A user noticed that TYPE_CODE_FIXED_POINT was not exported by the gdb
Python layer. This patch fixes the bug, and prevents future
occurences of this type of bug.
The current "Specify Location" section of the GDB manual starts with:
"Several @value{GDBN} commands accept arguments that specify a location
of your program's code."
And then, such commands are documented as taking a "location"
argument. For example, here's a representative subset:
@item break @var{location}
@item clear @var{location}
@item until @var{location}
@item list @var{location}
@item edit @var{location}
@itemx info line @var{location}
@item info macros @var{location}
@item trace @var{location}
@item info scope @var{location}
@item maint agent @r{[}-at @var{location}@r{,}@r{]} @var{expression}
The issue here is that "location" isn't really correct for most of
these commands. Instead, the "location" argument is really a
placeholder that represent an umbrella term for all of the
"linespecs", "explicit location", and "address location" input
formats. GDB parses these and then finds the actual code locations
(plural) in the program that match. For example, a "location"
specified like "-function func" will actually match all the code
locations in the program that correspond to the address/file/lineno of
all the functions named "func" in all the loaded programs and shared
libraries of all the inferiors. A location specified like "-function
func -label lab" matches all the addresses of C labels named "lab" in
all functions named "func". Etc.
This means that several of the commands that claim they accept a
"location", actually end up working with multiple locations, and the
manual doesn't explain that all that well. In some cases, the command
will work with all the resolved locations. In other cases, the
command aborts with an error if the location specification resolves to
multiple locations in the program. In other cases, GDB just
arbitrarily and silently picks whatever is the first resolved code
location (which sounds like should be improved).
To clarify this, I propose we use the term "Location Specification",
with shorthand "locaction spec", when we're talking about the user
input, the argument or arguments that is/are passed to commands to
instruct GDB how to find locations of interest. This is distinct from
the actual code locations in the program, which are what GDB finds
based on the user-specified location spec. Then use "location
specification or the shorter "location spec" thoughout instead of
"location" when we're talking about the user input.
Thus, this commit does the following:
- renames the "Specify Location" section of the manual to "Location
Specifications".
- It then introduces the term "Location Specification", with
corresponding shorthand "location spec", as something distinct from
an actual code location in the program. It explains what a concrete
code location is. It explains that a location specification may be
incomplete, and that may match multiple code locations in the
program, or no code location at all. It gives examples. Some
pre-existing examples were moved from the "Set Breaks" section, and
a few new ones that didn't exist yet were added. I think it is
better to have these centralized in this "Location Specification"
section, since all the other commands that accept a location spec
have an xref that points there.
- Goes through the manual, and where "@var{location}" was used for a
command argument, updated it to say "@var{locspec}" instead. At the
same time, tweaks the description of the affected commands to
describe what happens when the location spec resolves to more than
one location. Most commands just did not say anything about that.
One command -- "maint agent -at @var{location}" -- currently says it
accepts a "location", suggesting it can accept address and explicit
locations too, but that's incorrect. In reality, it only accepts
linespecs, so fix it accordingly.
One MI command -- "-trace-find line" -- currently says it accepts a
"line specification", but it can accept address and explicit
locations too, so fix it accordingly.
Special thanks goes to Eli Zaretskii for reviews and rewording
suggestions.
Change-Id: Ic42ad8565e79ca67bfebb22cbb4794ea816fd08b
Building on the previous commit, this makes use of a trailing @ to
split long @deffn lines in the guile.texi source file. This splitting
doesn't change how the document is laid out by texinfo.
I have also wrapped keyword and argument name pairs in @w{...} to
prevent line breaks appearing between the two. I've currently only
done this for the longer @deffn lines, where a line break is
possible. This makes the @deffn lines much nicer to read in the
generated pdf.
