BASEDIR was added by https://sourceware.org/ml/gdb-patches/2013-10/msg00587.html
in order to handle the different directory layout in serial testing
and parallel testing. BASEDIR is "gdb.base" in serial testing and is
"outputs/gdb.base/TESTNAME" in parallel testing. However, it doesn't
work if the GDBserver is in remote target, like this,
$ make check RUNTESTFLAGS='--target_board=remote-gdbserver-on-localhost foll-vfork.exp foll-exec.exp'
FAIL: gdb.base/foll-exec.exp: continue to first exec catchpoint (the program exited)
FAIL: gdb.base/foll-vfork.exp: exec: vfork and exec child follow, to main bp: continue to bp (the program exited)
FAIL: gdb.base/foll-vfork.exp: exec: vfork child follow, finish after tcatch vfork: finish (the program exited)
FAIL: gdb.base/foll-vfork.exp: exec: vfork relations in info inferiors: continue to bp (the program exited)
these tests fail because the executable can't be found. With target
board native-gdbserver, the program is spawned this way,
spawn ../gdbserver/gdbserver --once :2347 /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/gdb.base/foll-vfork
so BASEDIR is correct. However, with target board
remote-gdbserver-on-localhost, the program is spawned
spawn /usr/bin/ssh -l yao localhost /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/../gdbserver/gdbserver --once :2346 /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/gdb.base/foll-vfork
so BASEDIR (either "gdb.base" or "outputs/gdb.base/TESTNAME") makes no
sense.
I had a fix that pass absolute directory to BASEDIR, but it assumes
that directory structure is the same on build and target, and it
doesn't work in remote host case. The current fix in this patch is
to get the directory from argv[0]. In any case, the program to be
exec'ed is at the same directory with the main program.
Note that these tests do "next N" to let program stop at the desired
line, but it is fragile, because GDB for different targets may skip
function prologue slightly differently, so I replace some of them by
"tbreak on LINE NUMBER and continue".
gdb/testsuite:
2016-02-04 Yao Qi <yao.qi@linaro.org>
* gdb.base/foll-exec-mode.c: Include limits.h.
(main): Add parameters argc and argv. Get directory from
argv[0].
* gdb.base/foll-exec-mode.exp: Don't pass -DBASEDIR in
compilation.
* gdb.base/foll-exec.c: Include limits.h.
(main): Add parameters argc and argv.
Get directory from argv[0].
* gdb.base/foll-exec.exp: Don't pass -DBASEDIR in compilation.
Adjust tests on the number of lines as source code changed.
* gdb.base/foll-vfork-exit.c: Include limits.h.
(main): Add one line of statement before vfork.
* gdb.base/foll-vfork.c: Include limits.h and string.h.
(main): Add parameters argc and argv. Get directory from
argv[0].
* gdb.base/foll-vfork.exp: Don't pass -DBASEDIR in compilation.
(setup_gdb): Set tbreak to skip some source lines.
* gdb.multi/bkpt-multi-exec.c: Include limits.h.
(main): Add parameters argc and argv. Get directory from
argv[0].
* gdb.multi/bkpt-multi-exec.exp: Don't pass -DBASEDIR in
compilation.
* gdb.multi/multi-arch-exec.c: Include limits.h and string.h.
(main): Add parameters argc and argv. Get directory from
argv[0].
* gdb.multi/multi-arch-exec.exp: Don't pass -DBASEDIR in
compilation.
This exposes the internal error Don mentioned in PR19496:
(1) internal error -- gdb/target.c:2713: internal-error: Can't determine the current address space of thread
More analysis here:
https://sourceware.org/ml/gdb-patches/2016-01/msg00685.html
The (now kfailed) internal error looks like:
continue &
Continuing.
(gdb) PASS: gdb.threads/forking-threads-plus-breakpoint.exp: cond_bp_target=1: detach_on_fork=on: displaced=off: continue &
[New Thread 2846.2847]
(...)
[New Thread 2867.2867]
/home/pedro/gdb/mygit/src/gdb/target.c:2723: internal-error: Can't determine the current address space of thread Thread 2846.2846
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n) KFAIL: gdb.threads/forking-threads-plus-breakpoint.exp: cond_bp_target=1: detach_on_fork=on: displaced=off: inferior 1 exited (GDB internal error) (PRMS: remote/19496)
Resyncing due to internal error.
gdb/testsuite/ChangeLog:
2016-02-01 Pedro Alves <palves@redhat.com>
PR remote/19496
* gdb.threads/forking-threads-plus-breakpoint.exp
(displaced_stepping_supported): New global.
(probe_displaced_stepping_support): New procedure.
(do_test): Add 'displaced' parameter, and use it.
(top level): Check for displaced stepping support. Add displaced
stepping on/off testing axis.
The test gdb.mi/mi-vla-fortran.exp reveals an issue with the DWARF
generated by gfortran.
In the test a pointer variable 'pvla2' is created:
real, pointer :: pvla2 (:, :)
Initially this variable will be unassociated, so something like this:
l = associated(pvla2)
should return false.
In the test gdb stops at a point _before_ pvla2 is associated with
anything, and we then try to print pvla2, the expectation is that gdb
should reply <not associated>.
The problem is that the data the DWARF directs gdb to read (to identify
if the variable is associated or not) is not initialised until the first
time pvla2 is accessed.
As a result gdb ends up reading uninitialised memory, sometimes this
uninitialised memory indicates the variable is associated (when it's
not). This first mistake can lead to a cascade of errors, reading
uninitialised memory, with the result that gdb builds an invalid type to
associate with the variable pvla2.
In some cases, this invalid type can be very large, which when we try to
print pvla2 causes gdb to allocate a large amount of memory.
A recent commit added a new gdb variable 'max-value-size', which
prevents gdb from allocating values of extreme size. As a result
directly trying to print pvla2 will now now error rather than allocate a
large amount of memory.
However, some of the later tests create a varobj for pvla2, and then
ask for the children of that varobj to be displayed. In the case where
an invalid type has been computed for pvla2 then the number of children
can be wrong, and very big, in which case trying to display all of these
children can cause gdb to consume an excessive amount of memory.
This commit first detects if printing pvla2 triggers the max-value-size
error, if it does then we avoid all the follow on tests relating to the
unassociated pvla2, which avoids the second error printing the varobj
children.
gdb/testsuite/ChangeLog:
* gdb.mi/mi-vla-fortran.exp: Add XFAIL for accessing unassociated
pointer. Don't perform further tests on the unassociated pointer
if the first test fails.
For languages with dynamic types, an incorrect program, or uninitialised
variables within a program, could result in an incorrect, overly large
type being associated with a value. Currently, attempting to print such
a variable will result in gdb trying to allocate an overly large buffer.
If this large memory allocation fails then the result can be gdb either
terminating, or (due to memory contention) becoming unresponsive for the
user.
A new user visible variable in gdb helps guard against such problems,
two new commands are available:
set max-value-size
show max-value-size
The 'max-value-size' is the maximum size of memory in bytes that gdb
will allocate for the contents of a value. Any attempt to allocate a
value with a size greater than this will result in an error. The
initial default for this limit is set at 64k, this is based on a similar
limit that exists within the ada specific code.
It is possible for the user to set max-value-size to unlimited, in which
case the old behaviour is restored.
gdb/ChangeLog:
* value.c (max_value_size): New variable.
(MIN_VALUE_FOR_MAX_VALUE_SIZE): New define.
(show_max_value_size): New function.
(check_type_length_before_alloc): New function.
(allocate_value_contents): Call check_type_length_before_alloc.
(set_value_enclosing_type): Likewise.
(_initialize_values): Add set/show handler for max-value-size.
* NEWS: Mention new set/show command.
gdb/doc/ChangeLog:
* gdb.texinfo (Value Sizes): New section.
(Data): Add the 'Value Sizes' node to the menu.
gdb/testsuite/ChangeLog:
* gdb.base/max-value-size.c: New file.
* gdb.base/max-value-size.exp: New file.
* gdb.base/huge.exp: Disable max-value-size for this test.
In vla.f90, this single line of source is compiled to many instructions,
vla2(:, :, :) = 1311 ! vla2-allocated
it is quite slow (about several minutes in my testing) to step over this
source line without range stepping. This patch is to increase the timeout
value by 15 times, which is a magic number to make sure timeout disappears
in my testing with a slow arm-linux board.
gdb/testsuite:
2016-01-28 Yao Qi <yao.qi@linaro.org>
* gdb.fortran/vla-value.exp: Wrap test with with_timeout_factor.
