In Ada, an enumeration type can use a character literal as one of the
enumerators. The Ada expression parser handles the appropriate
conversion.
It turns out, though, that this conversion was handled incorrectly.
For an expression like TYPE'(EXP), the conversion would be done for
any such literal appearing in EXP -- but only the outermost such
expression should really be affected.
This patch defers the conversion until the resolution phase, fixing
the bug.
In a subsequent patch, it will be convenient if an Ada expression
operation can supply its own replacement object. This patch refactors
Ada expression resolution to make this possible.
I found a few spots in ada-exp.y that could use 'const'.
Tested by rebuilding.
2021-07-02 Tom Tromey <tromey@adacore.com>
* ada-exp.y (chop_selector, chop_separator, write_selectors)
(write_ambiguous_var, get_symbol_field_type): Use const.
Currently, the Ada expression parser treats 'null' as an integer 0.
However, this causes overloading to fail in certain cases.
This patch changes the Ada expression parser to use a special type for
'null'. I chose pointer-to-int0, because I think that's not likely to
be needed for any other Ada expression. Note this works because a
"mod 1" type has an underlying non-zero byte size; the test includes a
check for this.
The output is changed so that "print null", by default, shows "null".
And, ada_type_match is changed both to recognize the special null type
and to remove a bit of weird code related to how pointers are treated
for overload type matching.
Tested on x86-64 Fedora 32. Because this only touches Ada, and Joel
already approved it internally at AdaCore, I am checking it in.
gdb/ChangeLog
2021-04-28 Tom Tromey <tromey@adacore.com>
* ada-exp.y (primary): Use new type for null pointer.
* ada-lang.c (ada_type_match): Remove "may_deref"
parameter. Handle null pointer.
(ada_args_match): Update.
* ada-valprint.c (ada_value_print_ptr, ada_value_print):
Handle null pointer.
gdb/testsuite/ChangeLog
2021-04-28 Tom Tromey <tromey@adacore.com>
* gdb.ada/null_overload.exp: New file.
* gdb.ada/null_overload/foo.adb: New file.
My previous Ada patches introduced a bug that I found after checkin.
I had incorrectly implemented unary +. There was a test for the
overloaded case, but no test for the ordinary case.
This patch adds the tests and fixes the bug.
Tested on x86-64 Fedora 32.
gdb/ChangeLog
2021-03-15 Tom Tromey <tromey@adacore.com>
* ada-exp.y (simple_exp): Always push a result for unary '+'.
gdb/testsuite/ChangeLog
2021-03-15 Tom Tromey <tromey@adacore.com>
* gdb.ada/fixed_points.exp: Add tests of unary + and -.
In the expression rewrite, I neglected to carry over support for Ada
operator overloading. It turns out that there were no tests for this
in-tree.
This patch adds support for operator overloading, and adds the missing
test.
gdb/ChangeLog
2021-03-15 Tom Tromey <tromey@adacore.com>
* ada-lang.c (numeric_type_p, integer_type_p): Return true for
fixed-point.
* ada-exp.y (maybe_overload): New function.
(ada_wrap_overload): New function.
(ada_un_wrap2, ada_wrap2, ada_wrap_op): Use maybe_overload.
(exp1, simple_exp, relation, and_exp, and_then_exp, or_exp)
(or_else_exp, xor_exp, primary): Update.
gdb/testsuite/ChangeLog
2021-03-15 Tom Tromey <tromey@adacore.com>
* gdb.ada/operator_call/twovecs.ads: New file.
* gdb.ada/operator_call/twovecs.adb: New file.
* gdb.ada/operator_call/opcall.adb: New file.
* gdb.ada/operator_call.exp: New file.
The expression rewrite missed an Ada resolution case. GDB previously
knew how to disambiguate the right hand side of an assignment, but now
it does not.
This patch fixes the problem and adds the missing test case.
gdb/ChangeLog
2021-03-15 Tom Tromey <tromey@adacore.com>
* ada-exp.y (exp1): Handle resolution of the right hand side of an
assignment.
gdb/testsuite/ChangeLog
2021-03-15 Tom Tromey <tromey@adacore.com>
* gdb.ada/enums_overload/enums_overload_main.adb: New file.
* gdb.ada/enums_overload/enums_overload.ads: New file.
* gdb.ada/enums_overload/enums_overload.adb: New file.
* gdb.ada/enums_overload.exp: New file.
This changes var_msym_value_operation to use a bound_minimal_symbol
rather than separate minsym and objfile parameters. The main benefit
of this is removing the possibly-confusing check_objfile overload for
a plain minimal symbol.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* parse.c (parser_state::push_symbol, parser_state::push_dollar):
Update.
* p-exp.y (variable): Update.
* go-exp.y (variable): Update.
* expprint.c (dump_for_expression): Use bound_minimal_symbol.
Remove overload for objfile.
* expop.h (eval_op_var_msym_value): Use bound_minimal_symbol
parameter.
(check_objfile): Likewise.
(dump_for_expression): Likewise. Remove overload for objfile.
(class var_msym_value_operation): Use bound_minimal_symbol.
* eval.c (eval_op_var_msym_value): Use bound_minimal_symbol
parameter.
(var_msym_value_operation::evaluate_for_address)
(var_msym_value_operation::evaluate_for_sizeof)
(var_msym_value_operation::evaluate_for_cast): Update.
* d-exp.y (PrimaryExpression): Update.
* c-exp.y (variable): Update.
* ax-gdb.c (var_msym_value_operation::do_generate_ax): Update.
* ada-lang.c (ada_var_msym_value_operation::evaluate_for_cast):
Update.
* ada-exp.y (write_var_or_type): Update.
This converts the Ada parser to generate operations rather than
exp_elements.
This was the most difficult of the parser conversions, partly due to
the decision to integrate Ada expression resolution into the parse,
and partly due to Ada aggregregate assignment. A couple of new
per-parse globals are introduced, along with a number of helper
functions. Resolution is done in 'ada_pop', yielding the unfortunate
rule that ada-exp.y should generally not use parser_state::pop
(exceptions are marked).
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* ada-exp.y: Create operations.
(empty_stoken): Remove.
(ada_pop, ada_wrap, ada_addrof, ada_un_wrap2, ada_wrap2)
(ada_wrap_op, ada_wrap3, ada_funcall): New functions.
