This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:
sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
problems.
The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did
Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
Today, GDB only allows a single displaced stepping operation to happen
per inferior at a time. There is a single displaced stepping buffer per
inferior, whose address is fixed (obtained with
gdbarch_displaced_step_location), managed by infrun.c.
In the case of the AMD ROCm target [1] (in the context of which this
work has been done), it is typical to have thousands of threads (or
waves, in SMT terminology) executing the same code, hitting the same
breakpoint (possibly conditional) and needing to to displaced step it at
the same time. The limitation of only one displaced step executing at a
any given time becomes a real bottleneck.
To fix this bottleneck, we want to make it possible for threads of a
same inferior to execute multiple displaced steps in parallel. This
patch builds the foundation for that.
In essence, this patch moves the task of preparing a displaced step and
cleaning up after to gdbarch functions. This allows using different
schemes for allocating and managing displaced stepping buffers for
different platforms. The gdbarch decides how to assign a buffer to a
thread that needs to execute a displaced step.
On the ROCm target, we are able to allocate one displaced stepping
buffer per thread, so a thread will never have to wait to execute a
displaced step.
On Linux, the entry point of the executable if used as the displaced
stepping buffer, since we assume that this code won't get used after
startup. From what I saw (I checked with a binary generated against
glibc and musl), on AMD64 we have enough space there to fit two
displaced stepping buffers. A subsequent patch makes AMD64/Linux use
two buffers.
In addition to having multiple displaced stepping buffers, there is also
the idea of sharing displaced stepping buffers between threads. Two
threads doing displaced steps for the same PC could use the same buffer
at the same time. Two threads stepping over the same instruction (same
opcode) at two different PCs may also be able to share a displaced
stepping buffer. This is an idea for future patches, but the
architecture built by this patch is made to allow this.
Now, the implementation details. The main part of this patch is moving
the responsibility of preparing and finishing a displaced step to the
gdbarch. Before this patch, preparing a displaced step is driven by the
displaced_step_prepare_throw function. It does some calls to the
gdbarch to do some low-level operations, but the high-level logic is
there. The steps are roughly:
- Ask the gdbarch for the displaced step buffer location
- Save the existing bytes in the displaced step buffer
- Ask the gdbarch to copy the instruction into the displaced step buffer
- Set the pc of the thread to the beginning of the displaced step buffer
Similarly, the "fixup" phase, executed after the instruction was
successfully single-stepped, is driven by the infrun code (function
displaced_step_finish). The steps are roughly:
- Restore the original bytes in the displaced stepping buffer
- Ask the gdbarch to fixup the instruction result (adjust the target's
registers or memory to do as if the instruction had been executed in
its original location)
The displaced_step_inferior_state::step_thread field indicates which
thread (if any) is currently using the displaced stepping buffer, so it
is used by displaced_step_prepare_throw to check if the displaced
stepping buffer is free to use or not.
This patch defers the whole task of preparing and cleaning up after a
displaced step to the gdbarch. Two new main gdbarch methods are added,
with the following semantics:
- gdbarch_displaced_step_prepare: Prepare for the given thread to
execute a displaced step of the instruction located at its current PC.
Upon return, everything should be ready for GDB to resume the thread
(with either a single step or continue, as indicated by
gdbarch_displaced_step_hw_singlestep) to make it displaced step the
instruction.
- gdbarch_displaced_step_finish: Called when the thread stopped after
having started a displaced step. Verify if the instruction was
executed, if so apply any fixup required to compensate for the fact
that the instruction was executed at a different place than its
original pc. Release any resources that were allocated for this
displaced step. Upon return, everything should be ready for GDB to
resume the thread in its "normal" code path.
The displaced_step_prepare_throw function now pretty much just offloads
to gdbarch_displaced_step_prepare and the displaced_step_finish function
offloads to gdbarch_displaced_step_finish.
The gdbarch_displaced_step_location method is now unnecessary, so is
removed. Indeed, the core of GDB doesn't know how many displaced step
buffers there are nor where they are.
To keep the existing behavior for existing architectures, the logic that
was previously implemented in infrun.c for preparing and finishing a
displaced step is moved to displaced-stepping.c, to the
displaced_step_buffer class. Architectures are modified to implement
the new gdbarch methods using this class. The behavior is not expected
to change.
The other important change (which arises from the above) is that the
core of GDB no longer prevents concurrent displaced steps. Before this
patch, start_step_over walks the global step over chain and tries to
initiate a step over (whether it is in-line or displaced). It follows
these rules:
- if an in-line step is in progress (in any inferior), don't start any
other step over
- if a displaced step is in progress for an inferior, don't start
another displaced step for that inferior
After starting a displaced step for a given inferior, it won't start
another displaced step for that inferior.