Most guile procedures in the guile.texi file are defined like:
@deffn {Scheme Procedure} name arg1 arg2 arg3
But there are two places where we do this:
@deffn {Scheme Procedure} (name arg1 arg2 arg3)
Notice the added (...). Though this does represent how a procedure
call is written in scheme, it's not the normal style throughout the
manual. I also checked the 'info guile' info page to see how they
wrote there declarations, and they use the first style too.
The second style also has the drawback that index entries are added as
'(name', and so they are grouped in the '(' section of the index,
which is not very user friendly.
In this commit I've changed the definitions of make-command and
make-parameter to use the first style.
The procedure declaration lines can get pretty long with all of the
arguments, and this was true for both of the procedures I am changing
in this commit. I have made use of a trailing '@' to split the deffn
lines, and keep them under 80 characters in the texi source. This
makes no difference to how the final document looks.
Finally, our current style for keyword arguments, appears to be:
[#:keyword-name argument-name]
I don't really understand the reason for this, 'info guile' just seems
to use:
[#:keyword-name]
which seems just as good to me. But I don't propose to change
that just now. What I do notice though, is that sometimes, texinfo
will place a line break between the keyword-name and the
argument-name, for example, the pdf of make-command is:
make-command name [#:invoke invoke] [#:command-class
command-class] [#:completer-class completer] [#:prefix? prefix] [#:doc
doc-string]
Notice the line break after '#:command-class' and after '#:doc',
neither of which are ideal. And so, for the two commands I am
changing in this commit, I have made use of @w{...} to prevent line
breaks between the keyword-name and the argument-name. Now the pdf
looks like this:
make-command name [#:invoke invoke]
[#:command-class command-class] [#:completer-class completer]
[#:prefix? prefix] [#:doc doc-string]
Which seems much better. I'll probably update the other deffn lines
at some point.
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
Adds API to the Guile bindings for creating temporary breakpoints and
querying whether an existing breakpoint object is temporary. This is
effectively a transliteration of the Python implementation.
It's worth noting that the added `is_temporary' flag is ignored in the
watchpoint registration path. This replicates the behaviour of the
Python implementation, but might be a bit surprising for users.
gdb/ChangeLog:
2021-06-09 George Barrett <bob@bob131.so>
* guile/scm-breakpoint.c (gdbscm_breakpoint_object::spec): Add
is_temporary field.
(temporary_keyword): Add keyword object for make-breakpoint
argument parsing.
(gdbscm_make_breakpoint): Accept #:temporary keyword argument
and store the value in the allocated object's
spec.is_temporary.
(gdbscm_register_breakpoint_x): Pass the breakpoint's
spec.is_temporary value to create_breakpoint.
(gdbscm_breakpoint_temporary): Add breakpoint-temporary?
procedure implementation.
(breakpoint_functions::make-breakpoint): Update documentation
string and fix a typo.
(breakpoint_functions::breakpoint-temporary?): Add
breakpoint-temporary? procedure.
(gdbscm_initialize_breakpoints): Initialise temporary_keyword
variable.
NEWS (Guile API): Mention new temporary breakpoints API.
gdb/doc/ChangeLog:
2021-06-09 George Barrett <bob@bob131.so>
* guile.texi (Breakpoints In Guile): Update make-breakpoint
documentation to reflect new #:temporary argument.
Add documentation for new breakpoint-temporary? procedure.
gdb/testsuite/ChangeLog:
2021-06-09 George Barrett <bob@bob131.so>
* gdb.guile/scm-breakpoint.exp: Add additional tests for
temporary breakpoints.
Change-Id: I2de332ee7c256f5591d7141ab3ad50d31b871d17
This commit adds initial support for catchpoints to the guile
breakpoint API.
This commit adds a BP_CATCHPOINT constant which corresponds to
GDB's internal bp_catchpoint. The new constant is documented in the
manual.
The user can't create breakpoints with type BP_CATCHPOINT after this
commit, but breakpoints that already exist, obtained with
the (breakpoints) function, can now have this type.
gdb/ChangeLog:
* guile/scm-breakpoint.c (bpscm_type_to_string): Handle
bp_catchpoint.