(components): New global.
(push_component, choice_component, pop_component, pop_components):
New functions.
(associations): New global
(push_association, pop_association, pop_associations): New
functions.
(ada_parse): Update.
(write_var_from_sym, write_int): Create operations.
(write_exp_op_with_string): Remove.
(write_object_renaming, write_selectors, write_ambiguous_var)
(write_var_or_type, write_name_assoc): Create operations.
* ada-lang.h (ada_index_type): Declare.
* ada-lang.c (ada_index_type): No longer static.
This patch addresses some review comments that I forgot to deal with
in an earlier patch. See the comments here:
https://sourceware.org/pipermail/gdb-patches/2021-February/176278.html
For the most part this is fixing up comments, but it also includes
adding a constructor and initializers to "match_data".
Regression tested on x86-64 Fedora 32.
gdb/ChangeLog
2021-03-03 Tom Tromey <tromey@adacore.com>
* ada-lang.c (ada_resolve_function): Update comment.
(is_nonfunction, add_symbols_from_enclosing_procs)
(remove_extra_symbols): Likewise.
(struct match_data): Add constructor, initializers.
(add_nonlocal_symbols): Remove memset.
(aux_add_nonlocal_symbols): Update comment.
(ada_add_block_renamings, add_nonlocal_symbols)
(ada_add_all_symbols): Likewise.
* ada-exp.y (write_var_or_type): Clean up trailing whitespace.
This changes ada_lookup_symbol_list to return a std::vector, and
changes various other helper functions to follow. This simplifies the
code, and makes it more type-safe (by using a vector where an obstack
had been used).
gdb/ChangeLog
2021-03-02 Tom Tromey <tromey@adacore.com>
* ada-lang.h (ada_lookup_symbol_list): Return a vector.
* ada-lang.c (resolve_subexp): Update.
(ada_resolve_function): Accept a vector.
(is_nonfunction, add_defn_to_vec)
(add_symbols_from_enclosing_procs): Likewise.
(num_defns_collected, defns_collected): Remove.
(remove_extra_symbols): Return a vector.
(remove_irrelevant_renamings): Return void.
(ada_add_local_symbols): Accept a vector.
(struct match_data) <obstackp>: Remove.
<resultp>: New member.
(aux_add_nonlocal_symbols): Update.
(ada_add_block_renamings, add_nonlocal_symbols)
(ada_add_all_symbols): Accept a vector.
(ada_lookup_symbol_list_worker, ada_lookup_symbol_list): Return a
vector.
(ada_lookup_symbol): Update.
(ada_add_block_symbols): Accept a vector.
(get_var_value, iterate_over_symbols): Update.
* ada-exp.y (block_lookup, write_var_or_type, write_name_assoc):
Update.
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
Consider the following GDB session:
$ gdb
(gdb) set language c
(gdb) ptype void
type = void
(gdb) set language fortran
(gdb) ptype void
No symbol table is loaded. Use the "file" command.
(gdb)
With no symbol file loaded GDB and the language set to C GDB knows
about the type void, while when the language is set to Fortran GDB
doesn't know about the void, why is that?
In f-lang.c, f_language::language_arch_info, we do have this line:
lai->primitive_type_vector [f_primitive_type_void]
= builtin->builtin_void;
where we add the void type to the list of primitive types that GDB
should always know about, so what's going wrong?
It turns out that the primitive types are stored in a C style array,
indexed by an enum, so Fortran uses `enum f_primitive_types'. The
array is allocated and populated in each languages language_arch_info
member function. The array is allocated with an extra entry at the
end which is left as a NULL value, and this indicates the end of the
array of types.
Unfortunately for Fortran, a type is not assigned for each element in
the enum. As a result the final populated array has gaps in it, gaps
which are initialised to NULL, and so every time we iterate over the
list (for Fortran) we stop early, and never reach the void type.
This has been the case since 2007 when this functionality was added to
GDB in commit cad351d11d.
Obviously I could just fix Fortran by ensuring that either the enum is
trimmed, or we create types for the missing types. However, I think a
better approach would be to move to C++ data structures and removed
the fixed enum indexing into the array approach.
After this commit the primitive types are pushed into a vector, and
GDB just iterates over the vector in the obvious way when it needs to
hunt for a type. After this commit all the currently defined
primitive types can be found when the language is set to Fortran, for
example:
$ gdb
(gdb) set language fortran
(gdb) ptype void
type = void
(gdb)
A new test checks this functionality.
I didn't see any other languages with similar issues, but I could have
missed something.
gdb/ChangeLog:
* ada-exp.y (find_primitive_type): Make parameter const.
* ada-lang.c (enum ada_primitive_types): Delete.
(ada_language::language_arch_info): Update.
* c-lang.c (enum c_primitive_types): Delete.
(c_language_arch_info): Update.
(enum cplus_primitive_types): Delete.
(cplus_language::language_arch_info): Update.
* d-lang.c (enum d_primitive_types): Delete.
(d_language::language_arch_info): Update.
* f-lang.c (enum f_primitive_types): Delete.
(f_language::language_arch_info): Update.
* go-lang.c (enum go_primitive_types): Delete.
(go_language::language_arch_info): Update.
* language.c (auto_or_unknown_language::language_arch_info):
Update.
(language_gdbarch_post_init): Use obstack_new, use array indexing.
(language_string_char_type): Add header comment, call function in
language_arch_info.
(language_bool_type): Likewise
(language_arch_info::bool_type): Define.
(language_lookup_primitive_type_1): Delete.
(language_lookup_primitive_type): Rewrite as a templated function
to call function in language_arch_info, then instantiate twice.
(language_arch_info::type_and_symbol::alloc_type_symbol): Define.
(language_arch_info::lookup_primitive_type_and_symbol): Define.
(language_arch_info::lookup_primitive_type): Define twice with
different signatures.
(language_arch_info::lookup_primitive_type_as_symbol): Define.
(language_lookup_primitive_type_as_symbol): Rewrite to call a
member function in language_arch_info.
* language.h (language_arch_info): Complete rewrite.
(language_lookup_primitive_type): Make templated.
* m2-lang.c (enum m2_primitive_types): Delete.
(m2_language::language_arch_info): Update.