In the new code, start_step_over simply tries to initiate step overs for
all the threads in the list. But because threads may be added back to
the global list as it iterates the global list, trying to initiate step
overs, start_step_over now starts by stealing the global queue into a
local queue and iterates on the local queue. In the typical case, each
thread will either:
- have initiated a displaced step and be resumed
- have been added back by the global step over queue by
displaced_step_prepare_throw, because the gdbarch will have returned
that there aren't enough resources (i.e. buffers) to initiate a
displaced step for that thread
Lastly, if start_step_over initiates an in-line step, it stops
iterating, and moves back whatever remaining threads it had in its local
step over queue to the global step over queue.
Two other gdbarch methods are added, to handle some slightly annoying
corner cases. They feel awkwardly specific to these cases, but I don't
see any way around them:
- gdbarch_displaced_step_copy_insn_closure_by_addr: in
arm_pc_is_thumb, arm-tdep.c wants to get the closure for a given
buffer address.
- gdbarch_displaced_step_restore_all_in_ptid: when a process forks
(at least on Linux), the address space is copied. If some displaced
step buffers were in use at the time of the fork, we need to restore
the original bytes in the child's address space.
These two adjustments are also made in infrun.c:
- prepare_for_detach: there may be multiple threads doing displaced
steps when we detach, so wait until all of them are done
- handle_inferior_event: when we handle a fork event for a given
thread, it's possible that other threads are doing a displaced step at
the same time. Make sure to restore the displaced step buffer
contents in the child for them.
[1] https://github.com/ROCm-Developer-Tools/ROCgdb
gdb/ChangeLog:
* displaced-stepping.h (struct
displaced_step_copy_insn_closure): Adjust comments.
(struct displaced_step_inferior_state) <step_thread,
step_gdbarch, step_closure, step_original, step_copy,
step_saved_copy>: Remove fields.
(struct displaced_step_thread_state): New.
(struct displaced_step_buffer): New.
* displaced-stepping.c (displaced_step_buffer::prepare): New.
(write_memory_ptid): Move from infrun.c.
(displaced_step_instruction_executed_successfully): New,
factored out of displaced_step_finish.
(displaced_step_buffer::finish): New.
(displaced_step_buffer::copy_insn_closure_by_addr): New.
(displaced_step_buffer::restore_in_ptid): New.
* gdbarch.sh (displaced_step_location): Remove.
(displaced_step_prepare, displaced_step_finish,
displaced_step_copy_insn_closure_by_addr,
displaced_step_restore_all_in_ptid): New.
* gdbarch.c: Re-generate.
* gdbarch.h: Re-generate.
* gdbthread.h (class thread_info) <displaced_step_state>: New
field.
(thread_step_over_chain_remove): New declaration.
(thread_step_over_chain_next): New declaration.
(thread_step_over_chain_length): New declaration.
* thread.c (thread_step_over_chain_remove): Make non-static.
(thread_step_over_chain_next): New.
(global_thread_step_over_chain_next): Use
thread_step_over_chain_next.
(thread_step_over_chain_length): New.
(global_thread_step_over_chain_enqueue): Add debug print.
(global_thread_step_over_chain_remove): Add debug print.
* infrun.h (get_displaced_step_copy_insn_closure_by_addr):
Remove.
* infrun.c (get_displaced_stepping_state): New.
(displaced_step_in_progress_any_inferior): Remove.
(displaced_step_in_progress_thread): Adjust.
(displaced_step_in_progress): Adjust.
(displaced_step_in_progress_any_thread): New.
(get_displaced_step_copy_insn_closure_by_addr): Remove.
(gdbarch_supports_displaced_stepping): Use
gdbarch_displaced_step_prepare_p.
(displaced_step_reset): Change parameter from inferior to
thread.
(displaced_step_prepare_throw): Implement using
gdbarch_displaced_step_prepare.
(write_memory_ptid): Move to displaced-step.c.
(displaced_step_restore): Remove.
(displaced_step_finish): Implement using
gdbarch_displaced_step_finish.
(start_step_over): Allow starting more than one displaced step.
(prepare_for_detach): Handle possibly multiple threads doing
displaced steps.
(handle_inferior_event): Handle possibility that fork event
happens while another thread displaced steps.
* linux-tdep.h (linux_displaced_step_prepare): New.
(linux_displaced_step_finish): New.
(linux_displaced_step_copy_insn_closure_by_addr): New.
(linux_displaced_step_restore_all_in_ptid): New.
(linux_init_abi): Add supports_displaced_step parameter.
