This patch moves variable have_ptrace_getregset from linux-x86-low.c
to linux-low.c, so that arm can use it too.
gdb/gdbserver:
2015-08-04 Yao Qi <yao.qi@linaro.org>
* linux-x86-low.c (have_ptrace_getregset): Move it to ...
* linux-low.c: ... here.
* linux-low.h (have_ptrace_getregset): Declare it.
Macros PTRACE_GETREGSET and PTRACE_SETREGSET are defined locally in
some places in GDB and GDBserver. This patch is to move them to
nat/linux-ptrace.h to avoid duplication.
gdb:
2015-06-01 Yao Qi <yao.qi@linaro.org>
* amd64-linux-nat.c: Include "nat/linux-ptrace.h".
* i386-linux-nat.c: Likewise.
* nat/linux-ptrace.h (PTRACE_GETREGSET, PTRACE_SETREGSET): Define.
* s390-linux-nat.c: Include "nat/linux-ptrace.h".
(PTRACE_GETREGSET, PTRACE_SETREGSET): Remove.
* x86-linux-nat.c: Include "nat/linux-ptrace.h".
* x86-linux-nat.h (PTRACE_GETREGSET, PTRACE_SETREGSET): Remove.
gdb/gdbserver:
2015-06-01 Yao Qi <yao.qi@linaro.org>
* linux-s390-low.c (PTRACE_GETREGSET, PTRACE_SETREGSET): Remove.
* linux-x86-low.c: Likewise.
This patch implements the architecture-specific pieces of follow-fork
for remote and extended-remote Linux targets, which in the current
implementation copyies the parent's debug register state into the new
child's data structures. This is required for x86, arm, aarch64, and
mips.
This follows the native implementation as closely as possible by
implementing a new linux_target_ops function 'new_fork', which is
analogous to 'linux_nat_new_fork' in linux-nat.c. In gdbserver, the debug
registers are stored in the process list, instead of an
architecture-specific list, so the function arguments are process_info
pointers instead of an lwp_info and a pid as in the native implementation.
In the MIPS implementation the debug register mirror is stored differently
from x86, ARM, and aarch64, so instead of doing a simple structure assignment
I had to clone the list of watchpoint structures.
Tested using gdb.threads/watchpoint-fork.exp on x86, and ran manual tests
on a MIPS board and an ARM board. Aarch64 hasn't been tested.
gdb/gdbserver/ChangeLog:
* linux-aarch64-low.c (aarch64_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-arm-low.c (arm_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
* linux-low.c (handle_extended_wait): Call new target function
new_fork.
* linux-low.h (struct linux_target_ops) <new_fork>: New member.
* linux-mips-low.c (mips_add_watchpoint): New function
extracted from mips_insert_point.
(the_low_target) <new_fork>: Initialize new member.
(mips_linux_new_fork): New function.
(mips_insert_point): Call mips_add_watchpoint.
* linux-x86-low.c (x86_linux_new_fork): New function.
(the_low_target) <new_fork>: Initialize new member.
Hi,
I see the following error on arm linux gdbserver,
continue^M
Continuing.^M
../../../binutils-gdb/gdb/gdbserver/linux-arm-low.c:458: A problem internal to GDBserver has been detected.^M
raw_bkpt_type_to_arm_hwbp_type: unhandled raw type^M
Remote connection closed^M
(gdb) FAIL: gdb.base/cond-eval-mode.exp: hbreak: continue
After we make GDBserver handling Zx/zx packet idempotent,
[PATCH 3/3] [GDBserver] Make Zx/zx packet handling idempotent.
https://sourceware.org/ml/gdb-patches/2014-04/msg00480.html
> Now removal/insertion of all kinds of breakpoints/watchpoints, either
> internal, or from GDB, always go through the target methods.
GDBserver handles all kinds of breakpoints/watchpoints through target
methods. However, some target backends, such as arm, don't support Z0
packet but need software breakpoint to do breakpoint stepping over in
linux-low.c:start_step_over,
if (can_hardware_single_step ())
{
step = 1;
}
else
{
CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
set_reinsert_breakpoint (raddr);
step = 0;
}
a software breakpoint is requested to the backend, and the error is
triggered. This problem should affect targets having
breakpoint_reinsert_addr hooked.
Instead of handling memory breakpoint in these affected linux backend,
this patch handles memory breakpoint in linux_{insert,remove}_point,
that, if memory breakpoint is requested, call
{insert,remove}_memory_breakpoint respectively. Then, it becomes
unnecessary to handle memory breakpoint for linux x86 backend, so
this patch removes the code there.
This patch is tested with GDBserver on x86_64-linux and arm-linux
(-marm, -mthumb). Note that there are still some fails in
gdb.base/cond-eval-mode.exp with -mthumb, because GDBserver doesn't
know how to select the correct breakpoint instruction according to
the arm-or-thumb-mode of requested address. This is a separate
issue, anyway.
gdb/gdbserver:
2015-04-09 Yao Qi <yao.qi@linaro.org>
* linux-low.c (linux_insert_point): Call
insert_memory_breakpoint if TYPE is raw_bkpt_type_sw.
(linux_remove_point): Call remove_memory_breakpoint if type is
raw_bkpt_type_sw.
* linux-x86-low.c (x86_insert_point): Don't call
insert_memory_breakpoint.
(x86_remove_point): Don't call remove_memory_breakpoint.
This commit moves two identical functions from gdb/x86-linux-nat.c and
gdb/gdbserver/linux-x86-low.c into the shared file gdb/nat/x86-linux.c.
gdb/ChangeLog:
* nat/x86-linux.h (x86_linux_new_thread): New declaration.
(x86_linux_prepare_to_resume): Likewise.
* x86-linux-nat.c (x86_linux_new_thread):
Moved to nat/x86-linux.c.
(x86_linux_prepare_to_resume): Likewise.
* nat/x86-linux.c (x86_linux_new_thread): New function.
(x86_linux_prepare_to_resume): Likewise.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_linux_new_thread): Moved to
nat/x86-linux.c.
(x86_linux_prepare_to_resume): Likewise.
This commit moves the entire body of both GDB's and gdbserver's
x86_linux_prepare_to_resume functions into new functions,
x86_linux_update_debug_registers. This reorganisation allows
all Linux x86 low-level debug register code to be placed in one
shared file, separate from general Linux x86 shared code.
gdb/ChangeLog:
* x86-linux-nat.c (x86_linux_update_debug_registers):
New function, factored out from...
(x86_linux_prepare_to_resume): ...this.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_linux_update_debug_registers):
New function, factored out from...
(x86_linux_prepare_to_resume): ...this.
This commit makes several small changes to the low-level debug
register code for Linux x86, making the code in the GDB and
gdbserver implementations identical.
gdb/ChangeLog:
* x86-linux-nat.c (x86_linux_dr_set_addr): Update assertion.
(x86_linux_new_thread): Rename argument.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_linux_dr_get): Add assertion.
Use perror_with_name. Pass string through gettext.
(x86_linux_dr_set): Likewise.
This commit renames gdbserver's low-level Linux x86 debug register
accessors to the same names used by GDB.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_dr_low_set_addr): Rename to...
(x86_linux_dr_set_addr): ...this.
(x86_dr_low_get_addr): Rename to...
(x86_linux_dr_get_addr): ...this.
(x86_dr_low_set_control): Rename to...
(x86_linux_dr_set_control): ...this.
(x86_dr_low_get_control): Rename to...
(x86_linux_dr_get_control): ...this.
(x86_dr_low_get_status): Rename to...
(x86_linux_dr_get_status): ...this.
(x86_dr_low): Update with new function names.
This commit moves the code to handle lwp_info.arch_private for
Linux x86 into a new shared file, nat/x86-linux.c.
gdb/ChangeLog:
* nat/x86-linux.h: New file.
* nat/x86-linux.c: Likewise.
* Makefile.in (HFILES_NO_SRCDIR): Add nat/x86-linux.h.
(x86-linux.o): New rule.
