A little int to bool conversion around the 'watch' type commands.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* breakpoint.c (update_watchpoint): Pass 'false' not '0'.
(watch_command_1): Update parameter types. Convert locals to
bool.
(watch_command_wrapper): Change parameter type.
(watch_maybe_just_location): Change locals to bool.
(rwatch_command_wrapper): Update parameter type.
(awatch_command_wrapper): Update parameter type.
* breakpoint.h (watch_command_wrapper): Change parameter type.
(rwatch_command_wrapper): Update parameter type.
(awatch_command_wrapper): Update parameter type.
* eval.c (fetch_subexp_value): Change parameter type.
* ppc-linux-nat.c (ppc_linux_nat_target::check_condition): Pass
'false' not '0'.
* value.h (fetch_subexp_value): Change parameter type in
declaration.
This patch adds support for binary operations on fixed-point values,
as well as for the negative unary operator.
gdb/ChangeLog:
* eval.c (binop_promote): Add fixed-point type handling.
* valarith.c (fixed_point_binop): New function.
(scalar_binop): Add fixed-point type handling.
(value_neg): Add fixed-point type handling.
* valops.c (value_cast_to_fixed_point): New function.
(value_cast): Add fixed-point type handling.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/dw2-fixed-point.exp: Add arithmetic tests.
The Fortran specific OP_F77_UNDETERMINED_ARGLIST is currently handled
in the generic expression handling code. There's no reason why this
should be the case, so this commit moves handling of this into Fortran
specific files.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* eval.c: Remove 'f-lang.h' include.
(value_f90_subarray): Moved to f-lang.c.
(eval_call): Renamed to...
(evaluate_subexp_do_call): ...this, is no longer static, header
comment moved into header file.
(evaluate_funcall): Update call to eval_call.
(skip_undetermined_arglist): Moved to f-lang.c.
(fortran_value_subarray): Likewise.
(evaluate_subexp_standard): OP_F77_UNDETERMINED_ARGLIST handling
moved to evaluate_subexp_f.
(calc_f77_array_dims): Moved to f-lang.c
* expprint.c (print_subexp_funcall): New function.
(print_subexp_standard): OP_F77_UNDETERMINED_ARGLIST handling
moved to print_subexp_f, OP_FUNCALL uses new function.
(dump_subexp_body_funcall): New function.
(dump_subexp_body_standard): OP_F77_UNDETERMINED_ARGLIST handling
moved to dump_subexp_f, OP_FUNCALL uses new function.
* expression.h (evaluate_subexp_do_call): Declare.
* f-lang.c (value_f90_subarray): Moved from eval.c.
(skip_undetermined_arglist): Likewise.
(calc_f77_array_dims): Likewise.
(fortran_value_subarray): Likewise.
(evaluate_subexp_f): Add OP_F77_UNDETERMINED_ARGLIST support.
(operator_length_f): Likewise.
(print_subexp_f): Likewise.
(dump_subexp_body_f): Likewise.
* fortran-operator.def (OP_F77_UNDETERMINED_ARGLIST): Move
declaration of this operation to here.
* parse.c (operator_length_standard): OP_F77_UNDETERMINED_ARGLIST
support moved to operator_length_f.
* parser-defs.h (dump_subexp_body_funcall): Declare.
(print_subexp_funcall): Declare.
* std-operator.def (OP_F77_UNDETERMINED_ARGLIST): Moved to
fortran-operator.def.
This commit is a refactor of part of the Fortran array and string
handling code.
The current code is split into two blocks, linked, weirdly, with a
goto. After this commit all the code is moved to its own function,
and arrays and strings are now handled using the same code; this will
be useful later when I want to add array stride support where strings
will want to be treated just like arrays, but is a good clean up even
without the array stride work, which is why I'm merging it now.
For now the new function is added as a static within eval.c, even
though the function is Fortran only. A following commit will remove
some of the Fortran specific code from eval.c into one of the Fortran
specific files, including this new function.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* eval.c (fortran_value_subarray): New function, content is taken
from...
(evaluate_subexp_standard): ...here, in two places. Now arrays
and strings both call the new function.
(calc_f77_array_dims): Add header comment, handle strings.
Convert language_data::la_exp_desc member variable to a virtual
method language_defn::expression_ops. The change of names brings this
method more into line with the existing varobj_ops method, that also
returns a table of function pointers.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-lang.c (ada_language_data): Remove la_exp_desc initializer.
(ada_language::expression_ops): New member function.
