A while back I noticed that fetch_inferior_event used "int" for
should_stop, whereas it can be bool. The method it is assigned from:
should_stop = thread_fsm->should_stop (thr);
... already returns bool.
Tested by rebuilding.
gdb/ChangeLog
2020-11-14 Tom Tromey <tom@tromey.com>
* infrun.c (fetch_inferior_event): Use "bool" for should_stop.
The *_debug_print_1 functions are all very similar, the only difference
being the subsystem name. Remove them all and make the logging macros
use a new debug_prefixed_printf function directly.
gdb/ChangeLog:
* infrun.c (infrun_debug_printf_1): Remove.
(displaced_debug_printf_1): Remove.
(stop_all_threads): Use debug_prefixed_printf.
* infrun.h (infrun_debug_printf_1): Remove.
(infrun_debug_printf): Use debug_prefixed_printf.
(displaced_debug_printf_1): Remove.
(displaced_debug_printf): Use debug_prefixed_printf.
* linux-nat.c (linux_nat_debug_printf_1): Remove.
(linux_nat_debug_printf): Use debug_prefixed_printf.
gdbsupport/ChangeLog:
* common-debug.cc (debug_prefixed_printf): New.
* common-debug.h (debug_prefixed_printf): New declaration.
* event-loop.cc (event_loop_debug_printf_1): Remove.
* event-loop.h (event_loop_debug_printf_1): Remove.
(event_loop_debug_printf): Use debug_prefixed_printf.
(event_loop_ui_debug_printf): Use debug_prefixed_printf.
Change-Id: Ib323087c7257f0060121d302055c41eb64aa60c6
Move all debug prints of the "displaced" category to use a new
displaced_debug_printf macro, like what was done for infrun and others
earlier.
The debug output for one displaced step one amd64 looks like:
[displaced] displaced_step_prepare_throw: stepping process 3367044 now
[displaced] displaced_step_prepare_throw: saved 0x555555555042: 1e fa 31 ed 49 89 d1 5e 48 89 e2 48 83 e4 f0 50
[displaced] amd64_displaced_step_copy_insn: copy 0x555555555131->0x555555555042: b8 00 00 00 00 5d c3 0f 1f 84 00 00 00 00 00 f3
[displaced] displaced_step_prepare_throw: displaced pc to 0x555555555042
[displaced] resume_1: run 0x555555555042: b8 00 00 00
[displaced] displaced_step_restore: restored process 3367044 0x555555555042
[displaced] amd64_displaced_step_fixup: fixup (0x555555555131, 0x555555555042), insn = 0xb8 0x00 ...
[displaced] amd64_displaced_step_fixup: relocated %rip from 0x555555555047 to 0x555555555136
On test case needed to be updated because it relied on the specific
formatting of the message.
gdb/ChangeLog:
* infrun.h (displaced_debug_printf): New macro. Replace
displaced debug prints throughout to use it.
(displaced_debug_printf_1): New declaration.
(displaced_step_dump_bytes): Return string, remove ui_file
parameter, update all callers.
* infrun.c (displaced_debug_printf_1): New function.
(displaced_step_dump_bytes): Return string, remove ui_file
parameter
gdb/testsuite/ChangeLog:
* gdb.arch/amd64-disp-step-avx.exp: Update displaced step debug
expected output.
Change-Id: Ie78837f56431f6f98378790ba1e6051337bf6533
Having pagination enabled when handling an inferior event gives the
user an option to quit, which causes early exit in GDB's flow and may
lead to half-baked state. For instance, here is a case where we quit
in the middle of handling an inferior exit:
$ gdb ./a.out
Reading symbols from ./a.out...
(gdb) set height 2
(gdb) run
Starting program: ./a.out
--Type <RET> for more, q to quit, c to continue without paging--q
Quit
Couldn't get registers: No such process.
(gdb) set height unlimited
Couldn't get registers: No such process.
(gdb) info threads
Id Target Id Frame
* 1 process 27098 Couldn't get registers: No such process.
Couldn't get registers: No such process.
(gdb)
Or suppose having a multi-threaded program like below:
static void *
fun (void *dummy)
{
int a = 1; /* break-here */
return NULL;
}
int
main (void)
{
pthread_t thread;
pthread_create (&thread, NULL, fun, NULL);
pthread_join (thread, NULL);
return 0;
}
If we define a breakpoint at line "break-here", we expect only Thread
2 to hit it.
$ gdb ./a.out
Reading symbols from ./a.out...
(gdb) break 7
Breakpoint 1 at 0x1182: file mt.c, line 7.
(gdb) set height 2
(gdb) run
Starting program: ./a.out
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
[New Thread 0x7ffff77c4700 (LWP 23048)]
--Type <RET> for more, q to quit, c to continue without paging--q
Quit
(gdb) set height unlimited
(gdb) info thread
Id Target Id Frame
* 1 Thread 0x7ffff7fe3740 (LWP 23044) "a.out" 0x00007ffff7bbed2d in ...
2 Thread 0x7ffff77c4700 (LWP 23048) "a.out" fun (dummy=0x0) at mt.c:7
(gdb)
The prompt for continuation was triggered because Thread 2 hit the
breakpoint. (If we had hit 'c', we were going to see that stop event,
but we didn't.) The context did not switch to Thread 2. GDB also did
not execute several other things it would normally do in
infrun.c:normal_stop after outputting "[Switching to Thread ...]" (but
it seems harmless in this case). If we 'continue' at this state, both
threads run until termination, and we don't see the breakpoint hit
event ever.
Here is another related and more complicated scenario that leads to a
GDB crash. Create two inferiors, one sitting on top of a native
target, and the other on a remote target, so that we have a
multi-target setting, like so:
(gdb) i inferiors
Num Description Connection Executable
1 process 13786 1 (native) a.out
* 2 process 13806 2 (remote ...) target:a.out
Next, resume both inferiors to run until termination:
(gdb) set schedule-multiple on
(gdb) set height 2
(gdb) continue
Continuing.
--Type <RET> for more, q to quit, c to continue without paging--[Inferior 2 (process 13806) exited normally]
terminate called after throwing an instance of 'gdb_exception_error'
Aborted
Here, GDB first received a termination event from Inferior 1. GDB
attempted to print this event, triggering a "prompt for continue", and
GDB started polling for events, hoping to get an input from the user.
However, the exit event from Inferior 2 was received instead. So, GDB
started processing an exit event while being in the middle of
processing another exit event. It was not ready for this situation
and eventually crashed.
To address these cases, temporarily disable pagination in
fetch_inferior_event. This doesn't affect commands like 'info
threads', 'backtrace', or 'thread apply'.
Regression-tested on X86_64 Linux.
gdb/ChangeLog:
2020-10-30 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* infrun.c (fetch_inferior_event): Temporarily disable pagination.
gdb/testsuite/ChangeLog:
2020-10-30 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* gdb.base/paginate-after-ctrl-c-running.exp: Update with no pagination
behavior.
* gdb.base/paginate-bg-execution.exp: Ditto.
* gdb.base/paginate-inferior-exit.exp: Ditto.