* config/i386/linux.mh (NATDEPFILES): Add x86-linux.o.
* config/i386/linux64.mh (NATDEPFILES): Likewise.
* nat/linux-nat.h (struct arch_lwp_info): New forward declaration.
(lwp_set_arch_private_info): New declaration.
(lwp_arch_private_info): Likewise.
* linux-nat.c (lwp_set_arch_private_info): New function.
(lwp_arch_private_info): Likewise.
* x86-linux-nat.c: Include nat/x86-linux.h.
(arch_lwp_info): Removed structure.
(update_debug_registers_callback):
Use lwp_set_debug_registers_changed.
(x86_linux_prepare_to_resume): Use lwp_debug_registers_changed
and lwp_set_debug_registers_changed.
(x86_linux_new_thread): Use lwp_set_debug_registers_changed.
gdb/gdbserver/ChangeLog:
* Makefile.in (x86-linux.o): New rule.
* configure.srv: Add x86-linux.o to relevant targets.
* linux-low.c (lwp_set_arch_private_info): New function.
(lwp_arch_private_info): Likewise.
* linux-x86-low.c: Include nat/x86-linux.h.
(arch_lwp_info): Removed structure.
(update_debug_registers_callback):
Use lwp_set_debug_registers_changed.
(x86_linux_prepare_to_resume): Use lwp_debug_registers_changed
and lwp_set_debug_registers_changed.
(x86_linux_new_thread): Use lwp_set_debug_registers_changed.
This commit changes the signature of linux_target_ops.new_thread in
gdbserver to match that used in GDB's equivalent.
gdb/gdbserver/ChangeLog:
* linux-low.h (linux_target_ops) <new_thread>: Changed signature.
* linux-arm-low.c (arm_new_thread): Likewise.
* linux-aarch64-low.c (aarch64_linux_new_thread): Likewise.
* linux-mips-low.c (mips_linux_new_thread): Likewise.
* linux-x86-low.c (x86_linux_new_thread): Likewise.
* linux-low.c (add_lwp): Update the_low_target.new_thread call.
This commit introduces three accessors that shared Linux code can
use to access fields of struct lwp_info. The GDB and gdbserver
Linux x86 code is modified to use them.
gdb/ChangeLog:
* nat/linux-nat.h (ptid_of_lwp): New declaration.
(lwp_is_stopped): Likewise.
(lwp_stop_reason): Likewise.
* linux-nat.c (ptid_of_lwp): New function.
(lwp_is_stopped): Likewise.
(lwp_is_stopped_by_watchpoint): Likewise.
* x86-linux-nat.c (update_debug_registers_callback):
Use lwp_is_stopped.
(x86_linux_prepare_to_resume): Use ptid_of_lwp and
lwp_stop_reason.
gdb/gdbserver/ChangeLog:
* linux-low.c (ptid_of_lwp): New function.
(lwp_is_stopped): Likewise.
(lwp_stop_reason): Likewise.
* linux-x86-low.c (update_debug_registers_callback):
Use lwp_is_stopped.
(x86_linux_prepare_to_resume): Use ptid_of_lwp and
lwp_stop_reason.
This commit introduces a new function, iterate_over_lwps, that
shared Linux code can use to call a function for each LWP that
matches certain criteria. This function already existed in GDB
and was in use by GDB's various low-level Linux x86 debug register
setters. An equivalent was written for gdbserver and gdbserver's
low-level Linux x86 debug register setters were modified to use
it.
gdb/ChangeLog:
* linux-nat.h: Include nat/linux-nat.h.
(iterate_over_lwps): Move declaration to nat/linux-nat.h.
* nat/linux-nat.h (struct lwp_info): New forward declaration.
(iterate_over_lwps_ftype): New typedef.
(iterate_over_lwps): New declaration.
* linux-nat.h (iterate_over_lwps): Update comment. Use
iterate_over_lwps_ftype. Update callback return value check.
gdb/gdbserver/ChangeLog:
* linux-low.h: Include nat/linux-nat.h.
* linux-low.c (iterate_over_lwps_args): New structure.
(iterate_over_lwps_filter): New function.
(iterate_over_lwps): Likewise.
* linux-x86-low.c (update_debug_registers_callback):
Update signature to what iterate_over_lwps expects.
Remove PID check that iterate_over_lwps now performs.
(x86_dr_low_set_addr): Use iterate_over_lwps.
(x86_dr_low_set_control): Likewise.
This commit introduces a new function, x86_debug_reg_state, that
shared x86 code can use to access the local mirror of a process's
debug registers. This function already existed in GDB and was
in use by GDB's x86_linux_prepare_to_resume. An equivalent was
written for gdbserver and gdbserver's x86_linux_prepare_to_resume
was modified to use it.
gdb/ChangeLog:
* x86-nat.h (x86_debug_reg_state): Move declaration to...
* nat/x86-dregs.h (x86_debug_reg_state): New declaration.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_debug_reg_state): New function.
(x86_linux_prepare_to_resume): Use the above.
This commit introduces a new function, current_lwp_ptid, that
shared Linux code can use to obtain the ptid of the current
lightweight process.
gdb/ChangeLog:
* nat/linux-nat.h (current_lwp_ptid): New declaration.
* linux-nat.c (current_lwp_ptid): New function.
* x86-linux-nat.c: Include nat/linux-nat.h.
(x86_linux_dr_get_addr): Use current_lwp_ptid.
(x86_linux_dr_get_control): Likewise.
(x86_linux_dr_get_status): Likewise.
(x86_linux_dr_set_control): Likewise.
(x86_linux_dr_set_addr): Likewise.
gdb/gdbserver/ChangeLog:
* linux-low.c (current_lwp_ptid): New function.
* linux-x86-low.c: Include nat/linux-nat.h.
(x86_dr_low_get_addr): Use current_lwp_ptid.
(x86_dr_low_get_control): Likewise.
(x86_dr_low_get_status): Likewise.
This commit introduces a new inline common function "startswith"
which takes two string arguments and returns nonzero if the first
string starts with the second. It also updates the 295 places
where this logic was written out longhand to use the new function.
gdb/ChangeLog:
* common/common-utils.h (startswith): New inline function.
All places where this logic was used updated to use the above.
In C++ mode, we get:
gdb/gdbserver/linux-x86-low.c: In function ‘void x86_linux_dr_set(ptid_t, int, long unsigned int)’:
gdb/gdbserver/linux-x86-low.c:558:38: error: ‘regnum’ cannot appear in a constant-expression
offsetof (struct user, u_debugreg[regnum]), value);
^
gdb/gdbserver/ChangeLog:
2015-02-27 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (u_debugreg_offset): New function.
(x86_linux_dr_get, x86_linux_dr_set): Use it.
gdb/ChangeLog:
2015-02-27 Pedro Alves <palves@redhat.com>
* x86-linux-nat.c (u_debugreg_offset): New function.
(x86_linux_dr_get, x86_linux_dr_set): Use it.
This patch renames symbols that happen to have names which are
reserved keywords in C++.
Most of this was generated with Tromey's cxx-conversion.el script.
Some places where later hand massaged a bit, to fix formatting, etc.
And this was rebased several times meanwhile, along with re-running
the script, so re-running the script from scratch probably does not
result in the exact same output. I don't think that matters anyway.
gdb/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
gdb/gdbserver/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
$ make check RUNTESTFLAGS="--target_board=native-gdbserver/-m32 clone-thread_db.exp"
gdb.log shows:
Running target native-gdbserver/-m32
...
clone-thread_db: src/gdb/testsuite/gdb.threads/clone-thread_db.c:57: thread_fn: Assertion `res != -1' failed.
...
(gdb) FAIL: gdb.threads/clone-thread_db.exp: continue to end
That was waitpid returning -1 / EINTR. We don't see that when testing
with unix/-m32 (native debugging). Turns out to be that when
debugging a 32-bit inferior, a 64-bit GDBserver is reading/writing
$orig_eax from/to the wrong ptrace register buffer offset. When
gdbserver is 64-bit, the ptrace register buffer is in 64-bit layout,
so the register is found at "ORIG_EAX * 8", not at "ORIG_EAX * 4".