(bpscm_want_scm_wrapper_p): Likewise.
(gdbscm_make_breakpoint): Likewise.
(breakpoint_integer_constants): Likewise.
gdb/doc/ChangeLog:
* guile.texinfo (Breakpoints In Guile): Add BP_CATCHPOINT
description.
gdb/testsuite/ChangeLog:
* gdb.guile/scm-breakpoint.exp (test_catchpoints): New proc.
The Guile API doesn't currently have an equivalent to the Python API's
gdb.Value.const_value(). This commit adds a procedure with equivalent
semantics to the Guile API.
gdb/ChangeLog:
* NEWS (Guile API): Note the addition of the new procedure.
* guile/scm-value.c (gdbscm_value_const_value): Add
implementation of value-const-value procedure.
(value_functions): Add value-const-value procedure.
gdb/doc/ChangeLog:
* guile.texi (Values From Inferior In Guile): Add documentation
for value-const-value.
gdb/testsuite/ChangeLog:
* gdb.guile/scm-value.exp (test_value_in_inferior): Add test for
value-const-value.
The Guile API doesn't currently have an equivalent to the Python API's
Value.reference_value() or Value.rvalue_reference_value(). This commit
adds a procedure with equivalent semantics to the Guile API.
gdb/ChangeLog:
* NEWS (Guile API): Note the addition of new procedures.
* guile/scm-value.c (gdbscm_reference_value): Add helper function
for reference value creation.
(gdbscm_value_reference_value): Add implementation of
value-reference-value procedure.
(gdbscm_value_rvalue_reference_value): Add implementation of
value-rvalue-reference-value procedure.
(value_functions): Add value-reference-value procedure. Add
value-rvalue-reference-value procedure.
gdb/doc/ChangeLog:
* guile.texi (Values From Inferior In Guile): Add documentation
for value-reference-value. Add documentation for
value-rvalue-reference-value.
gdb/testsuite/ChangeLog:
* gdb.guile/scm-value.exp (test_value_in_inferior): Add test for
value-reference-value. Add test for value-rvalue-reference-value.
Adds a couple of missing bits to the Guile API to make C++11 rvalue
reference values and types usable from Guile scripts.
gdb/ChangeLog:
* guile/scm-type.c (type_integer_constants): Add binding for
TYPE_CODE_RVALUE_REF.
* guile/scm-value.c (gdbscm_value_referenced_value): Handle
dereferencing of rvalue references.
* NEWS (Guile API): Note improvements in rvalue reference support.
gdb/doc/ChangeLog:
* guile.texi (Types In Guile): Add documentation for
TYPE_CODE_RVALUE_REF.
Change this:
The available watchpoint types represented by constants are defined
in the gdb module:
to this:
The available watchpoint types are represented by constants defined
in the gdb module:
The new version matches a similar line a few lines up the document
which reads:
The available types are represented by constants defined in the gdb
module:
gdb/doc/ChangeLog:
* guile.texinfo (Breakpoints In Guile): Reword sentence.
* python.texinfo (Breakpoints In Python): Reword sentence.
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
This commit documents the new multi-target features in both NEWS and
user manual.
gdb/ChangeLog:
2020-01-10 Pedro Alves <palves@redhat.com>
* NEWS: Mention multi-target debugging, "info connections", and
"add-inferior -no-connection".
gdb/doc/ChangeLog:
2020-01-10 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Starting): Say "current inferior not connected"
instead of "GDB not connected".
(Inferiors and Programs): Rename node to ...
(Inferiors Connections and Programs): ... this. Update all
references. Talk about multiple target connections. Update "info
inferiors" info to mention the connections column. Describe "info
connections". Document "add-inferior -no-connection".
* guile.texi, python.texi: Update cross references.
Introduce a new print setting max-depth which can be set with 'set
print max-depth DEPTH'. The default value of DEPTH is 20, but this
can also be set to unlimited.