* c-lang.c (c_language_data): Remove la_exp_desc initializer.
(c_language::expression_ops): New member function.
(cplus_language_data): Remove la_exp_desc initializer.
(cplus_language::expression_ops): New member function.
(asm_language_data): Remove la_exp_desc initializer.
(asm_language::expression_ops): New member function.
(minimal_language_data): Remove la_exp_desc initializer.
(minimal_language::expression_ops): New member function.
* d-lang.c (d_language_data): Remove la_exp_desc initializer.
(d_language::expression_ops): New member function.
* eval.c (evaluate_subexp): Update call to expression_ops.
* expprint.c (print_subexp): Likewise.
(op_name): Likewise.
(dump_subexp_body): Likewise.
* f-lang.c (f_language_data): Remove la_exp_desc initializer.
(f_language::expression_ops): New member function.
* go-lang.c (go_language_data): Remove la_exp_desc initializer.
(go_language::expression_ops): New member function.
* language.c (language_defn::expression_ops): New function.
(unknown_language_data): Remove la_exp_desc initializer.
(auto_language_data): Likewise.
* language.h (language_data): Remove la_exp_desc field.
(language_defn::expression_ops): Declare new member function.
* m2-lang.c (m2_language_data): Remove la_exp_desc initializer.
(m2_language::expression_ops): New member function.
* objc-lang.c (objc_language_data): Remove la_exp_desc
initializer.
* opencl-lang.c (opencl_language_data): Remove la_exp_desc
initializer.
(opencl_language::expression_ops): New member function.
* p-lang.c (pascal_language_data): Remove la_exp_desc initializer.
* parse.c (operator_length): Update call to expression_ops.
(exp_iterate): Likewise.
* rust-lang.c (rust_language_data): Remove la_exp_desc
initializer.
(ruse_language::expression_ops): New member function.
A later patch in this series will rewrite enum_flags fixing some API
holes. That would cause build failures around code using
type_instance_flags. Or rather, that should be using it, but wasn't.
This patch fixes it by using type_instance_flags throughout instead of
plain integers.
Note that we can't make the seemingly obvious change to struct
type::instance_flags:
- unsigned instance_flags : 9;
+ ENUM_BITFIELD (type_instance_flag_value) instance_flags : 9;
Because G++ complains then that 9 bits isn't sufficient for holding
all values of type_instance_flag_value.
So the patch adds an type::instance_flags() method, which takes care
of casting appropriately, and adds a separate type::set_instance_flags
method, following the pattern of the ongoing TYPE_XXX macro
elimination. This converts uses of TYPE_INSTANCE_FLAGS to
type::instance_flags() in the places where the code was already being
touched, but there are still many references to the
TYPE_INSTANCE_FLAGS macro left behind. Those could/should be fully
replaced at some point.
gdb/ChangeLog:
* avr-tdep.c (avr_address_class_type_flags): Return
type_instance_flags.
(avr_address_class_type_flags_to_name): Take a
type_instance_flags.
(avr_address_class_name_to_type_flags): Return bool and take a
type_instance_flags.
* d-lang.c (build_d_types): Use type::set_instance_flags.
* ft32-tdep.c (ft32_address_class_type_flags): Return
type_instance_flags.
(ft32_address_class_type_flags_to_name): Take a
type_instance_flags.
(ft32_address_class_name_to_type_flags): Return bool and take a
type_instance_flags.
(ft32_gdbarch_init): Use type::set_instance_flags.
* eval.c (fake_method::fake_method): Use type::set_instance_flags.
* gdbarch.h, gdbarch.c: Regenerate.
* gdbarch.sh (address_class_type_flags): Use type_instance_flags.
(address_class_name_to_type_flags): Use type_instance_flags and
bool.
* gdbtypes.c (address_space_name_to_int)
(address_space_int_to_name, make_qualified_type): Use
type_instance_flags.
(make_qualified_type): Use type_instance_flags and
type::set_instance_flags.
(make_type_with_address_space, make_cv_type, make_vector_type)
(check_typedef): Use type_instance_flags.
(recursive_dump_type): Cast type_instance_flags to unsigned for
printing.
(copy_type_recursive): Use type::set_instance_flags.
(gdbtypes_post_init): Use type::set_instance_flags.
* gdbtypes.h (struct type) <instance_flags>: Rename to ...
<m_instance_flags>: ... this.
<instance_flags, set_instance_flags>: New methods.
(TYPE_INSTANCE_FLAGS): Use the instance_flags method.
