Add a getter and a setter for a symbol's type. Remove the corresponding
macro and adjust all callers.
Change-Id: Ie1a137744c5bfe1df4d4f9ae5541c5299577c8de
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
The bug fixed by this [1] patch was caused by an out-of-bounds access to
a value's content. The code gets the value's content (just a pointer)
and then indexes it with a non-sensical index.
This made me think of changing functions that return value contents to
return array_views instead of a plain pointer. This has the advantage
that when GDB is built with _GLIBCXX_DEBUG, accesses to the array_view
are checked, making bugs more apparent / easier to find.
This patch changes the return types of these functions, and updates
callers to call .data() on the result, meaning it's not changing
anything in practice. Additional work will be needed (which can be done
little by little) to make callers propagate the use of array_view and
reap the benefits.
[1] https://sourceware.org/pipermail/gdb-patches/2021-September/182306.html
Change-Id: I5151f888f169e1c36abe2cbc57620110673816f3
Remove the `TYPE_FIELD_NAME` and `FIELD_NAME` macros, changing all the
call sites to use field::name directly.
Change-Id: I6900ae4e1ffab1396e24fb3298e94bf123826ca6
[gdb] Handle .TOC. sections during gdb-compile for rs6000 target.
When we encounter a .TOC. symbol in the object we are loading,
we need to associate this with the .toc section in order to
properly resolve other symbols in the object. IF a .toc section
is not found, iterate the sections until we find one with the
SEC_ALLOC flag. If that also fails, fall back to using
the *ABS* section, pointed to by bfd_abs_section_ptr.
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
This simplifies compile_module cleanup by removing the need to
explicitly free anything. struct setup_sections_data is also cleaned
up a bit.
gdb/ChangeLog
2020-09-23 Tom Tromey <tom@tromey.com>
* compile/compile-object-run.c (do_module_cleanup)
<~do_module_cleanup> :Remove.
(do_module_cleanup): Update.
* compile/compile-object-load.h (struct munmap_list): Add move
assignment operator.
<source_file>: Now a std::string.
<munmap_list>: Rename. No longer a pointer.
* compile/compile-object-load.c (struct setup_sections_data): Add
constructor.
<setup_one_section>: Declare.
<munmap_list>: Move earlier.
<m_bfd>: New member.
<m_last_size, m_last_section_first, m_last_prot,
m_last_max_alignment>: Rename, add initializers where needed.
(setup_sections_data::setup_one_section): Rename from
setup_sections. Update.
(compile_object_load): Update. Don't use bfd_map_over_sections.
This introduces compile_module_up, a unique pointer for
compile_module, and changes a few spots to use it.
gdb/ChangeLog
2020-09-23 Tom Tromey <tom@tromey.com>
* compile/compile.c (eval_compile_command): Update.
* compile/compile-object-run.h (compile_object_run): Take a
compile_module_up.
* compile/compile-object-run.c (compile_object_run): Take a
compile_module_up.
* compile/compile-object-load.h (struct compile_module): Add
constructor, destructor.
(compile_module_up): New typedef.
(compile_object_load): Return compile_object_up.
* compile/compile-object-load.c (compile_object_load): Return
compile_module_up.
Remove the `TYPE_FIELD_TYPE` macro, changing all the call sites to use
`type::field` and `field::type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD_TYPE): Remove. Change all call sites
to use type::field and field::type instead.
Change-Id: Ifda6226a25c811cfd334a756a9fbc5c0afdddff3
Remove `TYPE_NFIELDS`, changing all the call sites to use
`type::num_fields` directly. This is quite a big diff, but this was
mostly done using sed and coccinelle. A few call sites were done by
hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NFIELDS): Remove. Change all cal sites to use
type::num_fields instead.
Change-Id: Ib73be4c36f9e770e0f729bac3b5257d7cb2f9591
A following patch will add one more defaulted parameter.
gdb/ChangeLog:
2020-05-19 Pedro Alves <palves@redhat.com>
* gdb_bfd.h: (gdb_bfd_open): Default to 'fd' parameter to -1.
