After the previous target_ops/C++ patches are all squashed and merged,
this one can go in separately.
This patch adjusts all the target methods to return bool instead of int
when they're returning a boolean.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* target.h (target_ops)
<stopped_by_sw_breakpoint, supports_stopped_by_sw_breakpoint,
stopped_by_hw_breakpoint, supports_stopped_by_hw_breakpoint,
stopped_by_watchpoint, have_continuable_watchpoint,
stopped_data_address, watchpoint_addr_within_range,
can_accel_watchpoint_condition, can_run, thread_alive,
has_all_memory, has_memory, has_stack, has_registers,
has_execution, can_async_p, is_async_p, supports_non_stop,
always_non_stop_p, can_execute_reverse, supports_multi_process,
supports_enable_disable_tracepoint,
supports_disable_randomization, supports_string_tracing,
supports_evaluation_of_breakpoint_conditions,
can_run_breakpoint_commands, filesystem_is_local,
can_download_tracepoint, get_trace_state_variable_value,
set_trace_notes, get_tib_address, use_agent, can_use_agent,
record_is_replaying, record_will_replay,
augmented_libraries_svr4_read>: Adjust to return bool.
* aarch64-linux-nat.c: All implementations adjusted.
* aix-thread.c: All implementations adjusted.
* arm-linux-nat.c: All implementations adjusted.
* breakpoint.c: All implementations adjusted.
* bsd-kvm.c: All implementations adjusted.
* bsd-uthread.c: All implementations adjusted.
* corelow.c: All implementations adjusted.
* ctf.c: All implementations adjusted.
* darwin-nat.c: All implementations adjusted.
* darwin-nat.h: All implementations adjusted.
* exec.c: All implementations adjusted.
* fbsd-nat.c: All implementations adjusted.
* fbsd-nat.h: All implementations adjusted.
* gnu-nat.c: All implementations adjusted.
* gnu-nat.h: All implementations adjusted.
* go32-nat.c: All implementations adjusted.
* ia64-linux-nat.c: All implementations adjusted.
* inf-child.c: All implementations adjusted.
* inf-child.h: All implementations adjusted.
* inf-ptrace.c: All implementations adjusted.
* inf-ptrace.h: All implementations adjusted.
* linux-nat.c: All implementations adjusted.
* linux-nat.h: All implementations adjusted.
* mips-linux-nat.c: All implementations adjusted.
* nto-procfs.c: All implementations adjusted.
* ppc-linux-nat.c: All implementations adjusted.
* procfs.c: All implementations adjusted.
* ravenscar-thread.c: All implementations adjusted.
* record-btrace.c: All implementations adjusted.
* record-full.c: All implementations adjusted.
* remote-sim.c: All implementations adjusted.
* remote.c: All implementations adjusted.
* s390-linux-nat.c: All implementations adjusted.
* sol-thread.c: All implementations adjusted.
* spu-multiarch.c: All implementations adjusted.
* target-delegates.c: All implementations adjusted.
* target.c: All implementations adjusted.
* target.h: All implementations adjusted.
* tracefile-tfile.c: All implementations adjusted.
* tracefile.c: All implementations adjusted.
* tracefile.h: All implementations adjusted.
* windows-nat.c: All implementations adjusted.
* x86-linux-nat.h: All implementations adjusted.
* x86-nat.h: All implementations adjusted.
I.e., use C++ virtual methods and inheritance instead of tables of
function pointers.
Unfortunately, there's no way to do a smooth transition. ALL native
targets in the tree must be converted at the same time. I've tested
all I could with cross compilers and with help from GCC compile farm,
but naturally I haven't been able to test many of the ports. Still, I
made a best effort to port everything over, and while I expect some
build problems due to typos and such, which should be trivial to fix,
I don't expect any design problems.
* Implementation notes:
- The flattened current_target is gone. References to current_target
or current_target.beneath are replaced with references to
target_stack (the top of the stack) directly.
- To keep "set debug target" working, this adds a new debug_stratum
layer that sits on top of the stack, prints the debug, and delegates
to the target beneath.
In addition, this makes the shortname and longname properties of
target_ops be virtual methods instead of data fields, and makes the
debug target defer those to the target beneath. This is so that
debug code sprinkled around that does "if (debugtarget) ..." can
transparently print the name of the target beneath.
A patch later in the series actually splits out the
shortname/longname methods to a separate structure, but I preferred
to keep that chance separate as it is associated with changing a bit
the design of how targets are registered and open.
- Since you can't check whether a C++ virtual method is overridden,
the old method of checking whether a target_ops implements a method
by comparing the function pointer must be replaced with something
else.
Some cases are fixed by adding a parallel "can_do_foo" target_ops
methods. E.g.,:
+ for (t = target_stack; t != NULL; t = t->beneath)
{
- if (t->to_create_inferior != NULL)
+ if (t->can_create_inferior ())
break;
}
Others are fixed by changing void return type to bool or int return
type, and have the default implementation return false or -1, to
indicate lack of support.
- make-target-delegates was adjusted to generate C++ classes and
methods.
It needed tweaks to grok "virtual" in front of the target method
name, and for the fact that methods are no longer function pointers.
(In particular, the current code parsing the return type was simple
because it could simply parse up until the '(' in '(*to_foo)'.
It now generates a couple C++ classes that inherit target_ops:
dummy_target and debug_target.
Since we need to generate the class declarations as well, i.e., we
need to emit methods twice, we now generate the code in two passes.
- The core_target global is renamed to avoid conflict with the
"core_target" class.
- ctf/tfile targets
init_tracefile_ops is replaced by a base class that is inherited by
both ctf and tfile.
- bsd-uthread
The bsd_uthread_ops_hack hack is gone. It's not needed because
nothing was extending a target created by bsd_uthread_target.
- remote/extended-remote targets
This is a first pass, just enough to C++ify target_ops.
A later pass will convert more free functions to methods, and make
remote_state be truly per remote instance, allowing multiple
simultaneous instances of remote targets.
- inf-child/"native" is converted to an actual base class
(inf_child_target), that is inherited by all native targets.
- GNU/Linux
The old weird double-target linux_ops mechanism in linux-nat.c, is
gone, replaced by adding a few virtual methods to linux-nat.h's
target_ops, called low_XXX, that the concrete linux-nat
implementations override. Sort of like gdbserver's
linux_target_ops, but simpler, for requiring only one
target_ops-like hierarchy, which spares implementing the same method
twice when we need to forward the method to a low implementation.
The low target simply reimplements the target_ops method directly in
that case.
There are a few remaining linux-nat.c hooks that would be better
converted to low_ methods like above too. E.g.:
linux_nat_set_new_thread (t, x86_linux_new_thread);
linux_nat_set_new_fork (t, x86_linux_new_fork);
linux_nat_set_forget_process
That'll be done in a follow up patch.
- We can no longer use functions like x86_use_watchpoints to install
custom methods on an arbitrary base target.
The patch replaces instances of such a pattern with template mixins.
For example memory_breakpoint_target defined in target.h, or
x86_nat_target in x86-nat.h.
- linux_trad_target, MIPS and Alpha GNU/Linux
The code in the new linux-nat-trad.h/c files which was split off of
inf-ptrace.h/c recently, is converted to a C++ base class, and used
by the MIPS and Alpha GNU/Linux ports.
- BSD targets
The
$architecture x NetBSD/OpenBSD/FreeBSD
support matrix complicates things a bit. There's common BSD target
code, and there's common architecture-specific code shared between
the different BSDs. Currently, all that is stiched together to form
a final target, via the i386bsd_target, x86bsd_target,
fbsd_nat_add_target functions etc.
This introduces new fbsd_nat_target, obsd_nat_target and
nbsd_nat_target classes that serve as base/prototype target for the
corresponding BSD variant.
And introduces generic i386/AMD64 BSD targets, to be used as
template mixin to build a final target. Similarly, a generic SPARC
target is added, used by both BSD and Linux ports.
- bsd_kvm_add_target, BSD libkvm target
I considered making bsd_kvm_supply_pcb a virtual method, and then
have each port inherit bsd_kvm_target and override that method, but
that was resulting in lots of unjustified churn, so I left the
function pointer mechanism alone.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
John Baldwin <jhb@freebsd.org>
* target.h (enum strata) <debug_stratum>: New.
(struct target_ops) <all delegation methods>: Replace by C++
virtual methods, and drop "to_" prefix. All references updated
throughout.
<to_shortname, to_longname, to_doc, to_data,
to_have_steppable_watchpoint, to_have_continuable_watchpoint,
to_has_thread_control, to_attach_no_wait>: Delete, replaced by
virtual methods. All references updated throughout.
<can_attach, supports_terminal_ours, can_create_inferior,
get_thread_control_capabilities, attach_no_wait>: New
virtual methods.
<insert_breakpoint, remove_breakpoint>: Now
TARGET_DEFAULT_NORETURN methods.
<info_proc>: Now returns bool.
<to_magic>: Delete.
(OPS_MAGIC): Delete.
(current_target): Delete. All references replaced by references
to ...
(target_stack): ... this. New.
(target_shortname, target_longname): Adjust.
(target_can_run): Now a function declaration.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(memory_breakpoint_target): New template class.
(test_target_ops): Refactor as a C++ class with virtual methods.
* make-target-delegates (NAME_PART): Tighten.
(POINTER_PART, CP_SYMBOL): New.
(SIMPLE_RETURN_PART): Reimplement.
(VEC_RETURN_PART): Expect less.
(RETURN_PART, VIRTUAL_PART): New.
(METHOD): Adjust to C++ virtual methods.
(scan_target_h): Remove reference to C99.
(dname): Output "target_ops::" prefix.
(write_function_header): Adjust to output a C++ class method.
(write_declaration): New.
(write_delegator): Adjust to output a C++ class method.
(tdname): Output "dummy_target::" prefix.
(write_tdefault, write_debugmethod): Adjust to output a C++ class
method.
(tdefault_names, debug_names): Delete.
(return_types, tdefaults, styles, argtypes_array): New.
(top level): All methods are delegators.
(print_class): New.
(top level): Print dummy_target and debug_target classes.
* target-delegates.c: Regenerate.
* target-debug.h (target_debug_print_enum_info_proc_what)
(target_debug_print_thread_control_capabilities)
(target_debug_print_thread_info_p): New.
* target.c (dummy_target): Delete.
(the_dummy_target, the_debug_target): New.
(target_stack): Now extern.
(set_targetdebug): Push/unpush debug target.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(add_target_with_completer): No longer call
complete_target_initialization.
(target_supports_terminal_ours): Use regular delegation.
(update_current_target): Delete.
(push_target): No longer check magic number. Don't call
update_current_target.
(unpush_target): Don't call update_current_target.
(target_is_pushed): No longer check magic number.
(target_require_runnable): Skip for all stratums over
process_stratum.
(target_ops::info_proc): New.
(target_info_proc): Use find_target_at and
find_default_run_target.
(target_supports_disable_randomization): Use regular delegation.
(target_get_osdata): Use find_target_at.
(target_ops::open, target_ops::close, target_ops::can_attach)
(target_ops::attach, target_ops::can_create_inferior)
(target_ops::create_inferior, target_ops::can_run)
(target_can_run): New.
(default_fileio_target): Use regular delegation.
(target_ops::fileio_open, target_ops::fileio_pwrite)
(target_ops::fileio_pread, target_ops::fileio_fstat)
(target_ops::fileio_close, target_ops::fileio_unlink)
(target_ops::fileio_readlink): New.
(target_fileio_open_1, target_fileio_unlink)
(target_fileio_readlink): Always call the target method. Handle
FILEIO_ENOSYS.
(return_zero, return_zero_has_execution): Delete.
(init_dummy_target): Delete.
(dummy_target::dummy_target, dummy_target::shortname)
(dummy_target::longname, dummy_target::doc)
(debug_target::debug_target, debug_target::shortname)
(debug_target::longname, debug_target::doc): New.
(target_supports_delete_record): Use regular delegation.
(setup_target_debug): Delete.
(maintenance_print_target_stack): Skip debug_stratum.
(initialize_targets): Instantiate the_dummy_target and
the_debug_target.
* auxv.c (target_auxv_parse): Remove 'ops' parameter. Adjust to
use target_stack.
(target_auxv_search, fprint_target_auxv): Adjust.
(info_auxv_command): Adjust to use target_stack.
* auxv.h (target_auxv_parse): Remove 'ops' parameter.
* exceptions.c (print_flush): Handle a NULL target_stack.
* regcache.c (target_ops_no_register): Refactor as class with
virtual methods.
* exec.c (exec_target): New class.
(exec_ops): Now an exec_target.
(exec_open, exec_close_1, exec_get_section_table)
(exec_xfer_partial, exec_files_info, exec_has_memory)
(exec_make_note_section): Refactor as exec_target methods.
(exec_file_clear, ignore, exec_remove_breakpoint, init_exec_ops):
Delete.
(exec_target::find_memory_regions): New.
(_initialize_exec): Don't call init_exec_ops.
* gdbcore.h (exec_file_clear): Delete.
* corefile.c (core_target): Delete.
(core_file_command): Adjust.
* corelow.c (core_target): New class.
(the_core_target): New.
(core_close): Remove target_ops parameter.
(core_close_cleanup): Adjust.
(core_target::close): New.
(core_open, core_detach, get_core_registers, core_files_info)
(core_xfer_partial, core_thread_alive, core_read_description)
(core_pid_to_str, core_thread_name, core_has_memory)
(core_has_stack, core_has_registers, core_info_proc): Rework as
core_target methods.
(ignore, core_remove_breakpoint, init_core_ops): Delete.
(_initialize_corelow): Initialize the_core_target.
* gdbcore.h (core_target): Delete.
(the_core_target): New.
* ctf.c: (ctf_target): New class.
(ctf_ops): Now a ctf_target.
(ctf_open, ctf_close, ctf_files_info, ctf_fetch_registers)
(ctf_xfer_partial, ctf_get_trace_state_variable_value)
(ctf_trace_find, ctf_traceframe_info): Refactor as ctf_target
methods.
(init_ctf_ops): Delete.
(_initialize_ctf): Don't call it.
* tracefile-tfile.c (tfile_target): New class.
(tfile_ops): Now a tfile_target.
(tfile_open, tfile_close, tfile_files_info)
(tfile_get_tracepoint_status, tfile_trace_find)
(tfile_fetch_registers, tfile_xfer_partial)
(tfile_get_trace_state_variable_value, tfile_traceframe_info):
Refactor as tfile_target methods.
(tfile_xfer_partial_features): Remove target_ops parameter.
(init_tfile_ops): Delete.
(_initialize_tracefile_tfile): Don't call it.
* tracefile.c (tracefile_has_all_memory, tracefile_has_memory)
(tracefile_has_stack, tracefile_has_registers)
(tracefile_thread_alive, tracefile_get_trace_status): Refactor as
tracefile_target methods.
(init_tracefile_ops): Delete.
(tracefile_target::tracefile_target): New.
* tracefile.h: Include "target.h".
(tracefile_target): New class.
(init_tracefile_ops): Delete.
* spu-multiarch.c (spu_multiarch_target): New class.
(spu_ops): Now a spu_multiarch_target.
(spu_thread_architecture, spu_region_ok_for_hw_watchpoint)
(spu_fetch_registers, spu_store_registers, spu_xfer_partial)
(spu_search_memory, spu_mourn_inferior): Refactor as
spu_multiarch_target methods.
(init_spu_ops): Delete.
(_initialize_spu_multiarch): Remove references to init_spu_ops,
complete_target_initialization.
* ravenscar-thread.c (ravenscar_thread_target): New class.
(ravenscar_ops): Now a ravenscar_thread_target.