* linux-tdep.c (struct linux_info) <disp_step_buf>: New field.
(linux_displaced_step_prepare): New.
(linux_displaced_step_finish): New.
(linux_displaced_step_copy_insn_closure_by_addr): New.
(linux_displaced_step_restore_all_in_ptid): New.
(linux_init_abi): Add supports_displaced_step parameter,
register displaced step methods if true.
(_initialize_linux_tdep): Register inferior_execd observer.
* amd64-linux-tdep.c (amd64_linux_init_abi_common): Add
supports_displaced_step parameter, adjust call to
linux_init_abi. Remove call to
set_gdbarch_displaced_step_location.
(amd64_linux_init_abi): Adjust call to
amd64_linux_init_abi_common.
(amd64_x32_linux_init_abi): Likewise.
* aarch64-linux-tdep.c (aarch64_linux_init_abi): Adjust call to
linux_init_abi. Remove call to
set_gdbarch_displaced_step_location.
* arm-linux-tdep.c (arm_linux_init_abi): Likewise.
* i386-linux-tdep.c (i386_linux_init_abi): Likewise.
* alpha-linux-tdep.c (alpha_linux_init_abi): Adjust call to
linux_init_abi.
* arc-linux-tdep.c (arc_linux_init_osabi): Likewise.
* bfin-linux-tdep.c (bfin_linux_init_abi): Likewise.
* cris-linux-tdep.c (cris_linux_init_abi): Likewise.
* csky-linux-tdep.c (csky_linux_init_abi): Likewise.
* frv-linux-tdep.c (frv_linux_init_abi): Likewise.
* hppa-linux-tdep.c (hppa_linux_init_abi): Likewise.
* ia64-linux-tdep.c (ia64_linux_init_abi): Likewise.
* m32r-linux-tdep.c (m32r_linux_init_abi): Likewise.
* m68k-linux-tdep.c (m68k_linux_init_abi): Likewise.
* microblaze-linux-tdep.c (microblaze_linux_init_abi): Likewise.
* mips-linux-tdep.c (mips_linux_init_abi): Likewise.
* mn10300-linux-tdep.c (am33_linux_init_osabi): Likewise.
* nios2-linux-tdep.c (nios2_linux_init_abi): Likewise.
* or1k-linux-tdep.c (or1k_linux_init_abi): Likewise.
* riscv-linux-tdep.c (riscv_linux_init_abi): Likewise.
* s390-linux-tdep.c (s390_linux_init_abi_any): Likewise.
* sh-linux-tdep.c (sh_linux_init_abi): Likewise.
* sparc-linux-tdep.c (sparc32_linux_init_abi): Likewise.
* sparc64-linux-tdep.c (sparc64_linux_init_abi): Likewise.
* tic6x-linux-tdep.c (tic6x_uclinux_init_abi): Likewise.
* tilegx-linux-tdep.c (tilegx_linux_init_abi): Likewise.
* xtensa-linux-tdep.c (xtensa_linux_init_abi): Likewise.
* ppc-linux-tdep.c (ppc_linux_init_abi): Adjust call to
linux_init_abi. Remove call to
set_gdbarch_displaced_step_location.
* arm-tdep.c (arm_pc_is_thumb): Call
gdbarch_displaced_step_copy_insn_closure_by_addr instead of
get_displaced_step_copy_insn_closure_by_addr.
* rs6000-aix-tdep.c (rs6000_aix_init_osabi): Adjust calls to
clear gdbarch methods.
* rs6000-tdep.c (struct ppc_inferior_data): New structure.
(get_ppc_per_inferior): New function.
(ppc_displaced_step_prepare): New function.
(ppc_displaced_step_finish): New function.
(ppc_displaced_step_restore_all_in_ptid): New function.
(rs6000_gdbarch_init): Register new gdbarch methods.
* s390-tdep.c (s390_gdbarch_init): Don't call
set_gdbarch_displaced_step_location, set new gdbarch methods.
gdb/testsuite/ChangeLog:
* gdb.arch/amd64-disp-step-avx.exp: Adjust pattern.
* gdb.threads/forking-threads-plus-breakpoint.exp: Likewise.
* gdb.threads/non-stop-fair-events.exp: Likewise.
Change-Id: I387cd235a442d0620ec43608fd3dc0097fcbf8c8
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
This is more preparation bits for multi-target support.
In a multi-target scenario, we need to address the case of different
processes/threads running on different targets that happen to have the
same PID/PTID. E.g., we can have both process 123 in target 1, and
process 123 in target 2, while they're in reality different processes
running on different machines. Or maybe we've loaded multiple
instances of the same core file. Etc.