Adjust all callers.
Remove TYPE_CODE, changing all the call sites to use type::code
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use
type::code instead.
The DWARF reader has had some odd code since the "physname" patches landed.
In particular, these patches caused PR symtab/12707; namely, they made
it so "set print demangle off" no longer works.
This patch attempts to fix the problem. It arranges to store the
linkage name on the symbol if it exists, and it changes the DWARF
reader so that the demangled name is no longer (usually) stored in the
symbol's "linkage name" field.
c-linkage-name.exp needed a tweak, because it started working
correctly. This conforms to what I think ought to happen, so this
seems like an improvement here.
compile-object-load.c needed a small change to use
symbol_matches_search_name rather than directly examining the linkage
name. Looking directly at the name does the wrong thing for C++.
There is still some name-related confusion in the DWARF reader:
* "physname" often refers to the logical name and not what I would
consider to be the "physical" name;
* dwarf2_full_name, dwarf2_name, and dwarf2_physname all exist and
return different strings -- but this seems like at least one name
too many. For example, Fortran requires dwarf2_full_name, but other
languages do not.
* To my surprise, dwarf2_physname prefers the form emitted by the
demangler over the one that it computes. This seems backward to me,
given that the partial symbol reader prefers the opposite, and it
seems to me that this choice may perform better as well.
I didn't attempt to clean up these things. It would be good to do,
but whenever I contemplate it I get caught up in dreams of truly
rewriting the DWARF reader instead.
gdb/ChangeLog
2020-04-24 Tom Tromey <tom@tromey.com>
PR symtab/12707:
* dwarf2/read.c (add_partial_symbol): Use the linkage name if it
exists.
(new_symbol): Likewise.
* compile/compile-object-load.c (get_out_value_type): Use
symbol_matches_search_name.
gdb/testsuite/ChangeLog
2020-04-24 Tom Tromey <tom@tromey.com>
PR symtab/12707:
* gdb.python/py-symbol.exp: Update expected results for
linkage_name test.
* gdb.cp/print-demangle.exp: New file.
* gdb.base/c-linkage-name.exp: Fix test.
* gdb.guile/scm-symbol.exp: Update expected results for
linkage_name test.
I noticed that an error message in compile-object-load.c mentions the
wrong symbol name. The loop just above the error is looking for
COMPILE_I_EXPR_VAL, but the error references COMPILE_I_EXPR_PTR_TYPE.
I'm checking this in as obvious. I don't have a test case -- I
noticed it because another patch I'm working on caused this error to
be thrown, but that was due to regression in my patch.
gdb/ChangeLog
2020-03-25 Tom Tromey <tom@tromey.com>
* compile/compile-object-load.c (get_out_value_type): Mention
correct symbol name in error message.
The idea behind this is that, in the long run, some code will need to
be able to hold onto an objfile after it is unlinked from the program
space. In particular, this is needed for some functionality to be
moved to worker threads -- otherwise the objfile can be deleted while
still in use.
So, this makes ~objfile private, replacing it with an "unlink" method,
making it more obvious which operation is intended at the calling
points.
gdb/ChangeLog
2019-12-12 Tom Tromey <tom@tromey.com>
* symfile.c (syms_from_objfile_1): Use objfile_up.
(syms_from_objfile_1, remove_symbol_file_command): Call unlink
method.
(reread_symbols): Use objfile_up.
* solib.c (update_solib_list, reload_shared_libraries_1): Call
unlink method.
* objfiles.h (struct objfile) <~objfile>: Now private.
<unlink>: New method.
(struct objfile_deleter): New.
(objfile_up): New typedef.
* objfiles.c (objfile::unlink): New method.
(free_objfile_separate_debug, free_all_objfiles)
(objfile_purge_solibs): Use it.
* jit.c (jit_unregister_code): Remove.