(SET_TYPE_INSTANCE_FLAGS): New.
(address_space_name_to_int, address_space_int_to_name)
(make_type_with_address_space): Pass flags using
type_instance_flags instead of int.
* stabsread.c (cleanup_undefined_types_noname): Use
type::set_instance_flags.
* s390-tdep.c (s390_address_class_type_flags): Return
type_instance_flags.
(s390_address_class_type_flags_to_name): Take a
type_instance_flags.
(s390_address_class_name_to_type_flags): Return bool and take a
type_instance_flags.
* type-stack.c (type_stack::follow_types): Use
type_instance_flags.
* dwarf2/read.c (read_tag_pointer_type): Use type_instance_flags.
Add the `has_varargs` and `set_has_varargs` methods on `struct type`, in
order to remove the `TYPE_VARARGS` macro. In this patch, the macro is
changed to use the getter, so all the call sites of the macro that are
used as a setter are changed to use the setter method directly. The
next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <has_varargs, set_has_varargs>: New methods.
(TYPE_VARARGS): Use type::has_varargs, change all write call sites to
use type::set_has_varargs.
Change-Id: I898a1093ae40808b37a7c6fced7f6fa2aae604de
Add the `is_prototyped` and `set_is_prototyped` methods on `struct
type`, in order to remove the `TYPE_PROTOTYPED` macro. In this patch,
the macro is changed to use the getter, so all the call sites of the
macro that are used as a setter are changed to use the setter method
directly. The next patch will remove the macro completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <is_prototyped, set_is_prototyped>:
New methods.
(TYPE_PROTOTYPED): Use type::is_prototyped, change all write
call sites to use type::set_is_prototyped.
Change-Id: I6ba285250fae413f7c1bf2ffcb5a2cedc8e743da
The NULL_TYPE macro is not very useful... remove it and just use
nullptr.
gdb/ChangeLog:
* gdbtypes.h (NULL_TYPE): Remove, change all uses to nullptr.
Change-Id: Ic6215921413dad5649192b012f1a41d0a650a644
Getting the bounds of an array (or string) type is a common operation,
and is currently done through its index type:
my_array_type->index_type ()->bounds ()
I think it would make sense to let the `type::bounds` methods work for
arrays and strings, as a shorthand for this. It's natural that when
asking for the bounds of an array, we get the bounds of the range type
used as its index type. In a way, it's equivalent as the now-removed
TYPE_ARRAY_{LOWER,UPPER}_BOUND_IS_UNDEFINED and
TYPE_ARRAY_{LOWER,UPPER}_BOUND_VALUE, except it returns the
`range_bounds` object. The caller is then responsible for getting the
property it needs in it.
I updated all the spots I could find that could take advantage of this.
Note that this also makes `type::bit_stride` work on array types, since
`type::bit_stride` uses `type::bounds`. `my_array_type->bit_stride ()`
now returns the bit stride of the array's index type. So some spots
are also changed to take advantage of this.
gdb/ChangeLog:
* gdbtypes.h (struct type) <bounds>: Handle array and string
types.
* ada-lang.c (assign_aggregate): Use type::bounds on
array/string type.
* c-typeprint.c (c_type_print_varspec_suffix): Likewise.
* c-varobj.c (c_number_of_children): Likewise.
(c_describe_child): Likewise.
* eval.c (evaluate_subexp_for_sizeof): Likewise.
* f-typeprint.c (f_type_print_varspec_suffix): Likewise.
(f_type_print_base): Likewise.
* f-valprint.c (f77_array_offset_tbl): Likewise.
(f77_get_upperbound): Likewise.
(f77_print_array_1): Likewise.
* guile/scm-type.c (gdbscm_type_range): Likewise.
* m2-typeprint.c (m2_array): Likewise.
(m2_is_long_set_of_type): Likewise.
* m2-valprint.c (get_long_set_bounds): Likewise.
* p-typeprint.c (pascal_type_print_varspec_prefix): Likewise.
* python/py-type.c (typy_range): Likewise.
* rust-lang.c (rust_internal_print_type): Likewise.
* type-stack.c (type_stack::follow_types): Likewise.
* valarith.c (value_subscripted_rvalue): Likewise.
* valops.c (value_cast): Likewise.
Change-Id: I5c0c08930bffe42fd69cb4bfcece28944dd88d1f
Remove the macros, use the getters of `struct dynamic_prop` instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_LOW_BOUND_UNDEFINED,
TYPE_HIGH_BOUND_UNDEFINED): Remove. Update all callers
to get the bound property's kind and check against
PROP_UNDEFINED.
