This changes the extension language pretty-printers to use the value
API.
Note that new functions were needed, for both Guile and Python.
Currently both languages always wrap values by removing the values
from the value chain. This makes sense to avoid strange behavior with
watchpoints, and to avoid excessive memory use. However, when
printing, it's important to leave the passed-in value untouched, in
case pretty-printing does nothing -- that way the caller can still
access it.
gdb/ChangeLog
2020-03-13 Tom Tromey <tom@tromey.com>
* valprint.c (do_val_print): Update.
* python/python-internal.h (gdbpy_apply_val_pretty_printer): Take
a struct value.
(value_to_value_object_no_release): Declare.
* python/py-value.c (value_to_value_object_no_release): New
function.
* python/py-prettyprint.c (gdbpy_apply_val_pretty_printer): Take a
struct value.
* guile/scm-value.c (vlscm_scm_from_value_no_release): New
function.
* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer): Take
a struct value.
* guile/guile-internal.h (vlscm_scm_from_value_no_release):
Declare.
(gdbscm_apply_val_pretty_printer): Take a struct value.
* extension.h (apply_ext_lang_val_pretty_printer): Take a struct
value.
* extension.c (apply_ext_lang_val_pretty_printer): Take a struct
value.
* extension-priv.h (struct extension_language_ops)
<apply_val_pretty_printer>: Take a struct value.
* cp-valprint.c (cp_print_value): Create a struct value.
(cp_print_value): Update.
Introduce a new print setting max-depth which can be set with 'set
print max-depth DEPTH'. The default value of DEPTH is 20, but this
can also be set to unlimited.
When GDB is printing a value containing nested structures GDB will
stop descending at depth DEPTH. Here is a small example:
typedef struct s1 { int a; } s1;
typedef struct s2 { s1 b; } s2;
typedef struct s3 { s2 c; } s3;
typedef struct s4 { s3 d; } s4;
s4 var = { { { { 3 } } } };
The following table shows how various depth settings affect printing
of 'var':
| Depth Setting | Result of 'p var' |
|---------------+--------------------------------|
| Unlimited | $1 = {d = {c = {b = {a = 3}}}} |
| 4 | $1 = {d = {c = {b = {a = 3}}}} |
| 3 | $1 = {d = {c = {b = {...}}}} |
| 2 | $1 = {d = {c = {...}}} |
| 1 | $1 = {d = {...}} |
| 0 | $1 = {...} |
Only structures, unions, and arrays are replaced in this way, scalars
and strings are not replaced.
The replacement is counted from the level at which you print, not from
the top level of the structure. So, consider the above example and
this GDB session:
(gdb) set print max-depth 2
(gdb) p var
$1 = {d = {c = {...}}}
(gdb) p var.d
$2 = {c = {b = {...}}}
(gdb) p var.d.c
$3 = {b = {a = 3}}
Setting the max-depth to 2 doesn't prevent the user from exploring
deeper into 'var' by asking for specific sub-fields to be printed.
The motivation behind this feature is to try and give the user more
control over how much is printed when examining large, complex data
structures.
The default max-depth of 20 means that there is a change in GDB's
default behaviour. Someone printing a data structure with 20 levels
of nesting will now see '{...}' instead of their data, they would need
to adjust the max depth, or call print again naming a specific field
in order to dig deeper into their data structure. If this is
considered a problem then we could increase the default, or even make
the default unlimited.
This commit relies on the previous commit, which added a new field to
the language structure, this new field was a string that contained the
pattern that should be used when a structure/union/array is replaced
in the output, this allows languages to use a syntax that is more
appropriate, mostly this will be selecting the correct types of
bracket '(...)' or '{...}', both of which are currently in use.
This commit should have no impact on MI output, expressions are
printed through the MI using -var-create and then -var-list-children.
As each use of -var-list-children only ever displays a single level of
an expression then the max-depth setting will have no impact.
This commit also adds the max-depth mechanism to the scripting
language pretty printers following basically the same rules as for the
built in value printing.