* gdb.base/double-prompt-target-event-error.c: Remove.
* gdb.base/double-prompt-target-event-error.exp: Remove.
If the remote target closes while we're reading registers/memory for
restoring the selected frame in scoped_restore_current_thread's dtor,
the corresponding TARGET_CLOSE_ERROR error is swallowed by the
scoped_restore_current_thread's dtor, because letting exceptions
escape from a dtor is bad. It isn't great to lose that errors like
that, though. I've been thinking about how to avoid it, and I came up
with this patch.
The idea here is to make scoped_restore_current_thread's dtor do as
little as possible, to avoid any work that might throw in the first
place. And to do that, instead of having the dtor call
restore_selected_frame, which re-finds the previously selected frame,
just record the frame_id/level of the desired selected frame, and have
get_selected_frame find the frame the next time it is called. In
effect, this implements most of Cagney's suggestion, here:
/* On demand, create the selected frame and then return it. If the
selected frame can not be created, this function prints then throws
an error. When MESSAGE is non-NULL, use it for the error message,
otherwize use a generic error message. */
/* FIXME: cagney/2002-11-28: At present, when there is no selected
frame, this function always returns the current (inner most) frame.
It should instead, when a thread has previously had its frame
selected (but not resumed) and the frame cache invalidated, find
and then return that thread's previously selected frame. */
extern struct frame_info *get_selected_frame (const char *message);
The only thing missing to fully implement that would be to make
reinit_frame_cache just clear selected_frame instead of calling
select_frame(NULL), and the call select_frame(NULL) explicitly in the
places where we really wanted reinit_frame_cache to go back to the
current frame too. That can done separately, though, I'm not
proposing to do that in this patch.
Note that this patch renames restore_selected_frame to
lookup_selected_frame, and adds a new restore_selected_frame function
that doesn't throw, to be paired with the also-new save_selected_frame
function.
There's a restore_selected_frame function in infrun.c that I think can
be replaced by the new one in frame.c.
Also done in this patch is make the get_selected_frame's parameter be
optional, so that we don't have to pass down nullptr explicitly all
over the place.
lookup_selected_frame should really move from thread.c to frame.c, but
I didn't do that here, just to avoid churn in the patch while it
collects comments. I did make it extern and declared it in frame.h
already, preparing for the move. I will do the move as a follow up
patch if people agree with this approach.
Incidentally, this patch alone would fix the crashes fixed by the
previous patches in the series, because with this,
scoped_restore_current_thread's constructor doesn't throw either.
gdb/ChangeLog:
* blockframe.c (block_innermost_frame): Use get_selected_frame.
* frame.c
(scoped_restore_selected_frame::scoped_restore_selected_frame):
Use save_selected_frame. Save language as well.
(scoped_restore_selected_frame::~scoped_restore_selected_frame):
Use restore_selected_frame, and restore language as well.
(selected_frame_id, selected_frame_level): New.
(selected_frame): Update comments.
(save_selected_frame, restore_selected_frame): New.
(get_selected_frame): Use lookup_selected_frame.
(get_selected_frame_if_set): Delete.
(select_frame): Record selected_frame_level and selected_frame_id.
* frame.h (scoped_restore_selected_frame) <m_level, m_lang>: New
fields.
(get_selected_frame): Make 'message' parameter optional.
(get_selected_frame_if_set): Delete declaration.
(select_frame): Update comments.
(save_selected_frame, restore_selected_frame)
(lookup_selected_frame): Declare.
* gdbthread.h (scoped_restore_current_thread) <m_lang>: New field.
* infrun.c (struct infcall_control_state) <selected_frame_level>:
New field.
(save_infcall_control_state): Use save_selected_frame.
(restore_selected_frame): Delete.
(restore_infcall_control_state): Use restore_selected_frame.
* stack.c (select_frame_command_core, frame_command_core): Use
get_selected_frame.
* thread.c (restore_selected_frame): Rename to ...
(lookup_selected_frame): ... this and make extern. Select the
current frame if the frame level is -1.
(scoped_restore_current_thread::restore): Also restore the
language.
(scoped_restore_current_thread::~scoped_restore_current_thread):
Don't try/catch.
(scoped_restore_current_thread::scoped_restore_current_thread):
Save the language as well. Use save_selected_frame.
Change-Id: I73fd1cfc40d8513c28e5596383b7ecd8bcfe700f
I noticed that the closure parameter of
gdbarch_displaced_step_hw_singlestep is never used by any
implementation of the method, so this patch removes it.
gdb/ChangeLog:
* gdbarch.sh (displaced_step_hw_singlestep): Remove closure
parameter.
* aarch64-tdep.c (aarch64_displaced_step_hw_singlestep):
Likewise.
* aarch64-tdep.h (aarch64_displaced_step_hw_singlestep):
Likewise.
* arch-utils.c (default_displaced_step_hw_singlestep):
Likewise.
* arch-utils.h (default_displaced_step_hw_singlestep):
Likewise.
* rs6000-tdep.c (ppc_displaced_step_hw_singlestep):
Likewise.
* s390-tdep.c (s390_displaced_step_hw_singlestep):
Likewise.
* gdbarch.c: Re-generate.
* gdbarch.h: Re-generate.
* infrun.c (resume_1): Adjust.
Change-Id: I7354f0b22afc2692ebff0cd700a462db8f389fc1
Use the inferior parameter now available in jit_inferior_created_hook.
It is passed down to jit_inferior_init, which uses it as much as
possible instead of the current inferior or current program space.
gdb/ChangeLog:
* jit.c (jit_reader_load_command): Pass current inferior.
(jit_inferior_init): Change parameter type to inferior, use it.
(jit_inferior_created): Remove.
(jit_inferior_created_hook): Pass inferior parameter down.
(_initialize_jit): Use jit_inferior_created_hook instead of
jit_inferior_created.
* jit.h (jit_inferior_created_hook): Add inferior parameter.
* infrun.c (follow_exec): Pass inferior to
jit_inferior_created_hook.
Change-Id: If3a2114a933370dd313d5abd623136d273cdb8fa
Debugging with "maintenance set target-async off" on Linux has been
broken since 5b6d1e4fa4 ("Multi-target support").
The issue is easy to reproduce:
$ ./gdb -q --data-directory=data-directory -nx ./test
Reading symbols from ./test...
(gdb) maintenance set target-async off
(gdb) start
Temporary breakpoint 1 at 0x1151: file test.c, line 5.
Starting program: /home/simark/build/binutils-gdb/gdb/test
... and it hangs there.
The difference between pre-5b6d1e4fa4f and 5b6d1e4fa4 is that
fetch_inferior_event now calls target_wait with TARGET_WNOHANG for
non-async-capable targets, whereas it didn't before.
For non-async-capable targets, this is how it's expected to work when
resuming execution:
1. we call resume
2. the infrun async handler is marked in prepare_to_wait, to immediately
wake up the event loop when we get back to it
3. fetch_inferior_event calls the target's wait method without
TARGET_WNOHANG, effectively blocking until the target has something
to report
However, since we call the target's wait method with TARGET_WNOHANG,
this happens:
1. we call resume
2. the infrun async handler is marked in prepare_to_wait, to immediately
wake up the event loop when we get back to it
3. fetch_inferior_event calls the target's wait method with
TARGET_WNOHANG, the target has nothing to report yet
4. we go back to blocking on the event loop
5. SIGCHLD finally arrives, but the event loop is not woken up, because
we are not in async mode. Normally, we should have been stuck in
waitpid the SIGCHLD would have unblocked us.