(ravenscar_resume, ravenscar_wait, ravenscar_update_thread_list)
(ravenscar_thread_alive, ravenscar_pid_to_str)
(ravenscar_fetch_registers, ravenscar_store_registers)
(ravenscar_prepare_to_store, ravenscar_stopped_by_sw_breakpoint)
(ravenscar_stopped_by_hw_breakpoint)
(ravenscar_stopped_by_watchpoint, ravenscar_stopped_data_address)
(ravenscar_mourn_inferior, ravenscar_core_of_thread)
(ravenscar_get_ada_task_ptid): Refactor as ravenscar_thread_target
methods.
(init_ravenscar_thread_ops): Delete.
(_initialize_ravenscar): Remove references to
init_ravenscar_thread_ops and complete_target_initialization.
* bsd-uthread.c (bsd_uthread_ops_hack): Delete.
(bsd_uthread_target): New class.
(bsd_uthread_ops): Now a bsd_uthread_target.
(bsd_uthread_activate): Adjust to refer to bsd_uthread_ops.
(bsd_uthread_close, bsd_uthread_mourn_inferior)
(bsd_uthread_fetch_registers, bsd_uthread_store_registers)
(bsd_uthread_wait, bsd_uthread_resume, bsd_uthread_thread_alive)
(bsd_uthread_update_thread_list, bsd_uthread_extra_thread_info)
(bsd_uthread_pid_to_str): Refactor as bsd_uthread_target methods.
(bsd_uthread_target): Delete function.
(_initialize_bsd_uthread): Remove reference to
complete_target_initialization.
* bfd-target.c (target_bfd_data): Delete. Fields folded into ...
(target_bfd): ... this new class.
(target_bfd_xfer_partial, target_bfd_get_section_table)
(target_bfd_close): Refactor as target_bfd methods.
(target_bfd::~target_bfd): New.
(target_bfd_reopen): Adjust.
(target_bfd::close): New.
* record-btrace.c (record_btrace_target): New class.
(record_btrace_ops): Now a record_btrace_target.
(record_btrace_open, record_btrace_stop_recording)
(record_btrace_disconnect, record_btrace_close)
(record_btrace_async, record_btrace_info)
(record_btrace_insn_history, record_btrace_insn_history_range)
(record_btrace_insn_history_from, record_btrace_call_history)
(record_btrace_call_history_range)
(record_btrace_call_history_from, record_btrace_record_method)
(record_btrace_is_replaying, record_btrace_will_replay)
(record_btrace_xfer_partial, record_btrace_insert_breakpoint)
(record_btrace_remove_breakpoint, record_btrace_fetch_registers)
(record_btrace_store_registers, record_btrace_prepare_to_store)
(record_btrace_to_get_unwinder)
(record_btrace_to_get_tailcall_unwinder, record_btrace_resume)
(record_btrace_commit_resume, record_btrace_wait)
(record_btrace_stop, record_btrace_can_execute_reverse)
(record_btrace_stopped_by_sw_breakpoint)
(record_btrace_supports_stopped_by_sw_breakpoint)
(record_btrace_stopped_by_hw_breakpoint)
(record_btrace_supports_stopped_by_hw_breakpoint)
(record_btrace_update_thread_list, record_btrace_thread_alive)
(record_btrace_goto_begin, record_btrace_goto_end)
(record_btrace_goto, record_btrace_stop_replaying_all)
(record_btrace_execution_direction)
(record_btrace_prepare_to_generate_core)
(record_btrace_done_generating_core): Refactor as
record_btrace_target methods.
(init_record_btrace_ops): Delete.
(_initialize_record_btrace): Remove reference to
init_record_btrace_ops.
* record-full.c (RECORD_FULL_IS_REPLAY): Adjust to always refer to
the execution_direction global.
(record_full_base_target, record_full_target)
(record_full_core_target): New classes.
(record_full_ops): Now a record_full_target.
(record_full_core_ops): Now a record_full_core_target.
(record_full_target::detach, record_full_target::disconnect)
(record_full_core_target::disconnect)
(record_full_target::mourn_inferior, record_full_target::kill):
New.
(record_full_open, record_full_close, record_full_async): Refactor
as methods of the record_full_base_target class.
(record_full_resume, record_full_commit_resume): Refactor
as methods of the record_full_target class.
(record_full_wait, record_full_stopped_by_watchpoint)
(record_full_stopped_data_address)
(record_full_stopped_by_sw_breakpoint)
(record_full_supports_stopped_by_sw_breakpoint)
(record_full_stopped_by_hw_breakpoint)
(record_full_supports_stopped_by_hw_breakpoint): Refactor as
methods of the record_full_base_target class.
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint):
Refactor as methods of the record_full_target class.
(record_full_can_execute_reverse, record_full_get_bookmark)
(record_full_goto_bookmark, record_full_execution_direction)
(record_full_record_method, record_full_info, record_full_delete)
(record_full_is_replaying, record_full_will_replay)
(record_full_goto_begin, record_full_goto_end, record_full_goto)
(record_full_stop_replaying): Refactor as methods of the
record_full_base_target class.
(record_full_core_resume, record_full_core_kill)
(record_full_core_fetch_registers)
(record_full_core_prepare_to_store)
(record_full_core_store_registers, record_full_core_xfer_partial)
(record_full_core_insert_breakpoint)
(record_full_core_remove_breakpoint)
(record_full_core_has_execution): Refactor
as methods of the record_full_core_target class.
(record_full_base_target::supports_delete_record): New.
(init_record_full_ops): Delete.
(init_record_full_core_ops): Delete.
(record_full_save): Refactor as method of the
record_full_base_target class.
(_initialize_record_full): Remove references to
init_record_full_ops and init_record_full_core_ops.
* remote.c (remote_target, extended_remote_target): New classes.
(remote_ops): Now a remote_target.
(extended_remote_ops): Now an extended_remote_target.
(remote_insert_fork_catchpoint, remote_remove_fork_catchpoint)
(remote_insert_vfork_catchpoint, remote_remove_vfork_catchpoint)
(remote_insert_exec_catchpoint, remote_remove_exec_catchpoint)
(remote_pass_signals, remote_set_syscall_catchpoint)
(remote_program_signals, )
(remote_thread_always_alive): Remove target_ops parameter.
(remote_thread_alive, remote_thread_name)
(remote_update_thread_list, remote_threads_extra_info)
(remote_static_tracepoint_marker_at)
(remote_static_tracepoint_markers_by_strid)
(remote_get_ada_task_ptid, remote_close, remote_start_remote)
(remote_open): Refactor as methods of remote_target.
(extended_remote_open, extended_remote_detach)
(extended_remote_attach, extended_remote_post_attach):
(extended_remote_supports_disable_randomization)
(extended_remote_create_inferior): : Refactor as method of
extended_remote_target.
(remote_set_permissions, remote_open_1, remote_detach)
(remote_follow_fork, remote_follow_exec, remote_disconnect)
(remote_resume, remote_commit_resume, remote_stop)
(remote_interrupt, remote_pass_ctrlc, remote_terminal_inferior)
(remote_terminal_ours, remote_wait, remote_fetch_registers)
(remote_prepare_to_store, remote_store_registers)
(remote_flash_erase, remote_flash_done, remote_files_info)
(remote_kill, remote_mourn, remote_insert_breakpoint)
(remote_remove_breakpoint, remote_insert_watchpoint)
(remote_watchpoint_addr_within_range)
(remote_remove_watchpoint, remote_region_ok_for_hw_watchpoint)
(remote_check_watch_resources, remote_stopped_by_sw_breakpoint)
(remote_supports_stopped_by_sw_breakpoint)
(remote_stopped_by_hw_breakpoint)
(remote_supports_stopped_by_hw_breakpoint)
(remote_stopped_by_watchpoint, remote_stopped_data_address)
(remote_insert_hw_breakpoint, remote_remove_hw_breakpoint)
(remote_verify_memory): Refactor as methods of remote_target.
(remote_write_qxfer, remote_read_qxfer): Remove target_ops
parameter.
(remote_xfer_partial, remote_get_memory_xfer_limit)
(remote_search_memory, remote_rcmd, remote_memory_map)
(remote_pid_to_str, remote_get_thread_local_address)
(remote_get_tib_address, remote_read_description): Refactor as
methods of remote_target.
(remote_target::fileio_open, remote_target::fileio_pwrite)
(remote_target::fileio_pread, remote_target::fileio_close): New.
(remote_hostio_readlink, remote_hostio_fstat)
(remote_filesystem_is_local, remote_can_execute_reverse)
(remote_supports_non_stop, remote_supports_disable_randomization)
(remote_supports_multi_process, remote_supports_cond_breakpoints)
(remote_supports_enable_disable_tracepoint)
(remote_supports_string_tracing)
(remote_can_run_breakpoint_commands, remote_trace_init)
(remote_download_tracepoint, remote_can_download_tracepoint)
(remote_download_trace_state_variable, remote_enable_tracepoint)
(remote_disable_tracepoint, remote_trace_set_readonly_regions)
(remote_trace_start, remote_get_trace_status)
(remote_get_tracepoint_status, remote_trace_stop)
(remote_trace_find, remote_get_trace_state_variable_value)
(remote_save_trace_data, remote_get_raw_trace_data)
(remote_set_disconnected_tracing, remote_core_of_thread)
(remote_set_circular_trace_buffer, remote_traceframe_info)
(remote_get_min_fast_tracepoint_insn_len)
(remote_set_trace_buffer_size, remote_set_trace_notes)
(remote_use_agent, remote_can_use_agent, remote_enable_btrace)
(remote_disable_btrace, remote_teardown_btrace)
(remote_read_btrace, remote_btrace_conf)
(remote_augmented_libraries_svr4_read, remote_load)
(remote_pid_to_exec_file, remote_can_do_single_step)
(remote_execution_direction, remote_thread_handle_to_thread_info):
Refactor as methods of remote_target.
(init_remote_ops, init_extended_remote_ops): Delete.
(remote_can_async_p, remote_is_async_p, remote_async)
(remote_thread_events, remote_upload_tracepoints)
(remote_upload_trace_state_variables): Refactor as methods of
remote_target.
(_initialize_remote): Remove references to init_remote_ops and
init_extended_remote_ops.
* remote-sim.c (gdbsim_target): New class.
(gdbsim_fetch_register, gdbsim_store_register, gdbsim_kill)
(gdbsim_load, gdbsim_create_inferior, gdbsim_open, gdbsim_close)
(gdbsim_detach, gdbsim_resume, gdbsim_interrupt)
(gdbsim_wait, gdbsim_prepare_to_store, gdbsim_xfer_partial)
(gdbsim_files_info, gdbsim_mourn_inferior, gdbsim_thread_alive)
(gdbsim_pid_to_str, gdbsim_has_all_memory, gdbsim_has_memory):
Refactor as methods of gdbsim_target.
(gdbsim_ops): Now a gdbsim_target.
(init_gdbsim_ops): Delete.
(gdbsim_cntrl_c): Adjust.
(_initialize_remote_sim): Remove reference to init_gdbsim_ops.
* amd64-linux-nat.c (amd64_linux_nat_target): New class.
(the_amd64_linux_nat_target): New.
(amd64_linux_fetch_inferior_registers)
(amd64_linux_store_inferior_registers): Refactor as methods of
amd64_linux_nat_target.
(_initialize_amd64_linux_nat): Adjust. Set linux_target.
* i386-linux-nat.c: Don't include "linux-nat.h".
(i386_linux_nat_target): New class.
(the_i386_linux_nat_target): New.
(i386_linux_fetch_inferior_registers)
(i386_linux_store_inferior_registers, i386_linux_resume): Refactor
as methods of i386_linux_nat_target.
(_initialize_i386_linux_nat): Adjust. Set linux_target.
* inf-child.c (inf_child_ops): Delete.
(inf_child_fetch_inferior_registers)
(inf_child_store_inferior_registers): Delete.
(inf_child_post_attach, inf_child_prepare_to_store): Refactor as
methods of inf_child_target.
(inf_child_target::supports_terminal_ours)
(inf_child_target::terminal_init)
(inf_child_target::terminal_inferior)
(inf_child_target::terminal_ours_for_output)
(inf_child_target::terminal_ours, inf_child_target::interrupt)
(inf_child_target::pass_ctrlc, inf_child_target::terminal_info):
New.
(inf_child_open, inf_child_disconnect, inf_child_close)
(inf_child_mourn_inferior, inf_child_maybe_unpush_target)
(inf_child_post_startup_inferior, inf_child_can_run)
(inf_child_pid_to_exec_file): Refactor as methods of
inf_child_target.
(inf_child_follow_fork): Delete.
(inf_child_target::can_create_inferior)
(inf_child_target::can_attach): New.
(inf_child_target::has_all_memory, inf_child_target::has_memory)
(inf_child_target::has_stack, inf_child_target::has_registers)
(inf_child_target::has_execution): New.
(inf_child_fileio_open, inf_child_fileio_pwrite)
(inf_child_fileio_pread, inf_child_fileio_fstat)
(inf_child_fileio_close, inf_child_fileio_unlink)
(inf_child_fileio_readlink, inf_child_use_agent)
(inf_child_can_use_agent): Refactor as methods of
inf_child_target.
(return_zero, inf_child_target): Delete.
(inf_child_target::inf_child_target): New.
* inf-child.h: Include "target.h".
(inf_child_target): Delete function prototype.
(inf_child_target): New class.
(inf_child_open_target, inf_child_mourn_inferior)
(inf_child_maybe_unpush_target): Delete.
* inf-ptrace.c (inf_ptrace_target::~inf_ptrace_target): New.
(inf_ptrace_follow_fork, inf_ptrace_insert_fork_catchpoint)
(inf_ptrace_remove_fork_catchpoint, inf_ptrace_create_inferior)
(inf_ptrace_post_startup_inferior, inf_ptrace_mourn_inferior)
(inf_ptrace_attach, inf_ptrace_post_attach, inf_ptrace_detach)
(inf_ptrace_detach_success, inf_ptrace_kill, inf_ptrace_resume)
(inf_ptrace_wait, inf_ptrace_xfer_partial)
(inf_ptrace_thread_alive, inf_ptrace_files_info)
(inf_ptrace_pid_to_str, inf_ptrace_auxv_parse): Refactor as
methods of inf_ptrace_target.
(inf_ptrace_target): Delete function.
* inf-ptrace.h: Include "inf-child.h".
(inf_ptrace_target): Delete function declaration.
(inf_ptrace_target): New class.
(inf_ptrace_trad_target, inf_ptrace_detach_success): Delete.
* linux-nat.c (linux_target): New.
(linux_ops, linux_ops_saved, super_xfer_partial): Delete.
(linux_nat_target::~linux_nat_target): New.
(linux_child_post_attach, linux_child_post_startup_inferior)
(linux_child_follow_fork, linux_child_insert_fork_catchpoint)
(linux_child_remove_fork_catchpoint)
(linux_child_insert_vfork_catchpoint)
(linux_child_remove_vfork_catchpoint)
(linux_child_insert_exec_catchpoint)
(linux_child_remove_exec_catchpoint)
(linux_child_set_syscall_catchpoint, linux_nat_pass_signals)
(linux_nat_create_inferior, linux_nat_attach, linux_nat_detach)
(linux_nat_resume, linux_nat_stopped_by_watchpoint)
(linux_nat_stopped_data_address)
(linux_nat_stopped_by_sw_breakpoint)
(linux_nat_supports_stopped_by_sw_breakpoint)
(linux_nat_stopped_by_hw_breakpoint)
(linux_nat_supports_stopped_by_hw_breakpoint, linux_nat_wait)
(linux_nat_kill, linux_nat_mourn_inferior)
(linux_nat_xfer_partial, linux_nat_thread_alive)
(linux_nat_update_thread_list, linux_nat_pid_to_str)
(linux_nat_thread_name, linux_child_pid_to_exec_file)
(linux_child_static_tracepoint_markers_by_strid)
(linux_nat_is_async_p, linux_nat_can_async_p)
(linux_nat_supports_non_stop, linux_nat_always_non_stop_p)
(linux_nat_supports_multi_process)
(linux_nat_supports_disable_randomization, linux_nat_async)
(linux_nat_stop, linux_nat_close, linux_nat_thread_address_space)
(linux_nat_core_of_thread, linux_nat_filesystem_is_local)
(linux_nat_fileio_open, linux_nat_fileio_readlink)
(linux_nat_fileio_unlink, linux_nat_thread_events): Refactor as
methods of linux_nat_target.