If you have "set follow-fork child" set, then if you do "info threads"
right after a fork, and before the child reports any other event to
GDB core, you'll see:
(gdb) info threads
Id Target Id Frame
* 1.1 Thread 0x7ffff7fc1740 (LWP 31875) "fork-plus-threa" (running)
2.1 process 31879 "fork-plus-threa" Selected thread is running.
(gdb)
The "Selected thread is running." bit is a bogus error. That was GDB
trying to fetch the current frame of thread 2.1, because the external
runnning state is "stopped", and then throwing an error because the
thread is actually running.
This actually affects all-stop + schedule-multiple as well.
The problem here is that on a fork event, GDB doesn't update the
external parent/child running states.
New comprehensive test included. The "kill inferior 1" / "kill
inferior 2" bits also trip on PR gdb/19494 (hang killing unfollowed
fork children), which was fixed by the previous patch.
gdb/ChangeLog:
2016-01-25 Pedro Alves <palves@redhat.com>
PR threads/19461
* infrun.c (handle_inferior_event_1) <fork/vfork>: Update
parent/child running states.
gdb/testsuite/ChangeLog:
2016-01-25 Pedro Alves <palves@redhat.com>
PR threads/19461
* gdb.base/fork-running-state.c: New file.
* gdb.base/fork-running-state.exp: New file.
linux_nat_kill relies on get_last_target_status to determine whether
the current inferior is stopped at a unfollowed fork/vfork event.
This is bad because many things can happen ever since we caught the
fork/vfork event... This commit rewrites that code to instead walk
the thread list looking for unfollowed fork events, similarly to what
was done for remote.c.
New test included. The main idea of the test is make sure that when
the program stops for a fork catchpoint, and the user kills the
parent, gdb also kills the unfollowed fork child. Since the child
hasn't been added as an inferior at that point, we need some other
portable way to detect that the child is gone. The test uses a pipe
for that. The program forks twice, so you have grandparent, child and
grandchild. The grandchild inherits the write side of the pipe. The
grandparent hangs reading from the pipe, since nothing ever writes to
it. If, when GDB kills the child, it also kills the grandchild, then
the grandparent's pipe read returns 0/EOF and the test passes.
Otherwise, if GDB doesn't kill the grandchild, then the pipe read
never returns and the test times out, like:
FAIL: gdb.base/catch-fork-kill.exp: fork-kind=fork: exit-kind=kill: fork: kill parent (timeout)
FAIL: gdb.base/catch-fork-kill.exp: fork-kind=vfork: exit-kind=kill: vfork: kill parent (timeout)
No regressions on x86_64 Fedora 20. New test passes with gdbserver as
well.
gdb/ChangeLog:
2016-01-25 Pedro Alves <palves@redhat.com>
PR gdb/19494
* linux-nat.c (kill_one_lwp): New, factored out from ...
(kill_callback): ... this.
(kill_wait_callback): New, factored out from ...
(kill_wait_one_lwp): ... this.
(kill_unfollowed_fork_children): New function.
(linux_nat_kill): Use it.
gdb/testsuite/ChangeLog:
2016-01-25 Pedro Alves <palves@redhat.com>
PR gdb/19494
* gdb.base/catch-fork-kill.c: New file.
* gdb.base/catch-fork-kill.exp: New file.
These two tests collect 64 words from $sp onwards, hoping that's enough
to capture a few whole stack frames. Unfortunately, that's not enough
for s390, which tends to have large frame sizes - minimum 24 words on
s390, 20 on s390x (which just barely passes). Bump it to 128 words,
let's hope no machine needs more.
Tested on x86_64, s390, s390x.
gdb/testsuite/ChangeLog:
* gdb.trace/backtrace.exp: Bump stack collection fudge factor.
* gdb.trace/entry-values.exp: Bump stack collection fudge factor.
The test constructs fake DWARF info for a C structure involving bitfields.
DWARF bitfields are always counted from LSB, while the order in which
bitfields are allocated in a C struct depends on the target endianness -
thus the generated DWARF marks different bitfields as unavailable when
target is big endian. Accordingly, we need different expected outputs.
Tested on s390 and s390x, no regression on x86_64.
gdb/testsuite/ChangeLog:
* gdb.trace/unavailable-dwarf-piece.exp: Fix bitfield handling on big
endian targets.
Missed one message in bd0a71fa16, since it
didn't trigger on s390x or amd64 (fast tracepoint out of range due to
shared library usage), noticed on s390.
Pushed as obvious.
gdb/testsuite/ChangeLog:
* gdb.trace/pending.exp: Fix expected message on continue.
Pedro Alves:
Looks like you forgot to amend before pushing though -- the version
checked in still had "Thread 1".
gdb/testsuite/ChangeLog
2016-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
Pedro Alves <palves@redhat.com>
Fix testsuite compatibility with Guile.
* gdb.gdb/selftest.exp (send ^C to child process): Drop expected Thread
number.
The PR threads/19422 patchset added a new regression.
Additionally below it there was already a regression if --with-guile (which is
default if Guile is found) was used.
racy case #1:
(xgdb) PASS: gdb.gdb/selftest.exp: Set xgdb_prompt
^M
Thread 1 "xgdb" received signal SIGINT, Interrupt.^M
0x00007ffff583bfdd in poll () from /lib64/libc.so.6^M
(gdb) FAIL: gdb.gdb/selftest.exp: send ^C to child process
signal SIGINT^M
Continuing with signal SIGINT.^M
^C^M
Thread 1 "xgdb" received signal SIGINT, Interrupt.^M
0x00007ffff5779da0 in sigprocmask () from /lib64/libc.so.6^M
(gdb) PASS: gdb.gdb/selftest.exp: send SIGINT signal to child process
backtrace^M
errstring=errstring@entry=0x7e0e6c "", mask=mask@entry=RETURN_MASK_ALL) at exceptions.c:240^M
errstring=errstring@entry=0x7e0e6c "", mask=mask@entry=RETURN_MASK_ALL) at exceptions.c:240^M
(gdb) PASS: gdb.gdb/selftest.exp: backtrace through signal handler
racy case #2:
(xgdb) PASS: gdb.gdb/selftest.exp: Set xgdb_prompt
^M
Thread 1 "xgdb" received signal SIGINT, Interrupt.^M
0x00007ffff583bfdd in poll () from /lib64/libc.so.6^M
(gdb) FAIL: gdb.gdb/selftest.exp: send ^C to child process
signal SIGINT^M
Continuing with signal SIGINT.^M
^C^M
Thread 2 "xgdb" received signal SIGINT, Interrupt.^M
[Switching to Thread 0x7ffff3b7f700 (LWP 13227)]^M
0x00007ffff6b88b10 in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0^M
(gdb) PASS: gdb.gdb/selftest.exp: send SIGINT signal to child process
backtrace^M
(gdb) FAIL: gdb.gdb/selftest.exp: backtrace through signal handler
Pedro Alves:
Not all targets support thread names, and even those that do, not all
use the program name as default thread name -- I think that's only true
for GNU/Linux, actually. So I think it's best to not expect that, like:
-re "(Thread .*|Program) received signal SIGINT.*$gdb_prompt $" {
gdb/testsuite/ChangeLog
2016-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix testsuite compatibility with Guile.
* gdb.gdb/selftest.exp (send ^C to child process): Accept also Thread.
(thread 1): New test for backtrace through signal handler.
This patch unbuffer the output of the program so that the test harness
can count the number of "done" from output correctly.
gdb/testsuite:
2016-01-22 Yao Qi <yao.qi@linaro.org>
PR testsuite/19491
* gdb.base/multi-forks.c: Include
../lib/unbuffer_output.c
(main): Call gdb_unbuffer_output.
A relatively recent patch support for explicit locations, and part
of that patch cleaned up the way we parse breakpoint locations.
Unfortunatly, a small regression crept in for "*<EXPR>" breakpoint
locations. In particular, on PIE programs, one can see the issue by
doing the following, with any program:
(gdb) b *main
Breakpoint 1 at 0x51a: file hello.c, line 3.
(gdb) run
Starting program: /[...]/hello
Error in re-setting breakpoint 1: Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x51a
Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x51a
Just for the record, this regression was introduced by:
commit a06efdd6ef
Date: Tue Aug 11 17:09:35 2015 -0700
Subject: Explicit locations: introduce address locations
What happens is that the patch makes the implicit assumption that
the address computed the first time is static, as if it was designed
to only support litteral expressions (Eg. "*0x1234"). This allows
the shortcut of not re-computing the breakpoint location's address
when re-setting breakpoints.