We end up in this situation because these two necessary conditions are
met:
1. GDB uses the TARGET_WNOHANG option with a target that can't do async.
I don't think this makes sense. I mean, it's technically possible,
the doc for TARGET_WNOHANG is:
/* Return immediately if there's no event already queued. If this
options is not requested, target_wait blocks waiting for an
event. */
TARGET_WNOHANG = 1,
... which isn't in itself necessarily incompatible with synchronous
targets. It could be possible for a target to support non-blocking
polls, while not having a way to asynchronously wake up the event
loop, which is also necessary to support async. But as of today,
we don't expect GDB and sync targets to work this way.
2. The linux-nat target, even in the mode where it emulates a
synchronous target (with "maintenance set target-async off") respects
TARGET_WNOHANG. Other non-async targets, such as windows_nat_target,
simply don't check / support TARGET_WNOHANG, so their wait method is
always blocking.
Fix the first issue by avoiding using TARGET_WNOHANG on non-async
targets, in do_target_wait_1. Add an assert in target_wait to verify it
doesn't happen.
The new test gdb.base/maint-target-async-off.exp is a simple test that
just tries running to main and then to the end of the program, with
"maintenance set target-async off".
gdb/ChangeLog:
PR gdb/26642
* infrun.c (do_target_wait_1): Clear TARGET_WNOHANG if the
target can't do async.
* target.c (target_wait): Assert that we don't pass
TARGET_WNOHANG to a target that can't async.
gdb/testsuite/ChangeLog:
PR gdb/26642
* gdb.base/maint-target-async-off.c: New test.
* gdb.base/maint-target-async-off.exp: New test.
Change-Id: I69ad3a14598863d21338a8c4e78700a58ce7ad86
The following patch needs to output debug prints from gdbsupport code.
Move debug_prefixed_vprintf so that it is possible to use it from
gdbsupport.
gdb/ChangeLog:
* debug.c (debug_prefixed_vprintf): Move to gdbsupport.
* debug.h: Remove.
* infrun.c: Include gdbsupport/common-debug.h.
* linux-nat.c: Likewise.
gdbsupport/ChangeLog:
* common-debug.cc (debug_prefixed_vprintf): Move here.
* common-debug.h (debug_prefixed_vprintf): Move here.
Change-Id: I5170065fc10a7a49c0f1bba67c691decb2cf3bcb
Assign names to async event/signal handlers. They will be used in debug
messages when file handlers are invoked.
Unlike in the previous patch, the names are not copied in the structure,
since we don't need to (all names are string literals for the moment).
gdb/ChangeLog:
* async-event.h (create_async_signal_handler): Add name
parameter.
(create_async_event_handler): Likewise.
* async-event.c (struct async_signal_handler) <name>: New field.
(struct async_event_handler) <name>: New field.
(create_async_signal_handler): Assign name.
(create_async_event_handler): Assign name.
* event-top.c (async_init_signals): Pass name when creating
handler.
* infrun.c (_initialize_infrun): Likewise.
* record-btrace.c (record_btrace_push_target): Likewise.
* record-full.c (record_full_open): Likewise.
* remote-notif.c (remote_notif_state_allocate): Likewise.
* remote.c (remote_target::open_1): Likewise.
* tui/tui-win.c (tui_initialize_win): Likewise.
Change-Id: Icd9d9f775542ae5fc2cd148c12f481e7885936d5
I noticed that non of the listeners of the inferior_created observable
used either of the arguments. Remove them. This in turn allows
removing the target parameter of post_create_inferior.
Tested only by rebuilding.
gdb/ChangeLog:
* observable.h <inferior_created>: Remove parameters. Update all
listeners.
* inferior.h (post_create_inferior): Remove target parameter.
Update all callers.
Change-Id: I8944cefdc4447ed5347dc927b75abf1e7a0e27e6
This changes the object-like macro target_have_steppable_watchpoint
into an inline function.
gdb/ChangeLog
2020-09-28 Tom Tromey <tom@tromey.com>
* infrun.c (displaced_step_fixup, thread_still_needs_step_over)
(handle_signal_stop): Update.
* procfs.c (procfs_target::insert_watchpoint): Update.
* target.h (target_have_steppable_watchpoint): Now a function.
This changes the object-like macro target_can_lock_scheduler into an
inline function.
gdb/ChangeLog
2020-09-28 Tom Tromey <tom@tromey.com>
* infrun.c (set_schedlock_func): Update.
* target.h (target_can_lock_scheduler): Now a function.
This changes target_can_execute_reverse from an object-like macro to
an inline function.
gdb/ChangeLog
2020-09-28 Tom Tromey <tom@tromey.com>
* mi/mi-main.c (exec_reverse_continue)
(mi_cmd_list_target_features): Update.
* infrun.c (set_exec_direction_func): Update.
* target.c (default_execution_direction): Update.
* reverse.c (exec_reverse_once): Update.
* target.h (target_can_execute_reverse): Now a function.
PR gdb/26598 notes that, before commit bcfe6157ca ("Use the linkage
name if it exists"), the "skip" command would match the demangled name
of a symbol, but now only matches the linkage name.
This patch fixes this regression. I looked at all calls to
function_name_is_marked_for_skip, and only one used the linkage name.
2020-09-16 Tom Tromey <tromey@adacore.com>
PR gdb/26598:
* infrun.c (fill_in_stop_func): Use find_pc_partial_function_sym.
gdb/testsuite/ChangeLog
2020-09-16 Tom Tromey <tromey@adacore.com>
PR gdb/26598:
* gdb.base/skipcxx.exp: New file.
* gdb.base/skipcxx.cc: New file.
I noticed this while testing the GDB in the context of the upcoming
GDB 10 release branching, because part of the process involves setting
development to False, which in turn changes the default for including
unittest to false as well. As a result, without this patch, we get
compilation errors in infrun.c such as:
infrun.c:9219:5: error: `scoped_mock_context' was not declared in this scope
This patch fixes it by bracketing the unitttest in namespace selftest
with an #if GDB_SELF_TEST.
gdb/ChangeLog:
* infrun.c (namespace selftests): Only define #if GDB_SELF_TEST.
Tested on x86_64-linux, with and without self-tests.
Use the available `switch_to_target_no_thread` function to switch the
target. This is a refactoring.
gdb/ChangeLog:
2020-09-07 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* infrun.c (fetch_inferior_event): Use
`switch_to_target_no_thread` to switch the target.
To help ensure that all debug statements have the same format, introduce
the debug_prefixed_vprintf helper. Implement linux_nat_debug_printf_1
and infrun_debug_printf_1 with it.
I would eventually like to style the module and function name with some
color, to help them stick out, but I don't really know how to do that
yet, it can always be done later.
gdb/ChangeLog:
* debug.h: New file.