When GDB is printing a value containing nested structures GDB will
stop descending at depth DEPTH. Here is a small example:
typedef struct s1 { int a; } s1;
typedef struct s2 { s1 b; } s2;
typedef struct s3 { s2 c; } s3;
typedef struct s4 { s3 d; } s4;
s4 var = { { { { 3 } } } };
The following table shows how various depth settings affect printing
of 'var':
| Depth Setting | Result of 'p var' |
|---------------+--------------------------------|
| Unlimited | $1 = {d = {c = {b = {a = 3}}}} |
| 4 | $1 = {d = {c = {b = {a = 3}}}} |
| 3 | $1 = {d = {c = {b = {...}}}} |
| 2 | $1 = {d = {c = {...}}} |
| 1 | $1 = {d = {...}} |
| 0 | $1 = {...} |
Only structures, unions, and arrays are replaced in this way, scalars
and strings are not replaced.
The replacement is counted from the level at which you print, not from
the top level of the structure. So, consider the above example and
this GDB session:
(gdb) set print max-depth 2
(gdb) p var
$1 = {d = {c = {...}}}
(gdb) p var.d
$2 = {c = {b = {...}}}
(gdb) p var.d.c
$3 = {b = {a = 3}}
Setting the max-depth to 2 doesn't prevent the user from exploring
deeper into 'var' by asking for specific sub-fields to be printed.
The motivation behind this feature is to try and give the user more
control over how much is printed when examining large, complex data
structures.
The default max-depth of 20 means that there is a change in GDB's
default behaviour. Someone printing a data structure with 20 levels
of nesting will now see '{...}' instead of their data, they would need
to adjust the max depth, or call print again naming a specific field
in order to dig deeper into their data structure. If this is
considered a problem then we could increase the default, or even make
the default unlimited.
This commit relies on the previous commit, which added a new field to
the language structure, this new field was a string that contained the
pattern that should be used when a structure/union/array is replaced
in the output, this allows languages to use a syntax that is more
appropriate, mostly this will be selecting the correct types of
bracket '(...)' or '{...}', both of which are currently in use.
This commit should have no impact on MI output, expressions are
printed through the MI using -var-create and then -var-list-children.
As each use of -var-list-children only ever displays a single level of
an expression then the max-depth setting will have no impact.
This commit also adds the max-depth mechanism to the scripting
language pretty printers following basically the same rules as for the
built in value printing.
One quirk is that when printing a value using the display hint 'map',
if the keys of the map are structs then GDB will hide the keys one
depth level after it hides the values, this ensures that GDB produces
output like this:
$1 = map_object = {[{key1}] = {...}, [{key2}] = {...}}
Instead of this less helpful output:
$1 = map_object = {[{...}] = {...}, [{...}] = {...}}
This is covered by the new tests in gdb.python/py-nested-maps.exp.
gdb/ChangeLog:
* cp-valprint.c (cp_print_value_fields): Allow an additional level
of depth when printing anonymous structs or unions.
* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer):
Don't print either the top-level value, or the children if the
max-depth is exceeded.
(ppscm_print_children): When printing the key of a map, allow one
extra level of depth.
* python/py-prettyprint.c (gdbpy_apply_val_pretty_printer): Don't
print either the top-level value, or the children if the max-depth
is exceeded.
(print_children): When printing the key of a map, allow one extra
level of depth.
* python/py-value.c (valpy_format_string): Add max_depth keyword.
* valprint.c: (PRINT_MAX_DEPTH_DEFAULT): Define.
(user_print_options): Initialise max_depth field.
(val_print_scalar_or_string_type_p): New function.
(val_print): Check to see if the max depth has been reached.
(val_print_check_max_depth): Define new function.
(show_print_max_depth): New function.
(_initialize_valprint): Add 'print max-depth' option.
* valprint.h (struct value_print_options) <max_depth>: New field.
(val_print_check_max_depth): Declare new function.
* NEWS: Document new feature.
gdb/doc/ChangeLog:
* gdb.texinfo (Print Settings): Document 'print max-depth'.
