it.
This adds c_value_print_int, a value-based analogue of
c_val_print_int.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* c-valprint.c (c_value_print_int): New function.
(c_value_print_inner): Use it.
This adds c_value_print_ptr, a value-based analogue of
c_val_print_ptr.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* c-valprint.c (c_value_print_ptr): New function.
(c_value_print_inner): Use it.
This rewrites c_value_print_inner, copying in the body of
c_val_print_inner and adusting as needed. This will form the base of
future changes to fully convert this to using the value-based API
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* c-valprint.c (c_value_print_inner): Rewrite.
This introduces c_value_print_inner, which implements the
la_value_print_inner method for the C family of languages. In this
patch, it is just a simple wrapper of c_val_print. However,
subsequent patches will convert it to use the value API. The
transformation is done this way to make each patch easier to review.
Future patches will apply this same treatment to other languages as
well.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* opencl-lang.c (opencl_language_defn): Use c_value_print_inner.
* objc-lang.c (objc_language_defn): Use c_value_print_inner.
* c-valprint.c (c_value_print_inner): New function.
* c-lang.h (c_value_print_inner): Declare.
* c-lang.c (c_language_defn, cplus_language_defn)
(asm_language_defn, minimal_language_defn): Use
c_value_print_inner.
This slightly simplifies c_val_print_array by moving a variable to a
more inner scope and removing a dead assignment.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* c-valprint.c (c_val_print_array): Simplify.
This changes c_value_print to call common_val_print. This is more
complicated than the usual sort of common_val_print change, due to the
handling of RTTI.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* c-valprint.c (c_value_print): Use common_val_print.
gdb/testsuite/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* gdb.base/printcmds.exp (test_print_strings): Add regression
test.
* gdb.base/printcmds.c (charptr): New typedef.
(teststring2): New global.
- Rationale:
It is possible for compilers to indicate the desired byte order
interpretation of scalar variables using the DWARF attribute:
DW_AT_endianity
A type flagged with this variable would typically use one of:
DW_END_big
DW_END_little
which instructs the debugger what the desired byte order interpretation
of the variable should be.
The GCC compiler (as of V6) has a mechanism for setting the desired byte
ordering of the fields within a structure or union. For, example, on a
little endian target, a structure declared as:
struct big {
int v;
short a[4];
} __attribute__( ( scalar_storage_order( "big-endian" ) ) );
could be used to ensure all the structure members have a big-endian
interpretation (the compiler would automatically insert byte swap
instructions before and after respective store and load instructions).
- To reproduce
GCC V8 is required to correctly emit DW_AT_endianity DWARF attributes
in all situations when the scalar_storage_order attribute is used.
A fix for (dwarf endianity instrumentation) for GCC V6-V7 can be found
in the URL field of the following PR:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509
- Test-case:
A new test case (testsuite/gdb.base/endianity.*) is included with this
patch.
Manual testing for mixed endianity code has also been done with GCC V8.
See:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82509#c4
- Observed vs. expected:
Without this change, using scalar_storage_order that doesn't match the
target, such as
struct otherendian
{
int v;
} __attribute__( ( scalar_storage_order( "big-endian" ) ) );
would behave like the following on a little endian target:
Breakpoint 1 at 0x401135: file endianity.c, line 41.
(gdb) run
Starting program: /home/pjoot/freeware/t/a.out
Missing separate debuginfos, use: debuginfo-install glibc-2.17-292.el7.x86_64
Breakpoint 1, main () at endianity.c:41
41 struct otherendian o = {3};
(gdb) n
43 do_nothing (&o); /* START */
(gdb) p o
$1 = {v = 50331648}
(gdb) p /x
$2 = {v = 0x3000000}
whereas with this gdb enhancement we can access the variable with the user
specified endianity:
Breakpoint 1, main () at endianity.c:41
41 struct otherendian o = {3};
(gdb) p o
$1 = {v = 0}
(gdb) n
43 do_nothing (&o); /* START */
(gdb) p o
$2 = {v = 3}
(gdb) p o.v = 4
$3 = 4
(gdb) p o.v
$4 = 4
(gdb) x/4xb &o.v
0x7fffffffd90c: 0x00 0x00 0x00 0x04
(observe that the 4 byte int variable has a big endian representation in the
hex dump.)
gdb/ChangeLog
2019-11-21 Peeter Joot <peeter.joot@lzlabs.com>
Byte reverse display of variables with DW_END_big, DW_END_little
(DW_AT_endianity) dwarf attributes if different than the native
byte order.
