Background
----------
When a thread-specific breakpoint is deleted as a result of the
specific thread exiting the function remove_threaded_breakpoints is
called which sets the disposition of the breakpoint to
disp_del_at_next_stop and sets the breakpoint number to 0. Setting
the breakpoint number to zero has the effect of hiding the breakpoint
from the user. We also print a message indicating that the breakpoint
has been deleted.
It was brought to my attention during a review of another patch[1]
that setting a breakpoints number to zero will suppress the MI
breakpoint-deleted notification for that breakpoint, and indeed, this
can be seen to be true, in delete_breakpoint, if the breakpoint number
is zero, then GDB will not notify the breakpoint_deleted observer.
It seems wrong that a user created, thread-specific breakpoint, will
have a =breakpoint-created notification, but will not have a
=breakpoint-deleted notification. I suspect that this is a bug.
[1] https://sourceware.org/pipermail/gdb-patches/2023-February/196560.html
The First Problem
-----------------
During my initial testing I wanted to see how GDB handled the
breakpoint after it's number was set to zero. To do this I created
the testcase gdb.threads/thread-bp-deleted.exp. This test creates a
worker thread, which immediately exits. After the worker thread has
exited the main thread spins in a loop.
In GDB I break once the worker thread has been created and place a
thread-specific breakpoint, then use 'continue&' to resume the
inferior in non-stop mode. The worker thread then exits, but the main
thread never stops - instead it sits in the spin. I then tried to use
'maint info breakpoints' to see what GDB thought of the
thread-specific breakpoint.
Unfortunately, GDB crashed like this:
(gdb) continue&
Continuing.
(gdb) [Thread 0x7ffff7c5d700 (LWP 1202458) exited]
Thread-specific breakpoint 3 deleted - thread 2 no longer in the thread list.
maint info breakpoints
... snip some output ...
Fatal signal: Segmentation fault
----- Backtrace -----
0x5ffb62 gdb_internal_backtrace_1
../../src/gdb/bt-utils.c:122
0x5ffc05 _Z22gdb_internal_backtracev
../../src/gdb/bt-utils.c:168
0x89965e handle_fatal_signal
../../src/gdb/event-top.c:964
0x8997ca handle_sigsegv
../../src/gdb/event-top.c:1037
0x7f96f5971b1f ???
/usr/src/debug/glibc-2.30-2-gd74461fa34/nptl/../sysdeps/unix/sysv/linux/x86_64/sigaction.c:0
0xe602b0 _Z15print_thread_idP11thread_info
../../src/gdb/thread.c:1439
0x5b3d05 print_one_breakpoint_location
../../src/gdb/breakpoint.c:6542
0x5b462e print_one_breakpoint
../../src/gdb/breakpoint.c:6702
0x5b5354 breakpoint_1
../../src/gdb/breakpoint.c:6924
0x5b58b8 maintenance_info_breakpoints
../../src/gdb/breakpoint.c:7009
... etc ...
As the thread-specific breakpoint is set to disp_del_at_next_stop, and
GDB hasn't stopped yet, then the breakpoint still exists in the global
breakpoint list.
The breakpoint will not show in 'info breakpoints' as its number is
zero, but it will show in 'maint info breakpoints'.
As GDB prints the breakpoint, the thread-id for the breakpoint is
printed as part of the 'stop only in thread ...' line. Printing the
thread-id involves calling find_thread_global_id to convert the global
thread-id into a thread_info*. Then calling print_thread_id to
convert the thread_info* into a string.
The problem is that find_thread_global_id returns nullptr as the
thread for the thread-specific breakpoint has exited. The
print_thread_id assumes it will be passed a non-nullptr. As a result
GDB crashes.
In this commit I've added an assert to print_thread_id (gdb/thread.c)
to check that the pointed passed in is not nullptr. This assert would
have triggered in the above case before GDB crashed.
MI Notifications: The Dangers Of Changing A Breakpoint's Number
---------------------------------------------------------------
Currently the delete_breakpoint function doesn't trigger the
breakpoint_deleted observer for any breakpoint with the number zero.
There is a comment explaining why this is the case in the code; it's
something about watchpoints. But I did consider just removing the 'is
the number zero' guard and always triggering the breakpoint_deleted
observer, figuring that I'd then fix the watchpoint issue some other
way.
But I realised this wasn't going to be good enough. When the MI
notification was delivered the number would be zero, so any frontend
parsing the notifications would not be able to match
=breakpoint-deleted notification to the earlier =breakpoint-created
notification.
What this means is that, at the point the breakpoint_deleted observer
is called, the breakpoint's number must be correct.
MI Notifications: The Dangers Of Delaying Deletion
--------------------------------------------------
The test I used to expose the above crash also brought another problem
to my attention. In the above test we used 'continue&' to resume,
after which a thread exited, but the inferior didn't stop. Recreating
the same test in the MI looks like this:
-break-insert -p 2 main
^done,bkpt={number="2",type="breakpoint",disp="keep",...<snip>...}
(gdb)
-exec-continue
^running
*running,thread-id="all"
(gdb)
~"[Thread 0x7ffff7c5d700 (LWP 987038) exited]\n"
=thread-exited,id="2",group-id="i1"
~"Thread-specific breakpoint 2 deleted - thread 2 no longer in the thread list.\n"
At this point the we have a single thread left, which is still
running:
-thread-info
^done,threads=[{id="1",target-id="Thread 0x7ffff7c5eb80 (LWP 987035)",name="thread-bp-delet",state="running",core="4"}],current-thread-id="1"
(gdb)
Notice that we got the =thread-exited notification from GDB as soon as
the thread exited. We also saw the CLI line from GDB, the line
explaining that breakpoint 2 was deleted. But, as expected, we didn't
see the =breakpoint-deleted notification.
I say "as expected" because the number was set to zero. But, even if
the number was not set to zero we still wouldn't see the
notification. The MI notification is driven by the breakpoint_deleted
observer, which is only called when we actually delete the breakpoint,
which is only done the next time GDB stops.
Now, maybe this is fine. The notification is delivered a little
late. But remember, by setting the number to zero the breakpoint will
be hidden from the user, for example, the breakpoint is removed from
the MI's -break-info command output.
This means that GDB is in a position where the breakpoint doesn't show
up in the breakpoint table, but a =breakpoint-deleted notification has
not yet been sent out. This doesn't seem right to me.
What this means is that, when the thread exits, we should immediately
be sending out the =breakpoint-deleted notification. We should not
wait for GDB to next stop before sending the notification.
The Solution
------------
My proposed solution is this; in remove_threaded_breakpoints, instead
of setting the disposition to disp_del_at_next_stop and setting the
number to zero, we now just call delete_breakpoint directly.
The notification will now be sent out immediately; as soon as the
thread exits.
As the number has not changed when delete_breakpoint is called, the
notification will have the correct number.
And as the breakpoint is immediately removed from the breakpoint list,
we no longer need to worry about 'maint info breakpoints' trying to
print the thread-id for an exited thread.
My only concern is that calling delete_breakpoint directly seems so
obvious that I wonder why the original patch (that added
remove_threaded_breakpoints) didn't take this approach. This code was
added in commit 49fa26b041, but the commit message offers no clues
to why this approach was taken, and the original email thread offers
no insights either[2]. There are no test regressions after making
this change, so I'm hopeful that this is going to be fine.
[2] https://sourceware.org/pipermail/gdb-patches/2013-September/106493.html
The Complication
----------------
Of course, it couldn't be that simple.
The script gdb.python/py-finish-breakpoint.exp had some regressions
during testing.
The problem was with the FinishBreakpoint.out_of_scope callback
implementation. This callback is supposed to trigger whenever the
FinishBreakpoint goes out of scope; and this includes when the thread
for the breakpoint exits.
The problem I ran into is the Python FinishBreakpoint implementation.
Specifically, after this change I was loosing some of the out_of_scope
calls.
The problem is that the out_of_scope call (of which I'm interested) is
triggered from the inferior_exit observer. Before my change the
observers were called in this order:
thread_exit
inferior_exit
breakpoint_deleted
The inferior_exit would trigger the out_of_scope call.
After my change the breakpoint_deleted notification (for
thread-specific breakpoints) occurs earlier, as soon as the
thread-exits, so now the order is:
thread_exit
breakpoint_deleted
inferior_exit
Currently, after the breakpoint_deleted call the Python object
associated with the breakpoint is released, so, when we get to the
inferior_exit observer, there's no longer a Python object to call the
out_of_scope method on.
My solution is to follow the model for how bpfinishpy_pre_stop_hook
and bpfinishpy_post_stop_hook are called, this is done from
gdbpy_breakpoint_cond_says_stop in py-breakpoint.c.
I've now added a new bpfinishpy_pre_delete_hook
gdbpy_breakpoint_deleted in py-breakpoint.c, and from this new hook
function I check and where needed call the out_of_scope method.
With this fix in place I now see the
gdb.python/py-finish-breakpoint.exp test fully passing again.
Testing
-------
Tested on x86-64/Linux with unix, native-gdbserver, and
native-extended-gdbserver boards.
New tests added to covers all the cases I've discussed above.
Approved-By: Pedro Alves <pedro@palves.net>
See the previous patches in this series for the motivation behind
these changes.
This commit contains updates to Python's QUIT handling. Ideally, we'd
like to throw gdb_exception_forced_quit through the extension
language; I made an attempt to do this for gdb_exception_quit in an
earlier version of this patch, but Pedro pointed out that it is
(almost certainly) not safe to do so.
Still, we definitely don't want to swallow the exception representing
a SIGTERM for GDB, nor do we want to force modules written in the
extension language to have to explicitly handle this case. Since the
idea is for GDB to cleanup and quit for this exception, we'll simply
call quit_force() just as if the gdb_exception_forced_quit propagation
had managed to make it back to the top level.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=26761
Tested-by: Tom de Vries <tdevries@suse.de>
Approved-By: Pedro Alves <pedro@palves.net>
Hannes filed a bug showing a crash, where a pretty-printer written in
Python could cause a use-after-free. He sent a patch, but I thought a
different approach was needed.
In a much earlier patch (see bug #12533), we changed the Python code
to release new values from the value chain when constructing a
gdb.Value. The rationale for this is that if you write a command that
does a lot of computations in a loop, all the values will be kept live
by the value chain, resulting in gdb using a large amount of memory.