To address this, in my WIP multi-target branch, threads and processes
are uniquely identified by the (process_stratum target_ops *, ptid_t)
and (process_stratum target_ops *, pid) tuples respectively. I.e.,
each process_stratum instance has its own thread/process number space.
As you can imagine, that requires passing around target_ops * pointers
in a number of functions where we're currently passing only a ptid_t
or an int. E.g., when we look up a thread_info object by ptid_t in
find_thread_ptid, the ptid_t alone isn't sufficient.
In many cases though, we already have the thread_info or inferior
pointer handy, but we "lose" it somewhere along the call stack, only
to look it up again by ptid_t/pid. Since thread_info or inferior
objects know their parent target, if we pass around thread_info or
inferior pointers when possible, we avoid having to add extra
target_ops parameters to many functions, and also, we eliminate a
number of by ptid_t/int lookups.
So that's what this patch does. In a bit more detail:
- Changes a number of functions and methods to take a thread_info or
inferior pointer instead of a ptid_t or int parameter.
- Changes a number of structure fields from ptid_t/int to inferior or
thread_info pointers.
- Uses the inferior_thread() function whenever possible instead of
inferior_ptid.
- Uses thread_info pointers directly when possible instead of the
is_running/is_stopped etc. routines that require a lookup.
- A number of functions are eliminated along the way, such as:
int valid_gdb_inferior_id (int num);
int pid_to_gdb_inferior_id (int pid);
int gdb_inferior_id_to_pid (int num);
int in_inferior_list (int pid);
- A few structures and places hold a thread_info pointer across
inferior execution, so now they take a strong reference to the
(refcounted) thread_info object to avoid the thread_info pointer
getting stale. This is done in enable_thread_stack_temporaries and
in the infcall.c code.
- Related, there's a spot in infcall.c where using a RAII object to
handle the refcount would be handy, so a gdb::ref_ptr specialization
for thread_info is added (thread_info_ref, in gdbthread.h), along
with a gdb_ref_ptr policy that works for all refcounted_object types
(in common/refcounted-object.h).
gdb/ChangeLog:
2018-06-21 Pedro Alves <palves@redhat.com>
* ada-lang.h (ada_get_task_number): Take a thread_info pointer
instead of a ptid_t. All callers adjusted.
* ada-tasks.c (ada_get_task_number): Likewise. All callers
adjusted.
(print_ada_task_info, display_current_task_id, task_command_1):
Adjust.
* breakpoint.c (watchpoint_in_thread_scope): Adjust to use
inferior_thread.
(breakpoint_kind): Adjust.
(remove_breakpoints_pid): Rename to ...
(remove_breakpoints_inf): ... this. Adjust to take an inferior
pointer. All callers adjusted.
(bpstat_clear_actions): Use inferior_thread.
(get_bpstat_thread): New.
(bpstat_do_actions): Use it.
(bpstat_check_breakpoint_conditions, bpstat_stop_status): Adjust
to take a thread_info pointer. All callers adjusted.
(set_longjmp_breakpoint_for_call_dummy, set_momentary_breakpoint)
(breakpoint_re_set_thread): Use inferior_thread.
* breakpoint.h (struct inferior): Forward declare.
(bpstat_stop_status): Update.
(remove_breakpoints_pid): Delete.
(remove_breakpoints_inf): New.
* bsd-uthread.c (bsd_uthread_target::wait)
(bsd_uthread_target::update_thread_list): Use find_thread_ptid.
* btrace.c (btrace_add_pc, btrace_enable, btrace_fetch)
(maint_btrace_packet_history_cmd)
(maint_btrace_clear_packet_history_cmd): Adjust.
(maint_btrace_clear_cmd, maint_info_btrace_cmd): Adjust to use
inferior_thread.
* cli/cli-interp.c: Include "inferior.h".
* common/refcounted-object.h (struct
refcounted_object_ref_policy): New.
* compile/compile-object-load.c: Include gdbthread.h.
(store_regs): Use inferior_thread.
* corelow.c (core_target::close): Use current_inferior.
(core_target_open): Adjust to use first_thread_of_inferior and use
the current inferior.
* ctf.c (ctf_target::close): Adjust to use current_inferior.
* dummy-frame.c (dummy_frame_id) <ptid>: Delete, replaced by ...
<thread>: ... this new field. All references adjusted.
(dummy_frame_pop, dummy_frame_discard, register_dummy_frame_dtor):
Take a thread_info pointer instead of a ptid_t.
* dummy-frame.h (dummy_frame_push, dummy_frame_pop)
(dummy_frame_discard, register_dummy_frame_dtor): Take a
thread_info pointer instead of a ptid_t.