* ada-lang.c (ada_value_binop):
Use type_byte_order instead of gdbarch_byte_order.
* ada-valprint.c (printstr):
(ada_val_print_string):
* ada-lang.c (value_pointer):
(ada_value_binop):
Use type_byte_order instead of gdbarch_byte_order.
* c-lang.c (c_get_string):
Use type_byte_order instead of gdbarch_byte_order.
* c-valprint.c (c_val_print_array):
Use type_byte_order instead of gdbarch_byte_order.
* cp-valprint.c (cp_print_class_member):
Use type_byte_order instead of gdbarch_byte_order.
* dwarf2loc.c (rw_pieced_value):
Use type_byte_order instead of gdbarch_byte_order.
* dwarf2read.c (read_base_type): Handle DW_END_big,
DW_END_little
* f-lang.c (f_get_encoding):
Use type_byte_order instead of gdbarch_byte_order.
* findvar.c (default_read_var_value):
Use type_byte_order instead of gdbarch_byte_order.
* gdbtypes.c (check_types_equal):
Require matching TYPE_ENDIANITY_NOT_DEFAULT if set.
(recursive_dump_type): Print TYPE_ENDIANITY_BIG,
and TYPE_ENDIANITY_LITTLE if set.
(type_byte_order): new function.
* gdbtypes.h (TYPE_ENDIANITY_NOT_DEFAULT): New macro.
(struct main_type) <flag_endianity_not_default>:
New field.
(type_byte_order): New function.
* infcmd.c (default_print_one_register_info):
Use type_byte_order instead of gdbarch_byte_order.
* p-lang.c (pascal_printstr):
Use type_byte_order instead of gdbarch_byte_order.
* p-valprint.c (pascal_val_print):
Use type_byte_order instead of gdbarch_byte_order.
* printcmd.c (print_scalar_formatted):
Use type_byte_order instead of gdbarch_byte_order.
* solib-darwin.c (darwin_current_sos):
Use type_byte_order instead of gdbarch_byte_order.
* solib-svr4.c (solib_svr4_r_ldsomap):
Use type_byte_order instead of gdbarch_byte_order.
* stap-probe.c (stap_modify_semaphore):
Use type_byte_order instead of gdbarch_byte_order.
* target-float.c (target_float_same_format_p):
Use type_byte_order instead of gdbarch_byte_order.
* valarith.c (scalar_binop):
(value_bit_index):
Use type_byte_order instead of gdbarch_byte_order.
* valops.c (value_cast):
Use type_byte_order instead of gdbarch_byte_order.
* valprint.c (generic_emit_char):
(generic_printstr):
(val_print_string):
Use type_byte_order instead of gdbarch_byte_order.
* value.c (unpack_long):
(unpack_bits_as_long):
(unpack_value_bitfield):
(modify_field):
(pack_long):
(pack_unsigned_long):
Use type_byte_order instead of gdbarch_byte_order.
* findvar.c (unsigned_pointer_to_address):
(signed_pointer_to_address):
(unsigned_address_to_pointer):
(address_to_signed_pointer):
(default_read_var_value):
(default_value_from_register):
Use type_byte_order instead of gdbarch_byte_order.
* gnu-v3-abi.c (gnuv3_make_method_ptr):
Use type_byte_order instead of gdbarch_byte_order.
* riscv-tdep.c (riscv_print_one_register_info):
Use type_byte_order instead of gdbarch_byte_order.
gdb/testsuite/ChangeLog
2019-11-21 Peeter Joot <peeter.joot@lzlabs.com>
* gdb.base/endianity.c: New test.
* gdb.base/endianity.exp: New file.
Change-Id: I4bd98c1b4508c2d7c5a5dbb15d7b7b1cb4e667e2
I noticed that there are still many places referring to non-const
blocks. This constifies all the remaining ones that I found that
could be constified.
In a few spots, this search found unused variables or fields. I
removed these. I've also removed some unnecessary casts to
"struct block *".
gdb/ChangeLog
2019-03-24 Tom Tromey <tom@tromey.com>
* c-exp.y (typebase): Remove casts.