(linux_nat_wait_1, linux_xfer_siginfo, linux_proc_xfer_partial)
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Remove target_ops
parameter.
(check_stopped_by_watchpoint): Adjust.
(linux_xfer_partial): Delete.
(linux_target_install_ops, linux_target, linux_nat_add_target):
Delete.
(linux_nat_target::linux_nat_target): New.
* linux-nat.h: Include "inf-ptrace.h".
(linux_nat_target): New.
(linux_target, linux_target_install_ops, linux_nat_add_target):
Delete function declarations.
(linux_target): Declare global.
* linux-thread-db.c (thread_db_target): New.
(thread_db_target::thread_db_target): New.
(thread_db_ops): Delete.
(the_thread_db_target): New.
(thread_db_detach, thread_db_wait, thread_db_mourn_inferior)
(thread_db_update_thread_list, thread_db_pid_to_str)
(thread_db_extra_thread_info)
(thread_db_thread_handle_to_thread_info)
(thread_db_get_thread_local_address, thread_db_get_ada_task_ptid)
(thread_db_resume): Refactor as methods of thread_db_target.
(init_thread_db_ops): Delete.
(_initialize_thread_db): Remove reference to init_thread_db_ops.
* x86-linux-nat.c: Don't include "linux-nat.h".
(super_post_startup_inferior): Delete.
(x86_linux_nat_target::~x86_linux_nat_target): New.
(x86_linux_child_post_startup_inferior)
(x86_linux_read_description, x86_linux_enable_btrace)
(x86_linux_disable_btrace, x86_linux_teardown_btrace)
(x86_linux_read_btrace, x86_linux_btrace_conf): Refactor as
methods of x86_linux_nat_target.
(x86_linux_create_target): Delete. Bits folded ...
(x86_linux_add_target): ... here. Now takes a linux_nat_target
pointer.
* x86-linux-nat.h: Include "linux-nat.h" and "x86-nat.h".
(x86_linux_nat_target): New class.
(x86_linux_create_target): Delete.
(x86_linux_add_target): Now takes a linux_nat_target pointer.
* x86-nat.c (x86_insert_watchpoint, x86_remove_watchpoint)
(x86_region_ok_for_watchpoint, x86_stopped_data_address)
(x86_stopped_by_watchpoint, x86_insert_hw_breakpoint)
(x86_remove_hw_breakpoint, x86_can_use_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): Remove target_ops parameter and
make extern.
(x86_use_watchpoints): Delete.
* x86-nat.h: Include "breakpoint.h" and "target.h".
(x86_use_watchpoints): Delete.
(x86_can_use_hw_breakpoint, x86_region_ok_for_hw_watchpoint)
(x86_stopped_by_watchpoint, x86_stopped_data_address)
(x86_insert_watchpoint, x86_remove_watchpoint)
(x86_insert_hw_breakpoint, x86_remove_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): New declarations.
(x86_nat_target): New template class.
* ppc-linux-nat.c (ppc_linux_nat_target): New class.
(the_ppc_linux_nat_target): New.
(ppc_linux_fetch_inferior_registers)
(ppc_linux_can_use_hw_breakpoint)
(ppc_linux_region_ok_for_hw_watchpoint)
(ppc_linux_ranged_break_num_registers)
(ppc_linux_insert_hw_breakpoint, ppc_linux_remove_hw_breakpoint)
(ppc_linux_insert_mask_watchpoint)
(ppc_linux_remove_mask_watchpoint)
(ppc_linux_can_accel_watchpoint_condition)
(ppc_linux_insert_watchpoint, ppc_linux_remove_watchpoint)
(ppc_linux_stopped_data_address, ppc_linux_stopped_by_watchpoint)
(ppc_linux_watchpoint_addr_within_range)
(ppc_linux_masked_watch_num_registers)
(ppc_linux_store_inferior_registers, ppc_linux_auxv_parse)
(ppc_linux_read_description): Refactor as methods of
ppc_linux_nat_target.
(_initialize_ppc_linux_nat): Adjust. Set linux_target.
* procfs.c (procfs_xfer_partial): Delete forward declaration.
(procfs_target): New class.
(the_procfs_target): New.
(procfs_target): Delete function.
(procfs_auxv_parse, procfs_attach, procfs_detach)
(procfs_fetch_registers, procfs_store_registers, procfs_wait)
(procfs_xfer_partial, procfs_resume, procfs_pass_signals)
(procfs_files_info, procfs_kill_inferior, procfs_mourn_inferior)
(procfs_create_inferior, procfs_update_thread_list)
(procfs_thread_alive, procfs_pid_to_str)
(procfs_can_use_hw_breakpoint, procfs_stopped_by_watchpoint)
(procfs_stopped_data_address, procfs_insert_watchpoint)
(procfs_remove_watchpoint, procfs_region_ok_for_hw_watchpoint)
(proc_find_memory_regions, procfs_info_proc)
(procfs_make_note_section): Refactor as methods of procfs_target.
(_initialize_procfs): Adjust.
* sol-thread.c (sol_thread_target): New class.
(sol_thread_ops): Now a sol_thread_target.
(sol_thread_detach, sol_thread_resume, sol_thread_wait)
(sol_thread_fetch_registers, sol_thread_store_registers)
(sol_thread_xfer_partial, sol_thread_mourn_inferior)
(sol_thread_alive, solaris_pid_to_str, sol_update_thread_list)
(sol_get_ada_task_ptid): Refactor as methods of sol_thread_target.
(init_sol_thread_ops): Delete.
(_initialize_sol_thread): Adjust. Remove references to
init_sol_thread_ops and complete_target_initialization.
* windows-nat.c (windows_nat_target): New class.
(windows_fetch_inferior_registers)
(windows_store_inferior_registers, windows_resume, windows_wait)
(windows_attach, windows_detach, windows_pid_to_exec_file)
(windows_files_info, windows_create_inferior)
(windows_mourn_inferior, windows_interrupt, windows_kill_inferior)
(windows_close, windows_pid_to_str, windows_xfer_partial)
(windows_get_tib_address, windows_get_ada_task_ptid)
(windows_thread_name, windows_thread_alive): Refactor as
windows_nat_target methods.
(do_initial_windows_stuff): Adjust.
(windows_target): Delete function.
(_initialize_windows_nat): Adjust.
* darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt)
(darwin_mourn_inferior, darwin_kill_inferior)
(darwin_create_inferior, darwin_attach, darwin_detach)
(darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial)
(darwin_pid_to_exec_file, darwin_get_ada_task_ptid)
(darwin_supports_multi_process): Refactor as darwin_nat_target
methods.
(darwin_resume_to, darwin_files_info): Delete.
(_initialize_darwin_inferior): Rename to ...
(_initialize_darwin_nat): ... this. Adjust to C++ification.
* darwin-nat.h: Include "inf-child.h".
(darwin_nat_target): New class.
(darwin_complete_target): Delete.
* i386-darwin-nat.c (i386_darwin_nat_target): New class.
(darwin_target): New.
(i386_darwin_fetch_inferior_registers)
(i386_darwin_store_inferior_registers): Refactor as methods of
darwin_nat_target.
(darwin_complete_target): Delete, with ...
(_initialize_i386_darwin_nat): ... bits factored out here.
* alpha-linux-nat.c (alpha_linux_nat_target): New class.
(the_alpha_linux_nat_target): New.
(alpha_linux_register_u_offset): Refactor as
alpha_linux_nat_target method.
(_initialize_alpha_linux_nat): Adjust.
* linux-nat-trad.c (inf_ptrace_register_u_offset): Delete.
(inf_ptrace_fetch_register, inf_ptrace_fetch_registers)
(inf_ptrace_store_register, inf_ptrace_store_registers): Refact as
methods of linux_nat_trad_target.
(linux_trad_target): Delete.
* linux-nat-trad.h (linux_trad_target): Delete function.
(linux_nat_trad_target): New class.
* mips-linux-nat.c (mips_linux_nat_target): New class.
(super_fetch_registers, super_store_registers, super_close):
Delete.
(the_mips_linux_nat_target): New.
(mips64_linux_regsets_fetch_registers)
(mips64_linux_regsets_store_registers)
(mips64_linux_fetch_registers, mips64_linux_store_registers)
(mips_linux_register_u_offset, mips_linux_read_description)
(mips_linux_can_use_hw_breakpoint)
(mips_linux_stopped_by_watchpoint)
(mips_linux_stopped_data_address)
(mips_linux_region_ok_for_hw_watchpoint)
(mips_linux_insert_watchpoint, mips_linux_remove_watchpoint)
(mips_linux_close): Refactor as methods of mips_linux_nat.
(_initialize_mips_linux_nat): Adjust to C++ification.
* aix-thread.c (aix_thread_target): New class.
(aix_thread_ops): Now an aix_thread_target.
(aix_thread_detach, aix_thread_resume, aix_thread_wait)
(aix_thread_fetch_registers, aix_thread_store_registers)
(aix_thread_xfer_partial, aix_thread_mourn_inferior)
(aix_thread_thread_alive, aix_thread_pid_to_str)
(aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid):
Refactor as methods of aix_thread_target.
(init_aix_thread_ops): Delete.
(_initialize_aix_thread): Remove references to init_aix_thread_ops
and complete_target_initialization.
* rs6000-nat.c (rs6000_xfer_shared_libraries): Delete.
(rs6000_nat_target): New class.
(the_rs6000_nat_target): New.
(rs6000_fetch_inferior_registers, rs6000_store_inferior_registers)
(rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior)
(rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods.
(super_create_inferior): Delete.
(_initialize_rs6000_nat): Adjust to C++ification.
* arm-linux-nat.c (arm_linux_nat_target): New class.
(the_arm_linux_nat_target): New.
(arm_linux_fetch_inferior_registers)
(arm_linux_store_inferior_registers, arm_linux_read_description)
(arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint)
(arm_linux_remove_hw_breakpoint)
(arm_linux_region_ok_for_hw_watchpoint)
(arm_linux_insert_watchpoint, arm_linux_remove_watchpoint)
(arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint)
(arm_linux_watchpoint_addr_within_range): Refactor as methods of
arm_linux_nat_target.
(_initialize_arm_linux_nat): Adjust to C++ification.
* aarch64-linux-nat.c (aarch64_linux_nat_target): New class.
(the_aarch64_linux_nat_target): New.
(aarch64_linux_fetch_inferior_registers)
(aarch64_linux_store_inferior_registers)
(aarch64_linux_child_post_startup_inferior)
(aarch64_linux_read_description)
(aarch64_linux_can_use_hw_breakpoint)
(aarch64_linux_insert_hw_breakpoint)
(aarch64_linux_remove_hw_breakpoint)
(aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint)
(aarch64_linux_region_ok_for_hw_watchpoint)
(aarch64_linux_stopped_data_address)
(aarch64_linux_stopped_by_watchpoint)
(aarch64_linux_watchpoint_addr_within_range)
(aarch64_linux_can_do_single_step): Refactor as methods of
aarch64_linux_nat_target.
(super_post_startup_inferior): Delete.
(_initialize_aarch64_linux_nat): Adjust to C++ification.
* hppa-linux-nat.c (hppa_linux_nat_target): New class.
(the_hppa_linux_nat_target): New.
(hppa_linux_fetch_inferior_registers)
(hppa_linux_store_inferior_registers): Refactor as methods of
hppa_linux_nat_target.
(_initialize_hppa_linux_nat): Adjust to C++ification.
* ia64-linux-nat.c (ia64_linux_nat_target): New class.
(the_ia64_linux_nat_target): New.
(ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint)
(ia64_linux_stopped_data_address)
(ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers)
(ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as
ia64_linux_nat_target methods.
(super_xfer_partial): Delete.
(_initialize_ia64_linux_nat): Adjust to C++ification.
* m32r-linux-nat.c (m32r_linux_nat_target): New class.
(the_m32r_linux_nat_target): New.
(m32r_linux_fetch_inferior_registers)
(m32r_linux_store_inferior_registers): Refactor as
m32r_linux_nat_target methods.
(_initialize_m32r_linux_nat): Adjust to C++ification.
* m68k-linux-nat.c (m68k_linux_nat_target): New class.
(the_m68k_linux_nat_target): New.
(m68k_linux_fetch_inferior_registers)
(m68k_linux_store_inferior_registers): Refactor as
m68k_linux_nat_target methods.
(_initialize_m68k_linux_nat): Adjust to C++ification.
* s390-linux-nat.c (s390_linux_nat_target): New class.
(the_s390_linux_nat_target): New.
(s390_linux_fetch_inferior_registers)
(s390_linux_store_inferior_registers, s390_stopped_by_watchpoint)
(s390_insert_watchpoint, s390_remove_watchpoint)
(s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint)
(s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint)
(s390_auxv_parse, s390_read_description): Refactor as methods of
s390_linux_nat_target.
(_initialize_s390_nat): Adjust to C++ification.
* sparc-linux-nat.c (sparc_linux_nat_target): New class.
(the_sparc_linux_nat_target): New.
(_initialize_sparc_linux_nat): Adjust to C++ification.
* sparc-nat.c (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc64-linux-nat.c (sparc64_linux_nat_target): New class.
(the_sparc64_linux_nat_target): New.
(_initialize_sparc64_linux_nat): Adjust to C++ification.
* spu-linux-nat.c (spu_linux_nat_target): New class.
(the_spu_linux_nat_target): New.
(spu_child_post_startup_inferior, spu_child_post_attach)
(spu_child_wait, spu_fetch_inferior_registers)
(spu_store_inferior_registers, spu_xfer_partial)
(spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target
methods.
(_initialize_spu_nat): Adjust to C++ification.
* tilegx-linux-nat.c (tilegx_linux_nat_target): New class.
(the_tilegx_linux_nat_target): New.
(fetch_inferior_registers, store_inferior_registers):
Refactor as methods.
(_initialize_tile_linux_nat): Adjust to C++ification.
* xtensa-linux-nat.c (xtensa_linux_nat_target): New class.
(the_xtensa_linux_nat_target): New.
(xtensa_linux_fetch_inferior_registers)
(xtensa_linux_store_inferior_registers): Refactor as
xtensa_linux_nat_target methods.
(_initialize_xtensa_linux_nat): Adjust to C++ification.
* fbsd-nat.c (USE_SIGTRAP_SIGINFO): Delete.
(fbsd_pid_to_exec_file, fbsd_find_memory_regions)
(fbsd_find_memory_regions, fbsd_info_proc, fbsd_xfer_partial)
(fbsd_thread_alive, fbsd_pid_to_str, fbsd_thread_name)
(fbsd_update_thread_list, fbsd_resume, fbsd_wait)
(fbsd_stopped_by_sw_breakpoint)
(fbsd_supports_stopped_by_sw_breakpoint, fbsd_follow_fork)
(fbsd_insert_fork_catchpoint, fbsd_remove_fork_catchpoint)
(fbsd_insert_vfork_catchpoint, fbsd_remove_vfork_catchpoint)
(fbsd_post_startup_inferior, fbsd_post_attach)
(fbsd_insert_exec_catchpoint, fbsd_remove_exec_catchpoint)
(fbsd_set_syscall_catchpoint)
(super_xfer_partial, super_resume, super_wait)
(fbsd_supports_stopped_by_hw_breakpoint): Delete.