Change-Id: I6a7641ac1aa3fa7fca0c21f00556f185f2e2d68c
Remove the macros, use the getters of `struct dynamic_prop` instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_LOW_BOUND, TYPE_HIGH_BOUND): Remove. Update
all callers to use type::range_bounds followed by
dynamic_prop::{low,high}.
Change-Id: I31beeed65d94d81ac4f999244a8b859e2ee961d1
Remove it in favor of using type::bounds directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_RANGE_DATA): Remove. Update callers to use
the type::bounds method directly.
Change-Id: Id4fab22af0a94cbf505f78b01b3ee5b3d682fba2
Remove the `TYPE_FIELD_TYPE` macro, changing all the call sites to use
`type::field` and `field::type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD_TYPE): Remove. Change all call sites
to use type::field and field::type instead.
Change-Id: Ifda6226a25c811cfd334a756a9fbc5c0afdddff3
Add the `type` and `set_type` methods on `struct field`, in order to
remoremove the `FIELD_TYPE` macro. In this patch, the `FIELD_TYPE`
macro is changed to use `field::type`, so all the call sites that are
useused to set the field's type are changed to use `field::set_type`.
The next patch will remove `FIELD_TYPE` completely.
Note that because of the name clash between the existing field named
`type` and the new method, I renamed the field `m_type`. It is not
private per-se, because we can't make `struct field` a non-POD yet, but
it should be considered private anyway (not accessed outside `struct
field`).
gdb/ChangeLog:
* gdbtypes.h (struct field) <type, set_type>: New methods.
Rename `type` field to...
<m_type>: ... this. Change references throughout to use type or
set_type methods.
(FIELD_TYPE): Use field::type. Change call sites that modify
the field's type to use field::set_type instead.
Change-Id: Ie21f866e3b7f8a51ea49b722d07d272a724459a0
Remove `TYPE_INDEX_TYPE` macro, changing all the call sites to use
`type::index_type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_INDEX_TYPE): Remove. Change all call sites
to use type::index_type instead.
Change-Id: I56715df0bdec89463cda6bd341dac0e01b2faf84
Replace all uses of it by type::field.
Note that since type::field returns a reference to the field, some spots
are used to assign the whole field structure. See ctfread.c, function
attach_fields_to_type, for example. This is the same as was happening
with the macro, so I don't think it's a problem, but if anybody sees a
really nicer way to do this, now could be a good time to implement it.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD): Remove. Replace all uses with
type::field.
Remove all uses of the `TYPE_FIELDS` macro. Replace them with either:
1) type::fields, to obtain a pointer to the fields array (same as
TYPE_FIELDS yields)
2) type::field, a new convenience method that obtains a reference to one
of the type's field by index. It is meant to replace
TYPE_FIELDS (type)[idx]
with
type->field (idx)
gdb/ChangeLog:
* gdbtypes.h (struct type) <field>: New method.
(TYPE_FIELDS): Remove, replace all uses with either type::fields
or type::field.
Change-Id: I49fba10114417deb502060c6156aa5f7fc62462f
Add the `fields` and `set_fields` methods on `struct type`, in order to
remove the `TYPE_FIELDS` macro. In this patch, the `TYPE_FIELDS` macro
is changed to the `type::fields`, so all the call sites that use it to
set the fields array are changed to use `type::set_fields`. The next
patch will remove `TYPE_FIELDS` entirely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <fields, set_fields>: New methods.
(TYPE_FIELDS): Use type::fields. Change all call sites that
modify the propery to use type::set_fields instead.
Change-Id: I05174ce68f2ce3fccdf5d8b469ff141f14886b33
Remove `TYPE_NFIELDS`, changing all the call sites to use
`type::num_fields` directly. This is quite a big diff, but this was
mostly done using sed and coccinelle. A few call sites were done by
hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NFIELDS): Remove. Change all cal sites to use
type::num_fields instead.
Change-Id: Ib73be4c36f9e770e0f729bac3b5257d7cb2f9591
Add the `num_fields` and `set_num_fields` methods on `struct type`, in
order to remove the `TYPE_NFIELDS` macro. In this patch, the
`TYPE_NFIELDS` macro is changed to use `type::num_fields`, so all the
call sites that are used to set the number of fields are changed to use
`type::set_num_fields`. The next patch will remove `TYPE_NFIELDS`
completely.