Fixes these with --target_board=native-gdbserver/-m32 on x86_64 Fedora 20:
-FAIL: gdb.threads/clone-thread_db.exp: continue to end
+PASS: gdb.threads/clone-thread_db.exp: continue to end
-FAIL: gdb.threads/hand-call-in-threads.exp: all dummies popped
+PASS: gdb.threads/hand-call-in-threads.exp: all dummies popped
PASS: gdb.threads/hand-call-in-threads.exp: breakpoint on all_threads_running
PASS: gdb.threads/hand-call-in-threads.exp: breakpoint on hand_call
PASS: gdb.threads/hand-call-in-threads.exp: disable scheduler locking
@@ -29339,15 +29331,15 @@ PASS: gdb.threads/hand-call-in-threads.e
PASS: gdb.threads/hand-call-in-threads.exp: discard hand call, thread 4
PASS: gdb.threads/hand-call-in-threads.exp: discard hand call, thread 5
PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 1
-FAIL: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 2
-FAIL: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 3
-FAIL: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 4
+PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 2
+PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 3
+PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 4
PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 5
PASS: gdb.threads/hand-call-in-threads.exp: enable scheduler locking
PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 1
-FAIL: gdb.threads/hand-call-in-threads.exp: hand call, thread 2
-FAIL: gdb.threads/hand-call-in-threads.exp: hand call, thread 3
-FAIL: gdb.threads/hand-call-in-threads.exp: hand call, thread 4
+PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 2
+PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 3
+PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 4
PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 5
PASS: gdb.threads/hand-call-in-threads.exp: prepare to discard hand call, thread 1
PASS: gdb.threads/hand-call-in-threads.exp: prepare to discard hand call, thread 2
gdb/gdbserver/ChangeLog
2015-02-23 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (REGSIZE): Define in both 32-bit and 64-bit
modes.
(x86_fill_gregset, x86_store_gregset): Use it when handling
$orig_eax.
This patch applies the same starvation avoidance improvements of the
previous patch to the Linux gdbserver side.
Without this, the test added by the following commit
(gdb.threads/non-stop-fair-events.exp) always fails with time outs.
gdb/gdbserver/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-low.c (step_over_bkpt): Move higher up in the file.
(handle_extended_wait): Don't store the stop_pc here.
(get_stop_pc): Adjust comments and rename to ...
(check_stopped_by_breakpoint): ... this. Record whether the LWP
stopped for a software breakpoint or hardware breakpoint.
(thread_still_has_status_pending_p): New function.
(status_pending_p_callback): Use
thread_still_has_status_pending_p. If the event is no longer
interesting, resume the LWP.
(handle_tracepoints): Add assert.
(maybe_move_out_of_jump_pad): Remove cancel_breakpoints call.
(wstatus_maybe_breakpoint): New function.
(cancel_breakpoint): Delete function.
(check_stopped_by_watchpoint): New function, factored out from
linux_low_filter_event.
(lp_status_maybe_breakpoint): Delete function.
(linux_low_filter_event): Remove filter_ptid argument.
Leave thread group exits pending here. Store the LWP's stop PC.
Always leave events pending.
(linux_wait_for_event_filtered): Pull all events out of the
kernel, and leave them all pending.
(count_events_callback, select_event_lwp_callback): Consider all
events.
(cancel_breakpoints_callback, linux_cancel_breakpoints): Delete.
(select_event_lwp): Only give preference to the stepping LWP in
all-stop mode. Adjust comments.
(ignore_event): New function.
(linux_wait_1): Delete 'retry' label. Use ignore_event. Remove
references to cancel_breakpoints. Adjust to renames. Also give
equal priority to all LWPs that have had events in non-stop mode.
If reporting a software breakpoint event, unadjust the LWP's PC.
(linux_wait): If linux_wait_1 returned an ignored event, retry.
(stuck_in_jump_pad_callback, move_out_of_jump_pad_callback):
Adjust.
(linux_resume_one_lwp): Store the LWP's PC. Adjust.
(resume_status_pending_p): Use thread_still_has_status_pending_p.
(linux_stopped_by_watchpoint): Adjust.
(linux_target_ops): Remove reference to linux_cancel_breakpoints.
* linux-low.h (enum lwp_stop_reason): New.
(struct lwp_info) <stop_pc>: Adjust comment.
<stopped_by_watchpoint>: Delete field.
<stop_reason>: New field.
* linux-x86-low.c (x86_linux_prepare_to_resume): Adjust.
* mem-break.c (software_breakpoint_inserted_here)
(hardware_breakpoint_inserted_here): New function.
* mem-break.h (software_breakpoint_inserted_here)
(hardware_breakpoint_inserted_here): Declare.
* target.h (struct target_ops) <cancel_breakpoints>: Remove field.
(cancel_breakpoints): Delete.
* tracepoint.c (clear_installed_tracepoints, stop_tracing)
(upload_fast_traceframes): Remove references to
cancel_breakpoints.
GDB has a function named "current_inferior" and gdbserver has a global
variable named "current_inferior", but the two are not equivalent;
indeed, gdbserver does not have any real equivalent of what GDB calls
an inferior. What gdbserver's "current_inferior" is actually pointing
to is a structure describing the current thread. This commit renames
current_inferior as current_thread in gdbserver to clarify this. It
also renames the function "set_desired_inferior" to "set_desired_thread"
and renames various local variables from foo_inferior to foo_thread.
gdb/gdbserver/ChangeLog:
* inferiors.h (current_inferior): Renamed as...
(current_thread): New variable. All uses updated.
* linux-low.c (get_pc): Renamed saved_inferior as saved_thread.
(maybe_move_out_of_jump_pad): Likewise.
(cancel_breakpoint): Likewise.
(linux_low_filter_event): Likewise.
(wait_for_sigstop): Likewise.
(linux_resume_one_lwp): Likewise.
(need_step_over_p): Likewise.
(start_step_over): Likewise.
(linux_stabilize_threads): Renamed save_inferior as saved_thread.
* linux-x86-low.c (x86_linux_update_xmltarget): Likewise.
* proc-service.c (ps_lgetregs): Renamed reg_inferior as reg_thread
and save_inferior as saved_thread.
* regcache.c (get_thread_regcache): Renamed saved_inferior as
saved_thread.
(regcache_invalidate_thread): Likewise.
* remote-utils.c (prepare_resume_reply): Likewise.
* thread-db.c (thread_db_get_tls_address): Likewise.
(disable_thread_event_reporting): Likewise.
(remove_thread_event_breakpoints): Likewise.
* tracepoint.c (gdb_agent_about_to_close): Renamed save_inferior
as saved_thread.
* target.h (set_desired_inferior): Renamed as...
(set_desired_thread): New declaration. All uses updated.
* server.c (myresume): Updated comment to reference thread instead
of inferior.
(handle_serial_event): Likewise.
(handle_target_event): Likewise.
The loop macro ALL_DEBUG_REGISTERS does not iterate over the status or
control registers, so its name is misleading. This commit renames it
as ALL_DEBUG_ADDRESS_REGISTERS and updates all uses. This commit also
updates its loop conditions to an equivalent but better form, and
makes two functions use it that had previously hardwired the loop.
A comment on a related field in the x86_debug_reg_state structure is
also updated to reflect that the field refers specifically to address
registers only.
gdb/ChangeLog:
* nat/x86-dregs.h (ALL_DEBUG_REGISTERS): Renamed as...
(ALL_DEBUG_ADDRESS_REGISTERS): New macro. All uses updated.
Loop conditions changed to equivalent form.
(struct x86_debug_reg_state): Updated dr_ref_count comment.
* x86-linux-nat.c (x86_linux_prepare_to_resume): Use
ALL_DEBUG_ADDRESS_REGISTERS.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_linux_prepare_to_resume): Use
ALL_DEBUG_ADDRESS_REGISTERS.