* gdbtypes.c (lookup_unsigned_typename, )
(lookup_signed_typename): Remove cast.
* eval.c (parse_to_comma_and_eval): Remove cast.
* parse.c (write_dollar_variable): Remove cast.
* block.h (struct block) <superblock>: Now const.
* symfile-debug.c (debug_qf_map_matching_symbols): Update.
* psymtab.c (psym_map_matching_symbols): Make "block" const.
(map_block): Make "block" const.
* symfile.h (struct quick_symbol_functions)
<map_matching_symbols>: Constify block argument to "callback".
* symtab.c (basic_lookup_transparent_type_quick): Make "block"
const.
(find_pc_sect_compunit_symtab): Make "b" const.
(find_symbol_at_address): Likewise.
(search_symbols): Likewise.
* dwarf2read.c (dw2_lookup_symbol): Make "block" const.
(dw2_debug_names_lookup_symbol): Likewise.
(dw2_map_matching_symbols): Update.
* p-valprint.c (pascal_val_print): Remove "block".
* ada-lang.c (ada_add_global_exceptions): Make "b" const.
(aux_add_nonlocal_symbols): Make "block" const.
(resolve_subexp): Remove cast.
* linespec.c (iterate_over_all_matching_symtabs): Make "block"
const.
(iterate_over_file_blocks): Likewise.
* f-exp.y (%union) <bval>: Remove.
* coffread.c (patch_opaque_types): Make "b" const.
* spu-tdep.c (spu_catch_start): Make "block" const.
* c-valprint.c (print_unpacked_pointer): Remove "block".
* symmisc.c (dump_symtab_1): Make "b" const.
(block_depth): Make "block" const.
* d-exp.y (%union) <bval>: Remove.
* cp-support.h (cp_lookup_rtti_type): Update.
* cp-support.c (cp_lookup_rtti_type): Make "block" const.
* psymtab.c (psym_lookup_symbol): Make "block" const.
(maintenance_check_psymtabs): Make "b" const.
* python/py-framefilter.c (extract_sym): Make "sym_block" const.
(enumerate_locals, enumerate_args): Update.
* python/py-symtab.c (stpy_global_block): Make "block" const.
(stpy_static_block): Likewise.
* inline-frame.c (block_starting_point_at): Make "new_block"
const.
* block.c (find_block_in_blockvector): Make return type const.
(blockvector_for_pc_sect): Make "b" const.
(find_block_in_blockvector): Make "b" const.
A customer noticed some mildly odd MI output, where CLI output was
split into multiple MI strings at unusual boundaries, like this:
~"$1 = (b => true"
~", p => 0x407260"
This is technically correct according to the MI spec, but still
unusual, in that there's no particular reason for the string to be
split where it is.
I tracked this down to a call to gdb_flush in generic_val_print.
Then, I went through all calls to gdb_flush and removed the ones I
thought were superfluous. In particular:
* Any call in the value-printing code;
* Likewise the type-printing code (just a single call); and
* Any call that immediately followed a printf that obviously
ended with a newline, my belief being that gdb's standard output
streams are line buffered (by inheriting the behavior from stdio)
Regression tested on x86-64 Fedora 29.
I didn't add a new test case. I tend to think we don't necessarily
want to specify this behavior in the tests. Let me know what you
think of this.
gdb/ChangeLog
2019-03-05 Tom Tromey <tromey@adacore.com>
* windows-nat.c (windows_nat_target::attach)
(windows_nat_target::detach): Don't call gdb_flush.
* valprint.c (generic_val_print, val_print, val_print_string):
Don't call gdb_flush.
* utils.c (defaulted_query): Don't call gdb_flush.
* typeprint.c (print_type_scalar): Don't call gdb_flush.
* target.c (target_announce_detach): Don't call gdb_flush.
* sparc64-tdep.c (adi_print_versions): Don't call gdb_flush.
* remote.c (extended_remote_target::attach): Don't call
gdb_flush.
* procfs.c (procfs_target::detach): Don't call gdb_flush.
* printcmd.c (do_examine): Don't call gdb_flush.
(info_display_command): Don't call gdb_flush.
* p-valprint.c (pascal_val_print): Don't call gdb_flush.
* nto-procfs.c (nto_procfs_target::attach): Don't call gdb_flush.
* memattr.c (info_mem_command): Don't call gdb_flush.