* opencl-lang.c (OCL_P_TYPE): Delete.
(enum opencl_primitive_types): Delete.
(opencl_type_data): Delete.
(builtin_opencl_type): Delete.
(lookup_opencl_vector_type): Update.
(opencl_language::language_arch_info): Update, lots of content
moved from...
(build_opencl_types): ...here. This function is now deleted.
(_initialize_opencl_language): Delete.
* p-lang.c (enum pascal_primitive_types): Delete.
(pascal_language::language_arch_info): Update.
* rust-lang.c (enum rust_primitive_types): Delete.
(rust_language::language_arch_info): Update.
gdb/testsuite/ChangeLog:
* gdb.fortran/types.exp: Add more tests.
This changes ada_encode to return a std::string. This simplifies it
somewhat, removes a use of GROW_VECT, and is also simpler for callers
to use.
gdb/ChangeLog
2020-10-09 Tom Tromey <tromey@adacore.com>
* ada-lang.h (ada_encode): Return std::string.
* ada-lang.c (ada_encode_1): Return std::string.
(ada_encode): Likewise.
(type_from_tag, ada_lookup_name_info::ada_lookup_name_info):
Update.
* ada-exp.y (block_lookup, write_var_or_type): Update.
Remove the `TYPE_FIELD_TYPE` macro, changing all the call sites to use
`type::field` and `field::type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD_TYPE): Remove. Change all call sites
to use type::field and field::type instead.
Change-Id: Ifda6226a25c811cfd334a756a9fbc5c0afdddff3
Remove `TYPE_NFIELDS`, changing all the call sites to use
`type::num_fields` directly. This is quite a big diff, but this was
mostly done using sed and coccinelle. A few call sites were done by
hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NFIELDS): Remove. Change all cal sites to use
type::num_fields instead.
Change-Id: Ib73be4c36f9e770e0f729bac3b5257d7cb2f9591
Remove TYPE_CODE, changing all the call sites to use type::code
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use
type::code instead.
This removes symbol_set_language and SYMBOL_SET_LANGUAGE in favor of
a new function general_symbol_info::set_language. symbol and minimal_symbol
already inherit from that struct so this works naturally.
gdb/ChangeLog:
2019-12-15 Christian Biesinger <cbiesinger@google.com>
* ada-exp.y (write_ambiguous_var): Update.
* coffread.c (process_coff_symbol): Update.
* ctfread.c (ctf_add_enum_member_cb): Update.
(new_symbol): Update.
* dwarf2read.c (fixup_go_packaging): Update.
(new_symbol): Update.
* language.c (language_alloc_type_symbol): Update.
* mdebugread.c (new_symbol): Update.
* minsyms.c (minimal_symbol_reader::record_full): Update.
* psymtab.c (add_psymbol_to_bcache): Update.
* stabsread.c (define_symbol): Update.
(read_enum_type): Update.
* symtab.c (symbol_set_language): Make this a member function...
(general_symbol_info::set_language): ... here.
* symtab.h (struct general_symbol_info) <set_language>: New function.
(SYMBOL_SET_LANGUAGE): Remove.
(symbol_set_language): Remove.
Change-Id: Ideafb6c384004b9adef793a1192735c501da41d5
Instead of using SYMBOL_LANGUAGE (sym) = foo.
Having only a single way to set a symbol's language is clearer and this
is also a requirement for making set_language a member function.
gdb/ChangeLog:
2019-12-15 Christian Biesinger <cbiesinger@google.com>
* ada-exp.y (write_ambiguous_var): Call symbol_set_language to
set the language of sym.
* language.c (language_alloc_type_symbol): Likewise.
Change-Id: I85338ea2e4121155f2da222fe0aa6b7d3ffe26f7
Easier to read, shorter, and will later make it possible to make the
name field private.
gdb/ChangeLog:
2019-11-27 Christian Biesinger <cbiesinger@google.com>
* ada-exp.y (write_ambiguous_var): Replace SYMBOL_SET_LINKAGE_NAME
with sym->set_linkage_name.
* coffread.c (coff_read_enum_type): Likewise.
* mdebugread.c (parse_symbol): Likewise.
* stabsread.c (patch_block_stabs): Likewise.
(define_symbol): Likewise.
(read_enum_type): Likewise.
(common_block_end): Likewise.
* symtab.h (struct general_symbol_info) <set_linkage_name>: New
function.
(SYMBOL_SET_LINKAGE_NAME): Remove.
* xcoffread.c (process_xcoff_symbol): Replace SYMBOL_SET_LINKAGE_NAME
with sym->set_linkage_name.
Change-Id: I174a0542c014f1b035070068076308bb8ae79abb
Since this is now no longer a POD, also give it a constructor that
initializes all fields. (I have considered overloading operator new
to zero-initialize the memory instead; let me know if you prefer that)
gdb/ChangeLog:
2019-11-12 Christian Biesinger <cbiesinger@google.com>
* ada-exp.y (write_ambiguous_var): Update.
* buildsym.c (add_symbol_to_list): Update.
* dwarf2read.c (read_variable): Update.
(new_symbol): Update.
* jit.c (finalize_symtab): Update.
* language.c (language_alloc_type_symbol): Update.
* symtab.c (fixup_symbol_section): Update.
(initialize_objfile_symbol_1): Move code to...
(initialize_objfile_symbol): ...here. Remove now-unnecessary memset.
(allocate_symbol): Update.
(allocate_template_symbol): Update.
(get_symbol_address): Update.
* symtab.h (struct symbol): Inherit from general_symbol_info instead
of having as a field, and add a constructor.
(SYMBOL_VALUE): Update.
(SYMBOL_VALUE_ADDRESS): Update.
(SET_SYMBOL_VALUE_ADDRESS): Update.
(SYMBOL_VALUE_BYTES): Update.
(SYMBOL_VALUE_COMMON_BLOCK): Update.
(SYMBOL_BLOCK_VALUE): Update.
(SYMBOL_VALUE_CHAIN): Update.
(SYMBOL_LANGUAGE): Update.
(SYMBOL_SECTION): Update.
(SYMBOL_OBJ_SECTION): Update.
(SYMBOL_SET_LANGUAGE): Update.
(SYMBOL_SET_LINKAGE_NAME): Update.