* debug.c (debug_prefixed_vprintf): New function.
* infrun.c (infrun_debug_printf_1): Use debug_prefixed_vprintf.
* linux-nat.c (linux_nat_debug_printf_1): Likewise.
Change-Id: Iccc290a2dc6b5fffcbe1c2866ed8d804ad380764
Introduce this macro to print debug statements in the infrun.c file,
same idea as what was done in 9327494e0e ("gdb: add
linux_nat_debug_printf macro").
Although in this case, there are places outside infrun.c that print
debug statements if debug_infrun is set. So the macro has to be
declared in the header file, so that it can be used in these other
files.
Note one special case. In stop_all_threads, I've used an explicit
if (debug_infrun)
infrun_debug_printf_1 ("stop_all_threads", "done");
for the message in the SCOPE_EXIT. Otherwise, the message appears like
this:
[infrun] operator(): done
Until we find a better solution for extracting a meaningful function
name for lambda functions, I think it's fine to handle these special
cases manually, they are quite rare.
Some tests need to be updated, because they rely on some infrun debug
statements.
gdb/ChangeLog:
* infrun.h (infrun_debug_printf_1): New function declaration.
(infrun_debug_printf): New macro.
* infrun.c (infrun_debug_printf_1): Use infrun_debug_printf
throughout.
(infrun_debug_printf): New function.
* breakpoint.c (should_be_inserted): Use infrun_debug_printf.
(handle_jit_event): Likewise.
gdb/testsuite/ChangeLog:
* gdb.base/gdb-sigterm.exp (do_test): Update expected regexp.
* gdb.threads/signal-while-stepping-over-bp-other-thread.exp:
Likewise.
* gdb.threads/stepi-random-signal.exp: Likewise.
Change-Id: I66433c8a9caa64c8525ab57c593022b9d1956d5c
I noticed what I think is a potential bug. I did not observe it nor was
I able to reproduce it using actual debugging. It's quite unlikely,
because it involves multi-target and ptid clashes. I added selftests
that demonstrate it though.
The thread_ptid_changed observer says that thread with OLD_PTID now has
NEW_PTID. Now, if for some reason we happen to have two targets
defining a thread with OLD_PTID, the observers don't know which thread
this is about.
regcache::regcache_thread_ptid_changed changes all regcaches with
OLD_PTID. If there is a regcache for a thread with ptid OLD_PTID, but
that belongs to a different target, this regcache will be erroneously
changed.
Similarly, infrun_thread_ptid_changed updates inferior_ptid if
inferior_ptid matches OLD_PTID. But if inferior_ptid currently refers
not to the thread is being changed, but to a thread with the same ptid
belonging to a different target, then inferior_ptid will erroneously be
changed.
This patch adds a `process_stratum_target *` parameter to the
`thread_ptid_changed` observable and makes the two observers use it.
Tests for both are added, which would fail if the corresponding fix
wasn't done.
gdb/ChangeLog:
* observable.h (thread_ptid_changed): Add parameter
`process_stratum_target *`.
* infrun.c (infrun_thread_ptid_changed): Add parameter
`process_stratum_target *` and use it.
(selftests): New namespace.
(infrun_thread_ptid_changed): New function.
(_initialize_infrun): Register selftest.
* regcache.c (regcache_thread_ptid_changed): Add parameter
`process_stratum_target *` and use it.
(regcache_thread_ptid_changed): New function.
(_initialize_regcache): Register selftest.
* thread.c (thread_change_ptid): Pass target to
thread_ptid_changed observable.
Change-Id: I0599e61224b6d154a7b55088a894cb88298c3c71
This is a more general version of the existing handle_segmentation_fault
hook that is able to report information for an arbitrary signal, not
just SIGSEGV.
gdb/ChangeLog:
* gdbarch.c: Regenerate.
* gdbarch.h: Regenerate.
* gdbarch.sh (report_signal_info): New method.
* infrun.c (print_signal_received_reason): Invoke gdbarch
report_signal_info hook if present.
When interrupting a program in non-stop, the program gets interrupted
correctly, but GDB busy loops (the event loop is always woken up).
Here is how to reproduce it:
1. Start GDB: ./gdb -nx --data-directory=data-directory -ex "set non-stop 1" --args /bin/sleep 60
2. Run the program with "run"
3. Interrupt with ^C.
4. Look into htop, see GDB taking 100% CPU
Debugging `handle_file_event`, we see that the event source that wakes
up the event loop is the linux-nat one:
(top-gdb) p file_ptr.proc
$5 = (handler_func *) 0xb9cccd <handle_target_event(int, gdb_client_data)>
^^^^^^^^^^^^^^^^^^^
|
\-- the linux-nat callback
Debugging fetch_inferior_event and do_target_wait, we see that we
don't actually call `wait` on the linux-nat target, because
inferior_matches returns false:
auto inferior_matches = [&wait_ptid] (inferior *inf)
{
return (inf->process_target () != NULL
&& (threads_are_executing (inf->process_target ())
|| threads_are_resumed_pending_p (inf))
&& ptid_t (inf->pid).matches (wait_ptid));
};
because `threads_are_executing` is false.
What happens is:
1. User types ctrl-c, that writes in the linux-nat pipe, waking up
the event source.
2. linux-nat's wait gets called, the SIGINT event is returned, but
before returning, it marks the pipe again, in order for wait to
get called again:
/* If we requested any event, and something came out, assume there
may be more. If we requested a specific lwp or process, also
assume there may be more. */
if (target_is_async_p ()
&& ((ourstatus->kind != TARGET_WAITKIND_IGNORE
&& ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
|| ptid != minus_one_ptid))
async_file_mark ();
3. The SIGINT event is handled, the program is stopped, the stop
notification is printed.
4. The event loop is woken up again because of the `async_file_mark`
of step 2.
5. Because `inferior_matches` returns false, we never call
linux-nat's wait, so the pipe stays readable.
6. Goto 4.
Pedro says:
This commit fixes it by letting do_target_wait call target_wait even
if threads_are_executing is false. This will normally result in the
target returning TARGET_WAITKIND_NO_RESUMED, and _not_ marking its
event source again. This results in infrun only calling into the
target only once (i.e., breaking the busy loop).
Note that the busy loop bug didn't trigger in all-stop mode because
all-stop handles this by unregistering the target from the event loop
as soon as it was all stopped -- see
inf-loop.c:inferior_event_handler's INF_EXEC_COMPLETE handling. If we
remove that non-stop check from inferior_event_handler, and replace
the target_has_execution check for threads_are_executing instead, it
also fixes the issue for non-stop. I considered that as the final
solution, but decided that the solution proposed here instead is just
simpler and more future-proof design. With the
TARGET_WAITKIND_NO_RESUMED handling fixes done in the previous
patches, I think it should be possible to always keep the target
registered in the event loop, meaning we could eliminate the
target_async(0) call from inferior_event_handler as well as most of
the target_async(1) calls in the target backends. That would allow in
the future e.g., the remote target reporting asynchronous
notifications even if all threads are stopped. I haven't attempted
that, though.
gdb/ChangeLog:
yyyy-mm-dd Simon Marchi <simon.marchi@polymtl.ca>
Pedro Alves <pedro@palves.net>
PR gdb/26199
* infrun.c (threads_are_resumed_pending_p): Delete.