However, this does not work in general, as demonstrated in the example
above.
This patch plugs that hole simply by saving the original expression
used to compute the address as part of the address location, so as
to then re-evaluate that expression during breakpoint re-set.
gdb/ChangeLog:
* location.h (new_address_location): Add new parameters
"addr_string" and "addr_string_len".
(get_address_string_location): Add declaration.
* location.c (new_address_location): Add new parameters
"addr_string" and "addr_string_len". If not NULL, store
a copy of the addr_string in the new location as well.
(get_address_string_location): New function.
(string_to_event_location): Update call to new_address_location.
* linespec.c (event_location_to_sals) <ADDRESS_LOCATION>:
Save the event location in the parser's state before
passing it to convert_address_location_to_sals.
* breakpoint.c (create_thread_event_breakpoint): Update call
to new_address_location.
(init_breakpoint_sal): Get the event location's string, if any,
and use it to update call to new_address_location.
* python/py-finishbreakpoint.c (bpfinishpy_init):
Update call to new_address_location.
* spu-tdep.c (spu_catch_start): Likewise.
* config/djgpp/fnchange.lst: Add entries for
gdb/testsuite/gdb.base/break-fun-addr1.c and
gdb/testsuite/gdb.base/break-fun-addr2.c.
gdb/testsuite/ChangeLog:
* gdb.base/break-fun-addr.exp: New file.
* gdb.base/break-fun-addr1.c: New file.
* gdb.base/break-fun-addr2.c: New file.
The lambda function used to sort the enumerator list does not work
properly. This list consists of tuples, (enum label, enum value). The
key function returns x.enumval. enumval not being defined for a tuple,
we see this exception in the test log:
Python Exception <class 'AttributeError'> 'tuple' object has no attribute 'enumval'
The function should return the second item of the tuple, which is the
enumval.
The pretty-printer still worked mostly correctly, except that the
enumeration values were not sorted. The test still passed because the
enumeration values are already sorted where they are defined. The test
also passed despite the exception being printed, because the right output
was printed after the exception:
print (enum flag_enum) (FLAG_1)
Python Exception <type 'exceptions.AttributeError'> 'tuple' objecthas no attribute 'enumval':M
$7 = 0x1 [FLAG_1]
(gdb) PASS: gdb.python/py-pp-maint.exp: print FLAG_1
New in v2:
- Improved test case, I stole Pedro's example directly. It verifies
that the sorting of enumerators by value works, by checking that
printing FOO_MASK appears as FOO_1 | FOO_2 | FOO_3.
I noticed that I could change the regexps to almost anything and the
tests would still pass. I think it was because of the | in there. I
made them more robust by using string_to_regexp. I used curly braces
{ } instead of quoting marks " " for strings, so that I could use
square brackets [ ] in them without having to escape them all. I also
removed the "message" part of the tests, since they are redundant with
the command, and it's just more maintenance to have to update them.
Tested with Python 2.7 and 3.5.
gdb/ChangeLog:
* python/lib/gdb/printing.py (FlagEnumerationPrinter.__call__):
Fix enumerators sort key function.
gdb/testsuite/ChangeLog:
* gdb.python/py-pp-maint.exp: Change/add enum flag tests.
* gdb.python/py-pp-maint.c (enum flag_enum): Use more complex
enum flag values.
The gnu_vector test case yields a new FAIL on s390x:
FAIL: gdb.base/gnu_vector.exp: verify vector return value
It was introduced by commit 77ae9c1933 "gdb.base/gnu_vector.exp:
Don't test output from the inferior". That commit dropped the special
handling for GDB's inability (on some targets) to set the return value.
This change re-establishes the logic from before, converting the above
FAIL to a KFAIL (PRMS gdb/8549).
gdb/testsuite/ChangeLog:
* gdb.base/gnu_vector.exp: Re-establish handling for should_kfail
when GDB can not set the vector return value. Add more comments
for clarification.
On Ubuntu 14.04 the following failure would be seen when running the
tspeed.exp test on a target that supports fast tracepoints like x86_64:
Target returns error code '.In-process agent library not loaded in
process. Fast and static tracepoints unavailable.'.
(gdb) FAIL: gdb.trace/tspeed.exp: start trace experiment
This is because the default is to link with --as-needed and the
gdb_compile for the test is using the libs argument instead of shlib which
corrects this issue since 6ebea266fd by
adding -Wl,--no-as-needed.
This patch fixes the issue by passing the lib as the shlib argument to
gdb_compile.
Tested on Ubuntu 14.04 x86_64.
gdb/testsuite/ChangeLog:
* gdb.trace/tspeed.exp: Use shlib instead of libs in gdb_compile
command.
By default, if a test driver (a test .exp) ends with an uncaught
error/exception, the runtest command will still have a return code of 0
(success). However, if a test (or the environment) is broken and does
not work properly, it should be considered as failed so that we can
notice it and fix it.
Passing the --status flag to runtest will make it return an error if one
of the test it runs ends up with an uncaught error.
gdb/testsuite/ChangeLog:
* Makefile.in (check-single): Pass --status to runtest.
(check/%.exp): Likewise.
When using the check-parallel target, the return code of make is always 0,
regardless of test results. This patch makes it return the same code as
the "make do-check-parallel" sub-command. So if there is a FAIL somewhere,
non-zero will be returned by make.
For the sake of example, I introduced a failure in gdb.base/break.exp.
$ make check-single TESTS="gdb.base/break.exp gdb.python/py-value.exp" && echo 'Success :D' || echo 'Fail :('
...
FAIL: gdb.base/break.exp: allo
...
Fail :(
I think the parallel run should do the same. Currently:
$ make check-parallel TESTS="gdb.base/break.exp gdb.python/py-value.exp" && echo 'Success :D' || echo 'Fail :('
...
FAIL: gdb.base/break.exp: allo
...
Success :D
And with the patch (no big surprises there):
$ make check-parallel TESTS="gdb.base/break.exp gdb.python/py-value.exp" && echo 'Success :D' || echo 'Fail :('
...
FAIL: gdb.base/break.exp: allo
...
Fail :(
What do you think?
gdb/testsuite/ChangeLog:
* Makefile.in (check-parallel): Propagate return code from make
do-check-parallel.
Currently, we always re-set all locations of all breakpoints. This
commit makes us re-set only locations of the current program space.
If we loaded symbols to a program space (e.g., "file" command or some
shared library was loaded), GDB must run through all breakpoints and
determine if any new locations need to be added to the breakpoint.
However, there's no reason to recreate locations for _other_ program
spaces, as those haven't changed.
Similarly, when we create a new inferior, through e.g., a fork, GDB
must run through all breakpoints and determine if any new locations
need to be added to the breakpoint. There's no reason to destroy the
locations of the parent inferior and other inferiors. We know those
won't change.
In addition to being inneficient, resetting breakpoints of inferiors
that are currently running is problematic, because:
- some targets can't read memory while the inferior is running.
- the inferior might exit while we're re-setting its breakpoints,
which may confuse prologue skipping.
I went through all the places where we call breakpoint_re_set, and it
seems to me that all can be changed to only re-set locations of the
current program space.
The patch that reversed threads order in "info threads" etc. happened
to make gdb.threads/fork-plus-thread.exp expose this problem when
testing on x86/-m32. The problem was latent and masked out by chance
by the code-cache:
https://sourceware.org/ml/gdb-patches/2016-01/msg00213.html
Tested on x86-64 F20, native (-m64/-m32) and extended-remote
gdbserver.
Fixes the regression discussed in the url above with --target_board=unix/-m32:
-FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: inferior 1 exited
+PASS: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: inferior 1 exited
-FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: no threads left (timeout)
-FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left (the program exited)
+PASS: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: no threads left
+PASS: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left
gdb/ChangeLog:
2016-01-19 Pedro Alves <palves@redhat.com>
* ax-gdb.c (agent_command_1): Adjust call to decode_line_full.
* break-catch-throw.c (re_set_exception_catchpoint): Pass the
current program space down to linespec decoding and breakpoint
location updating.
* breakpoint.c (parse_breakpoint_sals): Adjust calls to
decode_line_full.
(until_break_command): Adjust calls to decode_line_1.
(base_breakpoint_decode_location, bkpt_decode_location): Add
'search_pspace' parameter. Pass it along.