(SYMBOL_SET_NAMES): Update.
(SYMBOL_NATURAL_NAME): Update.
(SYMBOL_LINKAGE_NAME): Update.
(SYMBOL_DEMANGLED_NAME): Update.
(SYMBOL_SEARCH_NAME): Update.
(SYMBOL_MATCHES_SEARCH_NAME): Update.
(struct symbol): Update.
(struct template_symbol): Update.
(struct rust_vtable_symbol): Update.
* xcoffread.c (SYMBOL_DUP): Update.
Change-Id: I05b1628455bcce3efaa101e65ef051708d17eb07
This makes it safer to use in general, and also allows using it on a
background thread in the future.
Inspired by tromey's patch at:
1226cbdfa4
(however, implemented in a different way)
gdb/ChangeLog:
2019-09-23 Christian Biesinger <cbiesinger@google.com>
* ada-exp.y (write_object_remaining): Update.
* ada-lang.c (ada_decode): Return a std::string instead of a char*
and eliminate the static buffer.
(ada_decode_symbol): Update.
(ada_la_decode): Update.
(ada_sniff_from_mangled_name): Update.
(is_valid_name_for_wild_match): Update.
(ada_lookup_name_info::matches): Update and simplify.
(name_matches_regex): Update.
(ada_add_global_exceptions): Update.
* ada-lang.h (ada_decode): Update signature.
* ada-varobj.c (ada_varobj_describe_simple_array_child): Update.
* dwarf-index-write.c (debug_names::insert): Update.
gnat encodes character enumeration literals using a few different
schemes. The gnat compiler documented the "QU" and "QW" encodings,
but failed to document that a simpler encoding was used for certain
characters.
This patch updates gdb to handle this simple Q encoding. Note that
wide character literals are still not handled.
gdb/ChangeLog
2019-08-15 Tom Tromey <tromey@adacore.com>
* ada-exp.y (convert_char_literal): Handle "Q%c" encoding.
* ada-lang.c (ada_enum_name): Likewise.
gdb/testsuite/ChangeLog
2019-08-15 Tom Tromey <tromey@adacore.com>
* gdb.ada/char_enum.exp: Add regression tests.
* gdb.ada/char_enum/foo.adb (Char_Enum_Type): Use '_'
and '0'.
(Char, Gchar): Update.
* gdb.ada/char_enum/pck.ads (Global_Enum_Type): Use '+'.
This introduces obstack_strndup and changes gdb to use it.
Note that obstack_strndup works like savestring, and not exactly like
xstrndup. The difference is that obstack_strndup uses the passed-in
length, while xstrndup uses strnlen to choose the length.
gdb/ChangeLog
2019-08-06 Tom Tromey <tom@tromey.com>
* stabsread.c (patch_block_stabs, read_one_struct_field)
(read_enum_type): Use obstack_strndup.
* rust-exp.y (rust_parser::copy_name): Use obstack_strndup.
* gdb_obstack.h (obstack_strndup): Use obstack_strndup.
* dwarf2read.c (guess_full_die_structure_name)
(anonymous_struct_prefix): Use obstack_strndup.
* dbxread.c (cp_set_block_scope): Use obstack_strndup.
* c-exp.y (yylex): Use obstack_strndup.
* ada-exp.y (write_object_renaming, write_ambiguous_var)
(write_var_or_type): Use obstack_strndup.
All callers of ada_lookup_symbol pass NULL for the
"is_a_field_of_this" parameter, so remove it.
gdb/ChangeLog
2019-07-01 Tom Tromey <tromey@adacore.com>
* ada-exp.y (find_primitive_type): Update.
* ada-lang.h (ada_lookup_symbol): Update.
* ada-lang.c (ada_lookup_symbol): Remove "is_a_field_of_this"
parameter.
(ada_lookup_encoded_symbol, ada_lookup_symbol_nonlocal): Update.
We found a case where a "bt" was very slow with Ada code. Profiling
with callgrind showed this to be primarily due to calls to
find_old_style_renaming_symbol. Because new-style renaming symbols
were implemented in 2007, it seems safe enough to remove this old
code.
A "-batch -ex bt" test on a large Ada program improves from:
13.23user 0.57system 0:13.82elapsed 99%CPU (0avgtext+0avgdata 571408maxresident)k
to
4.25user 0.48system 0:04.74elapsed 99%CPU (0avgtext+0avgdata 559844maxresident)k
with this patch.
Tested on x86-64 Fedora 29. Joel reviewed this internally; and as it
is Ada-specific, I am checking it in.
gdb/ChangeLog
2019-05-28 Tom Tromey <tromey@adacore.com>
* ada-lang.c (ada_remove_Xbn_suffix)
(find_old_style_renaming_symbol)
(parse_old_style_renaming): Remove.
(ada_find_renaming_symbol): Don't call
find_old_style_renaming_symbol.
(ada_is_renaming_symbol): Rename from
ada_find_renaming_symbol. Remove "block" parameter. Return
bool. Now static.
(ada_read_var_value): Update and simplify.
* ada-exp.y (write_var_or_type): Remove old code.
An internal bug report points out that, when a global character enum
type is used, casting fails, like:
(gdb) print global_char_enum'('F')
$1 = 70
The bug here turns out to be that enumerators are qualified, so for
example the mangled name might be "pck__QU48", rather than "QU48".
This patch fixes the problem by only examining the suffix of the
enumerator. This is ok because the type is already known, and because
the mangling scheme ensures that there won't be clashes.
Tested on x86-64 Fedora 29.
gdb/ChangeLog
2019-05-03 Tom Tromey <tromey@adacore.com>
* ada-exp.y (convert_char_literal): Check suffix of each
enumerator.
gdb/testsuite/ChangeLog
2019-05-03 Tom Tromey <tromey@adacore.com>
* gdb.ada/char_enum/pck.ads (Global_Enum_Type): New type.
* gdb.ada/char_enum/foo.adb: Use Global_Enum_Type.
* gdb.ada/char_enum.exp: Add test.
This patch comes from PR ada/21406. It adds the noyywrap option to
ada-lex.l. This was already done (by the same author) for other .l
files in the binutils-gdb tree, so it seems reasonably safe.