(do_target_wait): Remove threads_are_executing and
threads_are_resumed_pending_p checks from the inferior_matches
lambda. Update comments.
Let's consider the same use case as in the previous commit:
Say you have two inferiors 1 and 2, each connected to a different
target, A and B.
Now say you set inferior 2 running, with "continue &".
Now you select a thread of inferior 1, say thread 1.2, and continue in
the foreground. All other threads of inferior 1 are left stopped.
Thread 1.2 exits, and thus target A has no other resumed thread, so it
reports TARGET_WAITKIND_NO_RESUMED.
At this point, because the threads of inferior 2 are still executing
the TARGET_WAITKIND_NO_RESUMED event is ignored.
Now, the user types Ctrl-C. Because GDB had previously put inferior 1
in the foreground, the kernel sends the SIGINT to that inferior.
However, no thread in that inferior is executing right now, so ptrace
never intercepts the SIGINT -- it is never dequeued by any thread.
The result is that GDB's CLI is stuck. There's no way to get back the
prompt (unless inferior 2 happens to report some event).
The fix in this commit is to make handle_no_resumed give the terminal
to some other inferior that still has threads executing so that a
subsequent Ctrl-C reaches that target first (and then GDB intercepts
the SIGINT). This is a bit hacky, but seems like the best we can do
with the current design.
I think that putting all native inferiors in their own session would
help fixing this in a clean way, since with that a Ctrl-C on GDB's
terminal will _always_ reach GDB first, and then GDB can decide how to
pause the inferior. But that's a much larger change.
The testcase added by the following patch needs this fix.
gdb/ChangeLog:
PR gdb/26199
* infrun.c (handle_no_resumed): Transfer terminal to inferior with
executing threads.
handle_no_resumed is currently not considering multiple targets.
Say you have two inferiors 1 and 2, each connected to a different
target, A and B.
Now say you set inferior 2 running, with "continue &".
Now you select a thread of inferior 1, say thread 1.2, and continue in
the foreground. All other threads of inferior 1 are left stopped.
Thread 1.2 exits, and thus target A has no other resumed thread, so it
reports TARGET_WAITKIND_NO_RESUMED.
At this point, if both inferiors were running in the same target,
handle_no_resumed would realize that threads of inferior 2 are still
executing, so the TARGET_WAITKIND_NO_RESUMED event should be ignored.
But because handle_no_resumed only walks the threads of the current
target, it misses noticing that threads of inferior 2 are still
executing. The fix is just to walk over all threads of all targets.
A testcase covering the use case above will be added in a following
patch. It can't be added yet because it depends on yet another fix to
handle_no_resumed not included here.
gdb/ChangeLog:
PR gdb/26199
* infrun.c (handle_no_resumed): Handle multiple targets.
If we hit the synchronous execution command case described by
handle_no_resumed, and handle_no_resumed determines that the event
should be ignored, because it found a thread that is executing, we end
up in prepare_to_wait.
There, if the current target is not registered in the event loop right
now, we call mark_infrun_async_event_handler. With that event handler
marked, the event loop calls again into fetch_inferior_event, which
calls target_wait, which returns TARGET_WAITKIND_NO_RESUMED, and we
end up in handle_no_resumed, again ignoring the event and marking
infrun_async_event_handler. The result is that GDB is now always
keeping the CPU 100% busy in this loop, even though it continues to be
able to react to input and to real target events, because we still go
through the event-loop.
The problem is that marking of the infrun_async_event_handler in
prepare_to_wait. That is there to handle targets that don't support
asynchronous execution. So the correct predicate is whether async
execution is supported, not whether the target is async right now.
gdb/ChangeLog:
PR gdb/26199
* infrun.c (prepare_to_wait): Check target_can_async_p instead of
target_is_async_p.
I noticed that fetch_inferior_event receives the client_data parameter
from its caller, inferior_event_handler, but doesn't actually need it.
This patch removes it. In turn, inferior_event_handler doesn't use its
parameter, so remove it too.
The `data` argument used when registering
remote_async_inferior_event_handler is changed to NULL, to avoid
confusion. It could make people think that the value passed is used
somewhere, when in fact it's not.
gdb/ChangeLog:
* inf-loop.c (inferior_event_handler): Remove client_data param.
* inf-loop.h (inferior_event_handler): Likewise.
* infcmd.c (step_1): Adjust.
* infrun.c (proceed): Adjust.
(fetch_inferior_event): Remove client_data param.
(infrun_async_inferior_event_handler): Adjust.
* infrun.h (fetch_inferior_event): Remove `void *` param.
* linux-nat.c (handle_target_event): Adjust.
* record-btrace.c (record_btrace_handle_async_inferior_event):
Adjust.
* record-full.c (record_full_async_inferior_event_handler):
Adjust.
* remote.c (remote_async_inferior_event_handler): Adjust.
Change-Id: I3c2aa1eb0ea3e0985df096660d2dcd794674f2ea
gdb/ChangeLog:
2020-06-18 Pedro Alves <palves@redhat.com>
* infrun.c (generic_mourn_inferior): Use switch_to_thread instead
of writing to inferior_ptid.
(scoped_restore_exited_inferior): Delete.
(handle_vfork_child_exec_or_exit): Simplify using
scoped_restore_current_pspace_and_thread. Use switch_to_thread
instead of writing to inferior_ptid.
(THREAD_STOPPED_BY): Delete.
(thread_stopped_by_watchpoint, thread_stopped_by_sw_breakpoint)
(thread_stopped_by_hw_breakpoint): Delete.
(save_waitstatus): Use
scoped_restore_current_thread+switch_to_thread, and call
target_stopped_by_watchpoint instead of
thread_stopped_by_watchpoint, target_stopped_by_sw_breakpoint
instead of thread_stopped_by_sw_breakpoint, and
target_stopped_by_hw_breakpoint instead of
thread_stopped_by_hw_breakpoint.
(handle_inferior_event)
<TARGET_WAITKIND_EXITED/TARGET_WAITKIND_SIGNALLED>: Don't write to
inferior_ptid directly, nor
set_current_inferior/set_current_program_space. Use
switch_to_thread / switch_to_inferior_no_thread instead.
Continuing my goal of removing the "ALL_*" iterator macros, this
removes ALL_UIS, replacing it with an iterator adaptor.
gdb/ChangeLog
2020-05-16 Tom Tromey <tom@tromey.com>
* top.c (quit_force): Update.
* infrun.c (handle_no_resumed): Update.
* top.h (all_uis): New function.
(ALL_UIS): Remove.
[Simon: I send this patch on behalf of Laurent Morichetti, I added the
commit message and performance measurement stuff.
Also, this patch is better viewed with "git show -w".]
stop_all_threads, in infrun.c, is used to stop all running threads on
targets that are always non-stop. It's used, for example, when the
program hits a breakpoint while GDB is set to "non-stop off". It sends
a stop request for each running thread, then collects one wait event for
each.