(fbsd_handle_debug_trap): Remove target_ops parameter.
(fbsd_nat_add_target): Delete.
* fbsd-nat.h: Include "inf-ptrace.h".
(fbsd_nat_add_target): Delete.
(USE_SIGTRAP_SIGINFO): Define.
(fbsd_nat_target): New class.
* amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers)
(amd64bsd_store_inferior_registers): Remove target_ops parameter.
(amd64bsd_target): Delete.
* amd64-bsd-nat.h: New file.
* amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of
"x86-bsd-nat.h".
(amd64_fbsd_nat_target): New class.
(the_amd64_fbsd_nat_target): New.
(amd64fbsd_read_description): Refactor as method of
amd64_fbsd_nat_target.
(amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_amd64fbsd_nat): Adjust to C++ification.
* amd64-nat.h (amd64bsd_target): Delete function declaration.
* i386-bsd-nat.c (i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Remove target_ops parameter.
(i386bsd_target): Delete.
* i386-bsd-nat.h (i386bsd_target): Delete function declaration.
(i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Declare.
(i386_bsd_nat_target): New class.
* i386-fbsd-nat.c (i386_fbsd_nat_target): New class.
(the_i386_fbsd_nat_target): New.
(i386fbsd_resume, i386fbsd_read_description): Refactor as
i386_fbsd_nat_target methods.
(i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_i386fbsd_nat): Adjust to C++ification.
* x86-bsd-nat.c (super_mourn_inferior): Delete.
(x86bsd_mourn_inferior, x86bsd_target): Delete.
(_initialize_x86_bsd_nat): Adjust to C++ification.
* x86-bsd-nat.h: Include "x86-nat.h".
(x86bsd_target): Delete declaration.
(x86bsd_nat_target): New class.
* aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class.
(the_aarch64_fbsd_nat_target): New.
(aarch64_fbsd_fetch_inferior_registers)
(aarch64_fbsd_store_inferior_registers): Refactor as methods of
aarch64_fbsd_nat_target.
(_initialize_aarch64_fbsd_nat): Adjust to C++ification.
* alpha-bsd-nat.c (alpha_bsd_nat_target): New class.
(the_alpha_bsd_nat_target): New.
(alphabsd_fetch_inferior_registers)
(alphabsd_store_inferior_registers): Refactor as
alpha_bsd_nat_target methods.
(_initialize_alphabsd_nat): Refactor as methods of
alpha_bsd_nat_target.
* amd64-nbsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_nbsd_nat_target): New.
(_initialize_amd64nbsd_nat): Adjust to C++ification.
* amd64-obsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_obsd_nat_target): New.
(_initialize_amd64obsd_nat): Adjust to C++ification.
* arm-fbsd-nat.c (arm_fbsd_nat_target): New.
(the_arm_fbsd_nat_target): New.
(arm_fbsd_fetch_inferior_registers)
(arm_fbsd_store_inferior_registers, arm_fbsd_read_description):
(_initialize_arm_fbsd_nat): Refactor as methods of
arm_fbsd_nat_target.
(_initialize_arm_fbsd_nat): Adjust to C++ification.
* arm-nbsd-nat.c (arm_netbsd_nat_target): New class.
(the_arm_netbsd_nat_target): New.
(armnbsd_fetch_registers, armnbsd_store_registers): Refactor as
arm_netbsd_nat_target.
(_initialize_arm_netbsd_nat): Adjust to C++ification.
* hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class.
(the_hppa_nbsd_nat_target): New.
(hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as
hppa_nbsd_nat_target methods.
(_initialize_hppanbsd_nat): Adjust to C++ification.
* hppa-obsd-nat.c (hppa_obsd_nat_target): New class.
(the_hppa_obsd_nat_target): New.
(hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as
methods of hppa_obsd_nat_target.
(_initialize_hppaobsd_nat): Adjust to C++ification. Use
add_target.
* i386-nbsd-nat.c (the_i386_nbsd_nat_target): New.
(_initialize_i386nbsd_nat): Adjust to C++ification. Use
add_target.
* i386-obsd-nat.c (the_i386_obsd_nat_target): New.
(_initialize_i386obsd_nat): Use add_target.
* m68k-bsd-nat.c (m68k_bsd_nat_target): New class.
(the_m68k_bsd_nat_target): New.
(m68kbsd_fetch_inferior_registers)
(m68kbsd_store_inferior_registers): Refactor as methods of
m68k_bsd_nat_target.
(_initialize_m68kbsd_nat): Adjust to C++ification.
* mips-fbsd-nat.c (mips_fbsd_nat_target): New class.
(the_mips_fbsd_nat_target): New.
(mips_fbsd_fetch_inferior_registers)
(mips_fbsd_store_inferior_registers): Refactor as methods of
mips_fbsd_nat_target.
(_initialize_mips_fbsd_nat): Adjust to C++ification. Use
add_target.
* mips-nbsd-nat.c (mips_nbsd_nat_target): New class.
(the_mips_nbsd_nat_target): New.
(mipsnbsd_fetch_inferior_registers)
(mipsnbsd_store_inferior_registers): Refactor as methods of
mips_nbsd_nat_target.
(_initialize_mipsnbsd_nat): Adjust to C++ification.
* mips64-obsd-nat.c (mips64_obsd_nat_target): New class.
(the_mips64_obsd_nat_target): New.
(mips64obsd_fetch_inferior_registers)
(mips64obsd_store_inferior_registers): Refactor as methods of
mips64_obsd_nat_target.
(_initialize_mips64obsd_nat): Adjust to C++ification. Use
add_target.
* nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of
nbsd_nat_target.
* nbsd-nat.h: Include "inf-ptrace.h".
(nbsd_nat_target): New class.
* obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list)
(obsd_wait): Refactor as methods of obsd_nat_target.
(obsd_add_target): Delete.
* obsd-nat.h: Include "inf-ptrace.h".
(obsd_nat_target): New class.
* ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class.
(the_ppc_fbsd_nat_target): New.
(ppcfbsd_fetch_inferior_registers)
(ppcfbsd_store_inferior_registers): Refactor as methods of
ppc_fbsd_nat_target.
(_initialize_ppcfbsd_nat): Adjust to C++ification. Use
add_target.
* ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class.
(the_ppc_nbsd_nat_target): New.
(ppcnbsd_fetch_inferior_registers)
(ppcnbsd_store_inferior_registers): Refactor as methods of
ppc_nbsd_nat_target.
(_initialize_ppcnbsd_nat): Adjust to C++ification.
* ppc-obsd-nat.c (ppc_obsd_nat_target): New class.
(the_ppc_obsd_nat_target): New.
(ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as
methods of ppc_obsd_nat_target.
(_initialize_ppcobsd_nat): Adjust to C++ification. Use
add_target.
* sh-nbsd-nat.c (sh_nbsd_nat_target): New class.
(the_sh_nbsd_nat_target): New.
(shnbsd_fetch_inferior_registers)
(shnbsd_store_inferior_registers): Refactor as methods of
sh_nbsd_nat_target.
(_initialize_shnbsd_nat): Adjust to C++ification.
* sparc-nat.c (sparc_xfer_wcookie): Make extern.
(inf_ptrace_xfer_partial): Delete.
(sparc_xfer_partial, sparc_target): Delete.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers, sparc_xfer_wcookie): Declare.
(sparc_target): Delete function declaration.
(sparc_target): New template class.
* sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New.
(_initialize_sparcnbsd_nat): Adjust to C++ification.
* sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New.
(_initialize_sparc64fbsd_nat): Adjust to C++ification. Use
add_target.
* sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New.
(_initialize_sparc64nbsd_nat): Adjust to C++ification.
* sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New.
(_initialize_sparc64obsd_nat): Adjust to C++ification. Use
add_target.
* vax-bsd-nat.c (vax_bsd_nat_target): New class.
(the_vax_bsd_nat_target): New.
(vaxbsd_fetch_inferior_registers)
(vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target
methods.
(_initialize_vaxbsd_nat): Adjust to C++ification.
* bsd-kvm.c (bsd_kvm_target): New class.
(bsd_kvm_ops): Now a bsd_kvm_target.
(bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial)
(bsd_kvm_files_info, bsd_kvm_fetch_registers)
(bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of
bsd_kvm_target.
(bsd_kvm_return_one): Delete.
(bsd_kvm_add_target): Adjust to C++ification.
* nto-procfs.c (nto_procfs_target, nto_procfs_target_native)
(nto_procfs_target_procfs): New classes.
(procfs_open_1, procfs_thread_alive, procfs_update_thread_list)
(procfs_files_info, procfs_pid_to_exec_file, procfs_attach)
(procfs_post_attach, procfs_wait, procfs_fetch_registers)
(procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint)
(procfs_remove_breakpoint, procfs_insert_hw_breakpoint)
(procfs_remove_hw_breakpoint, procfs_resume)
(procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt)
(procfs_kill_inferior, procfs_store_registers)
(procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor
as methods of nto_procfs_target.
(nto_procfs_ops): Now an nto_procfs_target_procfs.
(nto_native_ops): Delete.
(procfs_open, procfs_native_open): Delete.
(nto_native_ops): Now an nto_procfs_target_native.
(init_procfs_targets): Adjust to C++ification.
(procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint)
(procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint):
Refactor as methods of nto_procfs_target.
* go32-nat.c (go32_nat_target): New class.
(the_go32_nat_target): New.
(go32_attach, go32_resume, go32_wait, go32_fetch_registers)
(go32_store_registers, go32_xfer_partial, go32_files_info)
(go32_kill_inferior, go32_create_inferior, go32_mourn_inferior)
(go32_terminal_init, go32_terminal_info, go32_terminal_inferior)
(go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive)
(go32_pid_to_str): Refactor as methods of go32_nat_target.
(go32_target): Delete.
(_initialize_go32_nat): Adjust to C++ification.
* gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior)
(gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach)
(gnu_stop, gnu_thread_alive, gnu_xfer_partial)
(gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of
gnu_nat_target.
(gnu_target): Delete.
* gnu-nat.h (gnu_target): Delete.
(gnu_nat_target): New class.
* i386-gnu-nat.c (gnu_base_target): New.
(i386_gnu_nat_target): New class.
(the_i386_gnu_nat_target): New.
(_initialize_i386gnu_nat): Adjust to C++ification.
gdb/testsuite/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* gdb.base/breakpoint-in-ro-region.exp: Adjust to to_resume and
to_log_command renames.
* gdb.base/sss-bp-on-user-bp-2.exp: Likewise.
This removes some uses of is_mi_like_p from the breakpoint code. The
break-catch-throw.c change brings it into line with what other
breakpoint classes do. The other changes simply replace printf calls
with ui_out::text or ui_out::message calls.
ChangeLog
2018-04-30 Tom Tromey <tom@tromey.com>
* breakpoint.c (mention): Remove use of is_mi_like_p.
(print_mention_ranged_breakpoint): Likewise.
* break-catch-throw.c (print_it_exception_catchpoint): Remove use
of is_mi_like_p.
Running the new tests added later in the series on PPC64 (ELFv1)
revealed that the current ifunc support needs a bit of a design rework
to work properly on PPC64/ELFv1, as most of the new tests fail. The
ifunc support only kind of works today if the ifunc symbol and the
resolver have the same name, as is currently tested by the
gdb.base/gnu-ifunc.exp testcase, which is unlike how ifuncs are
written nowadays.
The crux of the problem is that ifunc symbols are really function
descriptors, not text symbols:
44: 0000000000020060 104 FUNC GLOBAL DEFAULT 18 gnu_ifunc_resolver
54: 0000000000020060 104 GNU_IFUNC GLOBAL DEFAULT 18 gnu_ifunc
But, currently GDB only knows about ifunc symbols that are text
symbols. GDB's support happens to work in practice for PPC64 when the
ifunc and resolver are one and only, like in the current
gdb.base/gnu-ifunc.exp testcase:
15: 0000000000020060 104 GNU_IFUNC GLOBAL DEFAULT 18 gnu_ifunc
because in that case, the synthetic ".gnu_ifunc" entry point text
symbol that bfd creates from the actual GNU ifunc "gnu_ifunc" function
(descriptor) symbol ends up with the the "is a gnu ifunc" flag set /
copied over:
(gdb) maint print msymbols
...
[ 8] i 0x9c4 .gnu_ifunc section .text <<< mst_text_gnu_ifunc
...
[29] D 0x20060 gnu_ifunc section .opd crtstuff.c <<< mst_data
But, if the resolver gets a distinct symbol/name from the ifunc
symbol, then we end up with this:
(gdb) maint print msymbols
[ 8] T 0x9e4 .gnu_ifunc_resolver section .text <<< mst_text
...
[29] D 0x20060 gnu_ifunc section .opd crtstuff.c <<< mst_data
[30] D 0x20060 gnu_ifunc_resolver section .opd crtstuff.c <<< mst_data
I have a follow up bfd patch that turns that into:
(gdb) maint print msymbols
+ [ 8] i 0x9e4 .gnu_ifunc section .text <<< mst_text_gnu_ifunc
[ 8] T 0x9e4 .gnu_ifunc_resolver section .text <<< mst_text
...
[29] D 0x20060 gnu_ifunc section .opd crtstuff.c
[30] D 0x20060 gnu_ifunc_resolver section .opd crtstuff.c
but that won't help everything. We still need this patch.
Specifically, when we do a symbol lookup by name, like e.g., to call a
function (see c-exp.y hunk), e.g., "p gnu_ifunc()", then we need to
know that the found "gnu_ifunc" minimal symbol is an ifunc in order to
do some special processing. But, on PPC, that lookup by name finds
the function descriptor symbol, which presently is just a mst_data
symbol, while at present, we look for mst_text_gnu_ifunc symbols to
decide whether to do special GNU ifunc processing. In most of those
places, we could try to resolve the function descriptor with
gdbarch_convert_from_func_ptr_addr, and then lookup the minimal symbol
at the resolved PC, see if that finds a minimal symbol of type
mst_text_gnu_ifunc. If so, then we could assume that the original
mst_dadta / function descriptor "gnu_ifunc" symbol was an ifunc. I
tried it, and it mostly works, even if it's not the most efficient.
However, there's one case that can't work with such a design -- it's
that of the user calling the ifunc resolver directly to debug it, like
"p gnu_ifunc_resolver(0)", expecting that to return the function
pointer of the final function (which is exercised by the new tests
added later). In this case, with the not-fully-working solution, we'd
resolve the function descriptor, find that there's an
mst_text_gnu_ifunc symbol for the resolved address, and proceed
calling the function as if we tried to call "gnu_ifunc", the
user-visible GNU ifunc symbol, instead of the resolver. I.e., it'd be
impossible to call the resolver directly as a normal function.
Introducing mst_data_gnu_ifunc eliminates the need for several
gdbarch_convert_from_func_ptr_addr calls, and, fixes the "call
resolver directly" use case mentioned above too. It's the cleanest
approach I could think of.
In sum, we make GNU ifunc function descriptor symbols get a new
"mst_data_gnu_ifunc" minimal symbol type instead of the bare mst_data
type. So when symbol lookup by name finds such a minimal symbol, we
know we found an ifunc symbol, without resolving the entry/text
symbol. If the user calls the the resolver symbol instead, like "p
gnu_ifunc_resolver(0)", then we'll find the regular mst_data symbol
for "gnu_ifunc_resolver", and we'll call the resolver function as just
another regular function.