This commit renames nine files that contain code used by both 32- and
64-bit Intel ports such that their names are prefixed with "x86"
rather than "i386". All types, functions and variables within these
files are likewise renamed such that their names are prefixed with
"x86" rather than "i386". This makes GDB follow the convention used
by gdbserver such that 32-bit Intel code lives in files called
"i386-*", 64-bit Intel code lives in files called "amd64-*", and code
for both 32- and 64-bit Intel lives in files called "x86-*".
This commit only renames OS-independent files. The Linux ports of
both GDB and gdbserver now follow the i386/amd64/x86 convention fully.
Some ports still use the old convention where "i386" in file/function/
type/variable names can mean "32-bit only" or "32- and 64-bit" but I
don't want to touch ports I can't fully test except where absolutely
necessary.
gdb/ChangeLog:
* i386-nat.h: Renamed as...
* x86-nat.h: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* i386-nat.c: Renamed as...
* x86-nat.c: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* common/i386-xstate.h: Renamed as...
* common/x86-xstate.h: New file. All type, function and variable
name prefixes changed from "i386_" to "x86_". All references
updated.
* nat/i386-cpuid.h: Renamed as...
* nat/x86-cpuid.h: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* nat/i386-gcc-cpuid.h: Renamed as...
* nat/x86-gcc-cpuid.h: New file. All type, function and variable
name prefixes changed from "i386_" to "x86_". All references
updated.
* nat/i386-dregs.h: Renamed as...
* nat/x86-dregs.h: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* nat/i386-dregs.c: Renamed as...
* nat/x86-dregs.c: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
gdb/gdbserver/ChangeLog:
* i386-low.h: Renamed as...
* x86-low.h: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* i386-low.c: Renamed as...
* x86-low.c: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
This commit replaces two uses of xcalloc (1, ...) with XCNEW.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_linux_new_process): Use XCNEW.
(x86_linux_new_thread): Likewise.
This commit converts if..fatal checks in both i386_dr_low_set_addr
implementations to gdb_asserts. It's not obvious from the context,
but the conditional in both cases is changed to match the equivalent
conditional in the i386_dr_low_get_addr implementations. Nothing
fundamental has changed because DR_FIRSTADDR is zero. This commit
also removes a vague comment in Linux i386_dr_low_get_addr. I could
have reworded the comment (and replicated it three times for the other
identical assertions) but I think the existence of specific functions
for the status and control registers makes it fairly obvious what is
going on.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (i386_dr_low_set_addr): Replace check with
gdb_assert.
(i386_dr_low_get_addr): Remove vague comment.
* win32-i386-low.c (i386_dr_low_set_addr): Replace check with
gdb_assert.
This commit makes all source files under gdb/ that include headers
from gdb/ include either defs.h or server.h before any other code.
This ensures that definitions and macros from the two config.h files
are always in place for our code. An exception has been made for
gdb/gdbserver/gdbreplay.c which seems to be a special case.
gdb/
2014-07-30 Gary Benson <gbenson@redhat.com>
* btrace.c: Include defs.h.
* common/ptid.c: Include defs.h or server.h as appropriate.
* nat/mips-linux-watch.c: Likewise.
gdb/gdbserver/
2014-07-30 Gary Benson <gbenson@redhat.com>
* hostio-errno.c: Move server.h to top of includes list.
* inferiors.c: Likewise.
* linux-x86-low.c: Likewise.
* notif.c: Include server.h.
This patch fixes this on x86 Linux:
(gdb) watch *buf@2
Hardware watchpoint 8: *buf@2
(gdb) si
0x00000000004005a7 34 for (i = 0; i < 100000; i++); /* stepi line */
(gdb) del
Delete all breakpoints? (y or n) y
(gdb) watch *(buf+1)@1
Hardware watchpoint 9: *(buf+1)@1
(gdb) si
0x00000000004005a7 in main () at ../../../src/gdb/testsuite/gdb.base/watchpoint-reuse-slot.c:34
34 for (i = 0; i < 100000; i++); /* stepi line */
Couldn't write debug register: Invalid argument.
(gdb)
In the example above the debug registers are being switched from this
state:
CONTROL (DR7): 0000000000050101 STATUS (DR6): 0000000000000000
DR0: addr=0x0000000000601040, ref.count=1 DR1: addr=0x0000000000000000, ref.count=0
DR2: addr=0x0000000000000000, ref.count=0 DR3: addr=0x0000000000000000, ref.count=0
to this:
CONTROL (DR7): 0000000000010101 STATUS (DR6): 0000000000000000
DR0: addr=0x0000000000601041, ref.count=1 DR1: addr=0x0000000000000000, ref.count=0
DR2: addr=0x0000000000000000, ref.count=0 DR3: addr=0x0000000000000000, ref.count=0
That is, before, DR7 was setup for watching a 2 byte region starting
at what's in DR0 (0x601040).
And after, DR7 is setup for watching a 1 byte region starting at
what's in DR0 (0x601041).
We always write DR0..DR3 before DR7, because if we enable a slot's
bits in DR7, you need to have already written the corresponding
DR0..DR3 registers -- the kernel rejects the DR7 write with EINVAL
otherwise.
The error shown above is the opposite scenario. When we try to write
0x601041 to DR0, DR7's bits still indicate intent of watching a 2-byte
region. That DR0/DR7 combination is invalid, because 0x601041 is
unaligned. To watch two bytes, we'd have to use two slots. So the
kernel errors out with EINVAL.
Fix this by always first clearing DR7, then writing DR0..DR3, and then
setting DR7's bits.
A little optimization -- if we're disabling the last watchpoint, then
we can clear DR7 just once. The changes to nat/i386-dregs.c make that
easier to detect, and as bonus, they make it a little easier to make
sense of DR7 in the debug logs, as we no longer need to remember we're
seeing stale bits.
Tested on x86_64 Fedora 20, native and GDBserver.
This adds an exhaustive test that switches between many different
combinations of watchpoint types and addresses and widths.
gdb/
2014-06-23 Pedro Alves <palves@redhat.com>
* amd64-linux-nat.c (amd64_linux_prepare_to_resume): Clear
DR_CONTROL before setting DR0..DR3.
* i386-linux-nat.c (i386_linux_prepare_to_resume): Likewise.
* nat/i386-dregs.c (i386_remove_aligned_watchpoint): Clear all
bits of DR_CONTROL related to the debug register slot being
disabled. If all slots are vacant, clear local slowdown as well,
and assert DR_CONTROL is 0.
gdb/gdbserver/
2014-06-23 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (x86_linux_prepare_to_resume): Clear DR_CONTROL
before setting DR0..DR3.
gdb/testsuite/
2014-06-23 Pedro Alves <palves@redhat.com>
* gdb.base/watchpoint-reuse-slot.c: New file.
* gdb.base/watchpoint-reuse-slot.exp: New file.
This commit makes gdbserver access the x86 debug register accessor
functions via the same function vector as GDB proper. This removes
a chunk of conditional code that was previously in i386-{nat,low}.h
and leaves a single macro as the only GDB/gdbserver difference in
nat/i386-dregs.c.
gdb/
2014-06-20 Gary Benson <gbenson@redhat.com>
* i386-nat.h (debug_hw_points): Moved to nat/i386-dregs.c.
(i386_dr_low_type): Moved to nat/i386-dregs.h.
(i386_dr_low): Likewise.
(i386_dr_low_can_set_addr): Moved to nat/i386-dregs.c.
(i386_dr_low_set_addr): Likewise.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_can_set_control): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_get_debug_register_length): Likewise.
* nat/i386-dregs.h (i386_dr_low_type): Moved from i386-nat.h.
(i386_dr_low): Likewise.
* nat/i386-dregs.c (i386-low.h): Remove include.
(i386-nat.h): Likewise.
(nat/i386-dregs.h): New include.
(i386_dr_low_can_set_addr): Moved from i386-nat.h.
(i386_dr_low_set_addr): Likewise.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_can_set_control): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_get_debug_register_length): Likewise.