Since new threads can spawn while we are stopping the threads, it's
written in a way where it makes multiple such "send stop requests to
running threads & collect wait events" passes. The function completes
when it has made two passes where it hasn't seen any running threads.
With the way it's written right now is, it iterates on the thread list,
sending a stop request for each running thread. It then waits for a
single event, after which it iterates through the thread list again. It
sends stop requests for any running threads that's been created since
the last iteration. It then consumes another single wait event.
This makes it so we iterate on O(n^2) threads in total, where n is the
number of threads. This patch changes the function to reduce it to
O(n). This starts to have an impact when dealing with multiple
thousands of threads (see numbers below). At each pass, we know the
number of outstanding stop requests we have sent, for which we need to
collect a stop event. We can therefore loop to collect this many stop
events before proceeding to the next pass and iterate on the thread list
again.
To check the performance improvements with this patch, I made an
x86/Linux program with a large number of idle threads (varying from 1000
to 10000). The program's main thread hits a breakpoint once all these
threads have started, which causes stop_all_threads to be called to stop
all these threads. I measured (by patching stop_all_threads):
- the execution time of stop_all_threads
- the total number of threads we iterate on during the complete
execution of the function (the total number of times we execute the
"for (thread_info *t : all_non_exited_threads ())" loop)
These are the execution times, in milliseconds:
# threads before after
1000 226 106
2000 997 919
3000 3461 2323
4000 4330 3570
5000 8642 6600
6000 9918 8039
7000 12662 10930
8000 16652 11222
9000 21561 15875
10000 26613 20019
Note that I very unscientifically executed each case only once.
These are the number of loop executions:
# threads before after
1000 1003002 3003
2000 4006002 6003
3000 9009002 9003
4000 16012002 12003
5000 25015002 15003
6000 36018002 18003
7000 49021002 21003
8000 64024002 24003
9000 81027002 27003
10000 100030002 30003
This last table shows pretty well the O(n^2) vs O(n) behaviors.
Reg-tested on x86 GNU/Linux (Ubuntu 16.04).
gdb/ChangeLog:
YYYY-MM-DD Laurent Morichetti <Laurent.Morichetti@amd.com>
YYYY-MM-DD Simon Marchi <simon.marchi@efficios.com>
* infrun.c (stop_all_threads): Collect multiple wait events at
each pass.
In stop_all_threads, GDB sends signals to other threads in an attempt
to stop them. While in a typical scenario the expected wait status is
TARGET_WAITKIND_STOPPED, it is possible that the thread GDB attempted
to stop has already terminated. If so, a waitstatus other than
TARGET_WAITKIND_STOPPED would be received. Handle this case
appropriately.
If a wait status that denotes thread termination is ignored, GDB goes
into an infinite loop in stop_all_threads.
E.g.:
$ gdb ./a.out
(gdb) start
...
(gdb) add-inferior -exec ./a.out
...
(gdb) inferior 2
...
(gdb) start
...
(gdb) set schedule-multiple on
(gdb) set debug infrun 2
(gdb) continue
Continuing.
infrun: clear_proceed_status_thread (process 10449)
infrun: clear_proceed_status_thread (process 10453)
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT)
infrun: proceed: resuming process 10449
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 10449] at 0x55555555514e
infrun: infrun_async(1)
infrun: prepare_to_wait
infrun: proceed: resuming process 10453
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 10453] at 0x55555555514e
infrun: prepare_to_wait
infrun: Found 2 inferiors, starting at #0
infrun: target_wait (-1.0.0, status) =
infrun: 10449.10449.0 [process 10449],
infrun: status->kind = exited, status = 0
infrun: handle_inferior_event status->kind = exited, status = 0
[Inferior 1 (process 10449) exited normally]
infrun: stop_waiting
infrun: stop_all_threads
infrun: stop_all_threads, pass=0, iterations=0
infrun: process 10453 executing, need stop
infrun: target_wait (-1.0.0, status) =
infrun: 10453.10453.0 [process 10453],
infrun: status->kind = exited, status = 0
infrun: stop_all_threads status->kind = exited, status = 0 process 10453
infrun: process 10453 executing, already stopping
infrun: target_wait (-1.0.0, status) =
infrun: -1.0.0 [process -1],
infrun: status->kind = no-resumed
infrun: infrun_async(0)
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
infrun: stop_all_threads status->kind = no-resumed process -1
infrun: process 10453 executing, already stopping
...
And this polling goes on forever. This patch prevents the infinite
looping behavior. For the same scenario above, we obtain the
following behavior:
...
(gdb) continue
Continuing.
infrun: clear_proceed_status_thread (process 31229)
infrun: clear_proceed_status_thread (process 31233)
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT)
infrun: proceed: resuming process 31229
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 31229] at 0x55555555514e
infrun: infrun_async(1)
infrun: prepare_to_wait
infrun: proceed: resuming process 31233
infrun: resume (step=0, signal=GDB_SIGNAL_0), trap_expected=0, current thread [process 31233] at 0x55555555514e
infrun: prepare_to_wait
infrun: Found 2 inferiors, starting at #0
infrun: target_wait (-1.0.0, status) =
infrun: 31229.31229.0 [process 31229],
infrun: status->kind = exited, status = 0
infrun: handle_inferior_event status->kind = exited, status = 0
[Inferior 1 (process 31229) exited normally]
infrun: stop_waiting
infrun: stop_all_threads
infrun: stop_all_threads, pass=0, iterations=0
infrun: process 31233 executing, need stop
infrun: target_wait (-1.0.0, status) =
infrun: 31233.31233.0 [process 31233],
infrun: status->kind = exited, status = 0
infrun: stop_all_threads status->kind = exited, status = 0 process 31233
infrun: saving status status->kind = exited, status = 0 for 31233.31233.0
infrun: process 31233 not executing
infrun: stop_all_threads, pass=1, iterations=1
infrun: process 31233 not executing
infrun: stop_all_threads done
(gdb)
The exit event from Inferior 1 is received and shown to the user.
The exit event from Inferior 2 is not displayed, but kept pending.
(gdb) info inferiors
Num Description Connection Executable
* 1 <null> a.out
2 process 31233 1 (native) a.out
(gdb) inferior 2
[Switching to inferior 2 [process 31233] (a.out)]
[Switching to thread 2.1 (process 31233)]
Couldn't get registers: No such process.
(gdb) continue
Continuing.
infrun: clear_proceed_status_thread (process 31233)
infrun: clear_proceed_status_thread: thread process 31233 has pending wait status status->kind = exited, status = 0 (currently_stepping=0).
infrun: proceed (addr=0xffffffffffffffff, signal=GDB_SIGNAL_DEFAULT)
infrun: proceed: resuming process 31233
infrun: resume: thread process 31233 has pending wait status status->kind = exited, status = 0 (currently_stepping=0).
infrun: prepare_to_wait
infrun: Using pending wait status status->kind = exited, status = 0 for process 31233.
infrun: target_wait (-1.0.0, status) =
infrun: 31233.31233.0 [process 31233],
infrun: status->kind = exited, status = 0
infrun: handle_inferior_event status->kind = exited, status = 0
[Inferior 2 (process 31233) exited normally]
infrun: stop_waiting
(gdb) info inferiors
Num Description Connection Executable
1 <null> a.out
* 2 <null> a.out
(gdb)
When a process exits and we leave the process exit event pending, we
need to make sure that at least one thread is left listed in the
inferior's thread list. This is necessary in order to make sure we
have a thread that we can later resume, so the process exit event can
be collected/reported.