One quirk is that when printing a value using the display hint 'map',
if the keys of the map are structs then GDB will hide the keys one
depth level after it hides the values, this ensures that GDB produces
output like this:
$1 = map_object = {[{key1}] = {...}, [{key2}] = {...}}
Instead of this less helpful output:
$1 = map_object = {[{...}] = {...}, [{...}] = {...}}
This is covered by the new tests in gdb.python/py-nested-maps.exp.
gdb/ChangeLog:
* cp-valprint.c (cp_print_value_fields): Allow an additional level
of depth when printing anonymous structs or unions.
* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer):
Don't print either the top-level value, or the children if the
max-depth is exceeded.
(ppscm_print_children): When printing the key of a map, allow one
extra level of depth.
* python/py-prettyprint.c (gdbpy_apply_val_pretty_printer): Don't
print either the top-level value, or the children if the max-depth
is exceeded.
(print_children): When printing the key of a map, allow one extra
level of depth.
* python/py-value.c (valpy_format_string): Add max_depth keyword.
* valprint.c: (PRINT_MAX_DEPTH_DEFAULT): Define.
(user_print_options): Initialise max_depth field.
(val_print_scalar_or_string_type_p): New function.
(val_print): Check to see if the max depth has been reached.
(val_print_check_max_depth): Define new function.
(show_print_max_depth): New function.
(_initialize_valprint): Add 'print max-depth' option.
* valprint.h (struct value_print_options) <max_depth>: New field.
(val_print_check_max_depth): Declare new function.
* NEWS: Document new feature.
gdb/doc/ChangeLog:
* gdb.texinfo (Print Settings): Document 'print max-depth'.
* guile.texi (Guile Pretty Printing API): Document that 'print
max-depth' can effect the display of a values children.
* python.texi (Pretty Printing API): Likewise.
(Values From Inferior): Document max_depth keyword.
gdb/testsuite/ChangeLog:
* gdb.base/max-depth.c: New file.
* gdb.base/max-depth.exp: New file.
* gdb.python/py-nested-maps.c: New file.
* gdb.python/py-nested-maps.exp: New file.
* gdb.python/py-nested-maps.py: New file.
* gdb.python/py-format-string.exp (test_max_depth): New proc.
(test_all_common): Call test_max_depth.
* gdb.fortran/max-depth.exp: New file.
* gdb.fortran/max-depth.f90: New file.
* gdb.go/max-depth.exp: New file.
* gdb.go/max-depth.go: New file.
* gdb.modula2/max-depth.exp: New file.
* gdb.modula2/max-depth.c: New file.
* lib/gdb.exp (get_print_expr_at_depths): New proc.
This rewrites gdb's TRY/CATCH to plain C++ try/catch. The patch was
largely written by script, though one change (to a comment in
common-exceptions.h) was reverted by hand.
gdb/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* xml-support.c: Use C++ exception handling.
* x86-linux-nat.c: Use C++ exception handling.
* windows-nat.c: Use C++ exception handling.
* varobj.c: Use C++ exception handling.
* value.c: Use C++ exception handling.
* valprint.c: Use C++ exception handling.
* valops.c: Use C++ exception handling.
* unittests/parse-connection-spec-selftests.c: Use C++ exception
handling.
* unittests/cli-utils-selftests.c: Use C++ exception handling.
* typeprint.c: Use C++ exception handling.
* tui/tui.c: Use C++ exception handling.
* tracefile-tfile.c: Use C++ exception handling.
* top.c: Use C++ exception handling.
* thread.c: Use C++ exception handling.
* target.c: Use C++ exception handling.
* symmisc.c: Use C++ exception handling.
* symfile-mem.c: Use C++ exception handling.
* stack.c: Use C++ exception handling.
* sparc64-linux-tdep.c: Use C++ exception handling.
* solib.c: Use C++ exception handling.
* solib-svr4.c: Use C++ exception handling.
* solib-spu.c: Use C++ exception handling.