I think that in the future, we should consider making the interface of
`struct type` better. For example, right now it's possible for the
number of fields property and the actual number of fields set to be out
of sync. However, I want to keep the existing behavior in this patch,
just translate from macros to methods.
gdb/ChangeLog:
* gdbtypes.h (struct type) <num_fields, set_num_fields>: New
methods.
(TYPE_NFIELDS): Use type::num_fields. Change all call sites
that modify the number of fields to use type::set_num_fields
instead.
Change-Id: I5ad9de5be4097feaf942d111077434bf91d13dc5
Remove `TYPE_NAME`, changing all the call sites to use `type::name`
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NAME): Remove. Change all cal sites to use
type::name instead.
Remove TYPE_CODE, changing all the call sites to use type::code
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use
type::code instead.
Add the code and set_code methods on code, in order to remove the
TYPE_CODE macro. In this patch, the TYPE_CODE macro is changed to use
type::code, so all the call sites that are used to set the type code are
changed to use type::set_code. The next patch will remove TYPE_CODE
completely.
gdb/ChangeLog:
* gdbtypes.h (struct type) <code, set_code>: New methods.
(TYPE_CODE): Use type::code. Change all call sites used to set
the code to use type::set_code instead.
Considering these variables:
int i = 3;
int &iref = i;
It's not possible to do any pointer arithmetic with iref:
(gdb) p &i+iref
Argument to arithmetic operation not a number or boolean.
So this adds checks for references to integers in pointer arithmetic.
gdb/ChangeLog:
2020-04-01 Hannes Domani <ssbssa@yahoo.de>
PR gdb/24789
* eval.c (is_integral_or_integral_reference): New function.
(evaluate_subexp_standard): Allow integer references in
pointer arithmetic.
gdb/testsuite/ChangeLog:
2020-04-01 Hannes Domani <ssbssa@yahoo.de>
PR gdb/24789
* gdb.cp/misc.cc: Add integer reference variable.
* gdb.cp/misc.exp: Add test.
From what I can tell, set_gdbarch_bits_big_endian has never been used.
That is, all architectures since its introduction have simply used the
default, which is simply check the architecture's byte-endianness.
Because this interferes with the scalar_storage_order code, this patch
removes this gdbarch setting entirely. In some places,
type_byte_order is used rather than the plain gdbarch.
gdb/ChangeLog
2019-12-04 Tom Tromey <tromey@adacore.com>
* ada-lang.c (decode_constrained_packed_array)
(ada_value_assign, value_assign_to_component): Update.
* dwarf2loc.c (rw_pieced_value, access_memory)
(dwarf2_compile_expr_to_ax): Update.
* dwarf2read.c (dwarf2_add_field): Update.
* eval.c (evaluate_subexp_standard): Update.
* gdbarch.c, gdbarch.h: Rebuild.
* gdbarch.sh (bits_big_endian): Remove.
* gdbtypes.h (union field_location): Update comment.
* target-descriptions.c (make_gdb_type): Update.
* valarith.c (value_bit_index): Update.
* value.c (struct value) <bitpos>: Update comment.
(unpack_bits_as_long, modify_field): Update.
* value.h (value_bitpos): Update comment.
Change-Id: I379b5e0c408ec8742f7a6c6b721108e73ed1b018
A customer reported somewhat odd gdb behavior, where re-assigning an
array or string to a convenience variable would yield "Too many array
elements". A test case is:
(gdb) p $x = "x"
(gdb) p $x = "xyz"
This patch fixes the problem by making a special case in the evaluator
for assignment to convenience variables, which seems like the correct
behavior.
Note that a previous patch implemented this for Ada, see commit
f411722cb ("Allow re-assigning to convenience variables").
gdb/ChangeLog
2019-11-14 Tom Tromey <tromey@adacore.com>
* eval.c (evaluate_subexp_standard) <BINOP_ASSIGN>: Do not pass an
expected type for the RHS if the LHS is a convenience variable.
gdb/testsuite/ChangeLog
2019-11-14 Tom Tromey <tromey@adacore.com>
* gdb.base/gdbvars.exp (test_convenience_variables): Add
regression tests.
Change-Id: I5e66a2d243931a5c43c7af4bc9f6717464c2477e
The variable is defined in valops.c and has an extern decl in
eval.c; move it to the header file.
gdb/ChangeLog:
2019-09-19 Christian Biesinger <cbiesinger@google.com>
* eval.c: Move declaration of overload_resolution to...