* elfread.c: Include "inferior.h".
(elf_gnu_ifunc_resolver_stop, elf_gnu_ifunc_resolver_return_stop):
Use inferior_thread.
* eval.c (evaluate_subexp): Likewise.
* frame.c (frame_pop, has_stack_frames, find_frame_sal): Use
inferior_thread.
* gdb_proc_service.h (struct thread_info): Forward declare.
(struct ps_prochandle) <ptid>: Delete, replaced by ...
<thread>: ... this new field. All references adjusted.
* gdbarch.h, gdbarch.c: Regenerate.
* gdbarch.sh (get_syscall_number): Replace 'ptid' parameter with a
'thread' parameter. All implementations and callers adjusted.
* gdbthread.h (thread_info) <set_running>: New method.
(delete_thread, delete_thread_silent): Take a thread_info pointer
instead of a ptid.
(global_thread_id_to_ptid, ptid_to_global_thread_id): Delete.
(first_thread_of_process): Delete, replaced by ...
(first_thread_of_inferior): ... this new function. All callers
adjusted.
(any_live_thread_of_process): Delete, replaced by ...
(any_live_thread_of_inferior): ... this new function. All callers
adjusted.
(switch_to_thread, switch_to_no_thread): Declare.
(is_executing): Delete.
(enable_thread_stack_temporaries): Update comment.
<enable_thread_stack_temporaries>: Take a thread_info pointer
instead of a ptid_t. Incref the thread.
<~enable_thread_stack_temporaries>: Decref the thread.
<m_ptid>: Delete
<m_thr>: New.
(thread_stack_temporaries_enabled_p, push_thread_stack_temporary)
(get_last_thread_stack_temporary)
(value_in_thread_stack_temporaries, can_access_registers_thread):
Take a thread_info pointer instead of a ptid_t. All callers
adjusted.
* infcall.c (get_call_return_value): Use inferior_thread.
(run_inferior_call): Work with thread pointers instead of ptid_t.
(call_function_by_hand_dummy): Work with thread pointers instead
of ptid_t. Use thread_info_ref.
* infcmd.c (proceed_thread_callback): Access thread's state
directly.
(ensure_valid_thread, ensure_not_running): Use inferior_thread,
access thread's state directly.
(continue_command): Use inferior_thread.
(info_program_command): Use find_thread_ptid and access thread
state directly.
(proceed_after_attach_callback): Use thread state directly.
(notice_new_inferior): Take a thread_info pointer instead of a
ptid_t. All callers adjusted.
(exit_inferior): Take an inferior pointer instead of a pid. All
callers adjusted.
(exit_inferior_silent): New.
(detach_inferior): Delete.
(valid_gdb_inferior_id, pid_to_gdb_inferior_id)
(gdb_inferior_id_to_pid, in_inferior_list): Delete.
(detach_inferior_command, kill_inferior_command): Use
find_inferior_id instead of valid_gdb_inferior_id and
gdb_inferior_id_to_pid.
(inferior_command): Use inferior and thread pointers.
* inferior.h (struct thread_info): Forward declare.
(notice_new_inferior): Take a thread_info pointer instead of a
ptid_t. All callers adjusted.
(detach_inferior): Delete declaration.
(exit_inferior, exit_inferior_silent): Take an inferior pointer
instead of a pid. All callers adjusted.
(gdb_inferior_id_to_pid, pid_to_gdb_inferior_id, in_inferior_list)
(valid_gdb_inferior_id): Delete.
* infrun.c (follow_fork_inferior, proceed_after_vfork_done)
(handle_vfork_child_exec_or_exit, follow_exec): Adjust.
(struct displaced_step_inferior_state) <pid>: Delete, replaced by
...
<inf>: ... this new field.
<step_ptid>: Delete, replaced by ...
<step_thread>: ... this new field.
(get_displaced_stepping_state): Take an inferior pointer instead
of a pid. All callers adjusted.
(displaced_step_in_progress_any_inferior): Adjust.
(displaced_step_in_progress_thread): Take a thread pointer instead
of a ptid_t. All callers adjusted.
(displaced_step_in_progress, add_displaced_stepping_state): Take
an inferior pointer instead of a pid. All callers adjusted.
(get_displaced_step_closure_by_addr): Adjust.
(remove_displaced_stepping_state): Take an inferior pointer
instead of a pid. All callers adjusted.
(displaced_step_prepare_throw, displaced_step_prepare)
(displaced_step_fixup): Take a thread pointer instead of a ptid_t.
All callers adjusted.
(start_step_over): Adjust.