Tested on x86-64 Fedora 29.
gdb/ChangeLog
2019-05-03 Dilyan Palauzov <dilyan.palauzov@aegee.org>
PR ada/21406:
* ada-exp.y (yywrap): Don't define.
* ada-lex.l (%option): Add noyywrap
(yywrap): Remove.
This changes parse_language into a method of parser_state. This patch
was written by a script.
gdb/ChangeLog
2019-04-04 Tom Tromey <tom@tromey.com>
* rust-exp.y: Replace "parse_language" with method call.
* p-exp.y:
(yylex): Replace "parse_language" with method call.
* m2-exp.y:
(yylex): Replace "parse_language" with method call.
* go-exp.y (classify_name): Replace "parse_language" with method
call.
* f-exp.y (yylex): Replace "parse_language" with method call.
* d-exp.y (lex_one_token): Replace "parse_language" with method
call.
* c-exp.y:
(lex_one_token, classify_name, yylex): Replace "parse_language"
with method call.
* ada-exp.y (find_primitive_type, type_char)
(type_system_address): Replace "parse_language" with method call.
PR gdb/24060 points out a compilation failure of the C, Fortran and Pascal
parsers when they are built using the macOS system bison. The bug is a name
clash between the VARIABLE token name and the VARIABLE enumerator in ui-out.h.
This patch renames VARIABLE in c-exp.y, f-exp.y and p-exp.y to DOLLAR_VARIABLE
to avoid the clash. It also renames similar variables in other .y files so
that all languages use the same name.
gdb/ChangeLog
2019-01-07 Tom Tromey <tom@tromey.com>
2019-01-07 Simon Marchi <simon.marchi@ericsson.com>
PR gdb/24060:
* ada-exp.y (DOLLAR_VARIABLE): Rename from SPECIAL_VARIABLE.
* ada-lex.l (DOLLAR_VARIABLE): Likewise.
* c-exp.y (DOLLAR_VARIABLE): Rename from VARIABLE.
* f-exp.y (DOLLAR_VARIABLE): Likewise.
* m2-exp.y (DOLLAR_VARIABLE): Rename from INTERNAL_VAR.
* p-exp.y (DOLLAR_VARIABLE): Rename from VARIABLE.
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
While working on the parser code, I noticed that yyerror is exported
from each parser. It is used by this code in parse.c:
TRY
{
if (lang->la_parser (&ps))
lang->la_error (NULL);
}
However, it seems to me that la_error will never be called here,
because in every case, la_parser throws an exception on error -- each
implementation of yyerror just calls error.
So, this patch removes la_error and makes all the yyerror functions
static. This is handy primarily because it makes it simpler to make
the expression parsers pure.
Tested by the buildbot.
gdb/ChangeLog
2018-06-18 Tom Tromey <tom@tromey.com>
* rust-lang.h (rust_yyerror): Don't declare.
* rust-lang.c (rust_language_defn): Update.
* rust-exp.y (yyerror): Now static.
* parse.c (parse_exp_in_context_1): Update.
* p-lang.h (p_yyerror): Don't declare.
* p-lang.c (p_language_defn): Update.
* p-exp.y (yyerror): Now static.
* opencl-lang.c (opencl_language_defn): Update.
* objc-lang.c (objc_language_defn): Update.
* m2-lang.h (m2_yyerror): Don't declare.
* m2-lang.c (m2_language_defn): Update.
* m2-exp.y (yyerror): Now static.
* language.h (struct language_defn) <la_error>: Remove.
* language.c (unk_lang_error): Remove.
(unknown_language_defn, auto_language_defn): Remove.
* go-lang.h (go_yyerror): Don't declare.
* go-lang.c (go_language_defn): Update.
* go-exp.y (yyerror): Now static.
* f-lang.h (f_yyerror): Don't declare.
* f-lang.c (f_language_defn): Update.
* f-exp.y (yyerror): Now static.
* d-lang.h (d_yyerror): Don't declare.
* d-lang.c (d_language_defn): Update.
* d-exp.y (yyerror): Now static.
* c-lang.h (c_yyerror): Don't declare.
* c-lang.c (c_language_defn, cplus_language_defn)
(asm_language_defn, minimal_language_defn): Update.
* c-exp.y (yyerror): Now static.
* ada-lang.h (ada_yyerror): Don't declare.
* ada-lang.c (ada_language_defn): Update.
* ada-exp.y (yyerror): Now static.
This removes the last cleanups from the Ada code by changing
ada_lookup_symbol_list's out parameter to be a std::vector, and then
fixing up the fallout.
This is a relatively shallow change. Deeper changes are possible, for
example (1) changing various other functions to accept a vector rather
than a pointer, or (2) changing ada_lookup_symbol_list to return the
vector and omitting the length entirely.
Tested by the buildbot, but I'll wait for Joel to test these as well.
gdb/ChangeLog
2018-06-04 Tom Tromey <tom@tromey.com>
* ada-lang.h (ada_lookup_symbol_list): Update.
* ada-lang.c (resolve_subexp): Update.
(symbols_are_identical_enums): Change type of syms. Remove nsyms
parameter.
(remove_extra_symbols, remove_irrelevant_renamings): Likewise.
(ada_lookup_symbol_list_worker, ada_lookup_symbol_list): Change
results parameter to std::vector.
(ada_iterate_over_symbols, ada_lookup_symbol, get_var_value):
Update.
* ada-exp.y (block_lookup): Update.
(select_possible_type_sym): Change type of syms. Remove nsyms
parameter.
(write_var_or_type, write_name_assoc): Update.
This patch fixes a problem with using the MI -var-update command
to access the values of registers in frames other than the current
frame. The patch includes a test that demonstrates the problem:
* run so there are several frames on the stack
* create a fixed varobj for $pc in each frame, #'s 1 and above
* step one instruction, to modify the value of $pc
* call -var-update for each of the previously created varobjs
to verify that they are not reported as having changed.
Without the patch, the -var-update command reported that $pc for all
frames 1 and above had changed to the value of $pc in frame 0.
A varobj is created as either fixed, the expression is evaluated within
the context of a specific frame, or floating, the expression is
evaluated within the current frame, whatever that may be.
When a varobj is created by -var-create we set two fields of the varobj
to track the context in which the varobj was created, these two fields
are varobj->root->frame and var->root->valid_block.