* solib-frv.c: Use C++ exception handling.
* solib-dsbt.c: Use C++ exception handling.
* selftest-arch.c: Use C++ exception handling.
* s390-tdep.c: Use C++ exception handling.
* rust-lang.c: Use C++ exception handling.
* rust-exp.y: Use C++ exception handling.
* rs6000-tdep.c: Use C++ exception handling.
* rs6000-aix-tdep.c: Use C++ exception handling.
* riscv-tdep.c: Use C++ exception handling.
* remote.c: Use C++ exception handling.
* remote-fileio.c: Use C++ exception handling.
* record-full.c: Use C++ exception handling.
* record-btrace.c: Use C++ exception handling.
* python/python.c: Use C++ exception handling.
* python/py-value.c: Use C++ exception handling.
* python/py-utils.c: Use C++ exception handling.
* python/py-unwind.c: Use C++ exception handling.
* python/py-type.c: Use C++ exception handling.
* python/py-symbol.c: Use C++ exception handling.
* python/py-record.c: Use C++ exception handling.
* python/py-record-btrace.c: Use C++ exception handling.
* python/py-progspace.c: Use C++ exception handling.
* python/py-prettyprint.c: Use C++ exception handling.
* python/py-param.c: Use C++ exception handling.
* python/py-objfile.c: Use C++ exception handling.
* python/py-linetable.c: Use C++ exception handling.
* python/py-lazy-string.c: Use C++ exception handling.
* python/py-infthread.c: Use C++ exception handling.
* python/py-inferior.c: Use C++ exception handling.
* python/py-gdb-readline.c: Use C++ exception handling.
* python/py-framefilter.c: Use C++ exception handling.
* python/py-frame.c: Use C++ exception handling.
* python/py-finishbreakpoint.c: Use C++ exception handling.
* python/py-cmd.c: Use C++ exception handling.
* python/py-breakpoint.c: Use C++ exception handling.
* python/py-arch.c: Use C++ exception handling.
* printcmd.c: Use C++ exception handling.
* ppc-linux-tdep.c: Use C++ exception handling.
* parse.c: Use C++ exception handling.
* p-valprint.c: Use C++ exception handling.
* objc-lang.c: Use C++ exception handling.
* mi/mi-main.c: Use C++ exception handling.
* mi/mi-interp.c: Use C++ exception handling.
* mi/mi-cmd-stack.c: Use C++ exception handling.
* mi/mi-cmd-break.c: Use C++ exception handling.
* main.c: Use C++ exception handling.
* linux-thread-db.c: Use C++ exception handling.
* linux-tdep.c: Use C++ exception handling.
* linux-nat.c: Use C++ exception handling.
* linux-fork.c: Use C++ exception handling.
* linespec.c: Use C++ exception handling.
* language.c: Use C++ exception handling.
* jit.c: Use C++ exception handling.
* infrun.c: Use C++ exception handling.
* infcmd.c: Use C++ exception handling.
* infcall.c: Use C++ exception handling.
* inf-loop.c: Use C++ exception handling.
* i386-tdep.c: Use C++ exception handling.
* i386-linux-tdep.c: Use C++ exception handling.
* guile/scm-value.c: Use C++ exception handling.
* guile/scm-type.c: Use C++ exception handling.
* guile/scm-symtab.c: Use C++ exception handling.
* guile/scm-symbol.c: Use C++ exception handling.
* guile/scm-pretty-print.c: Use C++ exception handling.
* guile/scm-ports.c: Use C++ exception handling.
* guile/scm-param.c: Use C++ exception handling.
* guile/scm-math.c: Use C++ exception handling.
* guile/scm-lazy-string.c: Use C++ exception handling.
* guile/scm-frame.c: Use C++ exception handling.
* guile/scm-disasm.c: Use C++ exception handling.
* guile/scm-cmd.c: Use C++ exception handling.
* guile/scm-breakpoint.c: Use C++ exception handling.
* guile/scm-block.c: Use C++ exception handling.