(infrun_thread_ptid_changed): Remove bit updating ptids in the
displaced step queue.
(do_target_resume): Adjust.
(fetch_inferior_event): Use inferior_thread.
(context_switch, get_inferior_stop_soon): Take an
execution_control_state pointer instead of a ptid_t. All callers
adjusted.
(switch_to_thread_cleanup): Delete.
(stop_all_threads): Use scoped_restore_current_thread.
* inline-frame.c: Include "gdbthread.h".
(inline_state) <inline_state>: Take a thread pointer instead of a
ptid_t. All callers adjusted.
<ptid>: Delete, replaced by ...
<thread>: ... this new field.
(find_inline_frame_state): Take a thread pointer instead of a
ptid_t. All callers adjusted.
(skip_inline_frames, step_into_inline_frame)
(inline_skipped_frames, inline_skipped_symbol): Take a thread
pointer instead of a ptid_t. All callers adjusted.
* inline-frame.h (skip_inline_frames, step_into_inline_frame)
(inline_skipped_frames, inline_skipped_symbol): Likewise.
* linux-fork.c (delete_checkpoint_command): Adjust to use thread
pointers directly.
* linux-nat.c (get_detach_signal): Likewise.
* linux-thread-db.c (thread_from_lwp): New 'stopped' parameter.
(thread_db_notice_clone): Adjust.
(thread_db_find_new_threads_silently)
(thread_db_find_new_threads_2, thread_db_find_new_threads_1): Take
a thread pointer instead of a ptid_t. All callers adjusted.
* mi/mi-cmd-var.c: Include "inferior.h".
(mi_cmd_var_update_iter): Update to use thread pointers.
* mi/mi-interp.c (mi_new_thread): Update to use the thread's
inferior directly.
(mi_output_running_pid, mi_inferior_count): Delete, bits factored
out to ...
(mi_output_running): ... this new function.
(mi_on_resume_1): Adjust to use it.
(mi_user_selected_context_changed): Adjust to use inferior_thread.
* mi/mi-main.c (proceed_thread): Adjust to use thread pointers
directly.
(interrupt_thread_callback): : Adjust to use thread and inferior
pointers.
* proc-service.c: Include "gdbthread.h".
(ps_pglobal_lookup): Adjust to use the thread's inferior directly.
* progspace-and-thread.c: Include "inferior.h".
* progspace.c: Include "inferior.h".
* python/py-exitedevent.c (create_exited_event_object): Adjust to
hold a reference to an inferior_object.
* python/py-finishbreakpoint.c (bpfinishpy_init): Adjust to use
inferior_thread.
* python/py-inferior.c (struct inferior_object): Give the type a
tag name instead of a typedef.
(python_on_normal_stop): No need to check if the current thread is
listed.
(inferior_to_inferior_object): Change return type to
inferior_object. All callers adjusted.
(find_thread_object): Delete, bits factored out to ...
(thread_to_thread_object): ... this new function.
* python/py-infthread.c (create_thread_object): Use
inferior_to_inferior_object.
(thpy_is_stopped): Use thread pointer directly.
(gdbpy_selected_thread): Use inferior_thread.
* python/py-record-btrace.c (btpy_list_object) <ptid>: Delete
field, replaced with ...
<thread>: ... this new field. All users adjusted.
(btpy_insn_or_gap_new): Drop const.
(btpy_list_new): Take a thread pointer instead of a ptid_t. All
callers adjusted.
* python/py-record.c: Include "gdbthread.h".
(recpy_insn_new, recpy_func_new): Take a thread pointer instead of
a ptid_t. All callers adjusted.
(gdbpy_current_recording): Use inferior_thread.
* python/py-record.h (recpy_record_object) <ptid>: Delete
field, replaced with ...
<thread>: ... this new field. All users adjusted.
(recpy_element_object) <ptid>: Delete
field, replaced with ...
<thread>: ... this new field. All users adjusted.
(recpy_insn_new, recpy_func_new): Take a thread pointer instead of
a ptid_t. All callers adjusted.
* python/py-threadevent.c: Include "gdbthread.h".
(get_event_thread): Use thread_to_thread_object.
* python/python-internal.h (struct inferior_object): Forward
declare.
(find_thread_object, find_inferior_object): Delete declarations.
(thread_to_thread_object, inferior_to_inferior_object): New
declarations.
* record-btrace.c: Include "inferior.h".
(require_btrace_thread): Use inferior_thread.
(record_btrace_frame_sniffer)
(record_btrace_tailcall_frame_sniffer): Use inferior_thread.
(get_thread_current_frame): Use scoped_restore_current_thread and
switch_to_thread.