(jit_inferior_exit_hook, jit_event_handler): Call unlink on
objfile.
* compile/compile-object-run.c (do_module_cleanup): Call unlink on
objfile.
* compile/compile-object-load.c (compile_object_load): Use
objfile_up.
Change-Id: I934bee70b26b8b24e1735828fb1e60fe8a05714f
This has no behavior change in itself, but allows a future patch
to add a function to the Python API to look up symbols in the
static block.
gdb/ChangeLog:
2019-07-24 Christian Biesinger <cbiesinger@google.com>
* compile/compile-object-load.c (compile_object_load): Pass GLOBAL_SCOPE.
* solib-spu.c (spu_lookup_lib_symbol): Pass GLOBAL_SCOPE.
* solib-svr4.c (elf_lookup_lib_symbol): Pass GLOBAL_SCOPE.
* symtab.c (lookup_global_symbol_from_objfile): Add a scope parameter.
* symtab.h (lookup_global_symbol_from_objfile): Likewise.
This rewrites gdb's TRY/CATCH to plain C++ try/catch. The patch was
largely written by script, though one change (to a comment in
common-exceptions.h) was reverted by hand.
gdb/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* xml-support.c: Use C++ exception handling.
* x86-linux-nat.c: Use C++ exception handling.
* windows-nat.c: Use C++ exception handling.
* varobj.c: Use C++ exception handling.
* value.c: Use C++ exception handling.
* valprint.c: Use C++ exception handling.
* valops.c: Use C++ exception handling.
* unittests/parse-connection-spec-selftests.c: Use C++ exception
handling.
* unittests/cli-utils-selftests.c: Use C++ exception handling.
* typeprint.c: Use C++ exception handling.
* tui/tui.c: Use C++ exception handling.
* tracefile-tfile.c: Use C++ exception handling.
* top.c: Use C++ exception handling.
* thread.c: Use C++ exception handling.
* target.c: Use C++ exception handling.
* symmisc.c: Use C++ exception handling.
* symfile-mem.c: Use C++ exception handling.
* stack.c: Use C++ exception handling.
* sparc64-linux-tdep.c: Use C++ exception handling.
* solib.c: Use C++ exception handling.
* solib-svr4.c: Use C++ exception handling.
* solib-spu.c: Use C++ exception handling.
* solib-frv.c: Use C++ exception handling.
* solib-dsbt.c: Use C++ exception handling.
* selftest-arch.c: Use C++ exception handling.
* s390-tdep.c: Use C++ exception handling.
* rust-lang.c: Use C++ exception handling.
* rust-exp.y: Use C++ exception handling.
* rs6000-tdep.c: Use C++ exception handling.
* rs6000-aix-tdep.c: Use C++ exception handling.
* riscv-tdep.c: Use C++ exception handling.
* remote.c: Use C++ exception handling.
* remote-fileio.c: Use C++ exception handling.
* record-full.c: Use C++ exception handling.
* record-btrace.c: Use C++ exception handling.
* python/python.c: Use C++ exception handling.
* python/py-value.c: Use C++ exception handling.
* python/py-utils.c: Use C++ exception handling.
* python/py-unwind.c: Use C++ exception handling.
* python/py-type.c: Use C++ exception handling.
* python/py-symbol.c: Use C++ exception handling.
* python/py-record.c: Use C++ exception handling.
* python/py-record-btrace.c: Use C++ exception handling.
* python/py-progspace.c: Use C++ exception handling.
* python/py-prettyprint.c: Use C++ exception handling.
* python/py-param.c: Use C++ exception handling.
* python/py-objfile.c: Use C++ exception handling.
* python/py-linetable.c: Use C++ exception handling.
* python/py-lazy-string.c: Use C++ exception handling.
* python/py-infthread.c: Use C++ exception handling.
* python/py-inferior.c: Use C++ exception handling.
* python/py-gdb-readline.c: Use C++ exception handling.