* mdebugread.c (mdebug_build_psymtabs): Don't call gdb_flush.
* m2-valprint.c (m2_val_print): Don't call gdb_flush.
* infrun.c (follow_exec, handle_command): Don't call gdb_flush.
* inf-ptrace.c (inf_ptrace_target::attach): Don't call gdb_flush.
* hppa-tdep.c (unwind_command): Don't call gdb_flush.
* gnu-nat.c (gnu_nat_target::attach): Don't call gdb_flush.
(gnu_nat_target::detach): Don't call gdb_flush.
* f-valprint.c (f_val_print): Don't call gdb_flush.
* darwin-nat.c (darwin_nat_target::attach): Don't call gdb_flush.
* cli/cli-script.c (read_command_lines): Don't call gdb_flush.
* cli/cli-cmds.c (shell_escape, print_disassembly): Don't call
gdb_flush.
* c-valprint.c (c_val_print): Don't call gdb_flush.
* ada-valprint.c (ada_print_scalar): Don't call gdb_flush.
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
At <https://sourceware.org/ml/gdb-patches/2017-12/msg00298.html>, Joel
wrote:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following code which first declares a tagged type (the
equivalent of a class in Ada), and then a procedure which takes a
pointer (access) to this type's 'Class.
package Pck is
type Top_T is tagged record
N : Integer := 1;
end record;
procedure Inspect (Obj: access Top_T'Class);
end Pck;
Putting a breakpoint in that procedure and then running to it triggers
an internal error:
(gdb) break inspect
(gdb) continue
Breakpoint 1, pck.inspect (obj=0x63e010
/[...]/gdb/stack.c:621: internal-error: void print_frame_args(symbol*, frame_info*, int, ui_file*): Assertion `nsym != NULL' failed.
What's special about this subprogram is that it takes an access to
what we call a 'Class type, and for implementation reasons, the
compiler adds an extra argument named "objL". If you are curious why,
it allows the compiler for perform dynamic accessibility checks that
are mandated by the language.
If we look at the location where we get the internal error (in
stack.c), we find that we are looping over the symbol of each
parameter, and for each parameter, we do:
/* We have to look up the symbol because arguments can have
two entries (one a parameter, one a local) and the one we
want is the local, which lookup_symbol will find for us.
[...]
nsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym),
b, VAR_DOMAIN, NULL).symbol;
gdb_assert (nsym != NULL);
The lookup_symbol goes through the lookup structure, which means the
symbol's linkage name ("objL") gets transformed into a
lookup_name_info object (in block_lookup_symbol), before it gets fed
to the block symbol dictionary iterators. This, in turn, triggers the
symbol matching by comparing the "lookup" name which, for Ada, means
among other things, lowercasing the given name to "objl". It is this
transformation that causes the lookup find no matches, and therefore
trip this assertion.
Going back to the "offending" call to lookup_symbol in stack.c, what
we are trying to do, here, is do a lookup by linkage name. So, I
think what we mean to be doing is a completely literal symbol lookup,
so maybe not even strcmp_iw, but actually just plain strcmp???
In the past, in practice, you could get that effect by doing a lookup
using the C language. But that doesn't work, because we still end up
somehow using Ada's lookup_name routine which transforms "objL".
So, ideally, as I hinted before, I think what we need is a way to
perform a literal lookup so that searches by linkage names like the
above can be performed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This commit fixes the problem by implementing something similar to
Joel's literal idea, but with some important differences.
I considered adding a symbol_name_match_type::LINKAGE and supporting
searching by linkage name for any language, but the problem with that
is that the dictionaries only work with SYMBOL_SEARCH_NAME, because
that's what is used for hashing. We'd need separate dictionaries for
hashed linkage names.
So with the current symbol tables infrastructure, it's not literal
linkage names that we want to pass down, but instead literal _search_
names (SYMBOL_SEARCH_NAME, etc.).
However, psymbols have no overload/function parameter info in C++, so
a straight strcmp doesn't work properly for C++ name matching.
So what we do is be a little less aggressive then and add a new
symbol_name_match_type::SEARCH_SYMBOL instead that takes as input a
non-user-input search symbol, and then we skip any decoding/demangling
steps and make:
- Ada treat that as a verbatim match,
- other languages treat it as symbol_name_match_type::FULL.