(get_thread_current_frame): Use thread pointer directly.
(record_btrace_replay_at_breakpoint): Use thread's inferior
pointer directly.
* record-full.c: Include "inferior.h".
* regcache.c: Include "gdbthread.h".
(get_thread_arch_regcache): Use the inferior's address space
directly.
(get_thread_regcache, registers_changed_thread): New.
* regcache.h (get_thread_regcache(thread_info *thread)): New
overload.
(registers_changed_thread): New.
(remote_target) <remote_detach_1>: Swap order of parameters.
(remote_add_thread): <remote_add_thread>: Return the new thread.
(get_remote_thread_info(ptid_t)): New overload.
(remote_target::remote_notice_new_inferior): Use thread pointers
directly.
(remote_target::process_initial_stop_replies): Use
thread_info::set_running.
(remote_target::remote_detach_1, remote_target::detach)
(extended_remote_target::detach): Adjust.
* stack.c (frame_show_address): Use inferior_thread.
* target-debug.h (target_debug_print_thread_info_pp): New.
* target-delegates.c: Regenerate.
* target.c (default_thread_address_space): Delete.
(memory_xfer_partial_1): Use current_inferior.
(target_detach): Use current_inferior.
(target_thread_address_space): Delete.
(generic_mourn_inferior): Use current_inferior.
* target.h (struct target_ops) <thread_address_space>: Delete.
(target_thread_address_space): Delete.
* thread.c (init_thread_list): Use ALL_THREADS_SAFE. Use thread
pointers directly.
(delete_thread_1, delete_thread, delete_thread_silent): Take a
thread pointer instead of a ptid_t. Adjust all callers.
(ptid_to_global_thread_id, global_thread_id_to_ptid): Delete.
(first_thread_of_process): Delete, replaced by ...
(first_thread_of_inferior): ... this new function. All callers
adjusted.
(any_thread_of_process): Rename to ...
(any_thread_of_inferior): ... this, and take an inferior pointer.
(any_live_thread_of_process): Rename to ...
(any_live_thread_of_inferior): ... this, and take an inferior
pointer.
(thread_stack_temporaries_enabled_p, push_thread_stack_temporary)
(value_in_thread_stack_temporaries)
(get_last_thread_stack_temporary): Take a thread pointer instead
of a ptid_t. Adjust all callers.
(thread_info::set_running): New.
(validate_registers_access): Use inferior_thread.
(can_access_registers_ptid): Rename to ...
(can_access_registers_thread): ... this, and take a thread
pointer.
(print_thread_info_1): Adjust to compare thread pointers instead
of ptids.
(switch_to_no_thread, switch_to_thread): Make extern.
(scoped_restore_current_thread::~scoped_restore_current_thread):
Use m_thread pointer directly.
(scoped_restore_current_thread::scoped_restore_current_thread):
Use inferior_thread.
(thread_command): Use thread pointer directly.
(thread_num_make_value_helper): Use inferior_thread.
* top.c (execute_command): Use inferior_thread.
* tui/tui-interp.c: Include "inferior.h".
* varobj.c (varobj_create): Use inferior_thread.
(value_of_root_1): Use find_thread_global_id instead of
global_thread_id_to_ptid.
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
This patch intends to partially fix PR breakpoints/10737, which is
about making the syscall information (for the "catch syscall" command)
be per-arch, instead of global. This is not a full fix because of the
other issues pointed by Pedro here:
<https://sourceware.org/bugzilla/show_bug.cgi?id=10737#c5>
However, I consider it a good step towards the real fix. It will also
help me fix <https://sourceware.org/bugzilla/show_bug.cgi?id=17402>.
What this patch does, basically, is move the "syscalls_info"
struct to gdbarch. Currently, the syscall information is stored in a
global variable inside gdb/xml-syscall.c, which means that there is no
easy way to correlate this info with the current target or
architecture being used, for example. This causes strange behaviors,
because the syscall info is not re-read when the arch changes. For
example, if you put a syscall catchpoint in syscall 5 on i386 (syscall
open), and then load a x86_64 program on GDB and put the same syscall
5 there (fstat on x86_64), you will still see that GDB tells you that
it is catching "open", even though it is not. With this patch, GDB
correctly says that it will be catching fstat syscalls.