When native debugging, the GNU/Linux back end already makes sure that
the last LWP isn't deleted.
When remote debugging against GNU/Linux GDBserver, the GNU/Linux
GDBserver backend also makes sure that the last thread isn't deleted
until the process exit event is reported to GDBserver core.
However, between the backend reporting the process exit event to
GDBserver core, and GDB consuming the event, GDB may update the thread
list and find no thread left in the process. The process exit event
will be pending somewhere in GDBserver's stop reply queue, or
gdb/remote.c's queue, or whathever other event queue inbetween
GDBserver and infrun.c's handle_inferior_event.
This patch tweaks remote.c's target_update_thread_list implementation
to avoid deleting the last thread of an inferior.
In the past, this case of inferior-with-no-threads led to a special
case at the bottom of handle_no_resumed, where it reads:
/* Note however that we may find no resumed thread because the whole
process exited meanwhile (thus updating the thread list results
in an empty thread list). In this case we know we'll be getting
a process exit event shortly. */
for (inferior *inf : all_non_exited_inferiors (ecs->target))
In current master, that code path is still reachable with the
gdb.threads/continue-pending-after-query.exp testcase, when tested
against GDBserver, with "maint set target-non-stop" forced "on".
With this patch, the scenario that loop was concerned about is still
properly handled, because the loop above it finds the process's last
thread with "executing" set to true, and thus the handle_no_resumed
function still returns true.
Since GNU/Linux native and remote are the only targets that support
non-stop mode, and with this patch, we always make sure the inferior
has at least one thread, this patch also removes that "inferior with
no threads" special case handling from handle_no_resumed.
Since remote.c now has a special case where we treat a thread that has
already exited as if it was still alive, we might need to tweak
remote.c's target_thread_alive implementation to return true for that
thread without querying the remote side (which would say "no, not
alive"). After inspecting all the target_thread_alive calls in the
codebase, it seems that only the one from prune_threads could result
in that thread being accidentally deleted. There's only one call to
prune_threads in GDB's common code, so this patch handles this by
replacing the prune_threads call with a delete_exited_threads call.
This seems like an improvement anyway, because we'll still be doing
what the comment suggests we want to do, and, we avoid remote protocol
traffic.
Regression-tested on X86_64 Linux.
gdb/ChangeLog:
2020-05-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
Tom de Vries <tdevries@suse.de>
Pedro Alves <palves@redhat.com>
PR threads/25478
* infrun.c (stop_all_threads): Do NOT ignore
TARGET_WAITKIND_NO_RESUMED, TARGET_WAITKIND_THREAD_EXITED,
TARGET_WAITKIND_EXITED, TARGET_WAITKIND_SIGNALLED wait statuses
received.
(handle_no_resumed): Remove code handling a live inferior with no
threads.
* remote.c (has_single_non_exited_thread): New.
(remote_target::update_thread_list): Do not delete a thread if is
the last thread of the process.
* thread.c (thread_select): Call delete_exited_threads instead of
prune_threads.
gdb/testsuite/ChangeLog:
2020-05-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
Pedro Alves <palves@redhat.com>
* gdb.multi/multi-exit.c: New file.
* gdb.multi/multi-exit.exp: New file.
* gdb.multi/multi-kill.c: New file.
* gdb.multi/multi-kill.exp: New file.
In stop_all_threads, the thread events of the current top target are
enabled at the beginning of the function and then disabled at the end
(at scope exit time). Because there may be multiple targets whose
thread lists will be updated and whose threads are stopped,
enable/disable thread events for all targets.
This update caused a change in the annotations. In particular, a
"frames-invalid" annotation is printed one more time due to switching
the current inferior. Hence, gdb.base/annota1.exp and
gdb.cp/annota2.exp tests are also updated.
Regression-tested on X86_64 Linux using the default board file and the
native-extended-gdbserver board file.
gdb/ChangeLog:
2020-05-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* infrun.c (stop_all_threads): Enable/disable thread events of all
targets. Move a debug message denoting the end of the function
into the SCOPED_EXIT block.
gdb/testsuite/ChangeLog:
2020-05-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* gdb.base/annota1.exp: Update the expected output.
* gdb.cp/annota2.exp: Ditto.
This is a refactoring. The extracted function is placed deliberately
before 'stop_all_threads' because the function will be re-used there
in a subsequent patch for handling an exit status kind received from
a thread that GDB attempted to stop.
gdb/ChangeLog:
2020-05-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* infrun.c (handle_inferior_event): Extract out a piece of code
into...
(mark_non_executing_threads): ...this new function.
Change-Id: I2b088f4a724f4260cb37068264964525cf62a118
In infrun.c's resume_1 function, move the definition of the local
variable PC down to its first use. This is useful if the thread we want
to resume is already gone with a pending exit event, because we avoid
the error we would see otherwise when trying to read the PC.
gdb/ChangeLog:
2020-05-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* infrun.c (resume_1): Move a 'regcache_read_pc' call down to first
use.
It possible that a thread whose PC we attempt to read is already dead.
In this case, 'regcache_read_pc' errors out. This impacts the
"proceed" execution flow, where GDB quits early before having a chance
to check if there exists a pending event. To remedy, keep going with
a 0 value for the PC if 'regcache_read_pc' fails. Because the value
of PC before resuming a thread is mostly used for storing and checking
the next time the thread stops, this tolerance is expected to be
harmless for a dead thread/process.
gdb/ChangeLog:
2020-05-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* regcache.c (regcache_read_pc_protected): New function
implementation that returns 0 if the PC cannot read via
'regcache_read_pc'.
* infrun.c (proceed): Call 'regcache_read_pc_protected'
instead of 'regcache_read_pc'.
(keep_going_pass_signal): Ditto.
gdbsupport/ChangeLog:
2020-05-14 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* common-regcache.h (regcache_read_pc_protected): New function
declaration.
When running test-case gdb.threads/fork-child-threads.exp with gcc-8 instead
of gcc-7, we have:
...
(gdb) next^M
[Attaching after Thread 0x7ffff7fae740 (LWP 27574) fork to child process \
27578]^M
[New inferior 2 (process 27578)]^M
[Detaching after fork from parent process 27574]^M
[Inferior 1 (process 27574) detached]^M
[Thread debugging using libthread_db enabled]^M
Using host libthread_db library "/lib64/libthread_db.so.1".^M
[Switching to Thread 0x7ffff7fae740 (LWP 27578)]^M
-main () at src/gdb/testsuite/gdb.threads/fork-child-threads.c:41^M
+main () at src/gdb/testsuite/gdb.threads/fork-child-threads.c:34^M
-41 i = pthread_create (&thread, NULL, start, NULL);^M
+34 switch (fork ())^M
-(gdb) PASS: gdb.threads/fork-child-threads.exp: next over fork
+(gdb) FAIL: gdb.threads/fork-child-threads.exp: next over fork
...