However, suppose a value is passed to Python from some code in gdb
that needs to use the value after the call into Python. In this
scenario, value_to_value_object will still release the value -- and
because gdb code doesn't generally keep strong references to values (a
consequence of the ancient decision to use the value chain to avoid
memory management), this will result in a use-after-free.
This scenario can happen, as it turns out, when a value is passed to
Python for pretty-printing. Now, normally this route boxes the value
via value_to_value_object_no_release, avoiding the problematic release
from the value chain. However, if you then call Value.cast, the
underlying value API might return the same value, when is then
released from the chain.
This patch fixes the problem by changing how value boxing is done.
value_to_value_object no longer removes a value from the chain.
Instead, every spot in gdb that might construct new values uses a
scoped_value_mark to ensure that the requirements of bug #12533 are
met. And, because incoming values aren't ever released from the chain
(the Value.cast one comes earlier on the chain than the
scoped_value_mark), the bug can no longer occur. (Note that many
spots in the Python layer already take this approach, so not many
places needed to be touched.)
In the future I think we should replace the use of raw "value *" with
value_ref_ptr pretty much everywhere. This will ensure lifetime
safety throughout gdb.
The test case in this patch comes from Hannes' original patch. I only
made a trivial ("require") change to it. However, while this fails
for him, I can't make it fail on this machine; nevertheless, he tried
my patch and reported the bug as being fixed.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30044
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
[ Partial resubmission of an earlier submission by Andrew (
https://sourceware.org/pipermail/gdb-patches/2012-September/096347.html ), so
listing him as co-author. ]
With x86_64-linux and target board unix/-m32, we have:
...
(gdb) continue^M
Continuing.^M
Exception #10^M
^M
Breakpoint 3, throw_exception_1 (e=10) at py-finish-breakpoint2.cc:23^M
23 throw new int (e);^M
(gdb) FAIL: gdb.python/py-finish-breakpoint2.exp: \
check FinishBreakpoint in catch()
...
The following scenario happens:
- set breakpoint in throw_exception_1, a function that throws an exception
- continue
- hit breakpoint, with call stack main.c:38 -> throw_exception_1
- set a finish breakpoint
- continue
- hit the breakpoint again, with call stack main.c:48 -> throw_exception
-> throw_exception_1
Due to the exception, the function call did not properly terminate, and the
finish breakpoint didn't trigger. This is expected behaviour.
However, the intention is that gdb detects this situation at the next stop
and calls the out_of_scope callback, which would result here in this test-case
in a rather confusing "exception did not finish" message. So the problem is
that this message doesn't show up, in other words, the out_of_scope callback
is not called.
[ Note that the fact that the situation is detected only at the next stop
(wherever that happens to be) could be improved upon, and the earlier
submission did that by setting a longjmp breakpoint. But I'm considering this
problem out-of-scope for this patch. ]
Note that the message does show up later, at thread exit:
...
[Inferior 1 (process 20046) exited with code 0236]^M
exception did not finish ...^M
...
The decision on whether to call the out_of_scope call back is taken in
bpfinishpy_detect_out_scope_cb, and the interesting bit is here:
...
if (b->pspace == current_inferior ()->pspace
&& (!target_has_registers ()
|| frame_find_by_id (b->frame_id) == NULL))
bpfinishpy_out_of_scope (finish_bp);
...
In the case of the thread exit, the callback triggers because
target_has_registers () == 0.
So why doesn't the callback trigger in the case of the breakpoint?
Well, the b->frame_id is the frame_id of the frame of main (the frame
in which the finish breakpoint is supposed to trigger), so AFAIU
frame_find_by_id (b->frame_id) == NULL will only be true once we've
left main, at which point I guess we don't stop till thread exit.
Fix this by saving the frame in which the finish breakpoint was created, and
using frame_find_by_id () == NULL on that frame instead, such that we have:
...
(gdb) continue^M
Continuing.^M
Exception #10^M
^M
Breakpoint 3, throw_exception_1 (e=10) at py-finish-breakpoint2.cc:23^M
23 throw new int (e);^M
exception did not finish ...^M
(gdb) FAIL: gdb.python/py-finish-breakpoint2.exp: \
check FinishBreakpoint in catch()
...
Still, the test-case is failing because it's setup to match the behaviour that
we get on x86_64-linux with target board unix/-m64:
...
(gdb) continue^M
Continuing.^M
Exception #10^M
stopped at ExceptionFinishBreakpoint^M
(gdb) PASS: gdb.python/py-finish-breakpoint2.exp: \
check FinishBreakpoint in catch()
...
So what happens here? Again, due to the exception, the function call did not
properly terminate, but the finish breakpoint still triggers. This is somewhat
unexpected. This happens because it just so happens to be that the frame
return address at which the breakpoint is set, is also the first instruction
after the exception has been handled. This is a know problem, filed as
PR29909, so KFAIL it, and modify the test-case to expect the out_of_scope
callback.
Also add a breakpoint after setting the finish breakpoint but before throwing
the exception, to check that we don't call the out_of_scope callback too early.
Tested on x86_64-linux, with target boards unix/-m32.
Co-Authored-By: Andrew Burgess <aburgess@redhat.com>
PR python/27247
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=27247
In 2014, the function `gdbpy_should_stop' has been replaced with
`gdbpy_breakpoint_cond_says_stop'
This replaces `gdbpy_should_stop' with `gdbpy_breakpoint_cond_says_stop' in the
comments.
Since `gdbpy_should_stop' has been renamed as noted in `gdb/ChangeLog-2014':
* python/py-breakpoint.c (gdbpy_breakpoint_cond_says_stop): Renamed
from gdbpy_should_stop. Change result type to enum scr_bp_stop.
Change-Id: I0ef3491ce5e057c5e75ef8b569803b30a5838575
Approved-By: Simon Marchi <simon.marchi@efficios.com>
Currently, FinishBreakpoints are set at the return address of a frame based on
the `finish' command, and are meant to be temporary breakpoints. However, they
are not being cleaned up after use, as reported in PR python/18655. This was
happening because the disposition of the breakpoint was not being set
correctly.
This commit fixes this issue by correctly setting the disposition in the
post-stop hook of the breakpoint. It also adds a test to ensure this feature
isn't regressed in the future.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=18655
In a later commit in this series I will propose removing all of the
explicit gdbpy_initialize_* calls from python.c and replace these
calls with a more generic mechanism.
One of the side effects of this generic mechanism is that the order in
which the various Python sub-systems within GDB are initialized is no
longer guaranteed.
On the whole I don't think this matters, most of the sub-systems are
independent of each other, though testing did reveal a few places
where we did have dependencies, though I don't think those
dependencies were explicitly documented in comment anywhere.
This commit is similar to the previous one, and fixes the second
dependency issue that I found.
In this case the finish_breakpoint_object_type uses the
breakpoint_object_type as its tp_base, this means that
breakpoint_object_type must have been initialized with a call to
PyType_Ready before finish_breakpoint_object_type can be initialized.
Previously we depended on the ordering of calls to
gdbpy_initialize_breakpoints and gdbpy_initialize_finishbreakpoints in
python.c.
After this commit a new function gdbpy_breakpoint_init_breakpoint_type
exists, this function ensures that breakpoint_object_type has been
initialized, and can be called from any gdbpy_initialize_* function.
I feel that this change makes the dependency explicit, which I think
is a good thing.
There should be no user visible changes after this commit.
PR python/16324 points out that comparing a frame id to null_frame_id
can never succeed, and proposes simply removing the dead code. That
is what this patch does.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=16324
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:
sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
problems.
The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did
Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
This replaces frame_id_eq with operator== and operator!=. I wrote
this for a version of this series that I later abandoned; but since it
simplifies the code, I left this patch in.
Approved-by: Tom Tomey <tom@tromey.com>
Currently, GDB internally uses the term "location" for both the
location specification the user input (linespec, explicit location, or
an address location), and for actual resolved locations, like the
breakpoint locations, or the result of decoding a location spec to
SaLs. This is expecially confusing in the breakpoints module, as
struct breakpoint has these two fields:
breakpoint::location;
breakpoint::loc;
"location" is the location spec, and "loc" is the resolved locations.
And then, we have a method called "locations()", which returns the
resolved locations as range...
The location spec type is presently called event_location:
/* Location we used to set the breakpoint. */
event_location_up location;
and it is described like this:
/* The base class for all an event locations used to set a stop event
in the inferior. */
struct event_location
{
and even that is incorrect... Location specs are used for finding
actual locations in the program in scenarios that have nothing to do
with stop events. E.g., "list" works with location specs.
To clean all this confusion up, this patch renames "event_location" to
"location_spec" throughout, and then all the variables that hold a
location spec, they are renamed to include "spec" in their name, like
e.g., "location" -> "locspec". Similarly, functions that work with
location specs, and currently have just "location" in their name are
renamed to include "spec" in their name too.
Change-Id: I5814124798aa2b2003e79496e78f95c74e5eddca
Even after the previous patches reworking the inheritance of several
breakpoint types, the present breakpoint hierarchy looks a bit
surprising, as we have "breakpoint" as the superclass, and then
"base_breakpoint" inherits from "breakpoint". Like so, simplified:
breakpoint
base_breakpoint
ordinary_breakpoint
internal_breakpoint
momentary_breakpoint
ada_catchpoint
exception_catchpoint
tracepoint
watchpoint
catchpoint
exec_catchpoint
...
The surprising part to me is having "base_breakpoint" being a subclass
of "breakpoint". I'm just refering to naming here -- I mean, you'd
expect that it would be the top level baseclass that would be called
"base".
Just flipping the names of breakpoint and base_breakpoint around
wouldn't be super great for us, IMO, given we think of every type of
*point as a breakpoint at the user visible level. E.g., "info
breakpoints" shows watchpoints, tracepoints, etc. So it makes to call
the top level class breakpoint.
Instead, I propose renaming base_breakpoint to code_breakpoint. The
previous patches made sure that all code breakpoints inherit from
base_breakpoint, so it's fitting. Also, "code breakpoint" contrasts
nicely with a watchpoint also being typically known as a "data
breakpoint".