* value.h: ...here.
This rewrites gdb's TRY/CATCH to plain C++ try/catch. The patch was
largely written by script, though one change (to a comment in
common-exceptions.h) was reverted by hand.
gdb/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* xml-support.c: Use C++ exception handling.
* x86-linux-nat.c: Use C++ exception handling.
* windows-nat.c: Use C++ exception handling.
* varobj.c: Use C++ exception handling.
* value.c: Use C++ exception handling.
* valprint.c: Use C++ exception handling.
* valops.c: Use C++ exception handling.
* unittests/parse-connection-spec-selftests.c: Use C++ exception
handling.
* unittests/cli-utils-selftests.c: Use C++ exception handling.
* typeprint.c: Use C++ exception handling.
* tui/tui.c: Use C++ exception handling.
* tracefile-tfile.c: Use C++ exception handling.
* top.c: Use C++ exception handling.
* thread.c: Use C++ exception handling.
* target.c: Use C++ exception handling.
* symmisc.c: Use C++ exception handling.
* symfile-mem.c: Use C++ exception handling.
* stack.c: Use C++ exception handling.
* sparc64-linux-tdep.c: Use C++ exception handling.
* solib.c: Use C++ exception handling.
* solib-svr4.c: Use C++ exception handling.
* solib-spu.c: Use C++ exception handling.
* solib-frv.c: Use C++ exception handling.
* solib-dsbt.c: Use C++ exception handling.
* selftest-arch.c: Use C++ exception handling.
* s390-tdep.c: Use C++ exception handling.
* rust-lang.c: Use C++ exception handling.
* rust-exp.y: Use C++ exception handling.
* rs6000-tdep.c: Use C++ exception handling.
* rs6000-aix-tdep.c: Use C++ exception handling.
* riscv-tdep.c: Use C++ exception handling.
* remote.c: Use C++ exception handling.
* remote-fileio.c: Use C++ exception handling.
* record-full.c: Use C++ exception handling.
* record-btrace.c: Use C++ exception handling.
* python/python.c: Use C++ exception handling.
* python/py-value.c: Use C++ exception handling.
* python/py-utils.c: Use C++ exception handling.
* python/py-unwind.c: Use C++ exception handling.
* python/py-type.c: Use C++ exception handling.
* python/py-symbol.c: Use C++ exception handling.
* python/py-record.c: Use C++ exception handling.
* python/py-record-btrace.c: Use C++ exception handling.
* python/py-progspace.c: Use C++ exception handling.
* python/py-prettyprint.c: Use C++ exception handling.
* python/py-param.c: Use C++ exception handling.
* python/py-objfile.c: Use C++ exception handling.
* python/py-linetable.c: Use C++ exception handling.
* python/py-lazy-string.c: Use C++ exception handling.
* python/py-infthread.c: Use C++ exception handling.
* python/py-inferior.c: Use C++ exception handling.
* python/py-gdb-readline.c: Use C++ exception handling.
* python/py-framefilter.c: Use C++ exception handling.
* python/py-frame.c: Use C++ exception handling.
* python/py-finishbreakpoint.c: Use C++ exception handling.
* python/py-cmd.c: Use C++ exception handling.
* python/py-breakpoint.c: Use C++ exception handling.
* python/py-arch.c: Use C++ exception handling.
* printcmd.c: Use C++ exception handling.
* ppc-linux-tdep.c: Use C++ exception handling.
* parse.c: Use C++ exception handling.
* p-valprint.c: Use C++ exception handling.
* objc-lang.c: Use C++ exception handling.
* mi/mi-main.c: Use C++ exception handling.
* mi/mi-interp.c: Use C++ exception handling.
* mi/mi-cmd-stack.c: Use C++ exception handling.
* mi/mi-cmd-break.c: Use C++ exception handling.
* main.c: Use C++ exception handling.
* linux-thread-db.c: Use C++ exception handling.
* linux-tdep.c: Use C++ exception handling.
* linux-nat.c: Use C++ exception handling.
* linux-fork.c: Use C++ exception handling.
* linespec.c: Use C++ exception handling.
* language.c: Use C++ exception handling.
* jit.c: Use C++ exception handling.
* infrun.c: Use C++ exception handling.
* infcmd.c: Use C++ exception handling.
* infcall.c: Use C++ exception handling.
* inf-loop.c: Use C++ exception handling.
* i386-tdep.c: Use C++ exception handling.
* i386-linux-tdep.c: Use C++ exception handling.