(bkpt_probe_create_sals_from_location): Adjust calls to
parse_probes.
(tracepoint_decode_location, tracepoint_probe_decode_location)
(strace_marker_decode_location): Add 'search_pspace' parameter.
Pass it along.
(all_locations_are_pending): Rewrite to take a breakpoint and
program space as arguments instead.
(hoist_existing_locations): New function.
(update_breakpoint_locations): Add 'filter_pspace' parameter. Use
hoist_existing_locations instead of always removing all locations,
and adjust to all_locations_are_pending change.
(location_to_sals): Add 'search_pspace' parameter. Pass it along.
Don't disable the breakpoint if there are other locations in
another program space.
(breakpoint_re_set_default): Adjust to pass down the current
program space as filter program space.
(decode_location_default): Add 'search_pspace' parameter and pass
it along.
(prepare_re_set_context): Don't switch program space here.
(breakpoint_re_set): Use save_current_space_and_thread instead of
save_current_program_space.
* breakpoint.h (struct breakpoint_ops) <decode_location>: Add
'search_pspace' parameter.
(update_breakpoint_locations): Add 'filter_pspace' parameter.
* cli/cli-cmds.c (edit_command, list_command): Adjust calls to
decode_line_1.
* elfread.c (elf_gnu_ifunc_resolver_return_stop): Pass the current
program space as filter program space.
* linespec.c (struct linespec_state) <search_pspace>: New field.
(create_sals_line_offset, convert_explicit_location_to_sals)
(parse_linespec): Pass the search program space down.
(linespec_state_constructor): Add 'search_pspace' parameter.
Store it.
(linespec_parser_new): Add 'search_pspace' parameter and pass it
along.
(linespec_lex_to_end): Adjust.
(decode_line_full, decode_line_1): Add 'search_pspace' parameter
and pass it along.
(decode_line_with_last_displayed): Adjust.
(collect_symtabs_from_filename, symtabs_from_filename): New
'search_pspace' parameter. Use it.
(find_function_symbols): Pass the search program space down.
* linespec.h (decode_line_1, decode_line_full): Add
'search_pspace' parameter.
* probe.c (parse_probes_in_pspace): New function, factored out
from ...
(parse_probes): ... this. Add 'search_pspace' parameter and use
it.
* probe.h (parse_probes): Add pspace' parameter.
* python/python.c (gdbpy_decode_line): Adjust.
* tracepoint.c (scope_info): Adjust.
This is fallout from f303dbd60d.
The testcases themselves are single-threaded, but they load the IPA library,
which injects a thread in the inferior - making them multithreaded.
This results in printing the thread numbers in breakpoint messages.
gdb/testsuite/ChangeLog:
* gdb.trace/ftrace.exp: Fix expected message on continue.
* gdb.trace/pending.exp: Fix expected message on continue.
* gdb.trace/trace-break.exp: Fix expected message on continue.
Those are unused since gdb_test_multiple was added, factoring out most
of the content of gdb_test.
gdb/testsuite/ChangeLog:
* lib/gdb.exp (gdb_test): Remove unused global references.
This commit changes GDB like this:
- Program received signal SIGINT, Interrupt.
+ Thread 1 "main" received signal SIGINT, Interrupt.
- Breakpoint 1 at 0x40087a: file threads.c, line 87.
+ Thread 3 "bar" hit Breakpoint 1 at 0x40087a: file threads.c, line 87.
... once the program goes multi-threaded. Until GDB sees a second
thread spawn, the output is still the same as before, per the
discussion back in 2012:
https://www.sourceware.org/ml/gdb/2012-11/msg00010.html
This helps non-stop mode, where you can't easily tell which thread hit
a breakpoint or received a signal:
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 19362) "main" (running)
2 Thread 0x7ffff7fc0700 (LWP 19366) "foo" (running)
3 Thread 0x7ffff77bf700 (LWP 19367) "bar" (running)
(gdb)
Program received signal SIGUSR1, User defined signal 1.
0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92
92 lll_wait_tid (pd->tid);
(gdb) b threads.c:87
Breakpoint 1 at 0x40087a: file threads.c, line 87.
(gdb)
Breakpoint 1, thread_function1 (arg=0x1) at threads.c:87
87 usleep (1); /* Loop increment. */
The best the user can do is run "info threads" and try to figure
things out.
It actually also affects all-stop mode, in case of "handle SIG print
nostop":
...
Program received signal SIGUSR1, User defined signal 1.
Program received signal SIGUSR1, User defined signal 1.
Program received signal SIGUSR1, User defined signal 1.
Program received signal SIGUSR1, User defined signal 1.
...
The above doesn't give any clue that these were different threads
getting the SIGUSR1 signal.
I initially thought of lowercasing "breakpoint" in
"Thread 3 hit Breakpoint 1"
but then after trying it I realized that leaving "Breakpoint"
uppercase helps the eye quickly find the relevant information. It's
also easier to implement not showing anything about threads until the
program goes multi-threaded this way.
Here's a larger example session in non-stop mode:
(gdb) c -a&
Continuing.
(gdb) interrupt -a
(gdb)
Thread 1 "main" stopped.
0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92
92 lll_wait_tid (pd->tid);
Thread 2 "foo" stopped.
0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
Thread 3 "bar" stopped.
0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
b threads.c:87
Breakpoint 4 at 0x40087a: file threads.c, line 87.
(gdb) b threads.c:67
Breakpoint 5 at 0x400811: file threads.c, line 67.
(gdb) c -a&
Continuing.
(gdb)
Thread 3 "bar" hit Breakpoint 4, thread_function1 (arg=0x1) at threads.c:87
87 usleep (1); /* Loop increment. */
Thread 2 "foo" hit Breakpoint 5, thread_function0 (arg=0x0) at threads.c:68
68 (*myp) ++;
info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 31957) "main" (running)
2 Thread 0x7ffff7fc0700 (LWP 31961) "foo" thread_function0 (arg=0x0) at threads.c:68
3 Thread 0x7ffff77bf700 (LWP 31962) "bar" thread_function1 (arg=0x1) at threads.c:87
(gdb) shell kill -SIGINT 31957
(gdb)
Thread 1 "main" received signal SIGINT, Interrupt.
0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92
92 lll_wait_tid (pd->tid);
info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 31957) "main" 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92
2 Thread 0x7ffff7fc0700 (LWP 31961) "foo" thread_function0 (arg=0x0) at threads.c:68
3 Thread 0x7ffff77bf700 (LWP 31962) "bar" thread_function1 (arg=0x1) at threads.c:87
(gdb) t 2
[Switching to thread 2, Thread 0x7ffff7fc0700 (LWP 31961)]
#0 thread_function0 (arg=0x0) at threads.c:68
68 (*myp) ++;
(gdb) catch syscall
Catchpoint 6 (any syscall)
(gdb) c&
Continuing.
(gdb)
Thread 2 "foo" hit Catchpoint 6 (call to syscall nanosleep), 0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
I'll work on documentation next if this looks agreeable.
This patch applies on top of the star wildcards thread IDs series:
https://sourceware.org/ml/gdb-patches/2016-01/msg00291.html
For convenience, I've pushed this to the
users/palves/show-which-thread-caused-stop branch.
gdb/doc/ChangeLog:
2016-01-18 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads): Mention that GDB displays the ID and name
of the thread that hit a breakpoint or received a signal.
gdb/ChangeLog:
2016-01-18 Pedro Alves <palves@redhat.com>
* NEWS: Mention that GDB now displays the ID and name of the
thread that hit a breakpoint or received a signal.
* break-catch-sig.c (signal_catchpoint_print_it): Use
maybe_print_thread_hit_breakpoint.
* break-catch-syscall.c (print_it_catch_syscall): Likewise.
* break-catch-throw.c (print_it_exception_catchpoint): Likewise.
* breakpoint.c (maybe_print_thread_hit_breakpoint): New function.
(print_it_catch_fork, print_it_catch_vfork, print_it_catch_solib)
(print_it_catch_exec, print_it_ranged_breakpoint)
(print_it_watchpoint, print_it_masked_watchpoint, bkpt_print_it):
Use maybe_print_thread_hit_breakpoint.
* breakpoint.h (maybe_print_thread_hit_breakpoint): Declare.
* gdbthread.h (show_thread_that_caused_stop): Declare.
* infrun.c (print_signal_received_reason): Print which thread
received signal.