If a varobj is of type fixed, then, when we subsequently try to
reevaluate the expression associated with the varobj we must determine
if the original frame (and block) is still available, if it is not then
the varobj can no longer be evaluated.
The problem is that for register expressions varobj->root->valid_block
is not set correctly. This block tracking is done using the global
'innermost_block' which is set in the various parser files (for example
c-exp.y). However, this is not set for register expressions.
The fix then seems like it should be to just update the innermost block
when parsing register expressions, however, that solution causes several
test regressions.
The problem is that in some cases we rely on the expression parsing
code not updating the innermost block for registers, one example is
when we parse the expression for a 'display' command. The display
commands treats registers like floating varobjs, but symbols are
treated like fixed varobjs. So 'display $reg_name' will always show
the value of '$reg_name' even as the user moves from frame to frame,
while 'display my_variable' will only show 'my_variable' while it is
in the current frame and/or block, when the user moves to a new frame
and/or block (even one with a different 'my_variable' in) then the
display of 'my_variable' stops. For the case of 'display', without
the option to force fixed or floating expressions, the current
behaviour is probably the best choice. For the varobj system though,
we can choose between floating and fixed, and we should try to make
this work for registers.
There's only one existing test case that needs to be updated, in that
test a fixed varobj is created using a register, the MI output now
include the thread-id in which the varobj should be evaluated, which I
believe is correct behaviour. I also added a new floating test case
into the same test script, however, right now this also includes the
thread-id in the expected output, which I believe is an existing gdb
bug, which I plan to fix next.
Tested on x86_64 Linux native and native-gdbserver, no regressions.
gdb/ChangeLog:
PR mi/20395
* ada-exp.y (write_var_from_sym): Pass extra parameter when
updating innermost block.
* parse.c (innermost_block_tracker::update): Take extra type
parameter, and check types match before updating innermost block.
(write_dollar_variable): Update innermost block for registers.
* parser-defs.h (enum innermost_block_tracker_type): New enum.
(innermost_block_tracker::innermost_block_tracker): Initialise
m_types member.
(innermost_block_tracker::reset): Take type parameter.
(innermost_block_tracker::update): Take type parameter, and pass
type through as needed.
(innermost_block_tracker::m_types): New member.
* varobj.c (varobj_create): Pass type when reseting innermost
block.
gdb/testsuite/ChangeLog:
* gdb.mi/basics.c: Add new global.
* gdb.mi/mi-frame-regs.exp: New file.
* gdb.mi/mi-var-create-rtti.exp: Update expected results, add new
case.
This commit is preparation for a later change, at this point there
should be no user visible change.
We currently maintain a global innermost_block which tracks the most
inner block encountered when parsing an expression.
This commit wraps the innermost_block into a new class, and switches all
direct accesses to the variable to use the class API.
gdb/ChangeLog:
* ada-exp.y (write_var_from_sym): Switch to innermost_block API.
* ada-lang.c (resolve_subexp): Likewise.
* breakpoint.c (set_breakpoint_condition) Likewise.
(watch_command_1) Likewise.
* c-exp.y (variable): Likewise.
* d-exp.y (PrimaryExpression): Likewise.
* f-exp.y (variable): Likewise.
* go-exp.y (variable): Likewise.
* m2-exp.y (variable): Likewise.
* objfiles.c (objfile::~objfile): Likewise.
* p-exp.y (variable): Likewise.
* parse.c (innermost_block): Change type.
* parser-defs.h (class innermost_block_tracker): New.
(innermost_block): Change to innermost_block_tracker.
* printcmd.c (display_command): Switch to innermost_block API.
(do_one_display): Likewise.
* rust-exp.y (do_one_display): Likewise.
* symfile.c (clear_symtab_users): Likewise.
* varobj.c (varobj_create): Switch to innermost_block API, replace
use of innermost_block with block stored on varobj object.
Consider the following code, which creates a local variable B
which is a renaming whose expression references a subprogram
parameter:
procedure Flip (Bits : in out Bits_Type; I : Natural) is
begin
declare
B : Boolean renames Bits (I);
begin
B := not B; -- BREAK
end;
end Flip;
Trying to print the value of B when at the "BREAK" line currently
does not work:
(gdb) p b
Could not find i
What happens is the following: For the renaming, GNAT generates
a variable whose name is encoded as follow:
b___XR_bits___XEXSi
GDB properly detects that variable, determines that, to compute
the variable's value, we start from the symbol "Bits", which
we then have to subscript (XS) using 'i' as the index. The error
occurs while trying to find 'i'.
This is because we forgot to pass the block in the call to
ada_lookup_encoded_symbol, which this patch fixes.
gdb/ChangeLog:
* ada-exp.y (write_object_renaming): When subscripting an array
using a symbol as the index, pass the block in call to
ada_lookup_encoded_symbol when looking that symbol up.
gdb/testsuite/ChangeLog:
* gdb.ada/rename_subscript_param: New testcase.
Tested on x86_64-linux.
Note: This requires the following GCC patch:
| 2017-04-25 Pierre-Marie de Rodat <derodat@adacore.com>
|
| * exp_dbug.adb: In Debug_Renaming_Declaration,
| when dealing with indexed component, accept to produce a renaming
| symbol when the index is an IN parameter or when it is a name
| defined in an outer scope.
One of our users reported that trying to print the following expression,
caused GDB to SEGV:
(gdb) print some_package.some_type (val)
In this particular instance, the crash occurred inside ada_args_match
because it is given a NULL "func", leading to the SEGV because of:
struct type *func_type = SYMBOL_TYPE (func);
This NULL symbol comes from a list of symbols which was given to
ada_resolve_function (parameter called "syms") which then iterates
over each of them to discard the ones that don't match the actuals:
for (k = 0; k < nsyms; k += 1)
{
struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
if (ada_args_match (syms[k].symbol, args, nargs)
&& (fallback || return_match (type, context_type)))
[...]
}
What's really interesting is that, when entering the block above for
the first time, all entries in SYMS have a valid (non-NULL) symbol.
However, once we return from the call to ada_check_typedef, the first
entry of our SYMS table gets set to all zeros:
(gdb) p syms[0]
$2 = {symbol = 0x0, block = 0x0}
Hence the call to ada_args_match with a NULL symbol, and the ensuing
SEGV.