* guile/guile-internal.h: Use C++ exception handling.
* gnu-v3-abi.c: Use C++ exception handling.
* gdbtypes.c: Use C++ exception handling.
* frame.c: Use C++ exception handling.
* frame-unwind.c: Use C++ exception handling.
* fbsd-tdep.c: Use C++ exception handling.
* f-valprint.c: Use C++ exception handling.
* exec.c: Use C++ exception handling.
* event-top.c: Use C++ exception handling.
* event-loop.c: Use C++ exception handling.
* eval.c: Use C++ exception handling.
* dwarf2read.c: Use C++ exception handling.
* dwarf2loc.c: Use C++ exception handling.
* dwarf2-frame.c: Use C++ exception handling.
* dwarf2-frame-tailcall.c: Use C++ exception handling.
* dwarf-index-write.c: Use C++ exception handling.
* dwarf-index-cache.c: Use C++ exception handling.
* dtrace-probe.c: Use C++ exception handling.
* disasm-selftests.c: Use C++ exception handling.
* darwin-nat.c: Use C++ exception handling.
* cp-valprint.c: Use C++ exception handling.
* cp-support.c: Use C++ exception handling.
* cp-abi.c: Use C++ exception handling.
* corelow.c: Use C++ exception handling.
* completer.c: Use C++ exception handling.
* compile/compile-object-run.c: Use C++ exception handling.
* compile/compile-object-load.c: Use C++ exception handling.
* compile/compile-cplus-symbols.c: Use C++ exception handling.
* compile/compile-c-symbols.c: Use C++ exception handling.
* common/selftest.c: Use C++ exception handling.
* common/new-op.c: Use C++ exception handling.
* cli/cli-script.c: Use C++ exception handling.
* cli/cli-interp.c: Use C++ exception handling.
* cli/cli-cmds.c: Use C++ exception handling.
* c-varobj.c: Use C++ exception handling.
* btrace.c: Use C++ exception handling.
* breakpoint.c: Use C++ exception handling.
* break-catch-throw.c: Use C++ exception handling.
* arch-utils.c: Use C++ exception handling.
* amd64-tdep.c: Use C++ exception handling.
* ada-valprint.c: Use C++ exception handling.
* ada-typeprint.c: Use C++ exception handling.
* ada-lang.c: Use C++ exception handling.
* aarch64-tdep.c: Use C++ exception handling.
gdb/gdbserver/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* server.c: Use C++ exception handling.
* linux-low.c: Use C++ exception handling.
* gdbreplay.c: Use C++ exception handling.
This removes most uses of ALL_OBJFILES, replacing them with ranged for
loops. The remaining uses are all in macros, and will be removed in
subsequent patches.
gdb/ChangeLog
2019-01-09 Tom Tromey <tom@tromey.com>
* symtab.c (iterate_over_symtabs, matching_obj_sections)
(expand_symtab_containing_pc, lookup_static_symbol)
(basic_lookup_transparent_type, find_pc_sect_compunit_symtab)
(find_symbol_at_address, find_line_symtab, find_main_name): Use
all_objfiles.
* probe.c (find_probe_by_pc, collect_probes): Use all_objfiles.
* breakpoint.c (create_overlay_event_breakpoint)
(create_longjmp_master_breakpoint)
(create_std_terminate_master_breakpoint)
(create_exception_master_breakpoint): Use all_objfiles.
* linux-thread-db.c (try_thread_db_load_from_pdir)
(has_libpthread): Use all_objfiles.
* ada-lang.c (add_nonlocal_symbols): Use all_objfiles.
* linespec.c (iterate_over_all_matching_symtabs)
(search_minsyms_for_name): Use all_objfiles.
* maint.c (maintenance_info_sections): Use all_objfiles.
* main.c (captured_main_1): Use all_objfiles.
* spu-tdep.c (spu_objfile_from_frame): Use all_objfiles.
* guile/scm-objfile.c (gdbscm_objfiles): Use all_objfiles.