After this commit, the resulting hierarchy looks like:
breakpoint
code_breakpoint
ordinary_breakpoint
internal_breakpoint
momentary_breakpoint
ada_catchpoint
exception_catchpoint
tracepoint
watchpoint
catchpoint
exec_catchpoint
...
... which makes a lot more sense to me.
I've left this patch as last in the series in case people want to
bikeshed on the naming.
"code" has a nice property that it's exactly as many letters as
"base", so this patch didn't require any reindentation. :-)
Change-Id: Id8dc06683a69fad80d88e674f65e826d6a4e3f66
This converts "ordinary" breakpoint to use vtable_breakpoint_ops.
Recall that an ordinary breakpoint is both the kind normally created
by users, and also a base class used by other classes.
Add an argument to the get_return_value function to indicate the symbol
of the function the debuggee is returning from. This will be used by
the following patch.
Since the function return type can be deduced from the symbol remove the
value_type argument which becomes redundant.
No user visible change after this patch.
Tested on x86_64-linux.
Change-Id: Idf1279f1f7199f5022738a6679e0fa63fbd22edc
Co-authored-by: Simon Marchi <simon.marchi@polymtl.ca>
Add a getter and a setter for a symbol's type. Remove the corresponding
macro and adjust all callers.
Change-Id: Ie1a137744c5bfe1df4d4f9ae5541c5299577c8de
Currently, gdb's Python layer captures the current architecture and
language when "entering" Python code. This has some undesirable
effects, and so this series changes how this is handled.
First, there is code like this:
gdbpy_enter enter_py (python_gdbarch, python_language);
This is incorrect, because both of these are NULL when not otherwise
assigned. This can cause crashes in some cases -- I've added one to
the test suite. (Note that this crasher is just an example, other
ones along the same lines are possible.)
Second, when the language is captured in this way, it means that
Python code cannot affect the current language for its own purposes.
It's reasonable to want to write code like this:
gdb.execute('set language mumble')
... stuff using the current language
gdb.execute('set language previous-value')
However, this won't actually work, because the language is captured on
entry. I've added a test to show this as well.
This patch changes gdb to try to avoid capturing the current values.
The Python concept of the current gdbarch is only set in those few
cases where a non-default value is computed or needed; and the
language is not captured at all -- instead, in the cases where it's
required, the current language is temporarily changed.
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
I don't find that the bpstat typedef, which hides a pointer, is
particularly useful. In fact, it confused me many times, and I just see
it as something to remember that adds cognitive load. Also, with C++,
we might want to be able to pass bpstats objects by const-reference, not
necessarily by pointer.
So, remove the bpstat typedef and rename struct bpstats to bpstat (since
it represents one bpstat, it makes sense that it is singular).
Change-Id: I52e763b6e54ee666a9e045785f686d37b4f5f849
Now that we have range functions that let us use ranged for loops, we
can remove iterate_over_breakpoints in favor of those, which are easier
to read and write. This requires exposing the declaration of
all_breakpoints and all_breakpoints_safe in breakpoint.h, as well as the
supporting types.
Change some users of iterate_over_breakpoints to use all_breakpoints,
when they don't need to delete the breakpoint, and all_breakpoints_safe
otherwise.
gdb/ChangeLog:
* breakpoint.h (iterate_over_breakpoints): Remove. Update
callers to use all_breakpoints or all_breakpoints_safe.
(breakpoint_range, all_breakpoints, breakpoint_safe_range,
all_breakpoints_safe): Move here.
* breakpoint.c (all_breakpoints, all_breakpoints_safe): Make
non-static.
(iterate_over_breakpoints): Remove.
* python/py-finishbreakpoint.c (bpfinishpy_detect_out_scope_cb):
Return void.
* python/py-breakpoint.c (build_bp_list): Add comment, reverse
return value logic.
* guile/scm-breakpoint.c (bpscm_build_bp_list): Return void.
Change-Id: Idde764a1f577de0423e4f2444a7d5cdb01ba5e48
Give a name to each observer, this will help produce more meaningful
debug message.
gdbsupport/ChangeLog:
* observable.h (class observable) <struct observer> <observer>:
Add name parameter.
<name>: New field.
<attach>: Add name parameter, update all callers.
Change-Id: Ie0cc4664925215b8d2b09e026011b7803549fba0
The 'create_breakpoint' function takes a 'parse_extra' argument that
determines whether the condition, thread, and force-condition
specifiers should be parsed from the extra string or be used from the
function arguments. However, for the case when 'parse_extra' is
false, there is no way to pass the force-condition specifier. This
patch adds it as a new argument.
Also, in the case when parse_extra is false, the current behavior is
as if the condition is being forced. This is a bug. The default
behavior should reject the breakpoint. See below for a demo of this
incorrect behavior. (The MI command '-break-insert' uses the
'create_breakpoint' function with parse_extra=0.)
$ gdb -q --interpreter=mi3 /tmp/simple
=thread-group-added,id="i1"
=cmd-param-changed,param="history save",value="on"
=cmd-param-changed,param="auto-load safe-path",value="/"
~"Reading symbols from /tmp/simple...\n"
(gdb)
-break-insert -c junk -f main
&"warning: failed to validate condition at location 1, disabling:\n "
&"No symbol \"junk\" in current context.\n"
^done,bkpt={number="1",type="breakpoint",disp="keep",enabled="y",addr="<MULTIPLE>",cond="junk",times="0",original-location="main",locations=[{number="1.1",enabled="N",addr="0x000000000000114e",func="main",file="/tmp/simple.c",fullname="/tmp/simple.c",line="2",thread-groups=["i1"]}]}
(gdb)
break main if junk
&"break main if junk\n"
&"No symbol \"junk\" in current context.\n"
^error,msg="No symbol \"junk\" in current context."
(gdb)
break main -force-condition if junk
&"break main -force-condition if junk\n"
~"Note: breakpoint 1 also set at pc 0x114e.\n"
&"warning: failed to validate condition at location 1, disabling:\n "
&"No symbol \"junk\" in current context.\n"
~"Breakpoint 2 at 0x114e: file /tmp/simple.c, line 2.\n"
=breakpoint-created,bkpt={number="2",type="breakpoint",disp="keep",enabled="y",addr="<MULTIPLE>",cond="junk",times="0",original-location="main",locations=[{number="2.1",enabled="N",addr="0x000000000000114e",func="main",file="/tmp/simple.c",fullname="/tmp/simple.c",line="2",thread-groups=["i1"]}]}
^done
(gdb)
After applying this patch, we get the behavior below:
(gdb)
-break-insert -c junk -f main
^error,msg="No symbol \"junk\" in current context."
This restores the behavior that is present in the existing releases.
gdb/ChangeLog:
2021-04-21 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* breakpoint.h (create_breakpoint): Add a new parameter,
'force_condition'.
* breakpoint.c (create_breakpoint): Use the 'force_condition'
argument when 'parse_extra' is false to check if the condition
is invalid at all of the breakpoint locations.
Update the users below.
(break_command_1)
(dprintf_command)
(trace_command)
(ftrace_command)
(strace_command)
(create_tracepoint_from_upload): Update.
* guile/scm-breakpoint.c (gdbscm_register_breakpoint_x): Update.
* mi/mi-cmd-break.c (mi_cmd_break_insert_1): Update.
* python/py-breakpoint.c (bppy_init): Update.
* python/py-finishbreakpoint.c (bpfinishpy_init): Update.
gdb/testsuite/ChangeLog:
2021-04-21 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* gdb.mi/mi-break.exp: Extend with checks for invalid breakpoint
conditions.
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
Remove TYPE_CODE, changing all the call sites to use type::code
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use
type::code instead.
valgrind reports leaks in many python tests, such as:
==17162== VALGRIND_GDB_ERROR_BEGIN
==17162== 8,208 (5,472 direct, 2,736 indirect) bytes in 57 blocks are definitely lost in loss record 7,551 of 7,679
==17162== at 0x4835753: malloc (vg_replace_malloc.c:307)
==17162== by 0x6EAFD1: _PyObject_New (object.c:279)
==17162== by 0x4720E6: blpy_iter(_object*) (py-block.c:92)
==17162== by 0x698772: PyObject_GetIter (abstract.c:2577)
==17162== by 0x2343BE: _PyEval_EvalFrameDefault (ceval.c:3159)
==17162== by 0x22E9E2: function_code_fastcall (call.c:283)
==17162== by 0x2340A8: _PyObject_Vectorcall (abstract.h:127)
==17162== by 0x2340A8: call_function (ceval.c:4987)
==17162== by 0x2340A8: _PyEval_EvalFrameDefault (ceval.c:3486)
==17162== by 0x22E9E2: function_code_fastcall (call.c:283)
==17162== by 0x82172B: _PyObject_Vectorcall (abstract.h:127)
==17162== by 0x82172B: method_vectorcall (classobject.c:67)
==17162== by 0x6AF474: _PyObject_Vectorcall (abstract.h:127)
==17162== by 0x6AF474: _PyObject_CallNoArg (abstract.h:153)
==17162== by 0x6AF474: _PyObject_CallFunctionVa (call.c:914)
==17162== by 0x6B0673: callmethod (call.c:1010)
==17162== by 0x6B0673: _PyObject_CallMethod_SizeT (call.c:1103)
==17162== by 0x477DFE: gdb_PyObject_CallMethod<> (python-internal.h:182)
==17162== by 0x477DFE: get_py_iter_from_func(_object*, char const*) (py-framefilter.c:272)
==17162== by 0x4791B4: py_print_args (py-framefilter.c:706)
==17162== by 0x4791B4: py_print_frame(_object*, enum_flags<frame_filter_flag>, ext_lang_frame_args, ui_out*, int, htab*) (py-framefilter.c:960)
==17162== by 0x47A130: gdbpy_apply_frame_filter(extension_language_defn const*, frame_info*, enum_flags<frame_filter_flag>, ext_lang_frame_args, ui_out*, int, int) (py-framefilter.c:1236)
==17162== by 0x369C39: apply_ext_lang_frame_filter(frame_info*, enum_flags<frame_filter_flag>, ext_lang_frame_args, ui_out*, int, int) (extension.c:563)
==17162== by 0x4EC9C9: backtrace_command_1 (stack.c:2031)
==17162== by 0x4EC9C9: backtrace_command(char const*, int) (stack.c:2183)
...