(gdb) set architecture i386
The target architecture is assumed to be i386
(gdb) catch syscall 5
Catchpoint 1 (syscall 'open' [5])
(gdb) set architecture i386:x86-64
The target architecture is assumed to be i386:x86-64
(gdb) catch syscall 5
Catchpoint 2 (syscall 'open' [5])
But with the patch:
(gdb) set architecture i386
The target architecture is assumed to be i386
(gdb) catch syscall 5
Catchpoint 1 (syscall 'open' [5])
(gdb) set architecture i386:x86-64
The target architecture is assumed to be i386:x86-64
(gdb) catch syscall 5
Catchpoint 2 (syscall 'fstat' [5])
As I said, there are still some problems on the "catch syscall"
mechanism, because (for example) the user should be able to "catch
syscall open" on i386, and then expect "open" to be caught also on
x86_64. Currently, it doesn't work. I intend to work on this later.
gdb/
2014-11-20 Sergio Durigan Junior <sergiodj@redhat.com>
PR breakpoints/10737
* amd64-linux-tdep.c (amd64_linux_init_abi_common): Adjust call to
set_xml_syscall_file_name to provide gdbarch.
* arm-linux-tdep.c (arm_linux_init_abi): Likewise.
* bfin-linux-tdep.c (bfin_linux_init_abi): Likewise.
* breakpoint.c (print_it_catch_syscall): Adjust call to
get_syscall_by_number to provide gdbarch.
(print_one_catch_syscall): Likewise.
(print_mention_catch_syscall): Likewise.
(print_recreate_catch_syscall): Likewise.
(catch_syscall_split_args): Adjust calls to get_syscall_by_number
and get_syscall_by_name to provide gdbarch.
(catch_syscall_completer): Adjust call to get_syscall_names to
provide gdbarch.
* gdbarch.c: Regenerate.
* gdbarch.h: Likewise.
* gdbarch.sh: Forward declare "struct syscalls_info".
(xml_syscall_file): New variable.
(syscalls_info): Likewise.
* i386-linux-tdep.c (i386_linux_init_abi): Adjust call to
set_xml_syscall_file_name to provide gdbarch.
* mips-linux-tdep.c (mips_linux_init_abi): Likewise.
* ppc-linux-tdep.c (ppc_linux_init_abi): Likewise.
* s390-linux-tdep.c (s390_gdbarch_init): Likewise.
* sparc-linux-tdep.c (sparc32_linux_init_abi): Likewise.
* sparc64-linux-tdep.c (sparc64_linux_init_abi): Likewise.
* xml-syscall.c: Include gdbarch.h.
(set_xml_syscall_file_name): Accept gdbarch parameter.
(get_syscall_by_number): Likewise.
(get_syscall_by_name): Likewise.
(get_syscall_names): Likewise.
(my_gdb_datadir): Delete global variable.
(struct syscalls_info) <my_gdb_datadir>: New variable.
(struct syscalls_info) <sysinfo>: Rename variable to
"syscalls_info".
(sysinfo): Delete global variable.
(have_initialized_sysinfo): Likewise.
(xml_syscall_file): Likewise.
(sysinfo_free_syscalls_desc): Rename to...
(syscalls_info_free_syscalls_desc): ... this.
(free_syscalls_info): Rename "sysinfo" to "syscalls_info". Adjust
code to the new layout of "struct syscalls_info".
(make_cleanup_free_syscalls_info): Rename parameter "sysinfo" to
"syscalls_info".
(syscall_create_syscall_desc): Likewise.
(syscall_start_syscall): Likewise.
(syscall_parse_xml): Likewise.
(xml_init_syscalls_info): Likewise. Drop "const" from return value.
(init_sysinfo): Rename to...
(init_syscalls_info): ...this. Add gdbarch as a parameter.
Adjust function to deal with gdbarch.
(xml_get_syscall_number): Delete parameter sysinfo. Accept
gdbarch as a parameter. Adjust code.
(xml_get_syscall_name): Likewise.
(xml_list_of_syscalls): Likewise.
(set_xml_syscall_file_name): Accept gdbarch as parameter.
(get_syscall_by_number): Likewise.
(get_syscall_by_name): Likewise.
(get_syscall_names): Likewise.
* xml-syscall.h (set_xml_syscall_file_name): Likewise.
(get_syscall_by_number): Likewise.
(get_syscall_by_name): Likewise.
(get_syscall_names): Likewise.
gdb/testsuite/
2014-11-20 Sergio Durigan Junior <sergiodj@redhat.com>
PR breakpoints/10737
* gdb.base/catch-syscall.exp (do_syscall_tests): Call
test_catch_syscall_multi_arch.
(test_catch_syscall_multi_arch): New function.
Two modifications:
1. The addition of 2013 to the copyright year range for every file;
2. The use of a single year range, instead of potentially multiple
year ranges, as approved by the FSF.
Initial support for Blackfin processors. This supports the standard ABI.
Signed-off-by: Jie Zhang <jie.zhang@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>