* guile/scm-pretty-print.c
(ppscm_find_pretty_printer_from_objfiles): Use all_objfiles.
* solib-spu.c (append_ocl_sos): Use all_objfiles.
* symmisc.c (maintenance_print_symbols): Use all_objfiles.
(maintenance_print_msymbols): Use all_objfiles.
* source.c (select_source_symtab): Use all_objfiles.
* jit.c (jit_find_objf_with_entry_addr): Use all_objfiles.
* symfile.c (remove_symbol_file_command)
(expand_symtabs_matching, map_symbol_filenames): Use
all_objfiles.
* ppc-linux-tdep.c (ppc_linux_spe_context_inferior_created): Use
all_objfiles.
* dwarf2-frame.c (dwarf2_frame_find_fde): Use all_objfiles.
* objc-lang.c (find_methods): Use all_objfiles.
* objfiles.c (have_partial_symbols, have_full_symbols)
(have_minimal_symbols, qsort_cmp)
(default_iterate_over_objfiles_in_search_order): Use
all_objfiles.
* hppa-tdep.c (find_unwind_entry): Use all_objfiles.
* psymtab.c (maintenance_print_psymbols): Use all_objfiles.
(maintenance_check_psymtabs): Use all_objfiles.
(ALL_PSYMTABS): Remove.
* compile/compile-object-run.c (do_module_cleanup): Use
all_objfiles.
* blockframe.c (find_pc_partial_function): Use all_objfiles.
* cp-support.c (add_symbol_overload_list_qualified): Use
all_objfiles.
* windows-tdep.c (windows_iterate_over_objfiles_in_search_order):
Use all_objfiles.
* dwarf-index-write.c (save_gdb_index_command): Use all_objfiles.
* python/py-xmethods.c (gdbpy_get_matching_xmethod_workers): Use
all_objfiles.
* python/py-objfile.c (objfpy_lookup_objfile_by_name)
(objfpy_lookup_objfile_by_build_id): Use all_objfiles.
* python/py-prettyprint.c (find_pretty_printer_from_objfiles):
Uses all_objfiles.
* solib.c (solib_read_symbols): Use all_objfiles
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
This removes some unused variables, and replaces the calls to
value_contents_for_printing with a call to value_fetch_lazy, when
needed.
gdb/ChangeLog
2018-07-22 Tom Tromey <tom@tromey.com>
* python/py-prettyprint.c (gdbpy_apply_val_pretty_printer): Remove
unused variable. Call value_fetch_lazy when needed.
* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer):
Remove unused variable. Call value_fetch_lazy when needed.
The remaining gdb/guile cleanups all handle the memory returned by
gdbscm_scm_to_c_string.
This commit makes gdbscm_scm_to_c_string return a
gdb::unique_xmalloc_ptr instead of a naked pointer, and eliminates the
remaining cleanups.
gdb/ChangeLog:
2018-07-19 Pedro Alves <palves@redhat.com>
* guile/guile-internal.h (gdbscm_scm_to_c_string): Now returns a
gdb::unique_xmalloc_ptr.
* guile/scm-breakpoint.c (gdbscm_set_breakpoint_condition_x):
Adjust to use dbscm_wrap and gdb::unique_xmalloc_ptr.
* guile/scm-exception.c (gdbscm_exception_message_to_string): Use
copy-initialization.
* guile/scm-pretty-print.c (ppscm_print_children): Use
gdb::unique_xmalloc_ptr instead of cleanups.
(gdbscm_apply_val_pretty_printer): Remove cleanups.
* guile/scm-string.c (gdbscm_scm_to_c_string): Now returns a
gdb::unique_xmalloc_ptr.
* guile/scm-type.c (gdbscm_type_field, gdbscm_type_has_field_p):
Adjust to use gdb::unique_xmalloc_ptr.
* guile/scm-utils.c (extract_arg): Adjust.
* guile/scm-value.c (gdbscm_value_field): Adjust to use
gdb::unique_xmalloc_ptr instead of a cleanup.