Most of the leaks in python tests are due to the fact that many
PyObject xxxxx_dealloc functions are missing the line to free self
or obj such as:
Py_TYPE (self)->tp_free (self);
or
Py_TYPE (obj)->tp_free (obj);
With this patch, the number of python tests leaking decreases from 52 to 12.
gdb/ChangeLog
2019-11-18 Philippe Waroquiers <philippe.waroquiers@skynet.be>
* python/py-block.c (blpy_dealloc): Call tp_free.
(blpy_block_syms_dealloc): Likewise.
* python/py-finishbreakpoint.c (bpfinishpy_dealloc): Likewise.
* python/py-inferior.c (infpy_dealloc): Likewise.
* python/py-lazy-string.c (stpy_dealloc): Likewise.
* python/py-linetable.c (ltpy_iterator_dealloc): Likewise.
* python/py-symbol.c (sympy_dealloc): Likewise.
* python/py-symtab.c (stpy_dealloc): Likewise.
* python/py-type.c (typy_iterator_dealloc): Likewise.
This rewrites gdb's TRY/CATCH to plain C++ try/catch. The patch was
largely written by script, though one change (to a comment in
common-exceptions.h) was reverted by hand.
gdb/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* xml-support.c: Use C++ exception handling.
* x86-linux-nat.c: Use C++ exception handling.
* windows-nat.c: Use C++ exception handling.
* varobj.c: Use C++ exception handling.
* value.c: Use C++ exception handling.
* valprint.c: Use C++ exception handling.
* valops.c: Use C++ exception handling.
* unittests/parse-connection-spec-selftests.c: Use C++ exception
handling.
* unittests/cli-utils-selftests.c: Use C++ exception handling.
* typeprint.c: Use C++ exception handling.
* tui/tui.c: Use C++ exception handling.
* tracefile-tfile.c: Use C++ exception handling.
* top.c: Use C++ exception handling.
* thread.c: Use C++ exception handling.
* target.c: Use C++ exception handling.
* symmisc.c: Use C++ exception handling.
* symfile-mem.c: Use C++ exception handling.
* stack.c: Use C++ exception handling.
* sparc64-linux-tdep.c: Use C++ exception handling.
* solib.c: Use C++ exception handling.
* solib-svr4.c: Use C++ exception handling.
* solib-spu.c: Use C++ exception handling.
* solib-frv.c: Use C++ exception handling.
* solib-dsbt.c: Use C++ exception handling.
* selftest-arch.c: Use C++ exception handling.
* s390-tdep.c: Use C++ exception handling.
* rust-lang.c: Use C++ exception handling.
* rust-exp.y: Use C++ exception handling.
* rs6000-tdep.c: Use C++ exception handling.
* rs6000-aix-tdep.c: Use C++ exception handling.
* riscv-tdep.c: Use C++ exception handling.
* remote.c: Use C++ exception handling.
* remote-fileio.c: Use C++ exception handling.
* record-full.c: Use C++ exception handling.
* record-btrace.c: Use C++ exception handling.
* python/python.c: Use C++ exception handling.
* python/py-value.c: Use C++ exception handling.
* python/py-utils.c: Use C++ exception handling.
* python/py-unwind.c: Use C++ exception handling.
* python/py-type.c: Use C++ exception handling.
* python/py-symbol.c: Use C++ exception handling.
* python/py-record.c: Use C++ exception handling.
* python/py-record-btrace.c: Use C++ exception handling.
* python/py-progspace.c: Use C++ exception handling.
* python/py-prettyprint.c: Use C++ exception handling.
* python/py-param.c: Use C++ exception handling.
* python/py-objfile.c: Use C++ exception handling.
* python/py-linetable.c: Use C++ exception handling.
* python/py-lazy-string.c: Use C++ exception handling.
* python/py-infthread.c: Use C++ exception handling.
* python/py-inferior.c: Use C++ exception handling.
* python/py-gdb-readline.c: Use C++ exception handling.
* python/py-framefilter.c: Use C++ exception handling.
* python/py-frame.c: Use C++ exception handling.
* python/py-finishbreakpoint.c: Use C++ exception handling.
* python/py-cmd.c: Use C++ exception handling.
* python/py-breakpoint.c: Use C++ exception handling.
* python/py-arch.c: Use C++ exception handling.
* printcmd.c: Use C++ exception handling.
* ppc-linux-tdep.c: Use C++ exception handling.
* parse.c: Use C++ exception handling.
* p-valprint.c: Use C++ exception handling.
* objc-lang.c: Use C++ exception handling.
* mi/mi-main.c: Use C++ exception handling.
* mi/mi-interp.c: Use C++ exception handling.
* mi/mi-cmd-stack.c: Use C++ exception handling.
* mi/mi-cmd-break.c: Use C++ exception handling.
* main.c: Use C++ exception handling.
* linux-thread-db.c: Use C++ exception handling.
* linux-tdep.c: Use C++ exception handling.
* linux-nat.c: Use C++ exception handling.
* linux-fork.c: Use C++ exception handling.
* linespec.c: Use C++ exception handling.
* language.c: Use C++ exception handling.
* jit.c: Use C++ exception handling.
* infrun.c: Use C++ exception handling.
* infcmd.c: Use C++ exception handling.
* infcall.c: Use C++ exception handling.
* inf-loop.c: Use C++ exception handling.
* i386-tdep.c: Use C++ exception handling.
* i386-linux-tdep.c: Use C++ exception handling.
* guile/scm-value.c: Use C++ exception handling.
* guile/scm-type.c: Use C++ exception handling.
* guile/scm-symtab.c: Use C++ exception handling.
* guile/scm-symbol.c: Use C++ exception handling.
* guile/scm-pretty-print.c: Use C++ exception handling.
* guile/scm-ports.c: Use C++ exception handling.
* guile/scm-param.c: Use C++ exception handling.
* guile/scm-math.c: Use C++ exception handling.
* guile/scm-lazy-string.c: Use C++ exception handling.
* guile/scm-frame.c: Use C++ exception handling.
* guile/scm-disasm.c: Use C++ exception handling.
* guile/scm-cmd.c: Use C++ exception handling.
* guile/scm-breakpoint.c: Use C++ exception handling.
* guile/scm-block.c: Use C++ exception handling.
* guile/guile-internal.h: Use C++ exception handling.
* gnu-v3-abi.c: Use C++ exception handling.
* gdbtypes.c: Use C++ exception handling.
* frame.c: Use C++ exception handling.
* frame-unwind.c: Use C++ exception handling.
* fbsd-tdep.c: Use C++ exception handling.
* f-valprint.c: Use C++ exception handling.
* exec.c: Use C++ exception handling.
* event-top.c: Use C++ exception handling.
* event-loop.c: Use C++ exception handling.
* eval.c: Use C++ exception handling.
* dwarf2read.c: Use C++ exception handling.
* dwarf2loc.c: Use C++ exception handling.
* dwarf2-frame.c: Use C++ exception handling.
* dwarf2-frame-tailcall.c: Use C++ exception handling.
* dwarf-index-write.c: Use C++ exception handling.
* dwarf-index-cache.c: Use C++ exception handling.
* dtrace-probe.c: Use C++ exception handling.
* disasm-selftests.c: Use C++ exception handling.
* darwin-nat.c: Use C++ exception handling.
* cp-valprint.c: Use C++ exception handling.
* cp-support.c: Use C++ exception handling.
* cp-abi.c: Use C++ exception handling.
* corelow.c: Use C++ exception handling.
* completer.c: Use C++ exception handling.
* compile/compile-object-run.c: Use C++ exception handling.
* compile/compile-object-load.c: Use C++ exception handling.
* compile/compile-cplus-symbols.c: Use C++ exception handling.
* compile/compile-c-symbols.c: Use C++ exception handling.
* common/selftest.c: Use C++ exception handling.
* common/new-op.c: Use C++ exception handling.
* cli/cli-script.c: Use C++ exception handling.
* cli/cli-interp.c: Use C++ exception handling.
* cli/cli-cmds.c: Use C++ exception handling.
* c-varobj.c: Use C++ exception handling.
* btrace.c: Use C++ exception handling.
* breakpoint.c: Use C++ exception handling.
* break-catch-throw.c: Use C++ exception handling.
* arch-utils.c: Use C++ exception handling.
* amd64-tdep.c: Use C++ exception handling.
* ada-valprint.c: Use C++ exception handling.
* ada-typeprint.c: Use C++ exception handling.
* ada-lang.c: Use C++ exception handling.
* aarch64-tdep.c: Use C++ exception handling.
gdb/gdbserver/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* server.c: Use C++ exception handling.
* linux-low.c: Use C++ exception handling.
* gdbreplay.c: Use C++ exception handling.
py-ref.h can really only be included from a specific spot in
python-internal.h. The other includes are not useful, and cause
compilation errors if the includes are ever sorted. So, remove these
includes.
Arguably, py-ref.h should simply not be a separate header.
gdb/ChangeLog
2019-01-22 Tom Tromey <tom@tromey.com>
* python/py-arch.c: Do not include py-ref.h.
* python/py-bpevent.c: Do not include py-ref.h.
* python/py-cmd.c: Do not include py-ref.h.
* python/py-continueevent.c: Do not include py-ref.h.
* python/py-event.h: Do not include py-ref.h.
* python/py-evtregistry.c: Do not include py-ref.h.
* python/py-finishbreakpoint.c: Do not include py-ref.h.
* python/py-frame.c: Do not include py-ref.h.
* python/py-framefilter.c: Do not include py-ref.h.
* python/py-function.c: Do not include py-ref.h.
* python/py-infevents.c: Do not include py-ref.h.
* python/py-linetable.c: Do not include py-ref.h.
* python/py-objfile.c: Do not include py-ref.h.
* python/py-param.c: Do not include py-ref.h.
* python/py-prettyprint.c: Do not include py-ref.h.
* python/py-progspace.c: Do not include py-ref.h.
* python/py-symbol.c: Do not include py-ref.h.
* python/py-symtab.c: Do not include py-ref.h.
* python/py-type.c: Do not include py-ref.h.
* python/py-unwind.c: Do not include py-ref.h.