* thread.c (show_thread_that_caused_stop): New function.
gdb/testsuite/ChangeLog:
2016-01-18 Pedro Alves <palves@redhat.com>
* gdb.base/async-shell.exp: Adjust expected output.
* gdb.base/dprintf-non-stop.exp: Adjust expected output.
* gdb.base/siginfo-thread.exp: Adjust expected output.
* gdb.base/watchpoint-hw-hit-once.exp: Adjust expected output.
* gdb.java/jnpe.exp: Adjust expected output.
* gdb.threads/clone-new-thread-event.exp: Adjust expected output.
* gdb.threads/continue-pending-status.exp: Adjust expected output.
* gdb.threads/leader-exit.exp: Adjust expected output.
* gdb.threads/manythreads.exp: Adjust expected output.
* gdb.threads/pthreads.exp: Adjust expected output.
* gdb.threads/schedlock.exp: Adjust expected output.
* gdb.threads/siginfo-threads.exp: Adjust expected output.
* gdb.threads/signal-command-multiple-signals-pending.exp: Adjust
expected output.
* gdb.threads/signal-delivered-right-thread.exp: Adjust expected
output.
* gdb.threads/sigthread.exp: Adjust expected output.
* gdb.threads/watchpoint-fork.exp: Adjust expected output.
The ARM assembler has "@" as a comment character, so there are compile
errors in {py,scm}-section-script.c,
gdb compile failed, /tmp/ccHEzYqy.s: Assembler messages:
/tmp/ccHEzYqy.s:19: Error: junk at end of line, first unrecognized character is `,'
/tmp/ccHEzYqy.s:24: Error: junk at end of line, first unrecognized character is `,'
/tmp/ccHEzYqy.s:29: Error: junk at end of line, first unrecognized character is `,'
/tmp/ccHEzYqy.s:41: Error: junk at end of line, first unrecognized character is `,'
This patch replaces @progbits with %progbits.
gdb/testsuite:
2016-01-18 Yao Qi <yao.qi@linaro.org>
* gdb.guile/scm-section-script.c: Replace @progbits with
%progbits.
* gdb.python/py-section-script.c: Likewise.
Add support for specifying "all threads of inferior N", by writing "*"
as thread number/range in thread ID lists.
E.g., "info threads 2.*" or "thread apply 2.* bt".
gdb/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* NEWS: Mention star wildcard ranges.
* cli/cli-utils.c (get_number_or_range): Check state->in_range first.
(number_range_setup_range): New function.
* cli/cli-utils.h (number_range_setup_range): New declaration.
* thread.c (thread_apply_command): Support star TID ranges.
* tid-parse.c (tid_range_parser_finished)
(tid_range_parser_string, tid_range_parser_skip)
(get_tid_or_range, get_tid_or_range): Handle
TID_RANGE_STATE_STAR_RANGE.
(tid_range_parser_star_range): New function.
* tid-parse.h (enum tid_range_state) <TID_RANGE_STATE_STAR_RANGE>:
New value.
(tid_range_parser_star_range): New declaration.
gdb/doc/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads) <thread ID lists>: Document star ranges.
gdb/testsuite/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* gdb.multi/tids.exp: Test star wildcard ranges.
This fixes a few bugs in "thread apply".
While this works:
(gdb) thread apply 1 p 1234
Thread 1 (Thread 0x7ffff7fc1740 (LWP 14048)):
$1 = 1234
This doesn't:
(gdb) thread apply $thr p 1234
Thread 1 (Thread 0x7ffff7fc1740 (LWP 12039)):
Invalid thread ID: p 1234
(gdb)
~~~~
Also, while this works:
(gdb) thread apply 1
Please specify a command following the thread ID list
This doesn't:
(gdb) thread apply $thr
Thread 1 (Thread 0x7ffff7fc1740 (LWP 12039)):
[Current thread is 1 (Thread 0x7ffff7fc1740 (LWP 12039))]
(gdb)
~~~~
And, while this works:
(gdb) thread apply
Please specify a thread ID list
This obviously bogus invocation is just silent:
(gdb) thread apply bt
(gdb)
gdb/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* thread.c (thread_apply_command): Use the tid range parser to
advance past the thread ID list.
* tid-parse.c (get_positive_number_trailer): New function.
(parse_thread_id): Use it.
(get_tid_or_range): Use it. Return 0 instead of throwing invalid
thread ID error.
(get_tid_or_range): Detect negative values. Return 0 instead of
throwing invalid thread ID error.
gdb/testsuite/ChangeLog:
2016-01-15 Pedro Alves <palves@redhat.com>
* gdb.multi/tids.exp (thr_apply_info_thr_error): Remove "p 1234"
command from "thread apply" invocation.
(thr_apply_info_thr_invalid): Default the expected output to the
input tid list.
(top level): Add tests that use convenience variables. Add tests
for "thread apply" with a valid TID list, but missing the command.
This commit adds a new $_gthread convenience variable, that is like
$_thread, but holds the current thread's global thread id.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention $_gthread.
* gdbthread.h (struct thread_info) <global_num>: Mention
$_gthread.
* thread.c (thread_num_make_value_helper): New function.
(thread_id_make_value): Delete.
(thread_id_per_inf_num_make_value, global_thread_id_make_value):
New.
(thread_funcs): Adjust.
(gthread_funcs): New.
(_initialize_thread): Register $_gthread variable.
gdb/testsuite/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* gdb.base/default.exp: Expect $_gthread as well.
* gdb.multi/tids.exp: Test $_gthread.
* gdb.threads/thread-specific.exp: Test $_gthread.
gdb/doc/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads): Document the $_gthread convenience
variable.
(Convenience Vars): Likewise.
This commit adds a new Python InferiorThread.global_num attribute.
This can be used to pass the correct thread ID to Breakpoint.thread,
which takes a global thread ID, not a per-inferior thread number.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention InferiorThread.global_num.
* python/py-infthread.c (thpy_get_global_num): New function.
(thread_object_getset): Register "global_num".
gdb/testsuite/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* gdb.multi/tids.exp: Test InferiorThread.global_num and
Breakpoint.thread.
* gdb.python/py-infthread.exp: Test InferiorThread.global_num.
gdb/doc/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* python.texi (Breakpoints In Python) <Breakpoint.thread>: Add
anchor.
(Threads In Python): Document new InferiorThread.global_num
attribute.
This commit changes GDB to track thread numbers per-inferior. Then,
if you're debugging multiple inferiors, GDB displays
"inferior-num.thread-num" instead of just "thread-num" whenever it
needs to display a thread:
(gdb) info inferiors
Num Description Executable
1 process 6022 /home/pedro/gdb/tests/threads
* 2 process 6037 /home/pedro/gdb/tests/threads
(gdb) info threads
Id Target Id Frame
1.1 Thread 0x7ffff7fc2740 (LWP 6022) "threads" (running)
1.2 Thread 0x7ffff77c0700 (LWP 6028) "threads" (running)
1.3 Thread 0x7ffff7fc2740 (LWP 6032) "threads" (running)
2.1 Thread 0x7ffff7fc1700 (LWP 6037) "threads" (running)
2.2 Thread 0x7ffff77c0700 (LWP 6038) "threads" (running)
* 2.3 Thread 0x7ffff7fc2740 (LWP 6039) "threads" (running)
(gdb)
...
(gdb) thread 1.1
[Switching to thread 1.1 (Thread 0x7ffff7fc2740 (LWP 8155))]
(gdb)
...
etc.
You can still use "thread NUM", in which case GDB infers you're
referring to thread NUM of the current inferior.
The $_thread convenience var and Python's InferiorThread.num attribute
are remapped to the new per-inferior thread number. It's a backward
compatibility break, but since it only matters when debugging multiple
inferiors, I think it's worth doing.
Because MI thread IDs need to be a single integer, we keep giving
threads a global identifier, _in addition_ to the per-inferior number,
and make MI always refer to the global thread IDs. IOW, nothing
changes from a MI frontend's perspective.
Similarly, since Python's Breakpoint.thread and Guile's
breakpoint-thread/set-breakpoint-thread breakpoint methods need to
work with integers, those are adjusted to work with global thread IDs
too. Follow up patches will provide convenient means to access
threads' global IDs.
To avoid potencially confusing users (which also avoids updating much
of the testsuite), if there's only one inferior and its ID is "1",
IOW, the user hasn't done anything multi-process/inferior related,
then the "INF." part of thread IDs is not shown. E.g,.:
(gdb) info inferiors
Num Description Executable
* 1 process 15275 /home/pedro/gdb/tests/threads
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
(gdb) add-inferior
Added inferior 2
(gdb) info threads
Id Target Id Frame
* 1.1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
(gdb)
No regressions on x86_64 Fedora 20.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention that thread IDs are now per inferior and global
thread IDs.