This changes gdbscm_scm_to_string to return a unique_xmalloc_ptr and
then fixes all the callers. This allows for the removal of some
cleanups.
gdb/ChangeLog
2018-07-17 Tom Tromey <tom@tromey.com>
* guile/scm-param.c (pascm_set_func, pascm_show_func)
(compute_enum_list, pascm_set_param_value_x)
(gdbscm_parameter_value): Update.
* guile/guile-internal.h (gdbscm_scm_to_string): Update.
(gdbscm_scm_to_host_string): Update.
* guile/scm-math.c (vlscm_convert_typed_value_from_scheme):
Update.
* guile/scm-cmd.c (cmdscm_add_completion): Update.
* guile/scm-pretty-print.c (ppscm_print_string_repr): Update.
* guile/scm-string.c (gdbscm_scm_to_string): Return
unique_xmalloc_ptr.
(gdbscm_scm_to_host_string): Likewise.
This changes gdbscm_exception_message_to_string to return a
unique_xmalloc_ptr, allowing for the removal of some cleanups.
unique_xmalloc_ptr was chosen because at the root of the call chains
is a function from Guile that returns a malloc'd string.
gdb/ChangeLog
2018-07-17 Tom Tromey <tom@tromey.com>
* guile/scm-param.c (pascm_signal_setshow_error): Update.
* guile/guile-internal.h (gdbscm_exception_message_to_string):
Update.
* guile/scm-cmd.c (cmdscm_function): Update.
* guile/scm-pretty-print.c
(ppscm_print_exception_unless_memory_error): Update.
* guile/scm-exception.c (gdbscm_exception_message_to_string):
Return unique_xmalloc_ptr.
This changes ppscm_make_pp_type_error_exception to use std::string,
removing a cleanup.
gdb/ChangeLog
2018-07-17 Tom Tromey <tom@tromey.com>
* guile/scm-pretty-print.c (ppscm_make_pp_type_error_exception):
Use string_printf.
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
Nowadays, we create a value of subobject in pretty printer with 'address'
being used,
value = value_from_contents_and_address (type, valaddr + embedded_offset,
address + embedded_offset);
set_value_component_location (value, val);
/* set_value_component_location resets the address, so we may
need to set it again. */
if (VALUE_LVAL (value) != lval_internalvar
&& VALUE_LVAL (value) != lval_internalvar_component
&& VALUE_LVAL (value) != lval_computed)
set_value_address (value, address + embedded_offset);
value_from_contents_and_address creates a value from memory, but the
value we are pretty-printing may not from memory at all.
Instead of using value_from_contents_and_address, we create a value
of subobject with the same location as object's but different offset.
We avoid using address in this way. As a result, parameter 'address'
in apply_val_pretty_printer is no longer needed, we can remove it in
next step.
We've already had the location of the 'whole' value, so it is safe
to assume we can create a value of 'component' or 'suboject' value
at the same location but with different offset.
gdb:
2016-11-21 Yao Qi <yao.qi@linaro.org>
* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer):
Don't call value_from_contents_and_address and
set_value_address. Call value_from_component.
* python/py-prettyprint.c (gdbpy_apply_val_pretty_printer):
Likewise.
* value.c (value_from_component): New function.
* value.h (value_from_component): Likewise.
* valarith.c (value_subscripted_rvalue): Call
value_from_component.
This patch removes the parameter valaddr of
extension_language_ops::apply_val_pretty_printer and remove const from
"struct value *val". valaddr can be got in each extension language's
implementation of apply_val_pretty_printer.
gdb:
2016-11-11 Yao Qi <yao.qi@linaro.org>
* cp-valprint.c (cp_print_value): Remove local base_valaddr.
* extension-priv.h (struct extension_language_ops)
<apply_val_pretty_printer>: Remove the second parameter.
Remove const from "struct value *". Callers updated.