* python/py-utils.c: Do not include py-ref.h.
* python/py-value.c: Do not include py-ref.h.
* python/py-varobj.c: Do not include py-ref.h.
* python/py-xmethods.c: Do not include py-ref.h.
* python/python.c: Do not include py-ref.h.
* varobj.c: Do not include py-ref.h.
PR gdb/28155 notes a crash in "finish" that occurs with a particular
source file compiled by clang.
The bug is the typical gdb problem of a missing call to check_typedef.
clang emits a function whose return type is a typedef to void.
get_return_value asserts that the return type is not void, but the
callers were not using check_typedef first.
gdb/ChangeLog
2019-01-06 Tom Tromey <tom@tromey.com>
PR gdb/28155:
* python/py-finishbreakpoint.c (bpfinishpy_init): Use
check_typedef.
* infcmd.c (finish_command_fsm_should_stop): Use check_typedef.
(print_return_value): Likewise.
gdb/testsuite/ChangeLog
2019-01-06 Tom Tromey <tom@tromey.com>
PR gdb/28155:
* gdb.dwarf2/typedef-void-finish.exp: New file.
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
This is more preparation bits for multi-target support.
In a multi-target scenario, we need to address the case of different
processes/threads running on different targets that happen to have the
same PID/PTID. E.g., we can have both process 123 in target 1, and
process 123 in target 2, while they're in reality different processes
running on different machines. Or maybe we've loaded multiple
instances of the same core file. Etc.
To address this, in my WIP multi-target branch, threads and processes
are uniquely identified by the (process_stratum target_ops *, ptid_t)
and (process_stratum target_ops *, pid) tuples respectively. I.e.,
each process_stratum instance has its own thread/process number space.
As you can imagine, that requires passing around target_ops * pointers
in a number of functions where we're currently passing only a ptid_t
or an int. E.g., when we look up a thread_info object by ptid_t in
find_thread_ptid, the ptid_t alone isn't sufficient.
In many cases though, we already have the thread_info or inferior
pointer handy, but we "lose" it somewhere along the call stack, only
to look it up again by ptid_t/pid. Since thread_info or inferior
objects know their parent target, if we pass around thread_info or
inferior pointers when possible, we avoid having to add extra
target_ops parameters to many functions, and also, we eliminate a
number of by ptid_t/int lookups.
So that's what this patch does. In a bit more detail:
- Changes a number of functions and methods to take a thread_info or
inferior pointer instead of a ptid_t or int parameter.
- Changes a number of structure fields from ptid_t/int to inferior or
thread_info pointers.
- Uses the inferior_thread() function whenever possible instead of
inferior_ptid.
- Uses thread_info pointers directly when possible instead of the
is_running/is_stopped etc. routines that require a lookup.
- A number of functions are eliminated along the way, such as:
int valid_gdb_inferior_id (int num);
int pid_to_gdb_inferior_id (int pid);
int gdb_inferior_id_to_pid (int num);
int in_inferior_list (int pid);
- A few structures and places hold a thread_info pointer across
inferior execution, so now they take a strong reference to the
(refcounted) thread_info object to avoid the thread_info pointer
getting stale. This is done in enable_thread_stack_temporaries and
in the infcall.c code.
- Related, there's a spot in infcall.c where using a RAII object to
handle the refcount would be handy, so a gdb::ref_ptr specialization
for thread_info is added (thread_info_ref, in gdbthread.h), along
with a gdb_ref_ptr policy that works for all refcounted_object types
(in common/refcounted-object.h).
gdb/ChangeLog:
2018-06-21 Pedro Alves <palves@redhat.com>
* ada-lang.h (ada_get_task_number): Take a thread_info pointer
instead of a ptid_t. All callers adjusted.
* ada-tasks.c (ada_get_task_number): Likewise. All callers
adjusted.
(print_ada_task_info, display_current_task_id, task_command_1):
Adjust.
* breakpoint.c (watchpoint_in_thread_scope): Adjust to use
inferior_thread.
(breakpoint_kind): Adjust.
(remove_breakpoints_pid): Rename to ...
(remove_breakpoints_inf): ... this. Adjust to take an inferior
pointer. All callers adjusted.
(bpstat_clear_actions): Use inferior_thread.
(get_bpstat_thread): New.
(bpstat_do_actions): Use it.
(bpstat_check_breakpoint_conditions, bpstat_stop_status): Adjust
to take a thread_info pointer. All callers adjusted.
(set_longjmp_breakpoint_for_call_dummy, set_momentary_breakpoint)
(breakpoint_re_set_thread): Use inferior_thread.
* breakpoint.h (struct inferior): Forward declare.
(bpstat_stop_status): Update.
(remove_breakpoints_pid): Delete.
(remove_breakpoints_inf): New.
* bsd-uthread.c (bsd_uthread_target::wait)
(bsd_uthread_target::update_thread_list): Use find_thread_ptid.
* btrace.c (btrace_add_pc, btrace_enable, btrace_fetch)
(maint_btrace_packet_history_cmd)
(maint_btrace_clear_packet_history_cmd): Adjust.
(maint_btrace_clear_cmd, maint_info_btrace_cmd): Adjust to use
inferior_thread.
* cli/cli-interp.c: Include "inferior.h".
* common/refcounted-object.h (struct
refcounted_object_ref_policy): New.
* compile/compile-object-load.c: Include gdbthread.h.
(store_regs): Use inferior_thread.
* corelow.c (core_target::close): Use current_inferior.
(core_target_open): Adjust to use first_thread_of_inferior and use
the current inferior.
* ctf.c (ctf_target::close): Adjust to use current_inferior.
* dummy-frame.c (dummy_frame_id) <ptid>: Delete, replaced by ...
<thread>: ... this new field. All references adjusted.
(dummy_frame_pop, dummy_frame_discard, register_dummy_frame_dtor):
Take a thread_info pointer instead of a ptid_t.
* dummy-frame.h (dummy_frame_push, dummy_frame_pop)
(dummy_frame_discard, register_dummy_frame_dtor): Take a
thread_info pointer instead of a ptid_t.
* elfread.c: Include "inferior.h".
(elf_gnu_ifunc_resolver_stop, elf_gnu_ifunc_resolver_return_stop):
Use inferior_thread.
* eval.c (evaluate_subexp): Likewise.
* frame.c (frame_pop, has_stack_frames, find_frame_sal): Use
inferior_thread.
* gdb_proc_service.h (struct thread_info): Forward declare.
(struct ps_prochandle) <ptid>: Delete, replaced by ...
<thread>: ... this new field. All references adjusted.
* gdbarch.h, gdbarch.c: Regenerate.
* gdbarch.sh (get_syscall_number): Replace 'ptid' parameter with a
'thread' parameter. All implementations and callers adjusted.
* gdbthread.h (thread_info) <set_running>: New method.
(delete_thread, delete_thread_silent): Take a thread_info pointer
instead of a ptid.
(global_thread_id_to_ptid, ptid_to_global_thread_id): Delete.
(first_thread_of_process): Delete, replaced by ...
(first_thread_of_inferior): ... this new function. All callers
adjusted.
(any_live_thread_of_process): Delete, replaced by ...
(any_live_thread_of_inferior): ... this new function. All callers
adjusted.
(switch_to_thread, switch_to_no_thread): Declare.
(is_executing): Delete.
(enable_thread_stack_temporaries): Update comment.
<enable_thread_stack_temporaries>: Take a thread_info pointer
instead of a ptid_t. Incref the thread.
<~enable_thread_stack_temporaries>: Decref the thread.
<m_ptid>: Delete
<m_thr>: New.
(thread_stack_temporaries_enabled_p, push_thread_stack_temporary)
(get_last_thread_stack_temporary)
(value_in_thread_stack_temporaries, can_access_registers_thread):
Take a thread_info pointer instead of a ptid_t. All callers
adjusted.
* infcall.c (get_call_return_value): Use inferior_thread.
(run_inferior_call): Work with thread pointers instead of ptid_t.
(call_function_by_hand_dummy): Work with thread pointers instead
of ptid_t. Use thread_info_ref.
* infcmd.c (proceed_thread_callback): Access thread's state
directly.
(ensure_valid_thread, ensure_not_running): Use inferior_thread,
access thread's state directly.
(continue_command): Use inferior_thread.
(info_program_command): Use find_thread_ptid and access thread
state directly.
(proceed_after_attach_callback): Use thread state directly.
(notice_new_inferior): Take a thread_info pointer instead of a
ptid_t. All callers adjusted.
(exit_inferior): Take an inferior pointer instead of a pid. All
callers adjusted.
(exit_inferior_silent): New.
(detach_inferior): Delete.
(valid_gdb_inferior_id, pid_to_gdb_inferior_id)
(gdb_inferior_id_to_pid, in_inferior_list): Delete.
(detach_inferior_command, kill_inferior_command): Use
find_inferior_id instead of valid_gdb_inferior_id and
gdb_inferior_id_to_pid.
(inferior_command): Use inferior and thread pointers.
* inferior.h (struct thread_info): Forward declare.
(notice_new_inferior): Take a thread_info pointer instead of a
ptid_t. All callers adjusted.
(detach_inferior): Delete declaration.
(exit_inferior, exit_inferior_silent): Take an inferior pointer
instead of a pid. All callers adjusted.
(gdb_inferior_id_to_pid, pid_to_gdb_inferior_id, in_inferior_list)
(valid_gdb_inferior_id): Delete.
* infrun.c (follow_fork_inferior, proceed_after_vfork_done)
(handle_vfork_child_exec_or_exit, follow_exec): Adjust.
(struct displaced_step_inferior_state) <pid>: Delete, replaced by
...
<inf>: ... this new field.
<step_ptid>: Delete, replaced by ...
<step_thread>: ... this new field.
(get_displaced_stepping_state): Take an inferior pointer instead
of a pid. All callers adjusted.
(displaced_step_in_progress_any_inferior): Adjust.
(displaced_step_in_progress_thread): Take a thread pointer instead
of a ptid_t. All callers adjusted.
(displaced_step_in_progress, add_displaced_stepping_state): Take
an inferior pointer instead of a pid. All callers adjusted.
(get_displaced_step_closure_by_addr): Adjust.