* Makefile.in (SFILES): Add tid-parse.c.
(COMMON_OBS): Add tid-parse.o.
(HFILES_NO_SRCDIR): Add tid-parse.h.
* ada-tasks.c: Adjust to use ptid_to_global_thread_id.
* breakpoint.c (insert_breakpoint_locations)
(remove_threaded_breakpoints, bpstat_check_breakpoint_conditions)
(print_one_breakpoint_location, set_longjmp_breakpoint)
(check_longjmp_breakpoint_for_call_dummy)
(set_momentary_breakpoint): Adjust to use global IDs.
(find_condition_and_thread, watch_command_1): Use parse_thread_id.
(until_break_command, longjmp_bkpt_dtor)
(breakpoint_re_set_thread, insert_single_step_breakpoint): Adjust
to use global IDs.
* dummy-frame.c (pop_dummy_frame_bpt): Adjust to use
ptid_to_global_thread_id.
* elfread.c (elf_gnu_ifunc_resolver_stop): Likewise.
* gdbthread.h (struct thread_info): Rename field 'num' to
'global_num. Add new fields 'per_inf_num' and 'inf'.
(thread_id_to_pid): Rename thread_id_to_pid to
global_thread_id_to_ptid.
(pid_to_thread_id): Rename to ...
(ptid_to_global_thread_id): ... this.
(valid_thread_id): Rename to ...
(valid_global_thread_id): ... this.
(find_thread_id): Rename to ...
(find_thread_global_id): ... this.
(ALL_THREADS, ALL_THREADS_BY_INFERIOR): Declare.
(print_thread_info): Add comment.
* tid-parse.h: New file.
* tid-parse.c: New file.
* infcmd.c (step_command_fsm_prepare)
(step_command_fsm_should_stop): Adjust to use the global thread
ID.
(until_next_command, until_next_command)
(finish_command_fsm_should_stop): Adjust to use the global thread
ID.
(attach_post_wait): Adjust to check the inferior number too.
* inferior.h (struct inferior) <highest_thread_num>: New field.
* infrun.c (handle_signal_stop)
(insert_exception_resume_breakpoint)
(insert_exception_resume_from_probe): Adjust to use the global
thread ID.
* record-btrace.c (record_btrace_open): Use global thread IDs.
* remote.c (process_initial_stop_replies): Also consider the
inferior number.
* target.c (target_pre_inferior): Clear the inferior's highest
thread num.
* thread.c (clear_thread_inferior_resources): Adjust to use the
global thread ID.
(new_thread): New inferior parameter. Adjust to use it. Set both
the thread's global ID and the thread's per-inferior ID.
(add_thread_silent): Adjust.
(find_thread_global_id): New.
(find_thread_id): Make static. Adjust to rename.
(valid_thread_id): Rename to ...
(valid_global_thread_id): ... this.
(pid_to_thread_id): Rename to ...
(ptid_to_global_thread_id): ... this.
(thread_id_to_pid): Rename to ...
(global_thread_id_to_ptid): ... this. Adjust.
(first_thread_of_process): Adjust.
(do_captured_list_thread_ids): Adjust to use global thread IDs.
(should_print_thread): New function.
(print_thread_info): Rename to ...
(print_thread_info_1): ... this, and add new show_global_ids
parameter. Handle it. Iterate over inferiors.
(print_thread_info): Reimplement as wrapper around
print_thread_info_1.
(show_inferior_qualified_tids): New function.
(print_thread_id): Use it.
(tp_array_compar): Compare inferior numbers too.
(thread_apply_command): Use tid_range_parser.
(do_captured_thread_select): Use parse_thread_id.
(thread_id_make_value): Adjust.
(_initialize_thread): Adjust "info threads" help string.
* varobj.c (struct varobj_root): Update comment.
(varobj_create): Adjust to use global thread IDs.
(value_of_root_1): Adjust to use global_thread_id_to_ptid.
* windows-tdep.c (display_tib): No longer accept an argument.
* cli/cli-utils.c (get_number_trailer): Make extern.
* cli/cli-utils.h (get_number_trailer): Declare.
(get_number_const): Adjust documentation.
* mi/mi-cmd-var.c (mi_cmd_var_update_iter): Adjust to use global
thread IDs.
* mi/mi-interp.c (mi_new_thread, mi_thread_exit)
(mi_on_normal_stop, mi_output_running_pid, mi_on_resume):
* mi/mi-main.c (mi_execute_command, mi_cmd_execute): Likewise.
* guile/scm-breakpoint.c (gdbscm_set_breakpoint_thread_x):
Likewise.
* python/py-breakpoint.c (bppy_set_thread): Likewise.
* python/py-finishbreakpoint.c (bpfinishpy_init): Likewise.
* python/py-infthread.c (thpy_get_num): Add comment and return the
per-inferior thread ID.
(thread_object_getset): Update comment of "num".
gdb/testsuite/ChangeLog:
2016-01-07 Pedro Alves <palves@redhat.com>
* gdb.base/break.exp: Adjust to output changes.
* gdb.base/hbreak2.exp: Likewise.
* gdb.base/sepdebug.exp: Likewise.
* gdb.base/watch_thread_num.exp: Likewise.
* gdb.linespec/keywords.exp: Likewise.
* gdb.multi/info-threads.exp: Likewise.
* gdb.threads/thread-find.exp: Likewise.
* gdb.multi/tids.c: New file.
* gdb.multi/tids.exp: New file.
gdb/doc/ChangeLog:
2016-01-07 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads): Document per-inferior thread IDs,
qualified thread IDs, global thread IDs and thread ID lists.
(Set Watchpoints, Thread-Specific Breakpoints): Adjust to refer to
thread IDs.
(Convenience Vars): Document the $_thread convenience variable.
(Ada Tasks): Adjust to refer to thread IDs.
(GDB/MI Async Records, GDB/MI Thread Commands, GDB/MI Ada Tasking
Commands, GDB/MI Variable Objects): Update to mention global
thread IDs.
* guile.texi (Breakpoints In Guile)
<breakpoint-thread/set-breakpoint-thread breakpoint>: Mention
global thread IDs instead of thread IDs.
* python.texi (Threads In Python): Adjust documentation of
InferiorThread.num.
(Breakpoint.thread): Mention global thread IDs instead of thread
IDs.
So a script can easily get at a thread's inferior and its number.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention InferiorThread.inferior.
* python/py-infthread.c (thpy_get_inferior): New.
(thread_object_getset): Register "inferior".
gdb/testsuite/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* gdb.python/py-infthread.exp: Test InferiorThread.inferior.
gdb/doc/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* python.texi (Threads In Python): Document
InferiorThread.inferior.
This commit merges both the registers and $_siginfo "thread
running/executing" checks into a single function.
Accessing $_siginfo from a "catch signal" breakpoint condition doesn't
work. The condition always fails with "Selected thread is running":
(gdb) catch signal
Catchpoint 3 (standard signals)
(gdb)
condition $bpnum $_siginfo.si_signo == 5
(gdb) continue
Continuing.
Error in testing breakpoint condition:
Selected thread is running.
Catchpoint 3 (signal SIGUSR1), 0x0000003615e35877 in __GI_raise (sig=10) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
56 return INLINE_SYSCALL (tgkill, 3, pid, selftid, sig);
(gdb)
When accessing the $_siginfo object, we check whether the thread is
marked running (external/public) state and refuse the access if so.
This is so "print $_siginfo" at the prompt fails nicelly when the
current thread is running. While evaluating breakpoint conditionals,
we haven't decided yet whether the thread is going to stop, so
is_running still returns true, and we thus always error out.
Evaluating an expression that requires registers access is really
conceptually the same -- we could think of $_siginfo as a pseudo
register. However, in that case we check whether the thread is marked
executing (internal/private state), not running (external/public
state). Changing the $_siginfo validation to check is_executing as
well fixes the bug in question.
Note that checking is_executing is not fully correct, not even for
registers. See PR 19389. However, I think this is the lesser of two
evils and ends up as an improvement. We at least now have a single
place to fix.
Tested on x86_64 GNU/Linux.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
PR breakpoints/19388
* frame.c (get_current_frame): Use validate_registers_access.
* gdbthread.h (validate_registers_access): Declare.