* extension.c (apply_ext_lang_val_pretty_printer): Update
comments. Remove parameter valaddr. Remove const from
"struct value *".
* extension.h (apply_ext_lang_val_pretty_printer): Update
declaration.
* guile/guile-internal.h (gdbscm_apply_val_pretty_printer):
Update declaration.
* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer):
Remove parameter valaddr. Remove const from "struct value *".
* python/py-prettyprint.c (gdbpy_apply_val_pretty_printer):
Likewise.
* python/python-internal.h (gdbpy_apply_val_pretty_printer):
Update declaration.
GDB computes structure byte offsets using a 32 bit integer. And,
first it computes the offset in bits and then converts to bytes. The
result is that any offset that if 512K bytes or larger overflows.
This patch changes GDB to use LONGEST for such calculations.
PR gdb/17520 Structure offset wrong when 1/4 GB or greater.
* c-lang.h: Change all parameters, variables, and struct or union
members used as struct or union fie3ld offsets from int to
LONGEST.
* c-valprint.c: Likewise.
* cp-abi.c: Likewise.
* cp-abi.h: Likewise.
* cp-valprint.c: Likewise.
* d-valprint.c: Likewise.
* dwarf2loc.c: Likewise.
* eval.c: Likewise.
* extension-priv.h: Likewise.
* extension.c: Likewise.
* extension.h: Likewise.
* findvar.c: Likewise.
* gdbtypes.h: Likewise.
* gnu-v2-abi.c: Likewise.
* gnu-v3-abi.c: Likewise.
* go-valprint.c: Likewise.
* guile/guile-internal.h: Likewise.
* guile/scm-pretty-print.c: Likewise.
* jv-valprint.c Likewise.
* opencl-lang.c: Likewise.
* p-lang.h: Likewise.
* python/py-prettyprint.c: Likewise.
* python/python-internal.h: Likewise.
* spu-tdep.c: Likewise.
* typeprint.c: Likewise.
* valarith.c: Likewise.
* valops.c: Likewise.
* valprint.c: Likewise.
* valprint.h: Likewise.
* value.c: Likewise.
* value.h: Likewise.
* p-valprint.c: Likewise.
* c-typeprint.c (c_type_print_base): When printing offset, use
plongest, not %d.
* gdbtypes.c (recursive_dump_type): Ditto.
Building GDB in C++ mode on Fedora 20, the gdb/guile/ code shows ~280
errors like:
src/gdb/guile/guile.c:515:1: error: invalid conversion from ‘scm_unused_struct* (*)(SCM, SCM) {aka scm_unused_struct* (*)(scm_unused_struct*, scm_unused_struct*)}’ to ‘scm_t_subr {aka void*}’ [-fpermissive]
This commit fixes them all.
gdb/ChangeLog:
2015-09-07 Pedro Alves <palves@redhat.com>
* guile/guile-internal.h (as_a_scm_t_subr): New.
* guile/guile.c (misc_guile_functions): Use it.
* guile/scm-arch.c (arch_functions): Use it.
* guile/scm-block.c (block_functions, gdbscm_initialize_blocks):
Use it.
* guile/scm-breakpoint.c (breakpoint_functions): Use it.
* guile/scm-cmd.c (command_functions): Use it.
* guile/scm-disasm.c (disasm_functions): Use it.
* guile/scm-exception.c (exception_functions)
(private_exception_functions): Use it.
* guile/scm-frame.c (frame_functions)
* guile/scm-gsmob.c (gsmob_functions): Use it.
* guile/scm-iterator.c (iterator_functions): Use it.
* guile/scm-lazy-string.c (lazy_string_functions): Use it.
* guile/scm-math.c (math_functions): Use it.
* guile/scm-objfile.c (objfile_functions): Use it.
* guile/scm-param.c (parameter_functions): Use it.
* guile/scm-ports.c (port_functions, private_port_functions): Use
it.
* guile/scm-pretty-print.c (pretty_printer_functions): Use it.
* guile/scm-progspace.c (pspace_functions): Use it.