With this, most of the GNU ifunc tests added by a later patch pass on
PPC64 too. The following bfd patch fixes the remaining issues.
gdb/ChangeLog:
2018-04-26 Pedro Alves <palves@redhat.com>
* breakpoint.c (set_breakpoint_location_function): Handle
mst_data_gnu_ifunc.
* c-exp.y (variable production): Handle mst_data_gnu_ifunc.
* elfread.c (elf_symtab_read): Give data symbols with
BSF_GNU_INDIRECT_FUNCTION set mst_data_gnu_ifunc type.
(elf_rel_plt_read): Update comment.
* linespec.c (convert_linespec_to_sals): Handle
mst_data_gnu_ifunc.
(minsym_found): Handle mst_data_gnu_ifunc.
* minsyms.c (msymbol_is_function, minimal_symbol_reader::record)
(find_solib_trampoline_target): Handle mst_data_gnu_ifunc.
* parse.c (find_minsym_type_and_address): Handle
mst_data_gnu_ifunc.
* symmisc.c (dump_msymbols): Handle mst_data_gnu_ifunc.
* symtab.c (find_gnu_ifunc): Handle mst_data_gnu_ifunc.
* symtab.h (minimal_symbol_type) <mst_text_gnu_ifunc>: Update
comment.
<mst_data_gnu_ifunc>: New enumerator.
This fixes setting breakpoints on ifunc functions by name after the
ifunc has already been resolved.
In that case, if you have debug info for the ifunc resolver, without
the fix, then gdb puts a breakpoint past the prologue of the resolver,
instead of setting a breakpoint at the ifunc target:
break gnu_ifunc
Breakpoint 4 at 0x7ffff7bd36f2: file src/gdb/testsuite/gdb.base/gnu-ifunc-lib.c, line 34.
(gdb) continue
Continuing.
[Inferior 1 (process 13300) exited normally]
(gdb)
above we should have stopped at "final", but didn't because we never
resolved the ifunc to the final location.
If you don't have debug info for the resolver, GDB manages to resolve
the ifunc target, but, it should be setting a breakpoint after the
prologue of the final function, and instead what you get is that GDB
sets a breakpoint on the first address of the target function. With
the gnu-ifunc.exp tests added by a later patch, we get, without the
fix:
(gdb) break gnu_ifunc
Breakpoint 4 at 0x400753
(gdb) continue
Continuing.
Breakpoint 4, final (arg=1) at src/gdb/testsuite/gdb.base/gnu-ifunc-final.c:20
20 {
vs, fixed:
(gdb) break gnu_ifunc
Breakpoint 4 at 0x40075a: file src/gdb/testsuite/gdb.base/gnu-ifunc-final.c, line 21.
(gdb) continue
Continuing.
Breakpoint 4, final (arg=2) at src/gdb/testsuite/gdb.base/gnu-ifunc-final.c:21
21 return arg + 1;
(gdb)
Fix the problems above by moving the ifunc target resolving to
linespec.c, before we skip a function's prologue. We need to save
something in the sal, so that set_breakpoint_location_function knows
that it needs to create a bp_gnu_ifunc_resolver bp_location. Might as
well just save a pointer to the minsym.
gdb/ChangeLog:
2018-04-26 Pedro Alves <palves@redhat.com>
* breakpoint.c (set_breakpoint_location_function): Don't resolve
ifunc targets here. Instead, if we have an ifunc minsym, use its
address/name.
(add_location_to_breakpoint): Store the minsym and the objfile in
the breakpoint location.
* breakpoint.h (bp_location) <msymbol, objfile>: New fields.
* linespec.c (minsym_found): Resolve GNU ifunc targets here.
Record the minsym in the sal.
* symtab.h (symtab_and_line) <msymbol>: New field.
This patch changes value_release_to_mark and fetch_subexp_value to
return a std::vector of value references, rather than relying on the
"next" field that is contained in a struct value. This makes it
simpler to reason about the returned values, and also allows for the
removal of free_value_chain.
gdb/ChangeLog
2018-04-06 Tom Tromey <tom@tromey.com>
* value.h (fetch_subexp_value, value_release_to_mark): Update.
(free_value_chain): Remove.
* value.c (free_value_chain): Remove.
(value_release_to_mark): Return a std::vector.
* ppc-linux-nat.c (num_memory_accesses): Change "chain" to a
std::vector.
(check_condition): Update.
* eval.c (fetch_subexp_value): Change "val_chain" to a
std::vector.
* breakpoint.c (update_watchpoint): Update.
(can_use_hardware_watchpoint): Change "vals" to a std::vector.
Now that value_ref_ptr exists, it is possible to simplify breakpoint
and bpstat memory management by using a value_ref_ptr rather than
manually handling the reference counts.
gdb/ChangeLog
2018-04-06 Tom Tromey <tom@tromey.com>
* value.c (release_value): Update.
* breakpoint.h (struct watchpoint) <val>: Now a value_ref_ptr.
(struct bpstats) <val>: Now a value_ref_ptr.
* breakpoint.c (update_watchpoint, breakpoint_init_inferior)
(~bpstats, bpstats, bpstat_clear_actions, watchpoint_check)
(~watchpoint, print_it_watchpoint, watch_command_1)
(invalidate_bp_value_on_memory_change): Update.
struct value is internally reference counted and so, while it also has
some ownership rules unique to it, it makes sense to use a gdb_ref_ptr
when managing it automatically.
This patch removes the existing unique_ptr specialization in favor of
a reference-counted pointer. It also introduces two other
clarifications:
1. Rename value_free to value_decref, which I think is more in line
with what the function actually does; and
2. Change release_value to return a gdb_ref_ptr. This change allows
us to remove the confusing release_value_or_incref function,
primarily by making it much simpler to reason about the result of
release_value.
gdb/ChangeLog
2018-04-06 Tom Tromey <tom@tromey.com>
* varobj.c (varobj_clear_saved_item)
(update_dynamic_varobj_children, install_new_value, ~varobj):
Update.
* value.h (value_incref): Move declaration earlier.
(value_decref): Rename from value_free.
(struct value_ref_policy): New.
(value_ref_ptr): New typedef.
(struct value_deleter): Remove.
(gdb_value_up): Remove typedef.
(release_value): Change return type.
(release_value_or_incref): Remove.
* value.c (set_value_parent): Update.
(value_incref): Change return type.
(value_decref): Rename from value_free.
(value_free_to_mark, free_all_values, free_value_chain): Update.
(release_value): Return value_ref_ptr.
(release_value_or_incref): Remove.
(record_latest_value, set_internalvar, clear_internalvar):
Update.
* stack.c (info_frame_command): Don't call value_free.
* python/py-value.c (valpy_dealloc, valpy_new)
(value_to_value_object): Update.
* printcmd.c (do_examine): Update.
* opencl-lang.c (lval_func_free_closure): Update.
* mi/mi-main.c (register_changed_p): Don't call value_free.
* mep-tdep.c (mep_frame_prev_register): Don't call value_free.
* m88k-tdep.c (m88k_frame_prev_register): Don't call value_free.
* m68hc11-tdep.c (m68hc11_frame_prev_register): Don't call
value_free.
* guile/scm-value.c (vlscm_free_value_smob)
(vlscm_scm_from_value): Update.
* frame.c (frame_register_unwind, frame_unwind_register_signed)
(frame_unwind_register_unsigned, get_frame_register_bytes)
(put_frame_register_bytes): Don't call value_free.
* findvar.c (address_from_register): Don't call value_free.
* dwarf2read.c (dwarf2_compute_name): Don't call value_free.
* dwarf2loc.c (entry_data_value_free_closure)
(value_of_dwarf_reg_entry, free_pieced_value_closure)
(dwarf2_evaluate_loc_desc_full): Update.
* breakpoint.c (update_watchpoint, breakpoint_init_inferior)
(~bpstats, bpstats, bpstat_clear_actions, watchpoint_check)
(~watchpoint, watch_command_1)
(invalidate_bp_value_on_memory_change): Update.
* alpha-tdep.c (alpha_register_to_value): Don't call value_free.
I wanted to use streq with std::unique in another (upcoming) patch in
this seres, so I changed it to return bool. To my surprise, this lead
to regressions. The cause turned out to be that streq was used as an
htab callback -- by casting it to the correct function type. This
sort of cast is invalid, so this patch adds a variant which is
directly suitable for use by htab. (Note that I did not add an
overload, as I could not get that to work with template deduction in
the other patch.)
ChangeLog
2018-04-05 Tom Tromey <tom@tromey.com>
* completer.c (completion_tracker::completion_tracker): Remove
cast.
(completion_tracker::discard_completions): Likewise.
* breakpoint.c (ambiguous_names_p): Remove cast.
* ada-lang.c (_initialize_ada_language): Remove cast.
* utils.h (streq): Update.
(streq_hash): Add new declaration.
* utils.c (streq): Return bool.
(streq_hash): New function.
This patch changes the VEC(char_ptr) fields in uploaded_tp to use
std::vector<char *>. At first, I wanted to creep in more changes, like
using std::string, but it was making the patch too big and less focused,
so I decided to keep it to just that.
It also looks like the strings in those vectors are never free'd. If
so, we can fix that in another patch.
gdb/ChangeLog:
* tracepoint.h (struct uploaded_tp): Initialize fields.
<actions, step_actions, cmd_strings>: Change type to
std::vector<char *>.
* tracepoint.c (get_uploaded_tp): Allocate with new.
(free_uploaded_tps): Free with delete.
(parse_tracepoint_definition): Adjust to std::vector change.
* breakpoint.c (read_uploaded_action): Likewise.
(create_tracepoint_from_upload): Likewise.
* ctf.c (ctf_write_uploaded_tp): Likewise.
(SET_ARRAY_FIELD): Likewise.
* tracefile-tfile.c (tfile_write_uploaded_tp): Likewise.
This patch replaces VEC(static_tracepoint_marker_p) with std::vector,
and does some c++ification around that. I thought a new overload of
hex2str was useful, so I added it as well as corresponding unit tests.
I also added an overload of ui_out::field_string that takes an
std::string directly.
gdb/ChangeLog:
* tracepoint.h (struct static_tracepoint_marker): Initialize
fields, define default constructor, move constructor and move
assignment, disable the rest.
<str_id, extra>: Make std::string.
(release_static_tracepoint_marker): Remove.
(free_current_marker): Remove.
* tracepoint.c (free_current_marker): Remove.
(parse_static_tracepoint_marker_definition): Adjust to
std::string, use new hex2str overload.
(release_static_tracepoint_marker): Remove.
(print_one_static_tracepoint_marker): Get marker by reference
and adjust to std::string.
(info_static_tracepoint_markers_command): Adjust to std::vector
changes
* target.h (static_tracepoint_marker_p): Remove typedef.
(DEF_VEC_P(static_tracepoint_marker_p)): Remove.
(struct target_ops) <to_static_tracepoint_marker_at>: Return
bool.
<to_static_tracepoint_markers_by_strid>: Return std::vector.
* target-debug.h
(target_debug_print_VEC_static_tracepoint_marker_p_p): Remove.
(target_debug_print_std_vector_static_tracepoint_marker): New.
(target_debug_print_struct_static_tracepoint_marker_p): Rename
to...
(target_debug_print_static_tracepoint_marker_p): ... this.
* target-delegates.c: Re-generate.
* breakpoint.h (struct tracepoint) <static_trace_marker_id>:
Make std::string.
* breakpoint.c (init_breakpoint_sal): Adjust to std::string.
(decode_static_tracepoint_spec): Adjust to std::vector.
(tracepoint_print_one_detail): Adjust to std::string.
(strace_marker_decode_location): Adjust to std::string.
(update_static_tracepoint): Adjust to std::string, remove call
to release_static_tracepoint_marker.
* linux-nat.c (linux_child_static_tracepoint_markers_by_strid):
Adjust to std::vector.
* remote.c (remote_static_tracepoint_marker_at): Return bool.
(remote_static_tracepoint_markers_by_strid): Adjust to
std::vector.
* common/rsp-low.h (hex2str): New overload with explicit count
of bytes.
* common/rsp-low.c (hex2str): New overload with explicit count
of bytes.
* unittests/rsp-low-selftests.c (test_hex2str): New function.
(_initialize_rsp_low_selftests): Add test_hex2str test.
* unittests/tracepoint-selftests.c
(test_parse_static_tracepoint_marker_definition): Adjust to
std::string.
This converts observers from using a special source-generating script
to be plain C++. This version of the patch takes advantage of C++11
by using std::function and variadic templates; incorporates Pedro's
patches; and renames the header file to "observable.h" (this change
eliminates the need for a clean rebuild).
Note that Pedro's patches used a template lambda in tui-hooks.c, but
this failed to compile on some buildbot instances (presumably due to
differing C++ versions); I replaced this with an ordinary template
function.
Regression tested on the buildbot.
gdb/ChangeLog
2018-03-19 Pedro Alves <palves@redhat.com>
Tom Tromey <tom@tromey.com>
* unittests/observable-selftests.c: New file.
* common/observable.h: New file.
* observable.h: New file.
* ada-lang.c, ada-tasks.c, agent.c, aix-thread.c, annotate.c,
arm-tdep.c, auto-load.c, auxv.c, break-catch-syscall.c,
breakpoint.c, bsd-uthread.c, cli/cli-interp.c, cli/cli-setshow.c,
corefile.c, dummy-frame.c, event-loop.c, event-top.c, exec.c,
extension.c, frame.c, gdbarch.c, guile/scm-breakpoint.c,
infcall.c, infcmd.c, inferior.c, inflow.c, infrun.c, jit.c,
linux-tdep.c, linux-thread-db.c, m68klinux-tdep.c,
mi/mi-cmd-break.c, mi/mi-interp.c, mi/mi-main.c, objfiles.c,
ppc-linux-nat.c, ppc-linux-tdep.c, printcmd.c, procfs.c,
python/py-breakpoint.c, python/py-finishbreakpoint.c,
python/py-inferior.c, python/py-unwind.c, ravenscar-thread.c,
record-btrace.c, record-full.c, record.c, regcache.c, remote.c,
riscv-tdep.c, sol-thread.c, solib-aix.c, solib-spu.c, solib.c,
spu-multiarch.c, spu-tdep.c, stack.c, symfile-mem.c, symfile.c,
symtab.c, thread.c, top.c, tracepoint.c, tui/tui-hooks.c,
tui/tui-interp.c, valops.c: Update all users.
* tui/tui-hooks.c (tui_bp_created_observer)
(tui_bp_deleted_observer, tui_bp_modified_observer)
(tui_inferior_exit_observer, tui_before_prompt_observer)
(tui_normal_stop_observer, tui_register_changed_observer):
Remove.
(tui_observers_token): New global.
(attach_or_detach, tui_attach_detach_observers): New functions.
(tui_install_hooks, tui_remove_hooks): Use
tui_attach_detach_observers.
* record-btrace.c (record_btrace_thread_observer): Remove.
(record_btrace_thread_observer_token): New global.
* observer.sh: Remove.
* observer.c: Rename to observable.c.
* observable.c (namespace gdb_observers): Define new objects.
(observer_debug): Move into gdb_observers namespace.
(struct observer, struct observer_list, xalloc_observer_list_node)
(xfree_observer_list_node, generic_observer_attach)
(generic_observer_detach, generic_observer_notify): Remove.
(_initialize_observer): Update.
Don't include observer.inc.
* Makefile.in (generated_files): Remove observer.h, observer.inc.
(clean mostlyclean): Likewise.
(observer.h, observer.inc): Remove targets.
(SUBDIR_UNITTESTS_SRCS): Add observable-selftests.c.
(COMMON_SFILES): Use observable.c, not observer.c.
* .gitignore: Remove observer.h.
gdb/doc/ChangeLog
2018-03-19 Tom Tromey <tom@tromey.com>
* observer.texi: Remove.
gdb/testsuite/ChangeLog
2018-03-19 Tom Tromey <tom@tromey.com>
* gdb.gdb/observer.exp: Remove.