(remove_displaced_stepping_state): Take an inferior pointer
instead of a pid. All callers adjusted.
(displaced_step_prepare_throw, displaced_step_prepare)
(displaced_step_fixup): Take a thread pointer instead of a ptid_t.
All callers adjusted.
(start_step_over): Adjust.
(infrun_thread_ptid_changed): Remove bit updating ptids in the
displaced step queue.
(do_target_resume): Adjust.
(fetch_inferior_event): Use inferior_thread.
(context_switch, get_inferior_stop_soon): Take an
execution_control_state pointer instead of a ptid_t. All callers
adjusted.
(switch_to_thread_cleanup): Delete.
(stop_all_threads): Use scoped_restore_current_thread.
* inline-frame.c: Include "gdbthread.h".
(inline_state) <inline_state>: Take a thread pointer instead of a
ptid_t. All callers adjusted.
<ptid>: Delete, replaced by ...
<thread>: ... this new field.
(find_inline_frame_state): Take a thread pointer instead of a
ptid_t. All callers adjusted.
(skip_inline_frames, step_into_inline_frame)
(inline_skipped_frames, inline_skipped_symbol): Take a thread
pointer instead of a ptid_t. All callers adjusted.
* inline-frame.h (skip_inline_frames, step_into_inline_frame)
(inline_skipped_frames, inline_skipped_symbol): Likewise.
* linux-fork.c (delete_checkpoint_command): Adjust to use thread
pointers directly.
* linux-nat.c (get_detach_signal): Likewise.
* linux-thread-db.c (thread_from_lwp): New 'stopped' parameter.
(thread_db_notice_clone): Adjust.
(thread_db_find_new_threads_silently)
(thread_db_find_new_threads_2, thread_db_find_new_threads_1): Take
a thread pointer instead of a ptid_t. All callers adjusted.
* mi/mi-cmd-var.c: Include "inferior.h".
(mi_cmd_var_update_iter): Update to use thread pointers.
* mi/mi-interp.c (mi_new_thread): Update to use the thread's
inferior directly.
(mi_output_running_pid, mi_inferior_count): Delete, bits factored
out to ...
(mi_output_running): ... this new function.
(mi_on_resume_1): Adjust to use it.
(mi_user_selected_context_changed): Adjust to use inferior_thread.
* mi/mi-main.c (proceed_thread): Adjust to use thread pointers
directly.
(interrupt_thread_callback): : Adjust to use thread and inferior
pointers.
* proc-service.c: Include "gdbthread.h".
(ps_pglobal_lookup): Adjust to use the thread's inferior directly.
* progspace-and-thread.c: Include "inferior.h".
* progspace.c: Include "inferior.h".
* python/py-exitedevent.c (create_exited_event_object): Adjust to
hold a reference to an inferior_object.
* python/py-finishbreakpoint.c (bpfinishpy_init): Adjust to use
inferior_thread.
* python/py-inferior.c (struct inferior_object): Give the type a
tag name instead of a typedef.
(python_on_normal_stop): No need to check if the current thread is
listed.
(inferior_to_inferior_object): Change return type to
inferior_object. All callers adjusted.
(find_thread_object): Delete, bits factored out to ...
(thread_to_thread_object): ... this new function.
* python/py-infthread.c (create_thread_object): Use
inferior_to_inferior_object.
(thpy_is_stopped): Use thread pointer directly.
(gdbpy_selected_thread): Use inferior_thread.
* python/py-record-btrace.c (btpy_list_object) <ptid>: Delete
field, replaced with ...
<thread>: ... this new field. All users adjusted.
(btpy_insn_or_gap_new): Drop const.
(btpy_list_new): Take a thread pointer instead of a ptid_t. All
callers adjusted.
* python/py-record.c: Include "gdbthread.h".
(recpy_insn_new, recpy_func_new): Take a thread pointer instead of
a ptid_t. All callers adjusted.
(gdbpy_current_recording): Use inferior_thread.
* python/py-record.h (recpy_record_object) <ptid>: Delete
field, replaced with ...
<thread>: ... this new field. All users adjusted.
(recpy_element_object) <ptid>: Delete
field, replaced with ...
<thread>: ... this new field. All users adjusted.
(recpy_insn_new, recpy_func_new): Take a thread pointer instead of
a ptid_t. All callers adjusted.
* python/py-threadevent.c: Include "gdbthread.h".
(get_event_thread): Use thread_to_thread_object.
* python/python-internal.h (struct inferior_object): Forward
declare.
(find_thread_object, find_inferior_object): Delete declarations.
(thread_to_thread_object, inferior_to_inferior_object): New
declarations.
* record-btrace.c: Include "inferior.h".
(require_btrace_thread): Use inferior_thread.
(record_btrace_frame_sniffer)
(record_btrace_tailcall_frame_sniffer): Use inferior_thread.
(get_thread_current_frame): Use scoped_restore_current_thread and
switch_to_thread.
(get_thread_current_frame): Use thread pointer directly.
(record_btrace_replay_at_breakpoint): Use thread's inferior
pointer directly.
* record-full.c: Include "inferior.h".
* regcache.c: Include "gdbthread.h".
(get_thread_arch_regcache): Use the inferior's address space
directly.
(get_thread_regcache, registers_changed_thread): New.
* regcache.h (get_thread_regcache(thread_info *thread)): New
overload.
(registers_changed_thread): New.
(remote_target) <remote_detach_1>: Swap order of parameters.
(remote_add_thread): <remote_add_thread>: Return the new thread.
(get_remote_thread_info(ptid_t)): New overload.
(remote_target::remote_notice_new_inferior): Use thread pointers
directly.
(remote_target::process_initial_stop_replies): Use
thread_info::set_running.
(remote_target::remote_detach_1, remote_target::detach)
(extended_remote_target::detach): Adjust.
* stack.c (frame_show_address): Use inferior_thread.
* target-debug.h (target_debug_print_thread_info_pp): New.
* target-delegates.c: Regenerate.
* target.c (default_thread_address_space): Delete.
(memory_xfer_partial_1): Use current_inferior.
(target_detach): Use current_inferior.
(target_thread_address_space): Delete.
(generic_mourn_inferior): Use current_inferior.
* target.h (struct target_ops) <thread_address_space>: Delete.
(target_thread_address_space): Delete.
* thread.c (init_thread_list): Use ALL_THREADS_SAFE. Use thread
pointers directly.
(delete_thread_1, delete_thread, delete_thread_silent): Take a
thread pointer instead of a ptid_t. Adjust all callers.
(ptid_to_global_thread_id, global_thread_id_to_ptid): Delete.
(first_thread_of_process): Delete, replaced by ...
(first_thread_of_inferior): ... this new function. All callers
adjusted.
(any_thread_of_process): Rename to ...
(any_thread_of_inferior): ... this, and take an inferior pointer.
(any_live_thread_of_process): Rename to ...
(any_live_thread_of_inferior): ... this, and take an inferior
pointer.
(thread_stack_temporaries_enabled_p, push_thread_stack_temporary)
(value_in_thread_stack_temporaries)
(get_last_thread_stack_temporary): Take a thread pointer instead
of a ptid_t. Adjust all callers.
(thread_info::set_running): New.
(validate_registers_access): Use inferior_thread.
(can_access_registers_ptid): Rename to ...
(can_access_registers_thread): ... this, and take a thread
pointer.
(print_thread_info_1): Adjust to compare thread pointers instead
of ptids.
(switch_to_no_thread, switch_to_thread): Make extern.
(scoped_restore_current_thread::~scoped_restore_current_thread):
Use m_thread pointer directly.
(scoped_restore_current_thread::scoped_restore_current_thread):
Use inferior_thread.
(thread_command): Use thread pointer directly.
(thread_num_make_value_helper): Use inferior_thread.
* top.c (execute_command): Use inferior_thread.
* tui/tui-interp.c: Include "inferior.h".
* varobj.c (varobj_create): Use inferior_thread.
(value_of_root_1): Use find_thread_global_id instead of
global_thread_id_to_ptid.
This converts observers from using a special source-generating script
to be plain C++. This version of the patch takes advantage of C++11
by using std::function and variadic templates; incorporates Pedro's
patches; and renames the header file to "observable.h" (this change
eliminates the need for a clean rebuild).
Note that Pedro's patches used a template lambda in tui-hooks.c, but
this failed to compile on some buildbot instances (presumably due to
differing C++ versions); I replaced this with an ordinary template
function.
Regression tested on the buildbot.
gdb/ChangeLog
2018-03-19 Pedro Alves <palves@redhat.com>
Tom Tromey <tom@tromey.com>
* unittests/observable-selftests.c: New file.
* common/observable.h: New file.
* observable.h: New file.
* ada-lang.c, ada-tasks.c, agent.c, aix-thread.c, annotate.c,
arm-tdep.c, auto-load.c, auxv.c, break-catch-syscall.c,
breakpoint.c, bsd-uthread.c, cli/cli-interp.c, cli/cli-setshow.c,
corefile.c, dummy-frame.c, event-loop.c, event-top.c, exec.c,
extension.c, frame.c, gdbarch.c, guile/scm-breakpoint.c,
infcall.c, infcmd.c, inferior.c, inflow.c, infrun.c, jit.c,
linux-tdep.c, linux-thread-db.c, m68klinux-tdep.c,
mi/mi-cmd-break.c, mi/mi-interp.c, mi/mi-main.c, objfiles.c,
ppc-linux-nat.c, ppc-linux-tdep.c, printcmd.c, procfs.c,
python/py-breakpoint.c, python/py-finishbreakpoint.c,
python/py-inferior.c, python/py-unwind.c, ravenscar-thread.c,
record-btrace.c, record-full.c, record.c, regcache.c, remote.c,
riscv-tdep.c, sol-thread.c, solib-aix.c, solib-spu.c, solib.c,
spu-multiarch.c, spu-tdep.c, stack.c, symfile-mem.c, symfile.c,
symtab.c, thread.c, top.c, tracepoint.c, tui/tui-hooks.c,
tui/tui-interp.c, valops.c: Update all users.
* tui/tui-hooks.c (tui_bp_created_observer)
(tui_bp_deleted_observer, tui_bp_modified_observer)
(tui_inferior_exit_observer, tui_before_prompt_observer)
(tui_normal_stop_observer, tui_register_changed_observer):
Remove.