* guile.texi (Guile Pretty Printing API): Document that 'print
max-depth' can effect the display of a values children.
* python.texi (Pretty Printing API): Likewise.
(Values From Inferior): Document max_depth keyword.
gdb/testsuite/ChangeLog:
* gdb.base/max-depth.c: New file.
* gdb.base/max-depth.exp: New file.
* gdb.python/py-nested-maps.c: New file.
* gdb.python/py-nested-maps.exp: New file.
* gdb.python/py-nested-maps.py: New file.
* gdb.python/py-format-string.exp (test_max_depth): New proc.
(test_all_common): Call test_max_depth.
* gdb.fortran/max-depth.exp: New file.
* gdb.fortran/max-depth.f90: New file.
* gdb.go/max-depth.exp: New file.
* gdb.go/max-depth.go: New file.
* gdb.modula2/max-depth.exp: New file.
* gdb.modula2/max-depth.c: New file.
* lib/gdb.exp (get_print_expr_at_depths): New proc.
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
This commit changes GDB to track thread numbers per-inferior. Then,
if you're debugging multiple inferiors, GDB displays
"inferior-num.thread-num" instead of just "thread-num" whenever it
needs to display a thread:
(gdb) info inferiors
Num Description Executable
1 process 6022 /home/pedro/gdb/tests/threads
* 2 process 6037 /home/pedro/gdb/tests/threads
(gdb) info threads
Id Target Id Frame
1.1 Thread 0x7ffff7fc2740 (LWP 6022) "threads" (running)
1.2 Thread 0x7ffff77c0700 (LWP 6028) "threads" (running)
1.3 Thread 0x7ffff7fc2740 (LWP 6032) "threads" (running)
2.1 Thread 0x7ffff7fc1700 (LWP 6037) "threads" (running)
2.2 Thread 0x7ffff77c0700 (LWP 6038) "threads" (running)
* 2.3 Thread 0x7ffff7fc2740 (LWP 6039) "threads" (running)
(gdb)
...
(gdb) thread 1.1
[Switching to thread 1.1 (Thread 0x7ffff7fc2740 (LWP 8155))]
(gdb)
...
etc.
You can still use "thread NUM", in which case GDB infers you're
referring to thread NUM of the current inferior.
The $_thread convenience var and Python's InferiorThread.num attribute
are remapped to the new per-inferior thread number. It's a backward
compatibility break, but since it only matters when debugging multiple
inferiors, I think it's worth doing.
Because MI thread IDs need to be a single integer, we keep giving
threads a global identifier, _in addition_ to the per-inferior number,
and make MI always refer to the global thread IDs. IOW, nothing
changes from a MI frontend's perspective.
Similarly, since Python's Breakpoint.thread and Guile's
breakpoint-thread/set-breakpoint-thread breakpoint methods need to
work with integers, those are adjusted to work with global thread IDs
too. Follow up patches will provide convenient means to access
threads' global IDs.
To avoid potencially confusing users (which also avoids updating much
of the testsuite), if there's only one inferior and its ID is "1",
IOW, the user hasn't done anything multi-process/inferior related,
then the "INF." part of thread IDs is not shown. E.g,.:
(gdb) info inferiors
Num Description Executable
* 1 process 15275 /home/pedro/gdb/tests/threads
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
(gdb) add-inferior
Added inferior 2
(gdb) info threads
Id Target Id Frame
* 1.1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
(gdb)
No regressions on x86_64 Fedora 20.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention that thread IDs are now per inferior and global
thread IDs.
* Makefile.in (SFILES): Add tid-parse.c.
(COMMON_OBS): Add tid-parse.o.
(HFILES_NO_SRCDIR): Add tid-parse.h.
* ada-tasks.c: Adjust to use ptid_to_global_thread_id.
* breakpoint.c (insert_breakpoint_locations)
(remove_threaded_breakpoints, bpstat_check_breakpoint_conditions)
(print_one_breakpoint_location, set_longjmp_breakpoint)
(check_longjmp_breakpoint_for_call_dummy)
(set_momentary_breakpoint): Adjust to use global IDs.