This changes the gdbarch fast_tracepoint_valid_at method to use a
std::string as its out parameter, and then updates all the uses. This
allows removing a cleanup from breakpoint.c.
Regression tested by the buildbot.
ChangeLog
2018-02-24 Tom Tromey <tom@tromey.com>
* i386-tdep.c (i386_fast_tracepoint_valid_at): "msg" now a
std::string.
* gdbarch.sh (fast_tracepoint_valid_at): Change "msg" to a
std::string*.
* gdbarch.c: Rebuild.
* gdbarch.h: Rebuild.
* breakpoint.c (check_fast_tracepoint_sals): Use std::string.
* arch-utils.h (default_fast_tracepoint_valid_at): Update.
* arch-utils.c (default_fast_tracepoint_valid_at): "msg" now a
std::string*.
This commit is preparation for a later change, at this point there
should be no user visible change.
We currently maintain a global innermost_block which tracks the most
inner block encountered when parsing an expression.
This commit wraps the innermost_block into a new class, and switches all
direct accesses to the variable to use the class API.
gdb/ChangeLog:
* ada-exp.y (write_var_from_sym): Switch to innermost_block API.
* ada-lang.c (resolve_subexp): Likewise.
* breakpoint.c (set_breakpoint_condition) Likewise.
(watch_command_1) Likewise.
* c-exp.y (variable): Likewise.
* d-exp.y (PrimaryExpression): Likewise.
* f-exp.y (variable): Likewise.
* go-exp.y (variable): Likewise.
* m2-exp.y (variable): Likewise.
* objfiles.c (objfile::~objfile): Likewise.
* p-exp.y (variable): Likewise.
* parse.c (innermost_block): Change type.
* parser-defs.h (class innermost_block_tracker): New.
(innermost_block): Change to innermost_block_tracker.
* printcmd.c (display_command): Switch to innermost_block API.
(do_one_display): Likewise.
* rust-exp.y (do_one_display): Likewise.
* symfile.c (clear_symtab_users): Likewise.
* varobj.c (varobj_create): Switch to innermost_block API, replace
use of innermost_block with block stored on varobj object.
Nowadays, GDB can't set watchpoint on tagged address on AArch64,
(gdb) p p2
$1 = (int *) 0xf000fffffffff474
(gdb) watch *((int *) 0xf000fffffffff474)
Hardware watchpoint 2: *((int *) 0xf000fffffffff474)
(gdb) c
Continuing.
main () at
binutils-gdb/gdb/testsuite/gdb.arch/aarch64-tagged-pointer.c:45
45 void (*func_ptr) (void) = foo;
Unexpected error setting hardware debug registers
This patch is about setting watchpoint on a tagged address. Unlike
breakpoint, watchpoint record the expression rather than the address, and
when a watchpoint is fired, GDB checks the expression value changed
instead of matching address, so we can mask the watchpoint address by
getting rid of non-significant bits of address.
gdb:
2017-12-08 Yao Qi <yao.qi@linaro.org>
* breakpoint.c (update_watchpoint): Call
address_significant.
gdb/testsuite:
2017-12-08 Yao Qi <yao.qi@linaro.org>
* gdb.arch/aarch64-tagged-pointer.c (main): Update.
* gdb.arch/aarch64-tagged-pointer.exp: Add tests for watchpoint.
Tag in tagged address on AArch64 is treated as a non-significant bits of
address, which can be got by gdbarch method significant_addr_bit, and gdb
can clear these bits.
With this patch, when user sets a breakpoint on tagged address on AArch64,
GDB will drop the top byte of address, and put breakpoint at the new place,
as shown below,
(gdb) hbreak *func_ptr
warning: Breakpoint address adjusted from 0xf000000000400690 to 0x00400690.
Hardware assisted breakpoint 2 at 0x400690
(gdb) break *func_ptr
warning: Breakpoint address adjusted from 0xf000000000400690 to 0x00400690.
Breakpoint 3 at 0x400690
When program hits a breakpoint, the stopped pc reported by Linux kernel is
the address *without* tag, so it is better the address recorded in
breakpoint location is the one without tag too, so we can still match
breakpoint location address and stopped pc reported by Linux kernel, by
simple compare.
gdb:
2017-12-08 Yao Qi <yao.qi@linaro.org>
* breakpoint.c (adjust_breakpoint_address): Call
address_significant.
gdb/testsuite:
2017-12-08 Yao Qi <yao.qi@linaro.org>
* gdb.arch/aarch64-tagged-pointer.c (main): Update.
* gdb.arch/aarch64-tagged-pointer.exp: Add test for breakpoint.
This replaces parse_format_string with a class, removing some
constructors along the way. While doing this, I found that one
argument to gen_printf is unused, so I removed it.
Also, I am not completely sure, but the use of `release' in
maint_agent_printf_command and parse_cmd_to_aexpr seems like it may
leak expressions.
Regression tested by the buildbot.
ChangeLog
2017-12-08 Tom Tromey <tom@tromey.com>
* printcmd.c (ui_printf): Update. Use std::vector.
* common/format.h (struct format_piece): Add constructor.
<string>: Now const.
(class format_pieces): New class.
(parse_format_string, free_format_pieces)
(free_format_pieces_cleanup): Remove.
* common/format.c (format_pieces::format_pieces): Rename from
parse_format_string. Update.
(free_format_pieces, free_format_pieces_cleanup): Remove.
* breakpoint.c (parse_cmd_to_aexpr): Update. Use std::vector.
* ax-gdb.h (gen_printf): Remove argument.
* ax-gdb.c (gen_printf): Remove "frags" argument.
(maint_agent_printf_command): Update. Use std::vector.
gdbserver/ChangeLog
2017-12-08 Tom Tromey <tom@tromey.com>
* ax.c (ax_printf): Update.
Pedro pointed out a regression in "commands", where trying to clear a
breakpoint's command list would fail:
(top-gdb) commands
Type commands for breakpoint(s) 3, one per line.
End with a line saying just "end".
>end
No breakpoints specified.
(top-gdb)
I believe the bug was introduced by my patch that changes
counted_command_line to be a shared_ptr. This causes the problem
because now the counted_command_line in commands_command_1 can be NULL,
whereas previously it never could be.
After some discussion, we agreed to simply remove the error case from
commands_command_1.
2017-12-07 Tom Tromey <tom@tromey.com>
PR breakpoints/22511:
* breakpoint.c (commands_command_1): Don't throw an exception when
no commands have been read.
2017-12-07 Tom Tromey <tom@tromey.com>
* gdb.base/break.exp: Add test for empty "commands".
This patch teaches GDB about setting breakpoints in all scopes
(namespaces and classes) by default.
Here's a contrived example:
(gdb) b func<tab>
(anonymous namespace)::A::function() Bn::(anonymous namespace)::B::function() function(int, int)
(anonymous namespace)::B::function() Bn::(anonymous namespace)::function() gdb::(anonymous namespace)::A::function()
(anonymous namespace)::B::function() const Bn::(anonymous namespace)::function(int, int) gdb::(anonymous namespace)::function()
(anonymous namespace)::function() Bn::B::func() gdb::(anonymous namespace)::function(int, int)
(anonymous namespace)::function(int, int) Bn::B::function() gdb::A::func()
A::func() Bn::func() gdb::A::function()
A::function() Bn::function() gdb::func()
B::func() Bn::function(int, int) gdb::function()
B::function() Bn::function(long) gdb::function(int, int)
B::function() const func() gdb::function(long)
B::function_const() const function()
(gdb) b function
Breakpoint 1 at 0x4005ce: function. (26 locations)
(gdb) b B::function<tab>
(anonymous namespace)::B::function() B::function() const Bn::B::function()
(anonymous namespace)::B::function() const B::function_const() const
B::function() Bn::(anonymous namespace)::B::function()
(gdb) b B::function
Breakpoint 1 at 0x40072c: B::function. (6 locations)
To get back the original behavior of interpreting the function name as
a fully-qualified name, you can use the new "-qualified" (or "-q")
option/flag (added by this commit). For example:
(gdb) b B::function
(anonymous namespace)::B::function() B::function() const Bn::B::function()
(anonymous namespace)::B::function() const B::function_const() const
B::function() Bn::(anonymous namespace)::B::function()
vs:
(gdb) b -qualified B::function
B::function() B::function() const B::function_const() const
I've chosen "-qualified" / "-q" because "-f" (for "full" or
"fully-qualified") is already taken for "-function".
Note: the "-qualified" option works with both linespecs and explicit
locations. I.e., these are equivalent:
(gdb) b -q func
(gdb) b -q -f func
and so are these:
(gdb) b -q filename.cc:func
(gdb) b -q -s filename.cc -f func
(gdb) b -s filename.cc -q -f func
(gdb) b -s filename.cc -f func -q
To better understand why I consider wild matching the better default,
consider what happens when we get to the point when _all_ of GDB is
wrapped under "namespace gdb {}". I have a patch series that does
that, and when I started debugging that GDB, I immediately became
frustrated. You'd have to write "b gdb::internal_error", "b
gdb::foo", "b gdb::bar", etc. etc., which gets annoying pretty
quickly. OTOH, consider how this makes it very easy to set
breakpoints in classes wrapped in anonymous namespaces. You just
don't think of them, GDB finds the symbols for you automatically.
(At the Cauldron a couple months ago, several people told me that they
run into a similar issue when debugging other C++ projects. One
example was when debugging LLVM, which puts all its code under the
"llvm" namespace.)
Implementation-wise, what the patch does is:
- makes C++ symbol name hashing only consider the last component of
a symbol name. (so that we can look up symbol names by
last-component name only).
- adds a C++ symbol name matcher for symbol_name_match_type::WILD,
which ignores missing leading specifiers / components.
- adjusts a few preexisting testsuite tests to use "-qualified" when
they mean it.
- adds new testsuite tests.
- adds unit tests.
Grows the gdb.linespec/ tests like this:
-# of expected passes 7823
+# of expected passes 8977
gdb/ChangeLog:
2017-11-29 Pedro Alves <palves@redhat.com>
* NEWS: Mention that breakpoints on C++ functions are now set on
on all namespaces/classes by default, and mention "break
-qualified".
* ax-gdb.c (agent_command_1): Adjust to pass a
symbol_name_match_type to new_linespec_location.
* breakpoint.c (parse_breakpoint_sals): Adjust to
get_linespec_location's return type change.
(strace_marker_create_sals_from_location): Adjust to pass a
symbol_name_match_type to new_linespec_location.
(strace_marker_decode_location): Adjust to get_linespec_location's
return type change.
(strace_command): Adjust to pass a symbol_name_match_type to
new_linespec_location.
(LOCATION_HELP_STRING): Add paragraph about wildmatching, and
mention "-qualified".
* c-lang.c (cplus_language_defn): Install cp_search_name_hash.
* completer.c (explicit_location_match_type::MATCH_QUALIFIED): New
enumerator.
(complete_address_and_linespec_locations): New parameter
'match_type'. Pass it down.
(explicit_options): Add "-qualified".
(collect_explicit_location_matches): Pass the requested match type
to the linespec completers. Handle MATCH_QUALIFIED.
(location_completer): Handle "-qualified" combined with linespecs.
* cp-support.c (cp_search_name_hash): New.
(cp_symbol_name_matches_1): Implement wild matching for C++.
(cp_fq_symbol_name_matches): Reimplement.
(cp_get_symbol_name_matcher): Return different matchers depending
on the lookup name's match type.
(selftests::test_cp_symbol_name_matches): Add wild matching tests.
* cp-support.h (cp_search_name_hash): New declaration.
* dwarf2read.c
(selftests::dw2_expand_symtabs_matching::test_symbols): Add
symbols.
(test_dw2_expand_symtabs_matching_symbol): Add wild matching
tests.
* guile/scm-breakpoint.c (gdbscm_register_breakpoint_x): Adjust to
pass a symbol_name_match_type to new_linespec_location.
* linespec.c (linespec_parse_basic): Lookup function symbols using
the parser's symbol name match type.
(convert_explicit_location_to_linespec): New
symbol_name_match_type parameter. Pass it down to
find_linespec_symbols.
(convert_explicit_location_to_sals): Pass the location's name
match type to convert_explicit_location_to_linespec.
(parse_linespec): New match_type parameter. Save it in the
parser.
(linespec_parser_new): Default to symbol_name_match_type::WILD.
(linespec_complete_function): New symbol_name_match_type
parameter. Use it.
(complete_linespec_component): Pass down the parser's recorded
name match type.
(linespec_complete_label): New symbol_name_match_type parameter.
Use it.
(linespec_complete): New symbol_name_match_type parameter. Save
it in the parser and pass it down. Adjust to
get_linespec_location's prototype change.
(find_function_symbols, find_linespec_symbols): New
symbol_name_match_type parameter. Pass it down instead of
assuming symbol_name_match_type::WILD.
* linespec.h (linespec_complete, linespec_complete_function)
(linespec_complete_label): New symbol_name_match_type parameter.
* location.c (event_location::linespec_location): Now a struct
linespec_location.
(EL_LINESPEC): Adjust.
(initialize_explicit_location): Default to
symbol_name_match_type::WILD.
(new_linespec_location): New symbol_name_match_type parameter.
Record it in the location.
(get_linespec_location): Now returns a struct linespec_location.
(new_explicit_location): Also copy func_name_match_type.
(explicit_to_string_internal)
(string_to_explicit_location): Handle "-qualified".
(copy_event_location): Adjust to LINESPEC_LOCATION type change.
Copy symbol_name_match_type fields.
(event_location_deleter::operator()): Adjust to LINESPEC_LOCATION
type change.
(event_location_to_string): Adjust to LINESPEC_LOCATION type
change. Handle "-qualfied".
(string_to_explicit_location): Handle "-qualified".
(string_to_event_location_basic): New symbol_name_match_type
parameter. Pass it down.
(string_to_event_location): Handle "-qualified".
* location.h (struct linespec_location): New.
(explicit_location::func_name_match_type): New field.
(new_linespec_location): Now returns a const linespec_location *.
(string_to_event_location_basic): New symbol_name_match_type
parameter.
(explicit_completion_info::saw_explicit_location_option): New
field.
* mi/mi-cmd-break.c (mi_cmd_break_insert_1): Adjust to pass a
symbol_name_match_type to new_linespec_location.
* python/py-breakpoint.c (bppy_init): Likewise.
* python/python.c (gdbpy_decode_line): Likewise.
gdb/testsuite/ChangeLog:
2017-11-29 Pedro Alves <palves@redhat.com>
* gdb.base/langs.exp: Use -qualified.
* gdb.cp/meth-typedefs.exp: Use -qualified, and add tests without
it.
* gdb.cp/namespace.exp: Use -qualified.
* gdb.linespec/cpcompletion.exp (overload-2, fqn, fqn-2)
(overload-3, template-overload, template-ret-type, const-overload)
(const-overload-quoted, anon-ns, ambiguous-prefix): New
procedures.
(test_driver): Call them.
* gdb.cp/save-bp-qualified.cc: New.
* gdb.cp/save-bp-qualified.exp: New.
* gdb.linespec/explicit.exp: Test -qualified.
* lib/completion-support.exp (completion::explicit_opts_list): Add
"-qualified".
* lib/gdb.exp (gdb_breakpoint): Handle "qualified".
gdb/doc/ChangeLog:
2017-11-29 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Linespec Locations): Document how "function" is
interpreted in C++ and Ada. Document "-qualified".
(Explicit Locations): Document how "-function" is interpreted in
C++ and Ada. Document "-qualified".
This patch converts the generic probe interface (gdb/probe.[ch]) to
C++, and also performs some cleanups that were on my TODO list for a
while.