(debug_hw_points): Likewise.
gdb/gdbserver/
2014-06-20 Gary Benson <gbenson@redhat.com>
* i386-low.h (i386_dr_low_can_set_addr): Removed.
(i386_dr_low_set_addr): Likewise.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_can_set_control): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_get_debug_register_length): Likewise.
* linux-x86-low.c (i386_dr_low_set_addr):
Changed signature. Made static.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_dr_low): New global variable.
* win32-i386-low.c (i386_dr_low_set_addr):
Changed signature. Made static.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_dr_low): New global variable.
This commit renames the functions that are to be shared.
Functions to be shared that were static are made nonstatic.
gdb/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-nat.c (i386_show_dr): Renamed to
i386_dr_show and made nonstatic. All uses updated.
(i386_length_and_rw_bits): Renamed to
i386_dr_length_and_rw_bits and made nonstatic.
All uses updated.
(i386_insert_aligned_watchpoint): Renamed to
i386_dr_insert_aligned_watchpoint and made nonstatic.
All uses updated.
(i386_remove_aligned_watchpoint): Renamed to
i386_dr_remove_aligned_watchpoint and made nonstatic.
All uses updated.
(i386_update_inferior_debug_regs): Renamed to
i386_dr_update_inferior_debug_regs and made nonstatic.
All uses updated.
gdb/gdbserver/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-low.h (i386_low_insert_watchpoint): Renamed to
i386_dr_insert_watchpoint.
(i386_low_remove_watchpoint): Renamed to
i386_dr_remove_watchpoint.
(i386_low_region_ok_for_watchpoint): Renamed to
i386_dr_region_ok_for_watchpoint.
(i386_low_stopped_data_address): Renamed to
i386_dr_stopped_data_address.
(i386_low_stopped_by_watchpoint): Renamed to
i386_dr_stopped_by_watchpoint.
* i386-low.c (i386_show_dr): Renamed to
i386_dr_show and made nonstatic. All uses updated.
(i386_length_and_rw_bits): Renamed to
i386_dr_length_and_rw_bits and made nonstatic.
All uses updated.
(i386_insert_aligned_watchpoint): Renamed to
i386_dr_insert_aligned_watchpoint and made nonstatic.
All uses updated.
(i386_remove_aligned_watchpoint): Renamed to
i386_dr_remove_aligned_watchpoint and made nonstatic.
All uses updated.
(i386_update_inferior_debug_regs): Renamed to
i386_dr_update_inferior_debug_regs and made nonstatic.
All uses updated.
(i386_low_insert_watchpoint): Renamed to
i386_dr_insert_watchpoint. All uses updated.
(i386_low_remove_watchpoint): Renamed to
i386_dr_remove_watchpoint. All uses updated.
(i386_low_region_ok_for_watchpoint): Renamed to
i386_dr_region_ok_for_watchpoint. All uses updated.
(i386_low_stopped_data_address): Renamed to
i386_dr_stopped_data_address. All uses updated.
(i386_low_stopped_by_watchpoint): Renamed to
i386_dr_stopped_by_watchpoint. All uses updated.
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html
The testsuite caught them on Linux/x86_64, at least. gdb.sum:
gdb.sum:
FAIL: gdb.base/hbreak2.exp: next over recursive call
FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test
gdb.log:
(gdb) next
Program received signal SIGTRAP, Trace/breakpoint trap.
factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
113 if (value > 1) { /* set breakpoint 7 here */
(gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call
Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it. After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on. The bug is
easy to trigger with always-inserted on.
The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0. E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":
(gdb) b main
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $z0,410943,1#68...Packet received: OK
And for Z1, similarly:
(gdb) hbreak main
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Packet Z1 (hardware-breakpoint) is supported
(gdb) hbreak main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) hbreak main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $z1,410943,1#69...Packet received: OK
^^^^^^^^^^^^
So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent. On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:
$ ./gdbserver :9999 ./gdbserver
Process ./gdbserver created; pid = 8629
Listening on port 9999
Remote debugging from host 127.0.0.1
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
remove_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet. Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4! IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone. If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.
This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...
That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side. GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition. (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the
examples above are shorter because the breakpoints don't have
conditions attached). GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint. The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.
(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side. The resends are caused by the
'loc->condition_changed = condition_modified.' line.)
But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway. So target-side conditions also aren't
really to blame. The documentation of the Z/z packets says:
"To avoid potential problems with duplicate packets, the operations
should be implemented in an idempotent way."
As such, we may want to fix GDB, but we should definitely fix
GDBserver. The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).
GDBserver indeed already treats duplicate Z0 packets in an idempotent
way. mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint. But, it only allows GDB to ever contribute one
reference to a software breakpoint location. IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.
However, mem-break.c only tracks GDB Z0 breakpoints. The same logic
should apply to all kinds of Zx packets. Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine. The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers. But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.
So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates. As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).
Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out. Before, the
target methods were only called for GDB breakpoints. The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods. That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.
Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods. The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type. They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer. I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.
As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads). If that
operation fails, we need to return error to GDB. Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be. So we need to check whether the type is supported at
all before preparing to access memory. And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.
Other than that, hopefully the change is more or less obvious.
New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.
Tested by building GDBserver for:
aarch64-linux-gnu
arm-linux-gnueabihf
i686-pc-linux-gnu
i686-w64-mingw32
m68k-linux-gnu
mips-linux-gnu
mips-uclinux
nios2-linux-gnu
powerpc-linux-gnu
sh-linux-gnu
tilegx-unknown-linux-gnu
x86_64-redhat-linux
x86_64-w64-mingw32
And also regression tested on x86_64 Fedora 20.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_insert_point)
(aarch64_remove_point): No longer check whether the type is
supported here. Adjust to new interface.
(the_low_target): Install aarch64_supports_z_point_type as
supports_z_point_type method.
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
instead of a Z packet char. Adjust.
(arm_supports_z_point_type): New function.
(arm_insert_point, arm_remove_point): Adjust to new interface.
(the_low_target): Install arm_supports_z_point_type.
* linux-crisv32-low.c (cris_supports_z_point_type): New function.
(cris_insert_point, cris_remove_point): Adjust to new interface.
Don't check whether the type is supported here.
(the_low_target): Install cris_supports_z_point_type.
* linux-low.c (linux_supports_z_point_type): New function.
(linux_insert_point, linux_remove_point): Adjust to new interface.
* linux-low.h (struct linux_target_ops) <insert_point,
remove_point>: Take an enum raw_bkpt_type instead of a char. Add
raw_breakpoint pointer parameter.
<supports_z_point_type>: New method.
* linux-mips-low.c (mips_supports_z_point_type): New function.
(mips_insert_point, mips_remove_point): Adjust to new interface.
Use mips_supports_z_point_type.
(the_low_target): Install mips_supports_z_point_type.
* linux-ppc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-s390-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-sparc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-x86-low.c (x86_supports_z_point_type): New function.
(x86_insert_point): Adjust to new insert_point interface. Use
insert_memory_breakpoint. Adjust to new
i386_low_insert_watchpoint interface.
(x86_remove_point): Adjust to remove_point interface. Use
remove_memory_breakpoint. Adjust to new
i386_low_remove_watchpoint interface.
(the_low_target): Install x86_supports_z_point_type.
* lynx-low.c (lynx_target_ops): Install NULL as
supports_z_point_type callback.
* nto-low.c (nto_supports_z_point_type): New.
(nto_insert_point, nto_remove_point): Adjust to new interface.
(nto_target_ops): Install nto_supports_z_point_type.
* mem-break.c: Adjust intro comment.
(struct raw_breakpoint) <raw_type, size>: New fields.
<inserted>: Update comment.
<shlib_disabled>: Delete field.
(enum bkpt_type) <gdb_breakpoint>: Delete value.
<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
(raw_bkpt_type_to_target_hw_bp_type): New function.
(find_enabled_raw_code_breakpoint_at): New function.
(find_raw_breakpoint_at): New type and size parameters. Use them.
(insert_memory_breakpoint): New function, based off
set_raw_breakpoint_at.