(find_condition_and_thread, watch_command_1): Use parse_thread_id.
(until_break_command, longjmp_bkpt_dtor)
(breakpoint_re_set_thread, insert_single_step_breakpoint): Adjust
to use global IDs.
* dummy-frame.c (pop_dummy_frame_bpt): Adjust to use
ptid_to_global_thread_id.
* elfread.c (elf_gnu_ifunc_resolver_stop): Likewise.
* gdbthread.h (struct thread_info): Rename field 'num' to
'global_num. Add new fields 'per_inf_num' and 'inf'.
(thread_id_to_pid): Rename thread_id_to_pid to
global_thread_id_to_ptid.
(pid_to_thread_id): Rename to ...
(ptid_to_global_thread_id): ... this.
(valid_thread_id): Rename to ...
(valid_global_thread_id): ... this.
(find_thread_id): Rename to ...
(find_thread_global_id): ... this.
(ALL_THREADS, ALL_THREADS_BY_INFERIOR): Declare.
(print_thread_info): Add comment.
* tid-parse.h: New file.
* tid-parse.c: New file.
* infcmd.c (step_command_fsm_prepare)
(step_command_fsm_should_stop): Adjust to use the global thread
ID.
(until_next_command, until_next_command)
(finish_command_fsm_should_stop): Adjust to use the global thread
ID.
(attach_post_wait): Adjust to check the inferior number too.
* inferior.h (struct inferior) <highest_thread_num>: New field.
* infrun.c (handle_signal_stop)
(insert_exception_resume_breakpoint)
(insert_exception_resume_from_probe): Adjust to use the global
thread ID.
* record-btrace.c (record_btrace_open): Use global thread IDs.
* remote.c (process_initial_stop_replies): Also consider the
inferior number.
* target.c (target_pre_inferior): Clear the inferior's highest
thread num.
* thread.c (clear_thread_inferior_resources): Adjust to use the
global thread ID.
(new_thread): New inferior parameter. Adjust to use it. Set both
the thread's global ID and the thread's per-inferior ID.
(add_thread_silent): Adjust.
(find_thread_global_id): New.
(find_thread_id): Make static. Adjust to rename.
(valid_thread_id): Rename to ...
(valid_global_thread_id): ... this.
(pid_to_thread_id): Rename to ...
(ptid_to_global_thread_id): ... this.
(thread_id_to_pid): Rename to ...
(global_thread_id_to_ptid): ... this. Adjust.
(first_thread_of_process): Adjust.
(do_captured_list_thread_ids): Adjust to use global thread IDs.
(should_print_thread): New function.
(print_thread_info): Rename to ...
(print_thread_info_1): ... this, and add new show_global_ids
parameter. Handle it. Iterate over inferiors.
(print_thread_info): Reimplement as wrapper around
print_thread_info_1.
(show_inferior_qualified_tids): New function.
(print_thread_id): Use it.
(tp_array_compar): Compare inferior numbers too.
(thread_apply_command): Use tid_range_parser.
(do_captured_thread_select): Use parse_thread_id.
(thread_id_make_value): Adjust.
(_initialize_thread): Adjust "info threads" help string.
* varobj.c (struct varobj_root): Update comment.
(varobj_create): Adjust to use global thread IDs.
(value_of_root_1): Adjust to use global_thread_id_to_ptid.
* windows-tdep.c (display_tib): No longer accept an argument.
* cli/cli-utils.c (get_number_trailer): Make extern.
* cli/cli-utils.h (get_number_trailer): Declare.
(get_number_const): Adjust documentation.
* mi/mi-cmd-var.c (mi_cmd_var_update_iter): Adjust to use global
thread IDs.
* mi/mi-interp.c (mi_new_thread, mi_thread_exit)
(mi_on_normal_stop, mi_output_running_pid, mi_on_resume):
* mi/mi-main.c (mi_execute_command, mi_cmd_execute): Likewise.