* guile/scm-value.c: Use C++ exception handling.
* guile/scm-type.c: Use C++ exception handling.
* guile/scm-symtab.c: Use C++ exception handling.
* guile/scm-symbol.c: Use C++ exception handling.
* guile/scm-pretty-print.c: Use C++ exception handling.
* guile/scm-ports.c: Use C++ exception handling.
* guile/scm-param.c: Use C++ exception handling.
* guile/scm-math.c: Use C++ exception handling.
* guile/scm-lazy-string.c: Use C++ exception handling.
* guile/scm-frame.c: Use C++ exception handling.
* guile/scm-disasm.c: Use C++ exception handling.
* guile/scm-cmd.c: Use C++ exception handling.
* guile/scm-breakpoint.c: Use C++ exception handling.
* guile/scm-block.c: Use C++ exception handling.
* guile/guile-internal.h: Use C++ exception handling.
* gnu-v3-abi.c: Use C++ exception handling.
* gdbtypes.c: Use C++ exception handling.
* frame.c: Use C++ exception handling.
* frame-unwind.c: Use C++ exception handling.
* fbsd-tdep.c: Use C++ exception handling.
* f-valprint.c: Use C++ exception handling.
* exec.c: Use C++ exception handling.
* event-top.c: Use C++ exception handling.
* event-loop.c: Use C++ exception handling.
* eval.c: Use C++ exception handling.
* dwarf2read.c: Use C++ exception handling.
* dwarf2loc.c: Use C++ exception handling.
* dwarf2-frame.c: Use C++ exception handling.
* dwarf2-frame-tailcall.c: Use C++ exception handling.
* dwarf-index-write.c: Use C++ exception handling.
* dwarf-index-cache.c: Use C++ exception handling.
* dtrace-probe.c: Use C++ exception handling.
* disasm-selftests.c: Use C++ exception handling.
* darwin-nat.c: Use C++ exception handling.
* cp-valprint.c: Use C++ exception handling.
* cp-support.c: Use C++ exception handling.
* cp-abi.c: Use C++ exception handling.
* corelow.c: Use C++ exception handling.
* completer.c: Use C++ exception handling.
* compile/compile-object-run.c: Use C++ exception handling.
* compile/compile-object-load.c: Use C++ exception handling.
* compile/compile-cplus-symbols.c: Use C++ exception handling.
* compile/compile-c-symbols.c: Use C++ exception handling.
* common/selftest.c: Use C++ exception handling.
* common/new-op.c: Use C++ exception handling.
* cli/cli-script.c: Use C++ exception handling.
* cli/cli-interp.c: Use C++ exception handling.
* cli/cli-cmds.c: Use C++ exception handling.
* c-varobj.c: Use C++ exception handling.
* btrace.c: Use C++ exception handling.
* breakpoint.c: Use C++ exception handling.
* break-catch-throw.c: Use C++ exception handling.
* arch-utils.c: Use C++ exception handling.
* amd64-tdep.c: Use C++ exception handling.
* ada-valprint.c: Use C++ exception handling.
* ada-typeprint.c: Use C++ exception handling.
* ada-lang.c: Use C++ exception handling.
* aarch64-tdep.c: Use C++ exception handling.
gdb/gdbserver/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* server.c: Use C++ exception handling.
* linux-low.c: Use C++ exception handling.
* gdbreplay.c: Use C++ exception handling.
If an convenience function is defined in python (or guile), then
currently this will not work in Fortran, instead the user is given
this message:
(gdb) set language fortran
(gdb) p $myfunc (3)
Cannot perform substring on this type
Compare this to C:
(gdb) set language c
(gdb) p $myfunc (3)
$1 = 1
After this patch we see the same behaviour in both C and Fortran.
I've extended the test to check that all languages can call the
convenience functions - only Fortran was broken.
When calling convenience functions in Fortran we don't need to perform
the same value preparation (passing by pointer) that we would for
calling a native function - passing the real value is fine.
gdb/ChangeLog:
* eval.c (evaluate_subexp_standard): Handle internal functions
during Fortran function call handling.
gdb/testsuite/ChangeLog:
* gdb.python/py-function.exp: Check calling helper function from
all languages.
* lib/gdb.exp (gdb_supported_languages): New proc.
I noticed that there are still many places referring to non-const
blocks. This constifies all the remaining ones that I found that
could be constified.