(tui_observers_token): New global.
(attach_or_detach, tui_attach_detach_observers): New functions.
(tui_install_hooks, tui_remove_hooks): Use
tui_attach_detach_observers.
* record-btrace.c (record_btrace_thread_observer): Remove.
(record_btrace_thread_observer_token): New global.
* observer.sh: Remove.
* observer.c: Rename to observable.c.
* observable.c (namespace gdb_observers): Define new objects.
(observer_debug): Move into gdb_observers namespace.
(struct observer, struct observer_list, xalloc_observer_list_node)
(xfree_observer_list_node, generic_observer_attach)
(generic_observer_detach, generic_observer_notify): Remove.
(_initialize_observer): Update.
Don't include observer.inc.
* Makefile.in (generated_files): Remove observer.h, observer.inc.
(clean mostlyclean): Likewise.
(observer.h, observer.inc): Remove targets.
(SUBDIR_UNITTESTS_SRCS): Add observable-selftests.c.
(COMMON_SFILES): Use observable.c, not observer.c.
* .gitignore: Remove observer.h.
gdb/doc/ChangeLog
2018-03-19 Tom Tromey <tom@tromey.com>
* observer.texi: Remove.
gdb/testsuite/ChangeLog
2018-03-19 Tom Tromey <tom@tromey.com>
* gdb.gdb/observer.exp: Remove.
-Wwrite-strings flags code like:
static char *keywords[] = {"command", "from_tty", "to_string", NULL };
as needing "(char *)" casts, because string literals are "const char []".
We can get rid of the casts by changing the array type like this:
- static char *keywords[] = {"command", "from_tty", "to_string", NULL };
+ static const char *keywords[] = {"command", "from_tty", "to_string", NULL };
However, passing the such array to PyArg_ParseTupleAndKeywords no longer
works OOTB, because PyArg_ParseTupleAndKeywords expects a "char **":
PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw,
const char *format,
char *keywords[], ...);
and "const char **" is not implicitly convertible to "char **". C++
is more tolerant that C here WRT aliasing, and a const_cast<char **>
is fine. However, to avoid having all callers do the cast themselves,
this commit defines a gdb_PyArg_ParseTupleAndKeywords function here
with a corresponding 'keywords' parameter type that does the cast in a
single place.
gdb/ChangeLog:
2017-04-05 Pedro Alves <palves@redhat.com>
* python/python-internal.h (gdb_PyArg_ParseTupleAndKeywords): New
static inline function.
* python/py-arch.c (archpy_disassemble): Constify 'keywords'
array and use gdb_PyArg_ParseTupleAndKeywords.
* python/py-cmd.c (cmdpy_init): Likewise.
* python/py-finishbreakpoint.c (bpfinishpy_init): Likewise.
* python/py-inferior.c (infpy_read_memory, infpy_write_memory)
(infpy_search_memory): Likewise.
* python/py-objfile.c (objfpy_add_separate_debug_file)
(gdbpy_lookup_objfile): Likewise.
* python/py-symbol.c (gdbpy_lookup_symbol)
(gdbpy_lookup_global_symbol): Likewise.
* python/py-type.c (gdbpy_lookup_type): Likewise.
* python/py-value.c (valpy_lazy_string, valpy_string): Likewise.
* python/python.c (execute_gdb_command, gdbpy_write, gdbpy_flush):
Likewise.
Unfortunately, PyGetSetDef's 'name' and 'doc' members are 'char *'
instead of 'const char *', meaning that in order to list-initialize
PyGetSetDef arrays using string literals requires writing explicit
'char *' casts. For example:
static PyGetSetDef value_object_getset[] = {
- { "address", valpy_get_address, NULL, "The address of the value.",
+ { (char *) "address", valpy_get_address, NULL,
+ (char *) "The address of the value.",
NULL },
- { "is_optimized_out", valpy_get_is_optimized_out, NULL,
- "Boolean telling whether the value is optimized "
+ { (char *) "is_optimized_out", valpy_get_is_optimized_out, NULL,
+ (char *) "Boolean telling whether the value is optimized "
"out (i.e., not available).",
NULL },
- { "type", valpy_get_type, NULL, "Type of the value.", NULL },
- { "dynamic_type", valpy_get_dynamic_type, NULL,
- "Dynamic type of the value.", NULL },
- { "is_lazy", valpy_get_is_lazy, NULL,
- "Boolean telling whether the value is lazy (not fetched yet\n\
+ { (char *) "type", valpy_get_type, NULL,
+ (char *) "Type of the value.", NULL },
+ { (char *) "dynamic_type", valpy_get_dynamic_type, NULL,
+ (char *) "Dynamic type of the value.", NULL },
+ { (char *) "is_lazy", valpy_get_is_lazy, NULL,
+ (char *) "Boolean telling whether the value is lazy (not fetched yet\n\
from the inferior). A lazy value is fetched when needed, or when\n\
the \"fetch_lazy()\" method is called.", NULL },
{NULL} /* Sentinel */
We have ~20 such arrays, and I first wrote a patch that fixed all of
them like that... It's not pretty...
One way to make these a bit less ugly would be add a new macro that
hides the casts, like:
#define GDBPY_GSDEF(NAME, GET, SET, DOC, CLOSURE) \
{ (char *) NAME, GET, SET, (char *) DOC, CLOSURE }
and then use it like:
static PyGetSetDef value_object_getset[] = {
GDBPY_GSDEF ("address", valpy_get_address, NULL,
"The address of the value.", NULL),
GDBPY_GSDEF ("is_optimized_out", valpy_get_is_optimized_out, NULL,
"Boolean telling whether the value is optimized ", NULL),
{NULL} /* Sentinel */
};
But since we have C++11, which gives us constexpr and list
initialization, I thought of a way that requires no changes where the
arrays are initialized:
We add a new type that extends PyGetSetDef (called gdb_PyGetSetDef),
and add constexpr constructors that accept const 'name' and 'doc', and
then list/aggregate initialization simply "calls" these matching
constructors instead.
I put "calls" in quotes, because given "constexpr", it's all done at
compile time, and there's no overhead either in binary size or at run
time. In fact, we get identical binaries, before/after this change.
Unlike the fixes that fix some old Python API to match the API of more
recent Python, this switches to using explicit "gdb_PyGetSetDef"
everywhere, just to be clear that we are using our own version of it.
gdb/ChangeLog:
2017-04-05 Pedro Alves <palves@redhat.com>
* python/python-internal.h (gdb_PyGetSetDef): New type.
* python/py-block.c (block_object_getset)
(breakpoint_object_getset): Now a gdb_PyGetSetDef array.
* python/py-event.c (event_object_getset)
(finish_breakpoint_object_getset): Likewise.
* python/py-inferior.c (inferior_object_getset): Likewise.
* python/py-infthread.c (thread_object_getset): Likewise.
* python/py-lazy-string.c (lazy_string_object_getset): Likewise.
* python/py-linetable.c (linetable_entry_object_getset): Likewise.
* python/py-objfile.c (objfile_getset): Likewise.
* python/py-progspace.c (pspace_getset): Likewise.
* python/py-record-btrace.c (btpy_insn_getset, btpy_call_getset):
Likewise.
* python/py-record.c (recpy_record_getset): Likewise.
* python/py-symbol.c (symbol_object_getset): Likewise.
* python/py-symtab.c (symtab_object_getset, sal_object_getset):
Likewise.
* python/py-type.c (type_object_getset, field_object_getset):
Likewise.
* python/py-value.c (value_object_getset): Likewise.
This turns gdbpy_ref into a template class, so that it can be used to
wrap subclasses of PyObject. The default argument remains PyObject;
and this necessitated renaming uses of "gdbpy_ref" to "gdbpy_ref<>".
gdb/ChangeLog
2017-02-10 Tom Tromey <tom@tromey.com>
* python/py-ref.h (gdbpy_ref_policy): Now a template.
(gdbpy_ref): Now a template; allow subclasses of PyObject to be
used.
* python/py-arch.c, python/py-bpevent.c, python/py-breakpoint.c,
python/py-cmd.c, python/py-continueevent.c, python/py-event.c,
python/py-exitedevent.c, python/py-finishbreakpoint.c,
python/py-framefilter.c, python/py-function.c,
python/py-inferior.c, python/py-infevents.c,
python/py-linetable.c, python/py-newobjfileevent.c,
python/py-param.c, python/py-prettyprint.c, python/py-ref.h,
python/py-signalevent.c, python/py-stopevent.c,
python/py-symbol.c, python/py-threadevent.c, python/py-type.c,
python/py-unwind.c, python/py-utils.c, python/py-value.c,
python/py-varobj.c, python/py-xmethods.c, python/python.c,
varobj.c: Change gdbpy_ref to gdbpy_ref<>.
This changes bpfinishpy_out_of_scope to use gdbpy_ref.
2017-01-10 Tom Tromey <tom@tromey.com>
* python/py-finishbreakpoint.c (bpfinishpy_out_of_scope): Use
gdbpy_ref.
Change py-finishbreakpoint.c to use gdbpy_enter.
2017-01-10 Tom Tromey <tom@tromey.com>
* python/py-finishbreakpoint.c (bpfinishpy_handle_stop)
(bpfinishpy_handle_exit): Use gdbpy_enter.
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
A relatively recent patch support for explicit locations, and part
of that patch cleaned up the way we parse breakpoint locations.
Unfortunatly, a small regression crept in for "*<EXPR>" breakpoint
locations. In particular, on PIE programs, one can see the issue by
doing the following, with any program:
(gdb) b *main
Breakpoint 1 at 0x51a: file hello.c, line 3.
(gdb) run
Starting program: /[...]/hello
Error in re-setting breakpoint 1: Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x51a
Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x51a
Just for the record, this regression was introduced by:
commit a06efdd6ef
Date: Tue Aug 11 17:09:35 2015 -0700
Subject: Explicit locations: introduce address locations
What happens is that the patch makes the implicit assumption that
the address computed the first time is static, as if it was designed
to only support litteral expressions (Eg. "*0x1234"). This allows
the shortcut of not re-computing the breakpoint location's address
when re-setting breakpoints.
However, this does not work in general, as demonstrated in the example
above.