To find out why this happen, we need to step back a little and look
at how syms was allocated. This list of symbols comes from a symbol
lookup, which means ada_lookup_symbol_list_worker. We have our first
hint when we look at the function's documentation and see:
This vector is transient---good only to the next call of
ada_lookup_symbol_list.
Implementation-wise, this is done by using a static global obstack,
which we just re-initialize each time ada_lookup_symbol_list_worker
gets called:
obstack_free (&symbol_list_obstack, NULL);
obstack_init (&symbol_list_obstack);
This property was probably established in order to facilitate the use
of the returned vector, since the users of that function would not have
to worry about releasing that memory when no longer needed. However,
I found during this investigation that it is all to easy to indirectly
trigger another symbol lookup while still using the results of a previous
lookup.
In our particular case, there is the call to ada_check_typedef, which
leads to check_typedef. As it happens, my first symbol had a type which
was a typedef to a stub type, so check_typedef calls lookup_symbol to
find the non-stub version. This in turn eventually leads us back to
ada_lookup_symbol_list_worker, where the first thing it does is free
the memory area when our list of symbols have been residing and then
recreates a new one. in other words, SYMS then becomes a dangling
pointer!
This patch fixes the issue by having ada_lookup_symbol_list_worker
return a copy of the list of symbols, with the responsibility of
deallocating that list now transfered to the users of that list.
More generally speaking, it is absolutely amazing that we haven't seen
consequences of this issue before. This can happen fairly frequently.
For instance, I found that ada-exp.y::write_var_or_type calls
ada_lookup_symbol_list, and then, while processing that list, calls
select_possible_type_sym, which leads to ada_prefer_type, eventually
leading to ada_check_typedef again (via eg. ada_is_array_descriptor_type).
Even more amazing is the fact that, while I was able to produce multiple
scenarios where the corruption occurs, none of them leads to incorrect
behavior at the user level. In other words, it requires a very precise
set of conditions for the corruption to become user-visible, and
despite having a megalarge program where the crash occured, using that
as a template for creating a reproducer did not work (pb goes away).
This is why this patch does not come with a reproducer. On the other hand,
this should not be a problem in terms of testing coverage, as the changes
are made in common areas which, at least for the most part, are routinely
exercised during testing.
gdb/ChangeLog:
* ada-lang.c (symbol_list_obstack): Delete.
(resolve_subexp): Make sure "candidates" gets xfree'ed.
(ada_lookup_symbol_list_worker): Remove the limitation that
the result is only good until the next call, now making it
the responsibility of the caller to free the result when no
longer needed. Adjust the function's intro comment accordingly.
(ada_lookup_symbol_list): Adjust the function's intro comment.
(ada_iterate_over_symbols): Make sure "results" gets xfree'ed.
(ada_lookup_encoded_symbol, get_var_value): Likewise.
(_initialize_ada_language): Remove symbol_list_obstack
initialization.
* ada-exp.y (block_lookup): Make sure "syms" gets xfree'ed.
(write_var_or_type, write_name_assoc): Likewise.
Tested on x86_64-linux.
When debugging an Ada program, and inserting a watchpoint tracking
a local variable, the watchpoint doesn't get automatically deleted
upon leaving that variable's scope. This watchpoint then starts
creating problems later on, when trying to resume the program's
execution from a location outside of the watchpoint's scope:
(gdb) c
Continuing.
Breakpoint 2, foo_p708_025 () at foo_p708_025.adb:7
7 Do_Nothing (Val);
(gdb) n
No frame is currently executing in block pck.get_val.
Command aborted.
(gdb) c
Continuing.
No frame is currently executing in block pck.get_val.
Command aborted.
The expected output is the following:
- The program's execution after the first continue should stop
as soon as we reach the end of the watchpoint's scope, and
the debugger should be deleting it.
- Then we can continue until reaching breakpoint 2 above;
- After which we should be able to do next/continue as usual.
The reason the watchpoint is not automatically deleted at scope exit
is because the watchpoint is not marked as being scope-specific
(b->exp_valid_block is equal NULL), and this is because the
symbol lookup for our local variable failed to set the innermost_block
global variable during the lookup.
More precisely, if we look at watch_command_1, we do the following:
innermost_block = NULL;
[...]
exp = parse_exp_1 (&arg, 0, 0, 0);
[...]
exp_valid_block = innermost_block;
Currently, innermost_block stays NULL after the call to parse_exp_1.
Digging further, this innermost_block is typically set during symbol
lookup when the symbol is considered to have a frame-relative address.
For instance, in c-exp.y, we see some code like the following:
if (symbol_read_needs_frame (sym.symbol))
{
if (innermost_block == 0
|| contained_in (sym.block,
innermost_block))
innermost_block = sym.block;
}
We actually have the exact same mechanism in ada-exp.y, except
that it vhas accidently been turned off. See write_var_from_sym,
where we start with:
if (orig_left_context == NULL && symbol_read_needs_frame (sym))
{
if (innermost_block == 0
|| contained_in (block, innermost_block))
innermost_block = block;
}
In this case, orig_left_context is a parameter, and looking at
the point of call in write_var_or_type, we see:
if (nsyms == 1)
{
write_var_from_sym (par_state, block, syms[0].block,
syms[0].symbol);
In the call above, the paramater we are interested in is "block",
which is a parameter for write_var_or_type as well, except we
explicitly override its value at the beginning when found to be NULL:
if (block == NULL)
block = expression_context_block;
So the block we pass to write_var_from_sym is not NULL, and
we therefore don't set innermost_block, which leads to the watchpoint
no longer being marked as scope-specific.
The handling of orig_left_context in write_var_from_sym was there
to handle the case where a user writes an expression where the symbol
is qualified with a scope (Eg: "function::variable"). But it appears
that handling this is specifically here is no longer necessary,
so this patch simply removes that parameter and the associated check,
and then updates all the points of calls.
Interestingly, this also affects GDB/MI, and in particular varobjs,
because local variables are now properly reported as having a block,
which causes the associated varob to have a "thread-id" field.