(remove_memory_breakpoint): New function.
(set_raw_breakpoint_at): Reimplement.
(set_breakpoint): New, based on set_breakpoint_at.
(set_breakpoint_at): Reimplement.
(delete_raw_breakpoint): Go through the_target->remove_point
instead of assuming memory breakpoints.
(find_gdb_breakpoint_at): Delete.
(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
(find_gdb_breakpoint): New function.
(set_gdb_breakpoint_at): Delete.
(z_type_supported): New function.
(set_gdb_breakpoint_1): New function, loosely based off
set_gdb_breakpoint_at.
(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
(delete_gdb_breakpoint_at): Delete.
(delete_gdb_breakpoint_1): New function, loosely based off
delete_gdb_breakpoint_at.
(delete_gdb_breakpoint): New function.
(clear_gdb_breakpoint_conditions): Rename to ...
(clear_breakpoint_conditions): ... this. Don't handle a NULL
breakpoint.
(add_condition_to_breakpoint): Make static.
(add_breakpoint_condition): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_condition_true_at_breakpoint): Rename to ...
(gdb_condition_true_at_breakpoint_z_type): ... this, and add
z_type parameter.
(gdb_condition_true_at_breakpoint): Reimplement.
(add_breakpoint_commands): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_no_commands_at_breakpoint): Rename to ...
(gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type
parameter. Return true if no breakpoint was found. Change debug
output.
(gdb_no_commands_at_breakpoint): Reimplement.
(run_breakpoint_commands): Rename to ...
(run_breakpoint_commands_z_type): ... this. Add z_type parameter,
and change return type to boolean.
(run_breakpoint_commands): New function.
(gdb_breakpoint_here): Also check for Z1 breakpoints.
(uninsert_raw_breakpoint): Don't try to reinsert a disabled
breakpoint. Go through the_target->remove_point instead of
assuming memory breakpoint.
(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
software and hardware breakpoints.
(reinsert_raw_breakpoint): Go through the_target->insert_point
instead of assuming memory breakpoint.
(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
software and hardware breakpoints.
(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
Check both software and hardware breakpoints.
(validate_inserted_breakpoint): Assert the breakpoint is a
software breakpoint. Set the inserted flag to -1 instead of
setting shlib_disabled.
(delete_disabled_breakpoints): Adjust.
(validate_breakpoints): Only validate software breakpoints.
Adjust to inserted flag change.
(check_mem_read, check_mem_write): Skip breakpoint types other
than software breakpoints. Adjust to inserted flag change.
* mem-break.h (enum raw_bkpt_type): New enum.
(raw_breakpoint, struct process_info): Forward declare.
(Z_packet_to_target_hw_bp_type): Delete declaration.
(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
(set_gdb_breakpoint, delete_gdb_breakpoint)
(clear_breakpoint_conditions): New declarations.
(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
(breakpoint_inserted_here): Update comment.
(add_breakpoint_condition, add_breakpoint_commands): Replace
address parameter with a breakpoint pointer parameter.
(gdb_breakpoint_here): Update comment.
(delete_gdb_breakpoint_at): Delete.
(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
* server.c (process_point_options): Take a struct breakpoint
pointer instead of an address. Adjust.
(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
delete_gdb_breakpoint.
* spu-low.c (spu_target_ops): Install NULL as
supports_z_point_type method.
* target.h: Include mem-break.h.
(struct target_ops) <prepare_to_access_memory>: Update comment.
<supports_z_point_type>: New field.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
* win32-arm-low.c (the_low_target): Install NULL as
supports_z_point_type.
* win32-i386-low.c (i386_supports_z_point_type): New function.
(i386_insert_point, i386_remove_point): Adjust to new interface.
(the_low_target): Install i386_supports_z_point_type.
* win32-low.c (win32_supports_z_point_type): New function.
(win32_insert_point, win32_remove_point): Adjust to new interface.
(win32_target_ops): Install win32_supports_z_point_type.
* win32-low.h (struct win32_target_ops):
<supports_z_point_type>: New method.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/break-idempotent.c: New file.
* gdb.base/break-idempotent.exp: New file.
The Aarch64, MIPS and x86 Linux backends all have Z packet number
defines and corresponding protocol number to internal type convertion
routines. Factor them all out to gdbserver's core code, so we only
have one shared copy.
Tested on x86_64 Fedora 20, and also cross built for aarch64-linux-gnu
and mips-linux-gnu.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* mem-break.h: Include break-common.h.
(Z_PACKET_SW_BP, Z_PACKET_HW_BP, Z_PACKET_WRITE_WP)
(Z_PACKET_READ_WP, Z_PACKET_ACCESS_WP): New defines.
(Z_packet_to_target_hw_bp_type): New declaration.
* mem-break.c (Z_packet_to_target_hw_bp_type): New function.
* i386-low.c (Z_PACKET_HW_BP, Z_PACKET_WRITE_WP, Z_PACKET_READ_WP)
(Z_PACKET_ACCESS_WP): Delete macros.
(Z_packet_to_hw_type): Delete function.
* i386-low.h: Don't include break-common.h here.
(Z_packet_to_hw_type): Delete declaration.
* linux-x86-low.c (x86_insert_point, x86_insert_point): Call
Z_packet_to_target_hw_bp_type instead of Z_packet_to_hw_type.
* win32-i386-low.c (i386_insert_point, i386_remove_point): Call
Z_packet_to_target_hw_bp_type instead of Z_packet_to_hw_type.
* linux-aarch64-low.c: Don't include break-common.h here.
(Z_PACKET_SW_BP, Z_PACKET_HW_BP, Z_PACKET_WRITE_WP)
(Z_PACKET_READ_WP, Z_PACKET_ACCESS_WP): Delete macros.
(Z_packet_to_target_hw_bp_type): Delete function.
* linux-mips-low.c (rsp_bp_type_to_target_hw_bp_type): Delete
function.
(mips_insert_point, mips_remove_point): Use
Z_packet_to_target_hw_bp_type.
gdbserver makes libthread_db to access uninitialized memory. Surprisingly it
does not harm normally, even -fsanitize=address works with current gdbserver.
I have found just valgrind detects it as a very first warning for gdbserver:
Syscall param ptrace(addr) contains uninitialised byte(s)
at 0x3721EECEBE: ptrace (ptrace.c:45)
by 0x436EE5: ps_get_thread_area (linux-x86-low.c:252)
by 0x5559D02: __td_ta_lookup_th_unique (td_ta_map_lwp2thr.c:157)
by 0x5559EC3: td_ta_map_lwp2thr (td_ta_map_lwp2thr.c:207)
by 0x43F87D: find_one_thread (thread-db.c:281)
by 0x440038: thread_db_get_tls_address (thread-db.c:505)
by 0x40F6D0: handle_query (server.c:2004)
by 0x4124CF: process_serial_event (server.c:3445)
by 0x4136B6: handle_serial_event (server.c:3889)
by 0x419571: handle_file_event (event-loop.c:434)
by 0x418D38: process_event (event-loop.c:189)
by 0x419AB7: start_event_loop (event-loop.c:552)
Reproducible with:
cd gdb/testsuite
g++ -o gdb.threads/tls gdb.threads/tls{,2}.c -m32 -pthread
../gdbserver/gdbserver :1234 gdb.threads/tls
../gdb -batch gdb.threads/tls -ex 'target remote :1234' -ex 'b spin' -ex c -ex 'p a_thread_local'
It is more easily reproducible even without valgrind using s/0x00/0xff/ in the
attached patch. It will then turn the output of reproducer above:
$1 = 0
->
Cannot find thread-local storage for Thread 29044, executable file .../gdb/testsuite/gdb.threads/tls:
Remote target failed to process qGetTLSAddr request
gdb/gdbserver/
2014-05-19 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix gdbserver qGetTLSAddr for x86_64 -m32.
* linux-x86-low.c (X86_64_USER_REGS): New.
(x86_fill_gregset): Call memset for BUF first in x86_64 -m32 case.