This also fixes the new '"maint check-psymtabs" for Ada' testcase for
me (gdb.ada/maint_with_ada.exp). I've not removed the kfail yet
because Joel still sees that testcase failing with this patch.
That'll be fixed in follow up patches.
gdb/ChangeLog:
2018-01-05 Pedro Alves <palves@redhat.com>
PR gdb/22670
* ada-lang.c (literal_symbol_name_matcher): New function.
(ada_get_symbol_name_matcher): Use it for
symbol_name_match_type::SEARCH_NAME.
* block.c (block_lookup_symbol): New parameter 'match_type'. Pass
it down instead of assuming symbol_name_match_type::FULL.
* block.h (block_lookup_symbol): New parameter 'match_type'.
* c-valprint.c (print_unpacked_pointer): Use
lookup_symbol_search_name instead of lookup_symbol.
* compile/compile-object-load.c (get_out_value_type): Pass down
symbol_name_match_type::SEARCH_NAME.
* cp-namespace.c (cp_basic_lookup_symbol): Pass down
symbol_name_match_type::FULL.
* cp-support.c (cp_get_symbol_name_matcher): Handle
symbol_name_match_type::SEARCH_NAME.
* infrun.c (insert_exception_resume_breakpoint): Use
lookup_symbol_search_name.
* p-valprint.c (pascal_val_print): Use lookup_symbol_search_name.
* psymtab.c (maintenance_check_psymtabs): Use
symbol_name_match_type::SEARCH_NAME and SYMBOL_SEARCH_NAME.
* stack.c (print_frame_args): Use lookup_symbol_search_name and
SYMBOL_SEARCH_NAME.
* symtab.c (lookup_local_symbol): Don't demangle the lookup name
if symbol_name_match_type::SEARCH_NAME.
(lookup_symbol_in_language): Pass down
symbol_name_match_type::FULL.
(lookup_symbol_search_name): New.
(lookup_language_this): Pass down
symbol_name_match_type::SEARCH_NAME.
(lookup_symbol_aux, lookup_local_symbol): New parameter
'match_type'. Pass it down.
* symtab.h (symbol_name_match_type::SEARCH_NAME): New enumerator.
(lookup_symbol_search_name): New declaration.
(lookup_symbol_in_block): New 'match_type' parameter.
gdb/testsuite/ChangeLog:
2018-01-05 Joel Brobecker <brobecker@adacore.com>
PR gdb/22670
* gdb.ada/access_tagged_param.exp: New file.
* gdb.ada/access_tagged_param/foo.adb: New file.
Now that print_scalar_formatted is more capable, there's no need for
val_print_type_code_int. This patch removes it in favor of
val_print_scalar_formatted.
2017-06-12 Tom Tromey <tom@tromey.com>
* valprint.h (val_print_type_code_int): Remove.
* valprint.c (generic_val_print_int): Always call
val_print_scalar_formatted.
(val_print_type_code_int): Remove.
* printcmd.c (print_scalar_formatted): Handle options->format==0.
* f-valprint.c (f_val_print): Use val_print_scalar_formatted.
* c-valprint.c (c_val_print_int): Use val_print_scalar_formatted.
* ada-valprint.c (ada_val_print_num): Use
val_print_scalar_formatted.
This patch provides the ability to print out names of rvalue reference types
and values of those types. This is done in full similarity to regular
references, and as with them, we don't print out "const" suffix because all
rvalue references are const.
gdb/ChangeLog
PR gdb/14441
* c-typeprint.c (c_print_type, c_type_print_varspec_prefix)
(c_type_print_modifier, c_type_print_varspec_suffix)
(c_type_print_base): Support printing rvalue reference types.
* c-valprint.c (c_val_print, c_value_print): Support printing
rvalue reference values.
Parameterize value_ref() by the kind of reference type the value of which
is requested. Change all callers to use the new API.
gdb/ChangeLog
PR gdb/14441
* ada-lang.c (ada_evaluate_subexp): Adhere to the new
value_ref() interface.
* c-valprint.c (c_value_print): Likewise.
* infcall.c (value_arg_coerce): Likewise.
* python/py-value.c (valpy_reference_value): Likewise.
* valops.c (value_cast, value_reinterpret_cast)
(value_dynamic_cast, typecmp): Likewise.
(value_ref): Parameterize by kind of return value reference type.
* value.h (value_ref): Add new parameter "refcode".
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.