This patch also adjusts a couple of Ada/gdb-mi tests.
gdb/ChangeLog:
* ada-exp.y (write_var_from_sym): Remove parameter
"orig_left_context". Update all callers.
gdb/testsuite/ChangeLog:
* gdb.ada/scoped_watch: New testcase.
* gdb.ada/watch_arg.exp: Adjust expected behavior to the behavior
which is actually correct.
* gdb.ada/mi_interface.exp: Add missing thread-id in expected varobj.
* gdb.ada/mi_var_array.exp: Add missing thread-id in expected varobj.
When parsing floating-point literals, the language parsers currently
use parse_float or some equivalent routine to parse the input string
into a DOUBLEST, which is then stored within a OP_DOUBLE expression
node. When evaluating the expression, the OP_DOUBLE is finally
converted into a value in target format.
On the other hand, *decimal* floating-point literals are parsed
directly into target format and stored that way in a OP_DECFLOAT
expression node. In order to eliminate the DOUBLEST, this patch
therefore unifies the handling of binary and decimal floating-
point literals and stores them both in target format within a
new OP_FLOAT expression node, replacing both OP_DOUBLE and
OP_DECFLOAT.
In order to store literals in target format, the parse_float
routine needs to know the type of the literal. All parsers
therefore need to be changed to determine the appropriate type
(e.g. by detecting suffixes) *before* calling parse_float,
instead of after it as today. However, this change is mostly
straightforward -- again, this is already done for decimal FP
today.
The core of the literal parsing is moved into a new routine
floatformat_from_string, mirroring floatformat_to_string.
The parse_float routine now calls either floatformat_from_string
or decimal_from_sting, allowing it to handle any type of FP
literal.
All language parsers need to be updated. Some notes on
specific changes to the various languages:
- C: Decimal FP is now handled in parse_float, and no longer
needs to be handled specially.
- D: Straightforward.
- Fortran: Still used a hard-coded "atof", also replaced by
parse_float now. Continues to always use builtin_real_s8
as the type of literal, even though this is probably wrong.
- Go: This used to handle "f" and "l" suffixes, even though
the Go language actually doesn't support those. I kept this
support for now -- maybe revisit later. Note the the GDB
test suite for some reason actually *verifies* that GDB supports
those unsupported suffixes ...
- Pascal: Likewise -- this handles suffixes that are not
supported in the language standard.
- Modula-2: Like Fortran, used to use "atof".
- Rust: Mostly straightforward, except for a unit-testing hitch.
The code use to set a special "unit_testing" flag which would
cause "rust_type" to always return NULL. This makes it not
possible to encode a literal into target format (which type?).
The reason for this flag appears to have been that during
unit testing, there is no "rust_parser" context set up, which
means no "gdbarch" is available to use its types. To fix this,
I removed the unit_testing flag, and instead simply just set up
a dummy rust_parser context during unit testing.
- Ada: This used to check sizeof (DOUBLEST) to determine which
type to use for floating-point literal. This seems questionable
to begin with (since DOUBLEST is quite unrelated to target formats),
and in any case we need to get rid of DOUBLEST. I'm now simply
always using the largest type (builtin_long_double).
gdb/ChangeLog:
2017-10-25 Ulrich Weigand <uweigand@de.ibm.com>
* doublest.c (floatformat_from_string): New function.
* doublest.h (floatformat_from_string): Add prototype.
* std-operator.def (OP_DOUBLE, OP_DECFLOAT): Remove, replace by ...
(OP_FLOAT): ... this.
* expression.h: Do not include "doublest.h".
(union exp_element): Replace doubleconst and decfloatconst by
new element floatconst.
* ada-lang.c (resolve_subexp): Handle OP_FLOAT instead of OP_DOUBLE.
(ada_evaluate_subexp): Likewise.
* eval.c (evaluate_subexp_standard): Handle OP_FLOAT instead of
OP_DOUBLE and OP_DECFLOAT.
* expprint.c (print_subexp_standard): Likewise.
(dump_subexp_body_standard): Likewise.
* breakpoint.c (watchpoint_exp_is_const): Likewise.
* parse.c: Include "dfp.h".
(write_exp_elt_dblcst, write_exp_elt_decfloatcst): Remove.
(write_exp_elt_floatcst): New function.
(operator_length_standard): Handle OP_FLOAT instead of OP_DOUBLE
and OP_DECFLOAT.
(operator_check_standard): Likewise.
(parse_float): Do not accept suffix. Take type as input. Return bool.
Return target format buffer instead of host DOUBLEST.
Use floatformat_from_string and decimal_from_string to parse
either binary or decimal floating-point types.
(parse_c_float): Remove.
* parser-defs.h: Do not include "doublest.h".
(write_exp_elt_dblcst, write_exp_elt_decfloatcst): Remove.
(write_exp_elt_floatcst): Add prototype.
(parse_float): Update prototype.
(parse_c_float): Remove.
* c-exp.y: Do not include "dfp.h".
(typed_val_float): Use byte buffer instead of DOUBLEST.
(typed_val_decfloat): Remove.
(DECFLOAT): Remove.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Update to new parse_float interface.
Parse suffixes and determine type before calling parse_float.
Handle decimal and binary FP types the same way.
* d-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST.
(FLOAT_LITERAL): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Update to new parse_float interface.
Parse suffixes and determine type before calling parse_float.
* f-exp.y: Replace dval by typed_val_float.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Use parse_float instead of atof.
* go-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST.
(parse_go_float): Remove.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Call parse_float instead of parse_go_float.
Parse suffixes and determine type before calling parse_float.
* p-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Update to new parse_float interface.
Parse suffixes and determine type before calling parse_float.
* m2-exp.y: Replace dval by byte buffer val.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Call parse_float instead of atof.
* rust-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST.
(lex_number): Call parse_float instead of strtod.
(ast_dliteral): Use OP_FLOAT instead of OP_DOUBLE.
(convert_ast_to_expression): Handle OP_FLOAT instead of OP_DOUBLE.
Use write_exp_elt_floatcst.
(unit_testing): Remove static variable.
(rust_type): Do not check unit_testing.
(rust_lex_tests): Do not set uint_testing. Set up dummy rust_parser.
* ada-exp.y (type_float, type_double): Remove.
(typed_val_float): Use byte buffer instead of DOUBLEST.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
* ada-lex.l (processReal): Use parse_float instead of sscanf.