Message-ID: <20140410114901.GA16411@host2.jankratochvil.net>
This patch adds support for the Intel(R) Advanced Vector
Extensions 512 (Intel(R) AVX-512) registers. Native and remote
debugging are covered by this patch.
Intel(R) AVX-512 is an extension to AVX to support 512-bit wide
SIMD registers in 64-bit mode (XMM0-XMM31, YMM0-YMM31, ZMM0-ZMM31).
The number of available registers in 32-bit mode is still 8
(XMM0-7, YMM0-7, ZMM0-7). The lower 256-bits of the ZMM registers
are aliased to the respective 256-bit YMM registers. The lower
128-bits are aliased to the respective 128-bit XMM registers.
There are also 8 new, dedicated mask registers (K0-K7) in both 32-bit
mode and 64-bit mode.
For more information please see
Intel(R) Developer Zone: Intel(R) AVX
http://software.intel.com/en-us/intel-isa-extensions#pid-16007-1495
Intel(R) Architecture Instruction Set Extensions Programming Reference:
http://software.intel.com/en-us/file/319433-017pdf
2014-04-24 Michael Sturm <michael.sturm@mintel.com>
Walfred Tedeschi <walfred.tedeschi@intel.com>
* amd64-linux-nat.c (amd64_linux_gregset32_reg_offset): Add
AVX512 registers.
(amd64_linux_read_description): Add code to handle AVX512 xstate
mask and return respective tdesc.
* amd64-linux-tdep.c: Include features/i386/amd64-avx512-linux.c
and features/i386/x32-avx512-linux.c.
(amd64_linux_gregset_reg_offset): Add AVX512 registers.
(amd64_linux_core_read_description): Add code to handle AVX512
xstate mask and return respective tdesc.
(_initialize_amd64_linux_tdep): Initialize AVX512 tdesc.
* amd64-linux-tdep.h (AMD64_LINUX_ORIG_RAX_REGNUM): Adjust regnum
calculation.
(AMD64_LINUX_NUM_REGS): Adjust to new number of registers.
(tdesc_amd64_avx512_linux): New prototype.
(tdesc_x32_avx512_linux): Likewise.
* amd64-tdep.c: Include features/i386/amd64-avx512.c and
features/i386/x32-avx512.c.
(amd64_ymm_avx512_names): New register names for pseudo
registers YMM16-31.
(amd64_ymmh_avx512_names): New register names for raw registers
YMMH16-31.
(amd64_k_names): New register names for K registers.
(amd64_zmmh_names): New register names for ZMM raw registers.
(amd64_zmm_names): New registers names for ZMM pseudo registers.
(amd64_xmm_avx512_names): New register names for XMM16-31
registers.
(amd64_pseudo_register_name): Add code to return AVX512 pseudo
registers.
(amd64_init_abi): Add code to intitialize AVX512 tdep variables
if feature is present.
(_initialize_amd64_tdep): Call AVX512 tdesc initializers.
* amd64-tdep.h (enum amd64_regnum): Add AVX512 registers.
(AMD64_NUM_REGS): Adjust to new number of registers.
* i386-linux-nat.c (GETXSTATEREGS_SUPPLIES): Extend range of
registers supplied via XSTATE by AVX512 registers.
(i386_linux_read_description): Add case for AVX512.
* i386-linux-tdep.c: Include i386-avx512-linux.c.
(i386_linux_gregset_reg_offset): Add AVX512 registers.
(i386_linux_core_read_description): Add case for AVX512.
(i386_linux_init_abi): Install supported register note section
for AVX512.
(_initialize_i386_linux_tdep): Add call to tdesc init function for
AVX512.
* i386-linux-tdep.h (I386_LINUX_NUM_REGS): Set number of
registers to be number of zmm7h + 1.
(tdesc_i386_avx512_linux): Add tdesc for AVX512 registers.
* i386-tdep.c: Include features/i386/i386-avx512.c.
(i386_zmm_names): Add ZMM pseudo register names array.
(i386_zmmh_names): Add ZMM raw register names array.
(i386_k_names): Add K raw register names array.
(num_lower_zmm_regs): Add constant for the number of lower ZMM
registers. AVX512 has 16 more ZMM registers than there are YMM
registers.
(i386_zmmh_regnum_p): Add function to look up register number of
ZMM raw registers.
(i386_zmm_regnum_p): Likewise for ZMM pseudo registers.
(i386_k_regnum_p): Likewise for K raw registers.
(i386_ymmh_avx512_regnum_p): Likewise for additional YMM raw
registers added by AVX512.
(i386_ymm_avx512_regnum_p): Likewise for additional YMM pseudo
registers added by AVX512.
(i386_xmm_avx512_regnum_p): Likewise for additional XMM registers
added by AVX512.
(i386_register_name): Add code to hide YMMH16-31 and ZMMH0-31.
(i386_pseudo_register_name): Add ZMM pseudo registers.
(i386_zmm_type): Construct and return vector registers type for ZMM
registers.
(i386_pseudo_register_type): Return appropriate type for YMM16-31,
ZMM0-31 pseudo registers and K registers.
(i386_pseudo_register_read_into_value): Add code to read K, ZMM
and YMM16-31 registers from register cache.
(i386_pseudo_register_write): Add code to write K, ZMM and
YMM16-31 registers.
(i386_register_reggroup_p): Add code to include/exclude AVX512
registers in/from respective register groups.
(i386_validate_tdesc_p): Handle AVX512 feature, add AVX512
registers if feature is present in xcr0.
(i386_gdbarch_init): Add code to initialize AVX512 feature
variables in tdep structure, wire in pseudo registers and call
initialize_tdesc_i386_avx512.
* i386-tdep.h (struct gdbarch_tdep): Add AVX512 related
variables.
(i386_regnum): Add AVX512 registers.
(I386_SSE_NUM_REGS): New define for number of SSE registers.
(I386_AVX_NUM_REGS): Likewise for AVX registers.
(I386_AVX512_NUM_REGS): Likewise for AVX512 registers.
(I386_MAX_REGISTER_SIZE): Change to 64 bytes, ZMM registers are
512 bits wide.
(i386_xmm_avx512_regnum_p): New prototype for register look up.
(i386_ymm_avx512_regnum_p): Likewise.
(i386_k_regnum_p): Likewise.
(i386_zmm_regnum_p): Likewise.
(i386_zmmh_regnum_p): Likewise.
* i387-tdep.c : Update year in copyright notice.
(xsave_ymm_avx512_offset): New table for YMM16-31 offsets in
XSAVE buffer.
(XSAVE_YMM_AVX512_ADDR): New macro.
(xsave_xmm_avx512_offset): New table for XMM16-31 offsets in
XSAVE buffer.
(XSAVE_XMM_AVX512_ADDR): New macro.
(xsave_avx512_k_offset): New table for K register offsets in
XSAVE buffer.
(XSAVE_AVX512_K_ADDR): New macro.
(xsave_avx512_zmm_h_offset): New table for ZMM register offsets
in XSAVE buffer.
(XSAVE_AVX512_ZMM_H_ADDR): New macro.
(i387_supply_xsave): Add code to supply AVX512 registers to XSAVE
buffer.
(i387_collect_xsave): Add code to collect AVX512 registers from
XSAVE buffer.
* i387-tdep.h (I387_NUM_XMM_AVX512_REGS): New define for number
of XMM16-31 registers.
(I387_NUM_K_REGS): New define for number of K registers.
(I387_K0_REGNUM): New define for K0 register number.
(I387_NUM_ZMMH_REGS): New define for number of ZMMH registers.
(I387_ZMM0H_REGNUM): New define for ZMM0H register number.
(I387_NUM_YMM_AVX512_REGS): New define for number of YMM16-31
registers.
(I387_YMM16H_REGNUM): New define for YMM16H register number.
(I387_XMM16_REGNUM): New define for XMM16 register number.
(I387_YMM0_REGNUM): New define for YMM0 register number.
(I387_KEND_REGNUM): New define for last K register number.
(I387_ZMMENDH_REGNUM): New define for last ZMMH register number.