This patch plugs that hole simply by saving the original expression
used to compute the address as part of the address location, so as
to then re-evaluate that expression during breakpoint re-set.
gdb/ChangeLog:
* location.h (new_address_location): Add new parameters
"addr_string" and "addr_string_len".
(get_address_string_location): Add declaration.
* location.c (new_address_location): Add new parameters
"addr_string" and "addr_string_len". If not NULL, store
a copy of the addr_string in the new location as well.
(get_address_string_location): New function.
(string_to_event_location): Update call to new_address_location.
* linespec.c (event_location_to_sals) <ADDRESS_LOCATION>:
Save the event location in the parser's state before
passing it to convert_address_location_to_sals.
* breakpoint.c (create_thread_event_breakpoint): Update call
to new_address_location.
(init_breakpoint_sal): Get the event location's string, if any,
and use it to update call to new_address_location.
* python/py-finishbreakpoint.c (bpfinishpy_init):
Update call to new_address_location.
* spu-tdep.c (spu_catch_start): Likewise.
* config/djgpp/fnchange.lst: Add entries for
gdb/testsuite/gdb.base/break-fun-addr1.c and
gdb/testsuite/gdb.base/break-fun-addr2.c.
gdb/testsuite/ChangeLog:
* gdb.base/break-fun-addr.exp: New file.
* gdb.base/break-fun-addr1.c: New file.
* gdb.base/break-fun-addr2.c: New file.
This commit changes GDB to track thread numbers per-inferior. Then,
if you're debugging multiple inferiors, GDB displays
"inferior-num.thread-num" instead of just "thread-num" whenever it
needs to display a thread:
(gdb) info inferiors
Num Description Executable
1 process 6022 /home/pedro/gdb/tests/threads
* 2 process 6037 /home/pedro/gdb/tests/threads
(gdb) info threads
Id Target Id Frame
1.1 Thread 0x7ffff7fc2740 (LWP 6022) "threads" (running)
1.2 Thread 0x7ffff77c0700 (LWP 6028) "threads" (running)
1.3 Thread 0x7ffff7fc2740 (LWP 6032) "threads" (running)
2.1 Thread 0x7ffff7fc1700 (LWP 6037) "threads" (running)
2.2 Thread 0x7ffff77c0700 (LWP 6038) "threads" (running)
* 2.3 Thread 0x7ffff7fc2740 (LWP 6039) "threads" (running)
(gdb)
...
(gdb) thread 1.1
[Switching to thread 1.1 (Thread 0x7ffff7fc2740 (LWP 8155))]
(gdb)
...
etc.
You can still use "thread NUM", in which case GDB infers you're
referring to thread NUM of the current inferior.
The $_thread convenience var and Python's InferiorThread.num attribute
are remapped to the new per-inferior thread number. It's a backward
compatibility break, but since it only matters when debugging multiple
inferiors, I think it's worth doing.
Because MI thread IDs need to be a single integer, we keep giving
threads a global identifier, _in addition_ to the per-inferior number,
and make MI always refer to the global thread IDs. IOW, nothing
changes from a MI frontend's perspective.
Similarly, since Python's Breakpoint.thread and Guile's
breakpoint-thread/set-breakpoint-thread breakpoint methods need to
work with integers, those are adjusted to work with global thread IDs
too. Follow up patches will provide convenient means to access
threads' global IDs.
To avoid potencially confusing users (which also avoids updating much
of the testsuite), if there's only one inferior and its ID is "1",
IOW, the user hasn't done anything multi-process/inferior related,
then the "INF." part of thread IDs is not shown. E.g,.:
(gdb) info inferiors
Num Description Executable
* 1 process 15275 /home/pedro/gdb/tests/threads
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
(gdb) add-inferior
Added inferior 2
(gdb) info threads
Id Target Id Frame
* 1.1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
(gdb)
No regressions on x86_64 Fedora 20.
gdb/ChangeLog:
2016-01-13 Pedro Alves <palves@redhat.com>
* NEWS: Mention that thread IDs are now per inferior and global
thread IDs.
* Makefile.in (SFILES): Add tid-parse.c.
(COMMON_OBS): Add tid-parse.o.
(HFILES_NO_SRCDIR): Add tid-parse.h.
* ada-tasks.c: Adjust to use ptid_to_global_thread_id.
* breakpoint.c (insert_breakpoint_locations)
(remove_threaded_breakpoints, bpstat_check_breakpoint_conditions)
(print_one_breakpoint_location, set_longjmp_breakpoint)
(check_longjmp_breakpoint_for_call_dummy)
(set_momentary_breakpoint): Adjust to use global IDs.
(find_condition_and_thread, watch_command_1): Use parse_thread_id.
(until_break_command, longjmp_bkpt_dtor)
(breakpoint_re_set_thread, insert_single_step_breakpoint): Adjust
to use global IDs.
* dummy-frame.c (pop_dummy_frame_bpt): Adjust to use
ptid_to_global_thread_id.
* elfread.c (elf_gnu_ifunc_resolver_stop): Likewise.
* gdbthread.h (struct thread_info): Rename field 'num' to
'global_num. Add new fields 'per_inf_num' and 'inf'.
(thread_id_to_pid): Rename thread_id_to_pid to
global_thread_id_to_ptid.
(pid_to_thread_id): Rename to ...
(ptid_to_global_thread_id): ... this.
(valid_thread_id): Rename to ...
(valid_global_thread_id): ... this.
(find_thread_id): Rename to ...
(find_thread_global_id): ... this.
(ALL_THREADS, ALL_THREADS_BY_INFERIOR): Declare.
(print_thread_info): Add comment.
* tid-parse.h: New file.
* tid-parse.c: New file.
* infcmd.c (step_command_fsm_prepare)
(step_command_fsm_should_stop): Adjust to use the global thread
ID.
(until_next_command, until_next_command)
(finish_command_fsm_should_stop): Adjust to use the global thread
ID.
(attach_post_wait): Adjust to check the inferior number too.
* inferior.h (struct inferior) <highest_thread_num>: New field.
* infrun.c (handle_signal_stop)
(insert_exception_resume_breakpoint)
(insert_exception_resume_from_probe): Adjust to use the global
thread ID.
* record-btrace.c (record_btrace_open): Use global thread IDs.
* remote.c (process_initial_stop_replies): Also consider the
inferior number.
* target.c (target_pre_inferior): Clear the inferior's highest
thread num.
* thread.c (clear_thread_inferior_resources): Adjust to use the
global thread ID.
(new_thread): New inferior parameter. Adjust to use it. Set both
the thread's global ID and the thread's per-inferior ID.
(add_thread_silent): Adjust.
(find_thread_global_id): New.
(find_thread_id): Make static. Adjust to rename.
(valid_thread_id): Rename to ...
(valid_global_thread_id): ... this.
(pid_to_thread_id): Rename to ...
(ptid_to_global_thread_id): ... this.
(thread_id_to_pid): Rename to ...
(global_thread_id_to_ptid): ... this. Adjust.
(first_thread_of_process): Adjust.
(do_captured_list_thread_ids): Adjust to use global thread IDs.
(should_print_thread): New function.
(print_thread_info): Rename to ...
(print_thread_info_1): ... this, and add new show_global_ids
parameter. Handle it. Iterate over inferiors.
(print_thread_info): Reimplement as wrapper around
print_thread_info_1.
(show_inferior_qualified_tids): New function.
(print_thread_id): Use it.
(tp_array_compar): Compare inferior numbers too.
(thread_apply_command): Use tid_range_parser.
(do_captured_thread_select): Use parse_thread_id.
(thread_id_make_value): Adjust.
(_initialize_thread): Adjust "info threads" help string.
* varobj.c (struct varobj_root): Update comment.
(varobj_create): Adjust to use global thread IDs.
(value_of_root_1): Adjust to use global_thread_id_to_ptid.
* windows-tdep.c (display_tib): No longer accept an argument.
* cli/cli-utils.c (get_number_trailer): Make extern.
* cli/cli-utils.h (get_number_trailer): Declare.
(get_number_const): Adjust documentation.
* mi/mi-cmd-var.c (mi_cmd_var_update_iter): Adjust to use global
thread IDs.
* mi/mi-interp.c (mi_new_thread, mi_thread_exit)
(mi_on_normal_stop, mi_output_running_pid, mi_on_resume):
* mi/mi-main.c (mi_execute_command, mi_cmd_execute): Likewise.
* guile/scm-breakpoint.c (gdbscm_set_breakpoint_thread_x):
Likewise.
* python/py-breakpoint.c (bppy_set_thread): Likewise.
* python/py-finishbreakpoint.c (bpfinishpy_init): Likewise.
* python/py-infthread.c (thpy_get_num): Add comment and return the
per-inferior thread ID.
(thread_object_getset): Update comment of "num".
gdb/testsuite/ChangeLog:
2016-01-07 Pedro Alves <palves@redhat.com>
* gdb.base/break.exp: Adjust to output changes.
* gdb.base/hbreak2.exp: Likewise.
* gdb.base/sepdebug.exp: Likewise.
* gdb.base/watch_thread_num.exp: Likewise.
* gdb.linespec/keywords.exp: Likewise.
* gdb.multi/info-threads.exp: Likewise.
* gdb.threads/thread-find.exp: Likewise.
* gdb.multi/tids.c: New file.
* gdb.multi/tids.exp: New file.
gdb/doc/ChangeLog:
2016-01-07 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Threads): Document per-inferior thread IDs,
qualified thread IDs, global thread IDs and thread ID lists.
(Set Watchpoints, Thread-Specific Breakpoints): Adjust to refer to
thread IDs.
(Convenience Vars): Document the $_thread convenience variable.
(Ada Tasks): Adjust to refer to thread IDs.
(GDB/MI Async Records, GDB/MI Thread Commands, GDB/MI Ada Tasking
Commands, GDB/MI Variable Objects): Update to mention global
thread IDs.
* guile.texi (Breakpoints In Guile)
<breakpoint-thread/set-breakpoint-thread breakpoint>: Mention
global thread IDs instead of thread IDs.
* python.texi (Threads In Python): Adjust documentation of
InferiorThread.num.
(Breakpoint.thread): Mention global thread IDs instead of thread
IDs.