* infrun.c (validate_siginfo_access): Delete.
(siginfo_value_read, siginfo_value_write): Use
validate_registers_access.
* thread.c (validate_registers_access): New function.
gdb/testsuite/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
PR breakpoints/19388
* gdb.base/catch-signal-siginfo-cond.c: New file.
* gdb.base/catch-signal-siginfo-cond.exp: New file.
This adds a new QCatchSyscalls packet to enable 'catch syscall', and new
stop reasons "syscall_entry" and "syscall_return" for those events. It
is currently only supported on Linux x86 and x86_64.
gdb/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* NEWS (Changes since GDB 7.10): Mention QCatchSyscalls and the
syscall_entry and syscall_return stop reasons. Mention GDB
support for remote catch syscall.
* remote.c (PACKET_QCatchSyscalls): New enum.
(remote_set_syscall_catchpoint): New function.
(remote_protocol_features): New element for QCatchSyscalls.
(remote_parse_stop_reply): Parse syscall_entry/return stops.
(init_remote_ops): Install remote_set_syscall_catchpoint.
(_initialize_remote): Config QCatchSyscalls.
* linux-nat.h (struct lwp_info) <syscall_state>: Comment typo.
gdb/doc/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* gdb.texinfo (Remote Configuration): List the QCatchSyscalls packet.
(Stop Reply Packets): List the syscall entry and return stop reasons.
(General Query Packets): Describe QCatchSyscalls, and add it to the
table and the detailed list of stub features.
gdb/gdbserver/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* inferiors.h: Include "gdb_vecs.h".
(struct process_info): Add syscalls_to_catch.
* inferiors.c (remove_process): Free syscalls_to_catch.
* remote-utils.c (prepare_resume_reply): Report syscall_entry and
syscall_return stops.
* server.h (UNKNOWN_SYSCALL, ANY_SYSCALL): Define.
* server.c (handle_general_set): Handle QCatchSyscalls.
(handle_query): Report support for QCatchSyscalls.
* target.h (struct target_ops): Add supports_catch_syscall.
(target_supports_catch_syscall): New macro.
* linux-low.h (struct linux_target_ops): Add get_syscall_trapinfo.
(struct lwp_info): Add syscall_state.
* linux-low.c (handle_extended_wait): Mark syscall_state as an entry.
Maintain syscall_state and syscalls_to_catch across exec.
(get_syscall_trapinfo): New function, proxy to the_low_target.
(linux_low_ptrace_options): Enable PTRACE_O_TRACESYSGOOD.
(linux_low_filter_event): Toggle syscall_state entry/return for
syscall traps, and set it ignored for all others.
(gdb_catching_syscalls_p): New function.
(gdb_catch_this_syscall_p): New function.
(linux_wait_1): Handle SYSCALL_SIGTRAP.
(linux_resume_one_lwp_throw): Add PTRACE_SYSCALL possibility.
(linux_supports_catch_syscall): New function.
(linux_target_ops): Install it.
* linux-x86-low.c (x86_get_syscall_trapinfo): New function.
(the_low_target): Install it.
gdb/testsuite/ChangeLog:
2016-01-12 Josh Stone <jistone@redhat.com>
Philippe Waroquiers <philippe.waroquiers@skynet.be>
* gdb.base/catch-syscall.c (do_execve): New variable.
(main): Conditionally trigger an execve.
* gdb.base/catch-syscall.exp: Enable testing for remote targets.
(test_catch_syscall_execve): New, check entry/return across execve.
(do_syscall_tests): Call test_catch_syscall_execve.
This exposes the issued fixed by 2f99e8fc9c:
https://sourceware.org/ml/gdb-patches/2015-12/msg00423.html
to native debugging as well.
gdb/testsuite/ChangeLog:
2016-01-12 Pedro Alves <palves@redhat.com>
* gdb.base/random-signal.exp (do_test): New procedure, with body
of testcase moved in.
(top level) Call it twice, once with "run" and once with "attach".
[This reapplies a change that was accidentally reverted with c0ecb95f3d.]
Before:
(gdb) info threads
Id Target Id Frame
3 Thread 0x7ffff77c3700 (LWP 29035) callme () at foo.c:30
2 Thread 0x7ffff7fc4700 (LWP 29034) 0x000000000040087b in child_function_2 (arg=0x0) at foo.c:60
* 1 Thread 0x7ffff7fc5740 (LWP 29030) 0x0000003b37209237 in pthread_join (threadid=140737353893632, thread_return=0x0) at pthread_join.c:92
After:
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc5740 (LWP 29030) 0x0000003b37209237 in pthread_join (threadid=140737353893632, thread_return=0x0) at pthread_join.c:92
2 Thread 0x7ffff7fc4700 (LWP 29034) 0x000000000040087b in child_function_2 (arg=0x0) at foo.c:60
3 Thread 0x7ffff77c3700 (LWP 29035) callme () at foo.c:30
gdb/doc/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* gdb.texinfo (Inferiors and Programs): Adjust "maint info
program-spaces" example to ascending order listing.
(Threads): Adjust "info threads" example to ascending order
listing.
(Forks): Adjust "info inferiors" example to ascending order
listing.
gdb/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* inferior.c (add_inferior_silent): Append the new inferior to the
end of the list.
* progspace.c (add_program_space): Append the new pspace to the
end of the list.
* thread.c (new_thread): Append the new thread to the end of the
list.
gdb/testsuite/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* gdb.base/foll-exec-mode.exp: Adjust to GDB listing inferiors and
threads in ascending order.
* gdb.base/foll-fork.exp: Likewise.
* gdb.base/foll-vfork.exp: Likewise.
* gdb.base/multi-forks.exp: Likewise.
* gdb.mi/mi-nonstop.exp: Likewise.
* gdb.mi/mi-nsintrall.exp: Likewise.
* gdb.multi/base.exp: Likewise.
* gdb.multi/multi-arch.exp: Likewise.
* gdb.python/py-inferior.exp: Likewise.
* gdb.threads/break-while-running.exp: Likewise.
* gdb.threads/execl.exp: Likewise.
* gdb.threads/gcore-thread.exp: Likewise.
* gdb.threads/info-threads-cur-sal.exp: Likewise.
* gdb.threads/kill.exp: Likewise.
* gdb.threads/linux-dp.exp: Likewise.
* gdb.threads/multiple-step-overs.exp: Likewise.
* gdb.threads/next-bp-other-thread.exp: Likewise.
* gdb.threads/step-bg-decr-pc-switch-thread.exp: Likewise.
* gdb.threads/step-over-lands-on-breakpoint.exp: Likewise.
* gdb.threads/step-over-trips-on-watchpoint.exp: Likewise.
* gdb.threads/thread-find.exp: Likewise.
* gdb.threads/tls.exp: Likewise.
* lib/mi-support.exp (mi_reverse_list): Delete.
(mi_check_thread_states): No longer reverse list.
3ca22649a6 is the first bad commit
commit 3ca22649a6
Author: Simon Marchi <simon.marchi@polymtl.ca>
Date: Mon Dec 21 12:51:54 2015 -0500
Remove HP-UX references fom testsuite
@@ -1013,13 +1013,6 @@ proc localvars_in_indirect_call { } {
#
gdb_test_multiple "finish" "finish from indirectly called function" {
- -re "\\(\\*pointer_to_call0a\\) \\(c, s, i, l\\);.*First.*$gdb_prompt $" {
- #On hppa2.0w-hp-hpux11.00, gdb finishes at one line earlier than
- #hppa1.1-hp-hpux11.00. Therefore, an extra "step" is necessary
- #to continue the test.
- send_gdb "step\n"
- exp_continue
- }
-re ".*\\(\\*pointer_to_call0a\\) \\(c, s, i, l\\);.*Second.*$gdb_prompt $" {
pass "finish from indirectly called function"
}
->
finish^M
Run till exit from #0 call0a (c=97 'a', s=1, i=2, l=3) at ./gdb.base/funcargs.c:82^M
0x0804a189 in main () at ./gdb.base/funcargs.c:583^M
583 (*pointer_to_call0a) (c, s, i, l); /* First step into call0a. */^M
-(gdb) step^M
-584 (*pointer_to_call0a) (c, s, i, l); /* Second step into call0a. */^M
-(gdb) PASS: gdb.base/funcargs.exp: finish from indirectly called function
+(gdb) FAIL: gdb.base/funcargs.exp: finish from indirectly called function
step^M
-call0a (c=97 'a', s=1, i=2, l=3) at ./gdb.base/funcargs.c:82^M
-82 c = 'a';^M
-(gdb) PASS: gdb.base/funcargs.exp: stepping into indirectly called function
+584 (*pointer_to_call0a) (c, s, i, l); /* Second step into call0a. */^M
+(gdb) FAIL: gdb.base/funcargs.exp: stepping into indirectly called function
At least on x86_64 with testsuite in -m32 (expecting native i386 would be the
same).