* guile/scm-string.c (string_functions): Use it.
* guile/scm-symbol.c (symbol_functions): Use it.
* guile/scm-symtab.c (symtab_functions): Use it.
* guile/scm-type.c (type_functions, gdbscm_initialize_types): Use
it.
* guile/scm-value.c (value_functions): Use it.
This patch splits the TRY_CATCH macro into three, so that we go from
this:
~~~
volatile gdb_exception ex;
TRY_CATCH (ex, RETURN_MASK_ERROR)
{
}
if (ex.reason < 0)
{
}
~~~
to this:
~~~
TRY
{
}
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
~~~
Thus, we'll be getting rid of the local volatile exception object, and
declaring the caught exception in the catch block.
This allows reimplementing TRY/CATCH in terms of C++ exceptions when
building in C++ mode, while still allowing to build GDB in C mode
(using setjmp/longjmp), as a transition step.
TBC, after this patch, is it _not_ valid to have code between the TRY
and the CATCH blocks, like:
TRY
{
}
// some code here.
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
Just like it isn't valid to do that with C++'s native try/catch.
By switching to creating the exception object inside the CATCH block
scope, we can get rid of all the explicitly allocated volatile
exception objects all over the tree, and map the CATCH block more
directly to C++'s catch blocks.
The majority of the TRY_CATCH -> TRY+CATCH+END_CATCH conversion was
done with a script, rerun from scratch at every rebase, no manual
editing involved. After the mechanical conversion, a few places
needed manual intervention, to fix preexisting cases where we were
using the exception object outside of the TRY_CATCH block, and cases
where we were using "else" after a 'if (ex.reason) < 0)' [a CATCH
after this patch]. The result was folded into this patch so that GDB
still builds at each incremental step.
END_CATCH is necessary for two reasons:
First, because we name the exception object in the CATCH block, which
requires creating a scope, which in turn must be closed somewhere.
Declaring the exception variable in the initializer field of a for
block, like:
#define CATCH(EXCEPTION, mask) \
for (struct gdb_exception EXCEPTION; \
exceptions_state_mc_catch (&EXCEPTION, MASK); \
EXCEPTION = exception_none)
would avoid needing END_CATCH, but alas, in C mode, we build with C90,
which doesn't allow mixed declarations and code.
Second, because when TRY/CATCH are wired to real C++ try/catch, as
long as we need to handle cleanup chains, even if there's no CATCH
block that wants to catch the exception, we need for stop at every
frame in the unwind chain and run cleanups, then rethrow. That will
be done in END_CATCH.
After we require C++, we'll still need TRY/CATCH/END_CATCH until
cleanups are completely phased out -- TRY/CATCH in C++ mode will
save/restore the current cleanup chain, like in C mode, and END_CATCH
catches otherwise uncaugh exceptions, runs cleanups and rethrows, so
that C++ cleanups and exceptions can coexist.
IMO, this still makes the TRY/CATCH code look a bit more like a
newcomer would expect, so IMO worth it even if we weren't considering
C++.
gdb/ChangeLog.
2015-03-07 Pedro Alves <palves@redhat.com>
* common/common-exceptions.c (struct catcher) <exception>: No
longer a pointer to volatile exception. Now an exception value.
<mask>: Delete field.
(exceptions_state_mc_init): Remove all parameters. Adjust.
(exceptions_state_mc): No longer pop the catcher here.
(exceptions_state_mc_catch): New function.
(throw_exception): Adjust.
* common/common-exceptions.h (exceptions_state_mc_init): Remove
all parameters.
(exceptions_state_mc_catch): Declare.
(TRY_CATCH): Rename to ...
(TRY): ... this. Remove EXCEPTION and MASK parameters.
(CATCH, END_CATCH): New.
All callers adjusted.
gdb/gdbserver/ChangeLog:
2015-03-07 Pedro Alves <palves@redhat.com>
Adjust all callers of TRY_CATCH to use TRY/CATCH/END_CATCH
instead.