The main changes were the conversion of 'struct probe' to 'class
probe', and 'struct probe_ops' to 'class static_probe_ops'. The
former now contains all the "dynamic", generic methods that act on a
probe + the generic data related to it; the latter encapsulates a
bunch of "static" methods that relate to the probe type, but not to a
specific probe itself.
I've had to do a few renamings (e.g., on 'struct bound_probe' the
field is called 'probe *prob' now, instead of 'struct probe *probe')
because GCC was complaining about naming the field using the same name
as the class. Nothing major, though. Generally speaking, the logic
behind and the design behind the code are the same.
Even though I'm sending a series of patches, they need to be tested
and committed as a single unit, because of inter-dependencies. But it
should be easier to review in separate logical units.
I've regtested this patch on BuildBot, no regressions found.
gdb/ChangeLog:
2017-11-22 Sergio Durigan Junior <sergiodj@redhat.com>
* break-catch-throw.c (fetch_probe_arguments): Use
'probe.prob' instead of 'probe.probe'.
* breakpoint.c (create_longjmp_master_breakpoint): Call
'can_evaluate_arguments' and 'get_relocated_address' methods
from probe.
(create_exception_master_breakpoint): Likewise.
(add_location_to_breakpoint): Use 'sal->prob' instead of
'sal->probe'.
(bkpt_probe_insert_location): Call 'set_semaphore' method from
probe.
(bkpt_probe_remove_location): Likewise, for 'clear_semaphore'.
* elfread.c (elf_get_probes): Use 'static_probe_ops' instead
of 'probe_ops'.
(probe_key_free): Call 'delete' on probe.
(check_exception_resume): Use 'probe.prob' instead of
'probe.probe'.
* location.c (string_to_event_location_basic): Call
'probe_linespec_to_static_ops'.
* probe.c (class any_static_probe_ops): New class.
(any_static_probe_ops any_static_probe_ops): New variable.
(parse_probes_in_pspace): Receive 'static_probe_ops' as
argument. Adjust code to reflect change.
(parse_probes): Use 'static_probe_ops' instead of
'probe_ops'. Adjust code to reflect change.
(find_probes_in_objfile): Call methods to get name and
provider from probe.
(find_probe_by_pc): Use 'result.prob' instead of
'result.probe'. Call 'get_relocated_address' method from
probe.
(collect_probes): Adjust comment and argument list to receive
'static_probe_ops' instead of 'probe_ops'. Adjust code to
reflect change. Call necessary methods from probe.
(compare_probes): Call methods to get name and provider from
probes.
(gen_ui_out_table_header_info): Receive 'static_probe_ops'
instead of 'probe_ops'. Use 'std::vector' instead of VEC,
adjust code accordingly.
(print_ui_out_not_applicables): Likewise.
(info_probes_for_ops): Rename to...
(info_probes_for_spops): ...this. Receive 'static_probe_ops'
as argument instead of 'probe_ops'. Adjust code. Call
necessary methods from probe.
(info_probes_command): Use 'info_probes_for_spops'.
(enable_probes_command): Pass correct argument to
'collect_probes'. Call methods from probe.
(disable_probes_command): Likewise.
(get_probe_address): Move to 'any_static_probe_ops::get_address'.
(get_probe_argument_count): Move to
'any_static_probe_ops::get_argument_count'.
(can_evaluate_probe_arguments): Move to
'any_static_probe_ops::can_evaluate_arguments'.
(evaluate_probe_argument): Move to
'any_static_probe_ops::evaluate_argument'.
(probe_safe_evaluate_at_pc): Use 'probe.prob' instead of
'probe.probe'.
(probe_linespec_to_ops): Rename to...
(probe_linespec_to_static_ops): ...this. Adjust code.
(probe_any_is_linespec): Rename to...
(any_static_probe_ops::is_linespec): ...this.
(probe_any_get_probes): Rename to...
(any_static_probe_ops::get_probes): ...this.
(any_static_probe_ops::type_name): New method.
(any_static_probe_ops::gen_info_probes_table_header): New
method.
(compute_probe_arg): Use 'pc_probe.prob' instead of
'pc_probe.probe'. Call methods from probe.
(compile_probe_arg): Likewise.
(std::vector<const probe_ops *> all_probe_ops): Delete.
(std::vector<const static_probe_ops *> all_static_probe_ops):
New variable.
(_initialize_probe): Use 'all_static_probe_ops' instead of
'all_probe_ops'.
* probe.h (struct info_probe_column) <field_name>: Delete
extraneous newline
(info_probe_column_s): Delete type and VEC.
(struct probe_ops): Delete. Replace with...
(class static_probe_ops): ...this and...
(clas probe): ...this.
(struct bound_probe) <bound_probe>: Delete extraneous
newline. Adjust constructor to receive 'probe' instead of
'struct probe'.
<probe>: Rename to...
<prob>: ...this. Delete extraneous newline.
<objfile>: Delete extraneous newline.
(register_probe_ops): Delete unused prototype.
(info_probes_for_ops): Rename to...
(info_probes_for_spops): ...this. Adjust comment.
(get_probe_address): Move to 'probe::get_address'.
(get_probe_argument_count): Move to
'probe::get_argument_count'.
(can_evaluate_probe_arguments): Move to
'probe::can_evaluate_arguments'.
(evaluate_probe_argument): Move to 'probe::evaluate_argument'.
* solib-svr4.c (struct svr4_info): Adjust comment.
(struct probe_and_action) <probe>: Rename to...
<prob>: ...this.
(register_solib_event_probe): Receive 'probe' instead of
'struct probe' as argument. Use 'prob' instead of 'probe'
when applicable.
(solib_event_probe_action): Call 'get_argument_count' method
from probe. Adjust comment.
(svr4_handle_solib_event): Adjust comment. Call
'evaluate_argument' method from probe.
(svr4_create_probe_breakpoints): Call 'get_relocated_address'
from probe.
(svr4_create_solib_event_breakpoints): Use 'probe' instead of
'struct probe'. Call 'can_evaluate_arguments' from probe.
* symfile.h: Forward declare 'class probe' instead of 'struct
probe'.
* symtab.h: Likewise.
(struct symtab_and_line) <probe>: Rename to...
<prob>: ...this.
* tracepoint.c (start_tracing): Use 'prob' when applicable.
Call probe methods.
(stop_tracing): Likewise.
A simple replacement of VEC with std::vector.
gdb/ChangeLog:
* breakpoint.c (output_thread_groups): Take an std::vector.
(print_one_breakpoint_location): Adjust.
If GDB is inserting a breakpoint and you type Ctrl-C at the exact
"right" time, you'll hit a QUIT call in target_read, and the
breakpoint insertion is cancelled. However, the related TRY/CATCH
code in insert_bp_location does:
CATCH (e, RETURN_MASK_ALL)
{
bp_err = e.error;
bp_err_message = e.message;
}
The problem with that is that a RETURN_QUIT exception has e.error ==
0, which means that further below, in the places that check for error
with:
if (bp_err != GDB_NO_ERROR)
because GDB_NO_ERROR == 0, GDB continues as if the breakpoint was
inserted succesfully, and resumes the inferior. Since the breakpoint
wasn't inserted the inferior runs free, out of our control...
Fix this by having insert_bp_location store a copy of the whole
exception instead of just a error/message parts, and then checking
"gdb_exception::reason" instead.
This was exposed by the new gdb.base/bp-cmds-continue-ctrl-c.exp
testcase added later in the series.
gdb/ChangeLog:
2017-11-16 Pedro Alves <palves@redhat.com>
* breakpoint.c (insert_bp_location): Replace bp_err and
bp_err_message locals by a gdb_exception local.
This changes add_abbrev_prefix_cmd to take a const-taking callback
function and then fixes the one caller.
gdb/ChangeLog
2017-11-07 Tom Tromey <tom@tromey.com>
* breakpoint.c (stop_command): Constify.
* cli/cli-decode.c (struct cmd_list_element): Constify.
* command.h (add_abbrev_prefix_cmd): Constify.
... and also make GDB catch a few more cases of invalid input.
This fixes the inconsistency in GDB's output (e.g., "bad" vs "Bad")
exposed by the new tests added in the previous commit.
Also, makes the "0-0" and "inverted range" cases be loud errors.
Also makes GDB reject negative breakpoint number in ranges. We
already rejected negative number literals, but you could still subvert
that via convenience variables, like:
(gdb) set $bp -1
(gdb) disable $bp.1-2
The change to get_number_trailer fixes a bug exposed by the new tests.
The function did not handle parsing "-$num". [This wasn't visible in
the gdb.multi/tids.exp (which has similar tests) because the TID range
parsing is implemented differently.]
gdb/ChangeLog:
2017-11-07 Pedro Alves <palves@redhat.com>
* breakpoint.c (extract_bp_kind): New enum.
(extract_bp_num, extract_bp_or_bp_range): New functions, partially
factored out from ...
(extract_bp_number_and_location): ... here.
* cli/cli-utils.c (get_number_trailer): Handle '-$variable'.
gdb/testsuite/ChangeLog:
2017-11-07 Pedro Alves <palves@redhat.com>
* gdb.base/ena-dis-br.exp (test_ena_dis_br): Adjust test.
* gdb.cp/ena-dis-br-range.exp: Adjust tests.
(disable_invalid, disable_inverted, disable_negative): New
procedures.
("bad numbers"): New set of tests.
It's odd that when parsing a breakpoint or location number, we error out
in most cases, but warn in others.
(gdb) disable 1-
bad breakpoint number at or near: '1-'
(gdb) disable -1
bad breakpoint number at or near: '-1'
(gdb) disable .foo
bad breakpoint number at or near: '.foo'
(gdb) disable foo.1
Bad breakpoint number 'foo.1'
(gdb) disable 1.foo
warning: bad breakpoint number at or near '1.foo'
This changes GDB to always error out. It required touching one testcase
that expected the warning.
gdb/ChangeLog:
2017-11-07 Pedro Alves <palves@redhat.com>
* breakpoint.c (extract_bp_number_and_location): Change return
type to void. Throw error instead of warning.
(enable_disable_command): Adjust.
gdb/testsuite/ChangeLog:
2017-11-07 Pedro Alves <palves@redhat.com>
* gdb.base/ena-dis-br.exp: Don't expect "warning:".
When a breakpoint has multiple locations, like e.g.:
Num Type Disp Enb Address What
1 breakpoint keep y <MULTIPLE>
1.1 y 0x080486a2 in void foo<int>()...
1.2 y 0x080486ca in void foo<double>()...
[....]
1.5 y 0x080487fa in void foo<long>()...
it's possible to enable/disable the individual locations using the
'<breakpoint_number>.<location_number>' syntax, like e.g.:
(gdb) disable 1.2 1.3 1.4 1.5
That's inconvenient when you have a long list of locations to disable,
however.
This patch adds shorthand for the above, by making it possible to
specify a range of locations with the following syntax (similar to
thread id ranges):
<breakpoint_number>.<first_location_number>-<last_location_number>
For example, the command above can now be simplified to:
(gdb) disable 1.2-5
gdb/ChangeLog:
2017-11-07 Xavier Roirand <roirand@adacore.com>
Pedro Alves <palves@redhat.com>
* breakpoint.c (map_breakpoint_number_range): New, factored out
from ...
(map_breakpoint_numbers): ... here.
(find_location_by_number): Change parameters from string to
breakpoint number and location.
(extract_bp_number_and_location): New function.
(enable_disable_bp_num_loc)
(enable_disable_breakpoint_location_range)
(enable_disable_command): New functions, factored out ...
(enable_command, disable_command): ... these functions, and
adjusted to support ranges.
* NEWS: Document enable/disable breakpoint location range feature.
gdb/doc/ChangeLog:
2017-11-07 Xavier Roirand <roirand@adacore.com>
Pedro Alves <palves@redhat.com>
* gdb.texinfo (Set Breaks): Document support for breakpoint
location ranges in the enable/disable commands.
gdb/testsuite/ChangeLog:
2017-11-07 Xavier Roirand <roirand@adacore.com>
Pedro Alves <palves@redhat.com>
* gdb.base/ena-dis-br.exp: Add reference to
gdb.cp/ena-dis-br-range.exp.
* gdb.cp/ena-dis-br-range.exp: New file.
* gdb.cp/ena-dis-br-range.cc: New file.
This introduces gdb_breakpoint_up, a unique_ptr typedef that owns a
breakpoint. It then changes set_momentary_breakpoint to return a
gdb_breakpoint_up and fixes up the fallout. This then allows the
removal of make_cleanup_delete_breakpoint.
Once breakpoints are fully C++-ified, this typedef can be removed in
favor of a plain std::unique_ptr.
gdb/ChangeLog
2017-11-04 Tom Tromey <tom@tromey.com>
* breakpoint.c (set_momentary_breakpoint): Return
breakpoint_up.
(until_break_command): Update.
(new_until_break_fsm): Change argument types to
breakpoint_up.
(set_momentary_breakpoint_at_pc): Return breakpoint_up.
(do_delete_breakpoint_cleanup, make_cleanup_delete_breakpoint):
Remove.
* infcmd.c (finish_forward): Update.
* breakpoint.h (set_momentary_breakpoint)
(set_momentary_breakpoint_at_pc): Return breakpoint_up.
(make_cleanup_delete_breakpoint): Remove.
(struct breakpoint_deleter): New.
(breakpoint_up): New typedef.
* infrun.c (insert_step_resume_breakpoint_at_sal_1): Update.
(insert_exception_resume_breakpoint): Update.
(insert_exception_resume_from_probe): Update.
(insert_longjmp_resume_breakpoint): Update.
* arm-linux-tdep.c (arm_linux_copy_svc): Update.
* elfread.c (elf_gnu_ifunc_resolver_stop): Update.
* infcall.c (call_function_by_hand_dummy): Update
This replaces start_rbreak_breakpoints and end_rbreak_breakpoints with
a new scoped class. This allows the removal of a cleanup.
This also fixes an earlier memory leak regression, by changing
"string" to be a std::string.
gdb/ChangeLog
2017-11-04 Tom Tromey <tom@tromey.com>
* breakpoint.c
(scoped_rbreak_breakpoints::scoped_rbreak_breakpoints): Rename
from start_rbreak_breakpoints.
(scoped_rbreak_breakpoints): Rename from end_rbreak_breakpoints.
* breakpoint.h (class scoped_rbreak_breakpoints): New.
(start_rbreak_breakpoints, end_rbreak_breakpoints): Remove.
* symtab.c (do_end_rbreak_breakpoints): Remove.
(rbreak_command): Use scoped_rbreak_breakpoints, std::string.
Allocate with new and free with delete. This allows using an
std::vector in the following patch.
I renamed free_breakpoint_probes to free_breakpoint_objfile_data,
because it now doesn't only free the probes vector, but also the
breakpoint_objfile_data structure itself.
gdb/ChangeLog:
* breakpoint.c (breakpoint_objfile_data): Initialize fields.
(get_breakpoint_objfile_data): Allocate breakpoint_objfile_data
with new.
(free_breakpoint_probes): Rename to ...
(free_breakpoint_objfile_data): ... this, and call delete on
bp_objfile_data..
Currently, "info break" can show some (perhaps) unexpected results when
setting a breakpoint on an inlined function:
(gdb) list
1 #include <stdio.h>
2
3 static inline void foo()
4 {
5 printf("Hello world\n");
6 }
7
8 int main()
9 {
10 foo();
11 return 0;
12 }
13
(gdb) b foo
Breakpoint 1 at 0x400434: file foo.c, line 5.
(gdb) i b
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000000400434 in main at foo.c:5
GDB reported that we understood what "foo" was, but we then report that the
breakpoint is actually set in main. While that is literally true, we can
do a little better.