* guile/scm-breakpoint.c (gdbscm_set_breakpoint_thread_x):
Likewise.
* python/py-breakpoint.c (bppy_set_thread): Likewise.
* python/py-finishbreakpoint.c (bpfinishpy_init): Likewise.
* python/py-infthread.c (thpy_get_num): Add comment and return the
per-inferior thread ID.
(thread_object_getset): Update comment of "num".
gdb/testsuite/ChangeLog:
2016-01-07 Pedro Alves <palves@redhat.com>
* gdb.base/break.exp: Adjust to output changes.
* gdb.base/hbreak2.exp: Likewise.
* gdb.base/sepdebug.exp: Likewise.
* gdb.base/watch_thread_num.exp: Likewise.
* gdb.linespec/keywords.exp: Likewise.
* gdb.multi/info-threads.exp: Likewise.
* gdb.threads/thread-find.exp: Likewise.
* gdb.multi/tids.c: New file.
* gdb.multi/tids.exp: New file.
gdb/doc/ChangeLog:
2016-01-07 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads): Document per-inferior thread IDs,
qualified thread IDs, global thread IDs and thread ID lists.
(Set Watchpoints, Thread-Specific Breakpoints): Adjust to refer to
thread IDs.
(Convenience Vars): Document the $_thread convenience variable.
(Ada Tasks): Adjust to refer to thread IDs.
(GDB/MI Async Records, GDB/MI Thread Commands, GDB/MI Ada Tasking
Commands, GDB/MI Variable Objects): Update to mention global
thread IDs.
* guile.texi (Breakpoints In Guile)
<breakpoint-thread/set-breakpoint-thread breakpoint>: Mention
global thread IDs instead of thread IDs.
* python.texi (Threads In Python): Adjust documentation of
InferiorThread.num.
(Breakpoint.thread): Mention global thread IDs instead of thread
IDs.
https://sourceware.org/ml/gdb-patches/2014-05/msg00737.html
Currently a MEMORY_ERROR raised during unwinding a frame will cause the
unwind to stop with an error message, for example:
(gdb) bt
#0 breakpt () at amd64-invalid-stack-middle.c:27
#1 0x00000000004008f0 in func5 () at amd64-invalid-stack-middle.c:32
#2 0x0000000000400900 in func4 () at amd64-invalid-stack-middle.c:38
#3 0x0000000000400910 in func3 () at amd64-invalid-stack-middle.c:44
#4 0x0000000000400928 in func2 () at amd64-invalid-stack-middle.c:50
Cannot access memory at address 0x2aaaaaab0000
However, frame #4 is marked as being the end of the stack unwind, so a
subsequent request for the backtrace looses the error message, such as:
(gdb) bt
#0 breakpt () at amd64-invalid-stack-middle.c:27
#1 0x00000000004008f0 in func5 () at amd64-invalid-stack-middle.c:32
#2 0x0000000000400900 in func4 () at amd64-invalid-stack-middle.c:38
#3 0x0000000000400910 in func3 () at amd64-invalid-stack-middle.c:44
#4 0x0000000000400928 in func2 () at amd64-invalid-stack-middle.c:50
When fetching the backtrace, or requesting the stack depth using the MI
interface the situation is even worse, the first time a request is made
we encounter the memory error and so the MI returns an error instead of
the correct result, for example:
(gdb) -stack-info-depth
^error,msg="Cannot access memory at address 0x2aaaaaab0000"
Or,
(gdb) -stack-list-frames
^error,msg="Cannot access memory at address 0x2aaaaaab0000"
However, once one of these commands has been used gdb has, internally,
walked the stack and figured that out that frame #4 is the bottom of the
stack, so the second time an MI command is tried you'll get the "expected"
result:
(gdb) -stack-info-depth
^done,depth="5"
Or,
(gdb) -stack-list-frames
^done,stack=[frame={level="0", .. snip lots .. }]
After this patch the MEMORY_ERROR encountered during the frame unwind is
attached to frame #4 as the stop reason, and is displayed in the CLI each
time the backtrace is requested. In the MI, catching the error means that
the "expected" result is returned the first time the MI command is issued.