In a few spots, this search found unused variables or fields. I
removed these. I've also removed some unnecessary casts to
"struct block *".
gdb/ChangeLog
2019-03-24 Tom Tromey <tom@tromey.com>
* c-exp.y (typebase): Remove casts.
* gdbtypes.c (lookup_unsigned_typename, )
(lookup_signed_typename): Remove cast.
* eval.c (parse_to_comma_and_eval): Remove cast.
* parse.c (write_dollar_variable): Remove cast.
* block.h (struct block) <superblock>: Now const.
* symfile-debug.c (debug_qf_map_matching_symbols): Update.
* psymtab.c (psym_map_matching_symbols): Make "block" const.
(map_block): Make "block" const.
* symfile.h (struct quick_symbol_functions)
<map_matching_symbols>: Constify block argument to "callback".
* symtab.c (basic_lookup_transparent_type_quick): Make "block"
const.
(find_pc_sect_compunit_symtab): Make "b" const.
(find_symbol_at_address): Likewise.
(search_symbols): Likewise.
* dwarf2read.c (dw2_lookup_symbol): Make "block" const.
(dw2_debug_names_lookup_symbol): Likewise.
(dw2_map_matching_symbols): Update.
* p-valprint.c (pascal_val_print): Remove "block".
* ada-lang.c (ada_add_global_exceptions): Make "b" const.
(aux_add_nonlocal_symbols): Make "block" const.
(resolve_subexp): Remove cast.
* linespec.c (iterate_over_all_matching_symtabs): Make "block"
const.
(iterate_over_file_blocks): Likewise.
* f-exp.y (%union) <bval>: Remove.
* coffread.c (patch_opaque_types): Make "b" const.
* spu-tdep.c (spu_catch_start): Make "block" const.
* c-valprint.c (print_unpacked_pointer): Remove "block".
* symmisc.c (dump_symtab_1): Make "b" const.
(block_depth): Make "block" const.
* d-exp.y (%union) <bval>: Remove.
* cp-support.h (cp_lookup_rtti_type): Update.
* cp-support.c (cp_lookup_rtti_type): Make "block" const.
* psymtab.c (psym_lookup_symbol): Make "block" const.
(maintenance_check_psymtabs): Make "b" const.
* python/py-framefilter.c (extract_sym): Make "sym_block" const.
(enumerate_locals, enumerate_args): Update.
* python/py-symtab.c (stpy_global_block): Make "block" const.
(stpy_static_block): Likewise.
* inline-frame.c (block_starting_point_at): Make "new_block"
const.
* block.c (find_block_in_blockvector): Make return type const.
(blockvector_for_pc_sect): Make "b" const.
(find_block_in_blockvector): Make "b" const.
Prior to this patch, calling functions on the inferior with arguments and
then using these arguments within a function resulted in an invalid
memory access. This is because Fortran arguments are typically passed as
pointers to values.
It is possible to call Fortran functions, but memory must be allocated in
the inferior, so a pointer can be passed to the function, and the
language must be set to C to enable C-style casting. This is cumbersome
and not a pleasant debug experience.
This patch implements the GNU Fortran argument passing conventions with
caveats. Firstly, it does not handle the VALUE attribute as there is
insufficient DWARF information to determine when this is the case.
Secondly, functions with optional parameters can only be called with all
parameters present. Both these cases are marked as KFAILS in the test.
Since the GNU Fortran argument passing convention has been implemented,
there is no guarantee that this patch will work correctly, in all cases,
with other compilers.
Despite these limitations, this patch improves the ease with which
functions can be called in many cases, without taking away the existing
approach of calling with the language set to C.
Regression tested on x86_64, aarch64 and POWER9 with GCC 7.3.0.
Regression tested with Ada on x86_64.
Regression tested with native-extended-gdbserver target board.
gdb/ChangeLog:
* eval.c (evaluate_subexp_standard): Call Fortran argument
wrapping logic.
* f-lang.c (struct value): A value which can be passed into a
Fortran function call.
(fortran_argument_convert): Wrap Fortran arguments in a pointer
where appropriate.
(struct type): Value ready for a Fortran function call.
(fortran_preserve_arg_pointer): Undo check_typedef, the pointer
is needed.
* f-lang.h (fortran_argument_convert): Declaration.
(fortran_preserve_arg_pointer): Declaration.
* infcall.c (value_arg_coerce): Call Fortran argument logic.
gdb/testsuite/ChangeLog:
* gdb.fortran/function-calls.exp: New file.
* gdb.fortran/function-calls.f90: New test.
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.