* python/py-framefilter.c: Use C++ exception handling.
* python/py-frame.c: Use C++ exception handling.
* python/py-finishbreakpoint.c: Use C++ exception handling.
* python/py-cmd.c: Use C++ exception handling.
* python/py-breakpoint.c: Use C++ exception handling.
* python/py-arch.c: Use C++ exception handling.
* printcmd.c: Use C++ exception handling.
* ppc-linux-tdep.c: Use C++ exception handling.
* parse.c: Use C++ exception handling.
* p-valprint.c: Use C++ exception handling.
* objc-lang.c: Use C++ exception handling.
* mi/mi-main.c: Use C++ exception handling.
* mi/mi-interp.c: Use C++ exception handling.
* mi/mi-cmd-stack.c: Use C++ exception handling.
* mi/mi-cmd-break.c: Use C++ exception handling.
* main.c: Use C++ exception handling.
* linux-thread-db.c: Use C++ exception handling.
* linux-tdep.c: Use C++ exception handling.
* linux-nat.c: Use C++ exception handling.
* linux-fork.c: Use C++ exception handling.
* linespec.c: Use C++ exception handling.
* language.c: Use C++ exception handling.
* jit.c: Use C++ exception handling.
* infrun.c: Use C++ exception handling.
* infcmd.c: Use C++ exception handling.
* infcall.c: Use C++ exception handling.
* inf-loop.c: Use C++ exception handling.
* i386-tdep.c: Use C++ exception handling.
* i386-linux-tdep.c: Use C++ exception handling.
* guile/scm-value.c: Use C++ exception handling.
* guile/scm-type.c: Use C++ exception handling.
* guile/scm-symtab.c: Use C++ exception handling.
* guile/scm-symbol.c: Use C++ exception handling.
* guile/scm-pretty-print.c: Use C++ exception handling.
* guile/scm-ports.c: Use C++ exception handling.
* guile/scm-param.c: Use C++ exception handling.
* guile/scm-math.c: Use C++ exception handling.
* guile/scm-lazy-string.c: Use C++ exception handling.
* guile/scm-frame.c: Use C++ exception handling.
* guile/scm-disasm.c: Use C++ exception handling.
* guile/scm-cmd.c: Use C++ exception handling.
* guile/scm-breakpoint.c: Use C++ exception handling.
* guile/scm-block.c: Use C++ exception handling.
* guile/guile-internal.h: Use C++ exception handling.
* gnu-v3-abi.c: Use C++ exception handling.
* gdbtypes.c: Use C++ exception handling.
* frame.c: Use C++ exception handling.
* frame-unwind.c: Use C++ exception handling.
* fbsd-tdep.c: Use C++ exception handling.
* f-valprint.c: Use C++ exception handling.
* exec.c: Use C++ exception handling.
* event-top.c: Use C++ exception handling.
* event-loop.c: Use C++ exception handling.
* eval.c: Use C++ exception handling.
* dwarf2read.c: Use C++ exception handling.
* dwarf2loc.c: Use C++ exception handling.
* dwarf2-frame.c: Use C++ exception handling.
* dwarf2-frame-tailcall.c: Use C++ exception handling.
* dwarf-index-write.c: Use C++ exception handling.
* dwarf-index-cache.c: Use C++ exception handling.
* dtrace-probe.c: Use C++ exception handling.
* disasm-selftests.c: Use C++ exception handling.
* darwin-nat.c: Use C++ exception handling.
* cp-valprint.c: Use C++ exception handling.
* cp-support.c: Use C++ exception handling.
* cp-abi.c: Use C++ exception handling.
* corelow.c: Use C++ exception handling.
* completer.c: Use C++ exception handling.
* compile/compile-object-run.c: Use C++ exception handling.
* compile/compile-object-load.c: Use C++ exception handling.
* compile/compile-cplus-symbols.c: Use C++ exception handling.
* compile/compile-c-symbols.c: Use C++ exception handling.