(I387_YMMH_AVX512_END_REGNUM): New define for YMM31 register
number.
(I387_XMM_AVX512_END_REGNUM): New define for XMM31 register
number.
* common/i386-xstate.h: Add AVX 3.1 feature bits, mask and XSTATE
size.
* features/Makefile: Add AVX512 related files.
* features/i386/32bit-avx512.xml: New file.
* features/i386/64bit-avx512.xml: Likewise.
* features/i386/amd64-avx512-linux.c: Likewise.
* features/i386/amd64-avx512-linux.xml: Likewise.
* features/i386/amd64-avx512.c: Likewise.
* features/i386/amd64-avx512.xml: Likewise.
* features/i386/i386-avx512-linux.c: Likewise.
* features/i386/i386-avx512-linux.xml: Likewise.
* features/i386/i386-avx512.c: Likewise.
* features/i386/i386-avx512.xml: Likewise.
* features/i386/x32-avx512-linux.c: Likewise.
* features/i386/x32-avx512-linux.xml: Likewise.
* features/i386/x32-avx512.c: Likewise.
* features/i386/x32-avx512.xml: Likewise.
* regformats/i386/amd64-avx512-linux.dat: New file.
* regformats/i386/amd64-avx512.dat: Likewise.
* regformats/i386/i386-avx512-linux.dat: Likewise.
* regformats/i386/i386-avx512.dat: Likewise.
* regformats/i386/x32-avx512-linux.dat: Likewise.
* regformats/i386/x32-avx512.dat: Likewise.
* NEWS: Add note about new support for AVX512.
testsuite/
* Makefile.in (EXECUTABLES): Added i386-avx512.
* gdb.arch/i386-avx512.c: New file.
* gdb.arch/i386-avx512.exp: Likewise.
gdbserver/
* Makefile.in: Added rules to handle new files
i386-avx512.c i386-avx512-linux.c amd64-avx512.c
amd64-avx512-linux.c x32-avx512.c x32-avx512-linux.c.
* configure.srv (srv_i386_regobj): Add i386-avx512.o.
(srv_i386_linux_regobj): Add i386-avx512-linux.o.
(srv_amd64_regobj): Add amd64-avx512.o and x32-avx512.o.
(srv_amd64_linux_regobj): Add amd64-avx512-linux.o and
x32-avx512-linux.o.
(srv_i386_32bit_xmlfiles): Add i386/32bit-avx512.xml.
(srv_i386_64bit_xmlfiles): Add i386/64bit-avx512.xml.
(srv_amd64_xmlfiles): Add i386/amd64-avx512.xml and
i386/x32-avx512.xml.
(srv_i386_linux_xmlfiles): Add i386/i386-avx512-linux.xml.
(srv_amd64_linux_xmlfiles): Add i386/amd64-avx512-linux.xml and
i386/x32-avx512-linux.xml.
* i387-fp.c (num_avx512_k_registers): New constant for number
of K registers.
(num_avx512_zmmh_low_registers): New constant for number of
lower ZMM registers (0-15).
(num_avx512_zmmh_high_registers): New constant for number of
higher ZMM registers (16-31).
(num_avx512_ymmh_registers): New contant for number of higher
YMM registers (ymm16-31 added by avx521 on x86_64).
(num_avx512_xmm_registers): New constant for number of higher
XMM registers (xmm16-31 added by AVX512 on x86_64).
(struct i387_xsave): Add space for AVX512 registers.
(i387_cache_to_xsave): Change raw buffer size to 64 characters.
Add code to handle AVX512 registers.
(i387_xsave_to_cache): Add code to handle AVX512 registers.
* linux-x86-low.c (init_registers_amd64_avx512_linux): New
prototypei from generated file.
(tdesc_amd64_avx512_linux): Likewise.
(init_registers_x32_avx512_linux): Likewise.
(tdesc_x32_avx512_linux): Likewise.
(init_registers_i386_avx512_linux): Likewise.
(tdesc_i386_avx512_linux): Likewise.
(x86_64_regmap): Add AVX512 registers.
(x86_linux_read_description): Add code to handle AVX512 XSTATE
mask.
(initialize_low_arch): Add code to initialize AVX512 registers.
doc/
* gdb.texinfo (i386 Features): Add description of AVX512
registers.
Change-Id: Ifc4c08c76b85dbec18d02efdbe6182e851584438
Signed-off-by: Michael Sturm <michael.sturm@intel.com>
My main motivation here is moving in the direction of decoupling
insert_point/remove_point from packet numbers, though this bit alone
should make it a little bit easier to merge gdb/gdbserver/i386-low.c
and gdb/i386-nat.c (which are largely the same).
Tested on x86_64 Fedora 17, and cross built for i686-mingw32 too.
gdb/gdbserver/
2014-04-23 Pedro Alves <palves@redhat.com>
* i386-low.c: Don't include break-common.h here.
(i386_low_insert_watchpoint, i386_low_remove_watchpoint): Change
prototype to take target_hw_bp_type as argument instead of a Z
packet char.
* i386-low.h: Include break-common.h here.
(Z_packet_to_hw_type): Declare.
(i386_low_insert_watchpoint, i386_low_remove_watchpoint): Change
prototypes.
* linux-x86-low.c (x86_insert_point): Convert the packet number to
a target_hw_bp_type before calling i386_low_insert_watchpoint.
(x86_remove_point): Convert the packet number to a
target_hw_bp_type before calling i386_low_remove_watchpoint.
* win32-i386-low.c (i386_insert_point): Convert the packet number
to a target_hw_bp_type before calling i386_low_insert_watchpoint.
(i386_remove_point): Convert the packet number to a
target_hw_bp_type before calling i386_low_remove_watchpoint.
If gdb_proc_service.h ends up including linux/elf.h, we'll trip on
duplicate definitions:
In file included from ../../../gdb/gdbserver/linux-x86-low.c:29:0:
../../../gdb/gdbserver/../../include/elf/common.h:36:0: error: "ELFMAG0"
redefined [-Werror]
... etc ...
Handle this the same way linux-low.c and linux-arm-low.c handle this.
gdb/gdbserver/
2014-01-17 Pedro Alves <palves@redhat.com>
PR PR16445
* linux-x86-low.c (linux-x86-low.c): Don't include elf/common.h if
ELFMAG0 is defined after including gdb_proc_service.h.
This fixes the regressions reported at
<http://sourceware.org/ml/gdb-patches/2013-06/msg00280.html>:
$ runtest-gdbserver gdb.base/siginfo-obj.exp gdb.base/siginfo-thread.exp gdb.threads/siginfo-threads.exp
Running ./gdb.base/siginfo-thread.exp ...
FAIL: gdb.base/siginfo-thread.exp: p ssi_addr
Running ./gdb.threads/siginfo-threads.exp ...
FAIL: gdb.threads/siginfo-threads.exp: signal 0 si_pid
FAIL: gdb.threads/siginfo-threads.exp: signal 1 si_pid
FAIL: gdb.threads/siginfo-threads.exp: signal 2 si_pid
FAIL: gdb.threads/siginfo-threads.exp: signal 3 si_pid
Running ./gdb.base/siginfo-obj.exp ...
FAIL: gdb.base/siginfo-obj.exp: p ssi_addr
FAIL: gdb.base/siginfo-obj.exp: p ssi_addr
The multi-arch patch made GDBserver do the the wrong siginfo layout
conversion, because most uses of `linux_is_elf64' were removed, and it
ended up never set. A global really is the wrong thing to use as
elf64-ness is a per-process property; `linux_is_elf64' was just
accidentally left behind.
Tested on x86_64 Fedora 17.
gdb/gdbserver/
2013-06-12 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (linux_is_elf64): Delete global.
(x86_siginfo_fixup): Replace reference to `linux_is_elf64' global
with local linux_pid_exe_is_elf_64_file use.
All target descriptions must be initialized at startup, but this one was forgotten.
gdb/gdbserver/
2013-06-11 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (initialize_low_arch): Call
init_registers_x32_avx_linux.