So, from the CLI the results of the backtrace will be:
(gdb) bt
#0 breakpt () at amd64-invalid-stack-middle.c:27
#1 0x00000000004008f0 in func5 () at amd64-invalid-stack-middle.c:32
#2 0x0000000000400900 in func4 () at amd64-invalid-stack-middle.c:38
#3 0x0000000000400910 in func3 () at amd64-invalid-stack-middle.c:44
#4 0x0000000000400928 in func2 () at amd64-invalid-stack-middle.c:50
Backtrace stopped: Cannot access memory at address 0x2aaaaaab0000
Each and every time that the backtrace is requested, while the MI output
will similarly be consistently:
(gdb) -stack-info-depth
^done,depth="5"
Or,
(gdb) -stack-list-frames
^done,stack=[frame={level="0", .. snip lots .. }]
gdb/ChangeLog:
* frame.c (struct frame_info): Add stop_string field.
(get_prev_frame_always_1): Renamed from get_prev_frame_always.
(get_prev_frame_always): Old content moved into
get_prev_frame_always_1. Call get_prev_frame_always_1 inside
TRY_CATCH, handle MEMORY_ERROR exceptions.
(frame_stop_reason_string): New function definition.
* frame.h (unwind_stop_reason_to_string): Extend comment to
mention frame_stop_reason_string.
(frame_stop_reason_string): New function declaration.
* stack.c (frame_info): Switch to frame_stop_reason_string.
(backtrace_command_1): Switch to frame_stop_reason_string.
* unwind_stop_reason.def: Add UNWIND_MEMORY_ERROR.
(LAST_ENTRY): Changed to UNWIND_MEMORY_ERROR.
* guile/lib/gdb.scm: Add FRAME_UNWIND_MEMORY_ERROR to export list.
gdb/doc/ChangeLog:
* guile.texi (Frames In Guile): Mention FRAME_UNWIND_MEMORY_ERROR.
* python.texi (Frames In Python): Mention
gdb.FRAME_UNWIND_MEMORY_ERROR.
gdb/testsuite/ChangeLog:
* gdb.arch/amd64-invalid-stack-middle.exp: Update expected results.
* gdb.arch/amd64-invalid-stack-top.exp: Likewise.
gdb/doc/guile.texi (Types In Guile, Basic Guile, Frames In Guile)
(Breakpoints In Guile, Guile Printing Module)
(Guile Exception Handling, Values From Inferior In Guile)
(Objfiles In Guile, Breakpoints In Guile, Memory Ports in Guile):
Don't use @var at the beginning of a sentence.
gdb/doc/gdb.texinfo (Frame Filter Management, Trace Files)
(C Operators, Ada Tasks, Calling, Bootstrapping, ARM)
(PowerPC Embedded, Define, Annotations for Running)
(IPA Protocol Commands, Packets, General Query Packets)
(Tracepoint Packets, Notification Packets, Environment)
(Inferiors and Programs, Set Breaks, Set Catchpoints)
(Continuing and Stepping, Signals, Thread-Specific Breakpoints)
(Frames, Backtrace, Selection, Expressions, Registers)
(Trace State Variables, Built-In Func/Proc, Signaling, Files)
(Numbers, GDB/MI Async Records, GDB/MI Data Manipulation)
(Source Annotations, Using JIT Debug Info Readers, Packets)
(Stop Reply Packets, Host I/O Packets)
(Target Description Format): Don't use @var at the beginning of a
sentence.
gdb/doc/python.texi (Basic Python, Types In Python)
(Commands In Python, Frames In Python, Line Tables In Python)
(Breakpoints In Python, gdb.printing, gdb.types)
(Type Printing API): Don't use @var at the beginning of a
sentence.