This is due to the fact that gcc-8 generates more precise line info, making
the instruction after the call to fork a "recommended breakpoint location".
However, it is a bug because next is supposed to move to the next source
line.
The problem is that in process_event_stop_test we hit this code:
...
if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
&& (ecs->event_thread->current_line != stop_pc_sal.line
|| ecs->event_thread->current_symtab != stop_pc_sal.symtab))
{
if (stop_pc_sal.is_stmt)
{
/* We are at the start of a different line. So stop. Note that
we don't stop if we step into the middle of a different line.
That is said to make things like for (;;) statements work
better. */
if (debug_infrun)
fprintf_unfiltered (gdb_stdlog,
"infrun: stepped to a different line\n");
end_stepping_range (ecs);
return;
}
...
because current_line and current_symtab have initial values:
...
(gdb) p ecs->event_thread->current_line
$8 = 0
(gdb) p ecs->event_thread->current_symtab
$9 = (symtab *) 0x0
...
Fix this in follow_fork by copying current_line and current_symtab from
parent thread to child thread.
Tested on x86_64-linux, with gcc 7.5.0 and gcc 10.0.1.
gdb/ChangeLog:
2020-05-08 Tom de Vries <tdevries@suse.de>
* infrun.c (follow_fork): Copy current_line and current_symtab to
child thread.
In infrun.c's 'displaced_step_fixup', as part of the 'finish_step_over'
flow, switch to the eventing thread *before* calling
'displaced_step_restore', because down in the flow ptid-dependent
memory accesses are used via current_inferior() and current_top_target().
Without this patch, the problem is exposed with the scenario below:
$ gdb -q
(gdb) maint set target-non-stop on
(gdb) file a.out
Reading symbols from a.out...
(gdb) set remote exec-file a.out
(gdb) target extended-remote | gdbserver --once --multi -
...
(gdb) add-inferior
[New inferior 2]
Added inferior 2 on connection 1 (extended-remote ...)
(gdb) inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
(gdb) file a.out
Reading symbols from a.out...
(gdb) set remote exec-file a.out
(gdb) run
...
Cannot access memory at address 0x555555555042
(gdb)
The problem is, down inside 'displaced_step_restore', GDB wants to
access the memory for inferior 2 because of an internal breakpoint.
However, the current inferior and inferior_ptid are out of sync.
While inferior_ptid correctly points to the process of inf 2 that was
just started, current_inferior points to inf 1. Then, the attempt to
access the memory fails, because target_has_execution results in false
since inf 1 was not started. I was not able to simplify the failing
scenario, but it shows the problem.
After this patch, we get
... same steps above...
(gdb) run
...
[Inferior 2 (process 28652) exited normally]
(gdb)
Regression-tested on X86_64 Linux with `make check`s default board file
and also `--target_board=native-extended-gdbserver`. In fact, the bug
fixed by this patch was exposed when using the native-extended-gdbserver
board file.
gdb/ChangeLog:
2020-04-21 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* infrun.c (displaced_step_fixup): Switch to the event_thread
before calling displaced_step_restore, not after.
gdb/testsuite/ChangeLog:
2020-04-21 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* gdb.multi/run-only-second-inf.c: New file.
* gdb.multi/run-only-second-inf.exp: New file.
This patch splits out some gdb-specific code from event-loop, into new
files async-event.[ch]. Strictly speaking this code could perhaps be
put into gdbsupport/, but because gdbserver does not currently use it,
it seemed better, for size reasons, to split it out.
gdb/ChangeLog
2020-04-13 Tom Tromey <tom@tromey.com>
* tui/tui-win.c: Include async-event.h.
* remote.c: Include async-event.h.
* remote-notif.c: Include async-event.h.
* record-full.c: Include async-event.h.
* record-btrace.c: Include async-event.h.
* infrun.c: Include async-event.h.
* event-top.c: Include async-event.h.
* event-loop.h: Move some declarations to async-event.h.
* event-loop.c: Don't include ser-event.h or top.h. Move some
code to async-event.c.
* async-event.h: New file.
* async-event.c: New file.
* Makefile.in (COMMON_SFILES): Add async-event.c.
(HFILES_NO_SRCDIR): Add async-event.h.
This moves gdb_select.h to gdbsupport/, so it can be used by other
code there.
gdb/ChangeLog
2020-04-13 Tom Tromey <tom@tromey.com>
* gdb_select.h: Move to ../gdbsupport/.
* event-loop.c: Update include path.
* top.c: Update include path.
* ser-base.c: Update include path.
* ui-file.c: Update include path.
* ser-tcp.c: Update include path.
* guile/scm-ports.c: Update include path.
* posix-hdep.c: Update include path.
* ser-unix.c: Update include path.
* gdb_usleep.c: Update include path.
* mingw-hdep.c: Update include path.
* inflow.c: Update include path.
* infrun.c: Update include path.
* event-top.c: Update include path.
gdbsupport/ChangeLog
2020-04-13 Tom Tromey <tom@tromey.com>
* gdb_select.h: Move from ../gdb/.
Stop all threads not only if the current target is non-stop, but also
if there exists a non-stop target.
The multi-target patch (5b6d1e4fa4 "Multi-target support") made the
following change to gdb/inf-child.c:
void
inf_child_target::maybe_unpush_target ()
{
- if (!inf_child_explicitly_opened && !have_inferiors ())
+ if (!inf_child_explicitly_opened)
unpush_target (this);
}
If we are in all-stop mode with multiple inferiors, and an exit event
is received from an inferior, target_mourn_inferior() gets to this
point and without the have_inferiors() check, the target is unpushed.
This leads to having exec_ops as the top target.
Here is a test scenario. Two executables, ./a.out returns
immediately; ./sleepy just sleeps.
$ gdb ./sleepy
(gdb) start
...
(gdb) add-inferior -exec ./a.out
...
(gdb) inferior 2
[Switching to inferior 2..
(gdb) start
...
(gdb) set schedule-multiple on
(gdb) set debug infrun 1
(gdb) continue
At this point, the exit event is received from ./a.out. Normally,
this would lead to stop_all_threads() to also stop ./sleepy, but this
doesn't happen, because target_is_non_stop_p() returns false. And it
returns false because the top target is no longer the process target;
it is the exec_ops.
This patch modifies 'stop_waiting' to call 'stop_all_threads' if there
exists a non-stop target, not just when the current top target is
non-stop.
Tested on X86_64 Linux.
gdb/ChangeLog:
2020-04-01 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* infrun.c (stop_all_threads): Update assertion, plus when
stopping threads, take into account that we might be trying
to stop an all-stop target.
(stop_waiting): Call 'stop_all_threads' if there exists a
non-stop target.
gdb/testsuite/ChangeLog:
2020-04-01 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* gdb.multi/stop-all-on-exit.c: New test.
* gdb.multi/stop-all-on-exit.exp: New file.