Pedro Alves:
The difference is that with newer GCC there's an extra instruction
after the call which is still assigned to line 583:
$ diff -up /tmp/4.8.3 /tmp/6.0.0 -U 1000
--- /tmp/4.8.3 2016-01-11 12:37:39.611089156 +0000
+++ /tmp/6.0.0 2016-01-11 13:21:00.021127976 +0000
@@ -1,27 +1,30 @@
583 (*pointer_to_call0a) (c, s, i, l); /* First step into call0a. */
mov 0x804d060,%ebx
mov 0x804d050,%ecx
movzwl 0x804d040,%eax
movswl %ax,%edx
movzbl 0x804d030,%eax
movsbl %al,%eax
- mov %ebx,0xc(%esp)
- mov %ecx,0x8(%esp)
- mov %edx,0x4(%esp)
- mov %eax,(%esp)
- mov 0x7c(%esp),%eax
+ push %ebx
+ push %ecx
+ push %edx
+ push %eax
+ mov -0x1c(%ebp),%eax
call *%eax
+ add $0x10,%esp
584 (*pointer_to_call0a) (c, s, i, l); /* Second step into call0a. */
mov 0x804d060,%ebx
mov 0x804d050,%ecx
movzwl 0x804d040,%eax
movswl %ax,%edx
movzbl 0x804d030,%eax
movsbl %al,%eax
- mov %ebx,0xc(%esp)
- mov %ecx,0x8(%esp)
- mov %edx,0x4(%esp)
- mov %eax,(%esp)
- mov 0x7c(%esp),%eax
+ push %ebx
+ push %ecx
+ push %edx
+ push %eax
+ mov -0x1c(%ebp),%eax
call *%eax
+ add $0x10,%esp
+
I don't know why -m32 changed to push/add instead of mov while 64-bit hasn't.
This is most likely needed on non-x86 ports as well.
gdb/testsuite/ChangeLog
2016-01-11 Jan Kratochvil <jan.kratochvil@redhat.com>
Pedro Alves <palves@redhat.com>
* gdb.base/funcargs.exp (finish from indirectly called function):
Reintroduce the case for 'First'.
fe33faff35 is the first bad commit
commit fe33faff35
Author: Simon Marchi <simon.marchi@ericsson.com>
Date: Tue Dec 22 10:52:31 2015 -0500
Remove HP-UX reference in foll-vfork.exp
FAIL: gdb.base/foll-vfork.exp: exec: vfork parent follow, finish after tcatch vfork: continue to vfork
FAIL: gdb.base/foll-vfork.exp: exec: vfork child follow, finish after tcatch vfork: continue to vfork
FAIL: gdb.base/foll-vfork.exp: exit: vfork parent follow, finish after tcatch vfork: continue to vfork
FAIL: gdb.base/foll-vfork.exp: exit: vfork child follow, finish after tcatch vfork: continue to vfork
It happens for plain gdb.base/foll-vfork.exp runtest on Fedora 23 x86_64.
-Temporary catchpoint 2 (vforked process 24562), vfork () at ../sysdeps/unix/sysv/linux/x86_64/vfork.S:52^M
+Temporary catchpoint 2 (vforked process 25345), vfork () at ../sysdeps/unix/sysv/linux/x86_64/vfork.S:52^M
52 pushq %rdi^M
Current language: auto^M
The current source language is "auto; currently asm".^M
-(gdb) PASS: gdb.base/foll-vfork.exp: exec: vfork parent follow, finish after tcatch vfork: continue to vfork
+(gdb) FAIL: gdb.base/foll-vfork.exp: exec: vfork parent follow, finish after tcatch vfork: continue to vfork
-Temporary catchpoint 2 (vforked process 24629), vfork () at ../sysdeps/unix/sysv/linux/x86_64/vfork.S:52^M
+Temporary catchpoint 2 (vforked process 25411), vfork () at ../sysdeps/unix/sysv/linux/x86_64/vfork.S:52^M
52 pushq %rdi^M
Current language: auto^M
The current source language is "auto; currently asm".^M
-(gdb) PASS: gdb.base/foll-vfork.exp: exec: vfork child follow, finish after tcatch vfork: continue to vfork
+(gdb) FAIL: gdb.base/foll-vfork.exp: exec: vfork child follow, finish after tcatch vfork: continue to vfork
So I have reverted it and just simplified the comment.
The third case is not necessary during testing but I have changed back all the
3 cases.
Pedro Alves:
I know it was that way before, but would you mind moving this to a helper
proc.
gdb/testsuite/ChangeLog
2016-01-11 Jan Kratochvil <jan.kratochvil@redhat.com>
Pedro Alves <palves@redhat.com>
* gdb.base/foll-vfork.exp (tcatch_vfork_then_parent_follow)
(tcatch_vfork_then_child_follow_exec)
(tcatch_vfork_then_child_follow_exit): Revert back DWARF vfork
identification.
I was getting
gu (print arg0)^M
= 0x7fffffffdafb
"/unsafebuild-x86_64-redhat-linux-gnu/gdb/testsuite.unix.-m64/outputs/gdb.guile/scm-value/scm-"...^M
(gdb) FAIL: gdb.guile/scm-value.exp: verify dereferenced value
python print (arg0)^M
0x7fffffffdafd
"/unsafebuild-x86_64-redhat-linux-gnu/gdb/testsuite.unix.-m64/outputs/gdb.python/py-value/py-v"...^M
(gdb) FAIL: gdb.python/py-value.exp: verify dereferenced value
and also:
(gdb) p argv[0]^M
$2 = 0x7fffffffd832 "/home/jkratoch/redhat/gdb-test-", 'x' <repeats 169
times>...^M
(gdb) FAIL: gdb.guile/scm-value.exp: argv[0] should be available on this
target
gdb/testsuite/ChangeLog
2016-01-11 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.guile/scm-value.exp (test_value_in_inferior): Set print elements
and repeats to unlimited.
* gdb.python/py-value.exp: Likewise.
* lib/gdb.exp (gdb_has_argv0): Save and temporarily set print elements
and repeats to unlimited.
Regressed by:
commit 762f774785
Author: Pedro Alves <palves@redhat.com>
Date: Thu Dec 10 16:21:06 2015 +0000
Stop using nowarnings in gdb/testsuite/gdb.multi/
+gdb compile failed, gdb/testsuite/gdb.multi/hello.c: In function 'commonfun':
+gdb/testsuite/gdb.multi/hello.c:24:19: warning: implicit declaration of function 'bar' [-Wimplicit-function-declaration]
+ int commonfun() { bar(); } /* from hello */
+ ^
+gdb/testsuite/gdb.multi/hello.c: At top level:
+gdb/testsuite/gdb.multi/hello.c:26:1: warning: return type defaults to 'int' [-Wimplicit-int]
+ bar()
+ ^
+gdb/testsuite/gdb.multi/hello.c:32:1: warning: return type defaults to 'int' [-Wimplicit-int]
+ hello(int x)
+ ^
+gdb/testsuite/gdb.multi/hello.c:38:1: warning: return type defaults to 'int' [-Wimplicit-int]
+ main()
+ ^
+UNTESTED: gdb.multi/base.exp: base.exp
gdb/testsuite/ChangeLog
2016-01-08 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.multi/goodbye.c: Fix compilation warnings by adding return types
and reordering the functions.
* gdb.multi/hangout.c: Likewise.
* gdb.multi/hello.c: Likewise.
There are a few errors when trying to run the performance testsuite with
Python 3. This commit fixes them.
In Python 2, it was possible to use relative imports (importing a module
relative to the current one). In Python 3 it isn't. So I use
absolute_import from the __future__ module, which allows Python 2 to
behave like Python 3, and use the Python 3 syntax.
In Python 3, dict.iterkeys doesn't exist anymore. Using dict.keys is a
good compromise in this case.
gdb/testsuite/ChangeLog:
* gdb.perf/lib/perftest/perftest.py: Change relative imports to
absolute.
(SingleStatisticTestResult.report): Use dict.keys instead of
dict.iterkeys.