This is accomplished by copying the symbol for which the breakpoint was set
into the bp_location. From there, print_breakpoint_location can use this
information to print out symbol information (if available) instead of calling
find_pc_sect_function.
With the patch installed,
(gdb) i b
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000000400434 in foo at foo.c:5
gdb/ChangeLog:
* breakpoint.c (print_breakpoint_location): Use the symbol saved
in the bp_location, falling back to find_pc_sect_function when
needed.
(add_location_to_breakpoint): Save sal->symbol.
* breakpoint.h (struct bp_location) <symbol>: New field.
* symtab.c (find_function_start_sal): Save the symbol into the SaL.
* symtab.h (struct symtab_and_line) <symbol>: New field.
gdb/testsuite/ChangeLog:
* gdb.opt/inline-break.exp (break_info_1): New procedure.
Test "info break" for every inlined function breakpoint.
When parsing floating-point literals, the language parsers currently
use parse_float or some equivalent routine to parse the input string
into a DOUBLEST, which is then stored within a OP_DOUBLE expression
node. When evaluating the expression, the OP_DOUBLE is finally
converted into a value in target format.
On the other hand, *decimal* floating-point literals are parsed
directly into target format and stored that way in a OP_DECFLOAT
expression node. In order to eliminate the DOUBLEST, this patch
therefore unifies the handling of binary and decimal floating-
point literals and stores them both in target format within a
new OP_FLOAT expression node, replacing both OP_DOUBLE and
OP_DECFLOAT.
In order to store literals in target format, the parse_float
routine needs to know the type of the literal. All parsers
therefore need to be changed to determine the appropriate type
(e.g. by detecting suffixes) *before* calling parse_float,
instead of after it as today. However, this change is mostly
straightforward -- again, this is already done for decimal FP
today.
The core of the literal parsing is moved into a new routine
floatformat_from_string, mirroring floatformat_to_string.
The parse_float routine now calls either floatformat_from_string
or decimal_from_sting, allowing it to handle any type of FP
literal.
All language parsers need to be updated. Some notes on
specific changes to the various languages:
- C: Decimal FP is now handled in parse_float, and no longer
needs to be handled specially.
- D: Straightforward.
- Fortran: Still used a hard-coded "atof", also replaced by
parse_float now. Continues to always use builtin_real_s8
as the type of literal, even though this is probably wrong.
- Go: This used to handle "f" and "l" suffixes, even though
the Go language actually doesn't support those. I kept this
support for now -- maybe revisit later. Note the the GDB
test suite for some reason actually *verifies* that GDB supports
those unsupported suffixes ...
- Pascal: Likewise -- this handles suffixes that are not
supported in the language standard.
- Modula-2: Like Fortran, used to use "atof".
- Rust: Mostly straightforward, except for a unit-testing hitch.
The code use to set a special "unit_testing" flag which would
cause "rust_type" to always return NULL. This makes it not
possible to encode a literal into target format (which type?).
The reason for this flag appears to have been that during
unit testing, there is no "rust_parser" context set up, which
means no "gdbarch" is available to use its types. To fix this,
I removed the unit_testing flag, and instead simply just set up
a dummy rust_parser context during unit testing.
- Ada: This used to check sizeof (DOUBLEST) to determine which
type to use for floating-point literal. This seems questionable
to begin with (since DOUBLEST is quite unrelated to target formats),
and in any case we need to get rid of DOUBLEST. I'm now simply
always using the largest type (builtin_long_double).
gdb/ChangeLog:
2017-10-25 Ulrich Weigand <uweigand@de.ibm.com>
* doublest.c (floatformat_from_string): New function.
* doublest.h (floatformat_from_string): Add prototype.
* std-operator.def (OP_DOUBLE, OP_DECFLOAT): Remove, replace by ...
(OP_FLOAT): ... this.
* expression.h: Do not include "doublest.h".
(union exp_element): Replace doubleconst and decfloatconst by
new element floatconst.
* ada-lang.c (resolve_subexp): Handle OP_FLOAT instead of OP_DOUBLE.
(ada_evaluate_subexp): Likewise.
* eval.c (evaluate_subexp_standard): Handle OP_FLOAT instead of
OP_DOUBLE and OP_DECFLOAT.
* expprint.c (print_subexp_standard): Likewise.
(dump_subexp_body_standard): Likewise.
* breakpoint.c (watchpoint_exp_is_const): Likewise.
* parse.c: Include "dfp.h".
(write_exp_elt_dblcst, write_exp_elt_decfloatcst): Remove.
(write_exp_elt_floatcst): New function.
(operator_length_standard): Handle OP_FLOAT instead of OP_DOUBLE
and OP_DECFLOAT.
(operator_check_standard): Likewise.
(parse_float): Do not accept suffix. Take type as input. Return bool.
Return target format buffer instead of host DOUBLEST.
Use floatformat_from_string and decimal_from_string to parse
either binary or decimal floating-point types.
(parse_c_float): Remove.
* parser-defs.h: Do not include "doublest.h".
(write_exp_elt_dblcst, write_exp_elt_decfloatcst): Remove.
(write_exp_elt_floatcst): Add prototype.
(parse_float): Update prototype.
(parse_c_float): Remove.
* c-exp.y: Do not include "dfp.h".
(typed_val_float): Use byte buffer instead of DOUBLEST.
(typed_val_decfloat): Remove.
(DECFLOAT): Remove.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Update to new parse_float interface.
Parse suffixes and determine type before calling parse_float.
Handle decimal and binary FP types the same way.
* d-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST.
(FLOAT_LITERAL): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Update to new parse_float interface.
Parse suffixes and determine type before calling parse_float.
* f-exp.y: Replace dval by typed_val_float.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Use parse_float instead of atof.
* go-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST.
(parse_go_float): Remove.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Call parse_float instead of parse_go_float.
Parse suffixes and determine type before calling parse_float.
* p-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Update to new parse_float interface.
Parse suffixes and determine type before calling parse_float.
* m2-exp.y: Replace dval by byte buffer val.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
(parse_number): Call parse_float instead of atof.
* rust-exp.y (typed_val_float): Use byte buffer instead of DOUBLEST.
(lex_number): Call parse_float instead of strtod.
(ast_dliteral): Use OP_FLOAT instead of OP_DOUBLE.
(convert_ast_to_expression): Handle OP_FLOAT instead of OP_DOUBLE.
Use write_exp_elt_floatcst.
(unit_testing): Remove static variable.
(rust_type): Do not check unit_testing.
(rust_lex_tests): Do not set uint_testing. Set up dummy rust_parser.
* ada-exp.y (type_float, type_double): Remove.
(typed_val_float): Use byte buffer instead of DOUBLEST.
(FLOAT): Use OP_FLOAT and write_exp_elt_floatcst.
* ada-lex.l (processReal): Use parse_float instead of sscanf.
prepare_re_set_context returns a null cleanup and doesn't seem
generally useful. This patch removes it plus a few more cleanups; and
changes breakpoint_re_set to use scoped_restore rather than its own
manual mechanism.
2017-10-11 Tom Tromey <tom@tromey.com>
* breakpoint.c (prepare_re_set_context): Remove.
(breakpoint_re_set_one): Update. Don't use cleanups.
(breakpoint_re_set): Use scoped_restore, std::string, and
scoped_restore_current_language.
This removes some cleanups from breakpoint.c, replacing them with C++
data structures.
2017-10-11 Tom Tromey <tom@tromey.com>
* breakpoint.c (commands_command_1): Use std::string.
(cleanup_executing_breakpoints): Remove.
(bpstat_do_actions_1): Use scoped_restore.
(bpstat_check_watchpoint): Use std::string.
(decode_static_tracepoint_spec): Likewise.
(break_range_command): Likewise.
(watch_command_1): Likewise.
(compare_breakpoints): Change argument types.
(clear_command): Use std::vector.
(cleanup_executing_breakpoints): Remove.
(update_global_location_list): Use unique_xmalloc_ptr.
(strace_command): Remove unused declaration.
This patch gets rid of catch_exceptions / catch_exceptions_with_msg.
The latter is done mostly by getting rid of the three remaining
vestigial libgdb wrapper functions, which are really pointless
nowadays. This results in a good number of simplifications.
(I checked that Insight doesn't use those functions.)
The gdb.mi/mi-pthreads.exp change is necessary because this actually
fixes a bug, IMO -- the patch stops MI's -thread-select causing output
on the CLI stream.
I.e., before:
-thread-select 123456789
&"Thread ID 123456789 not known.\n"
^error,msg="Thread ID 123456789 not known."
(gdb)
After:
-thread-select 123456789
^error,msg="Thread ID 123456789 not known."
(gdb)
gdb/ChangeLog
2017-10-10 Pedro Alves <palves@redhat.com>
Tom Tromey <tom@tromey.com>
* breakpoint.c (struct captured_breakpoint_query_args)
(do_captured_breakpoint_query, gdb_breakpoint_query): Delete.
(print_breakpoint): New.
* breakpoint.h (print_breakpoint): Declare.
* common/common-exceptions.h (enum return_reason): Remove
references to catch_exceptions.
* exceptions.c (catch_exceptions, catch_exceptions_with_msg):
Delete.
* exceptions.h (catch_exceptions_ftype, catch_exceptions)
(catch_exception_ftype, catch_exceptions_with_msg): Delete.
* gdb.h: Delete.
* gdbthread.h (thread_select): Declare.
* mi/mi-cmd-break.c: Don't include gdb.h.
(breakpoint_notify): Use print_breakpoint.
* mi/mi-cmd-catch.c: Don't include gdb.h.
* mi/mi-interp.c: Don't include gdb.h.
(mi_print_breakpoint_for_event): New.
(mi_breakpoint_created, mi_breakpoint_modified): Use
mi_print_breakpoint_for_event.
* mi/mi-main.c: Don't include gdb.h.
(mi_cmd_thread_select): Parse the global thread ID here. Use
thread_select instead of gdb_thread_select.
(mi_cmd_thread_list_ids): Output "thread-ids" tuple here instead
of using gdb_list_thread_ids.
* remote-fileio.c (do_remote_fileio_request): Change type. Reply
FILEIO_ENOSYS here.
(remote_fileio_request): Use TRY/CATCH instead of
catch_exceptions.
* symfile-mem.c (struct symbol_file_add_from_memory_args)
(symbol_file_add_from_memory_wrapper): Delete.
(add_vsyscall_page): Use TRY/CATCH instead of catch_exceptions.
* thread.c: Don't include gdb.h.
(do_captured_list_thread_ids, gdb_list_thread_ids): Delete.
(thread_alive): Use thread_select.
(do_captured_thread_select): Delete, parts salvaged as ...
(thread_select): ... this new function.
(gdb_thread_select): Delete.
gdb/testsuite/ChangeLog
2017-10-10 Pedro Alves <palves@redhat.com>
* gdb.mi/mi-pthreads.exp (check_mi_thread_command_set): Don't
expect CLI output.
If you want to use catch_errors with a function with parameters, then
currently you have to manually write a "capture" struct wrapping the
arguments and marshall/unmarshall that.
https://sourceware.org/ml/gdb-patches/2017-09/msg00834.html proposed
adjusting catch_errors to use gdb::function_view, which would allow
passing lambdas with automatic captures. However, it seems like using
TRY/CATCH directly instead ends up producing clearer and easier to
debug code. This is what this commit does.
Note that removing catch_errors exposes further cleanup opportunities
around no longer having to follow catch_errors callback type, and also
removes a few cleanups.
I didn't do anything to save/restore current_uiout because I think
that should be the responsibility of the code that changes
current_uiout in the first place.
(Another approach could be to make catch_errors a variadic template
like:
template<typename Function, typename... Args>
int catch_errors (const char *errstring, return_mask mask,
Function &&func, Args... args);
and then with:
extern void function_with_args (int, int);
extern void function_with_no_args ();
calls to the above functions would be wrapped like this:
catch_errors ("some error happened", RETURN_MASK_ERROR,
function_with_args, arg1, arg2);
catch_errors ("some error happened", RETURN_MASK_ERROR,
function_with_no_args);
but I'm thinking that that doesn't improve much if at all either.)
gdb/ChangeLog
2017-10-10 Pedro Alves <palves@redhat.com>
Tom Tromey <tom@tromey.com>
* breakpoint.c (breakpoint_cond_eval): Change return type to bool
and reverse logic.
(WP_DELETED, WP_VALUE_CHANGED, WP_VALUE_NOT_CHANGED, WP_IGNORE):
No longer macros. Instead ...
(enum wp_check_result): They're now values of this new
enumeration.
(watchpoint_check): Change return type to wp_check_result and
parameter type to bpstat.
(bpstat_check_watchpoint): Use TRY/CATCH instead of catch_errors.
(bpstat_check_breakpoint_conditions): Use TRY/CATCH instead of
catch_errors. Reverse logic of watchpoint_check call.
(breakpoint_re_set_one): Now returns void and takes a breakpoint
pointer as parameter.
(breakpoint_re_set): Use TRY/CATCH instead of catch_errors.
* common/common-exceptions.c (throw_exception_sjlj): Update
comments to avoid mentioning catch_errors.
* exceptions.c (catch_errors): Delete.
* exceptions.h: Update comments to avoid mentioning catch_errors.
(catch_errors_ftype, catch_errors): Delete.
* infrun.c (normal_stop): Use TRY/CATCH instead of catch_errors.
(hook_stop_stub): Delete.
(restore_selected_frame): Change return type to void, and
parameter type to const frame_id &.
(restore_infcall_control_state): Use TRY/CATCH instead of
catch_errors.
* main.c (captured_command_loop): Return void and remove
parameter. Remove references to catch_errors.
(captured_main): Use TRY/CATCH instead of catch_errors.
* objc-lang.c (objc_submethod_helper_data)
(find_objc_msgcall_submethod_helper): Delete.
(find_objc_msgcall_submethod): Use TRY/CATCH instead of
catch_errors.
* record-full.c (record_full_message): Return void.
(record_full_message_args, record_full_message_wrapper): Delete.
(record_full_message_wrapper_safe): Return bool and use TRY/CATCH
instead of catch_errors.
* solib-aix.c (solib_aix_open_symbol_file_object): Change
parameter type to int.
* solib-darwin.c (open_symbol_file_object): Ditto.
* solib-dsbt.c (open_symbol_file_object): Ditto.
* solib-frv.c (open_symbol_file_object): Ditto.
* solib-svr4.c (open_symbol_file_object): Ditto.
* solib-target.c (solib_target_open_symbol_file_object): Ditto.
* solib.c (update_solib_list): Use TRY/CATCH instead of
catch_errors.
* solist.h (struct target_so_ops) <open_symbol_file_object>:
Change type.
* symmisc.c (struct print_symbol_args): Remove.
(dump_symtab_1): Use TRY/CATCH instead of catch_errors.
(print_symbol): Change type.
* windows-nat.c (handle_load_dll, handle_unload_dll): Return void
and remove parameters.
(catch_errors): New.
(get_windows_debug_event): Adjust.
gdb/testsuite/ChangeLog:
2017-10-10 Pedro Alves <palves@redhat.com>
* lib/selftest-support.exp (selftest_setup): Update for
captured_command_loop's prototype change.
This also makes delete_command static; but now I wonder if it is used
in Insight and should not be touched.
gdb/ChangeLog
2017-09-27 Tom Tromey <tom@tromey.com>
* breakpoint.h (delete_command): Don't declare.
* breakpoint.c (delete_command, enable_once_command)
(enable_count_command, enable_delete_command, breakpoint_1)
(maintenance_info_breakpoints, stopin_command, stopat_command)
(delete_command, delete_trace_command, save_breakpoints)
(save_breakpoints_command, save_tracepoints_command): Constify.