* common/selftest.c: Use C++ exception handling.
* common/new-op.c: Use C++ exception handling.
* cli/cli-script.c: Use C++ exception handling.
* cli/cli-interp.c: Use C++ exception handling.
* cli/cli-cmds.c: Use C++ exception handling.
* c-varobj.c: Use C++ exception handling.
* btrace.c: Use C++ exception handling.
* breakpoint.c: Use C++ exception handling.
* break-catch-throw.c: Use C++ exception handling.
* arch-utils.c: Use C++ exception handling.
* amd64-tdep.c: Use C++ exception handling.
* ada-valprint.c: Use C++ exception handling.
* ada-typeprint.c: Use C++ exception handling.
* ada-lang.c: Use C++ exception handling.
* aarch64-tdep.c: Use C++ exception handling.
gdb/gdbserver/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* server.c: Use C++ exception handling.
* linux-low.c: Use C++ exception handling.
* gdbreplay.c: Use C++ exception handling.
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
This removes the remaining cleanups from compile-object-load.c.
gdb/ChangeLog
2018-09-18 Tom Tromey <tom@tromey.com>
* compile/compile-object-load.c (struct
link_hash_table_cleanup_data): Add constructor and destructor.
Use DISABLE_COPY_AND_ASSIGN.
(~link_hash_table_cleanup_data): Rename from
link_hash_table_free. Now a destructor.
(copy_sections): Use gdb::unique_xmalloc_ptr. Remove cleanups.
This removes munmap_listp_free_cleanup, replacing it with a
std::unique_ptr at one spot and an explicit delete in another. It
seemed simplest to completely change this data structure.
gdb/ChangeLog
2018-09-18 Tom Tromey <tom@tromey.com>
* compile/compile-object-run.c (do_module_cleanup): Use delete.
* compile/compile-object-load.c (struct munmap_list): Move to
header file.
(munmap_list::add): Rename from munmap_list_add; rewrite.
(munmap_list::~munmap_list): Rename from munmap_list_free.
(munmap_listp_free_cleanup): Remove.
(compile_object_load): Update.
* compile/compile-object-load.h (struct munmap_list): Move from
compile-object-load.c. Rewrite.
This changes gdb_bfd_errmsg to return a std::string, removing a
cleanup. This approach may be slightly less efficient than the
previous code, but I don't believe this is very important in this
situation.
gdb/ChangeLog
2018-09-13 Tom Tromey <tom@tromey.com>
* utils.h (gdb_bfd_errmsg): Return std::string.
* exec.c (exec_file_attach): Update.
* compile/compile-object-load.c (compile_object_load): Update.
* utils.c (gdb_bfd_errmsg): Return std::string.
This patch adds *basic* support for C++ to the compile feature. It does
most simple type conversions, including everything that C compile does and
your basic "with-classes" type of C++.
I've written a new compile-support.exp support file which adds a new test
facility for automating and simplifying "compile print" vs "compile code"
testing. See testsuite/lib/compile-support.exp and CompileExpression
for more on that. The tests use this facility extensively.
This initial support has several glaring omissions:
- No template support at all
I have follow-on patches for this, but they add much complexity
to this "basic" support. Consequently, they will be submitted separately.
- Cannot print functions
The code template needs tweaking, and I simply haven't gotten to it yet.
- So-called "special function" support is not included
Using constructors, destructors, operators, etc will not work. I have
follow-on patches for that, but they require some work because of the
recent churn in symbol searching.
- There are several test suite references to "compile/1234" bugs.
I will file bugs and update the test suite's bug references before pushing
these patches.
The test suite started as a copy of the original C-language support, but
I have written tests to exercise the basic functionality of the plug-in.
I've added a new option for outputting debug messages for C++ type-conversion
("debug compile-cplus-types").
gdb/ChangeLog:
* Makefile.in (SUBDIR_GCC_COMPILE_SRCS): Add compile-cplus-symbols.c
and compile-cplus-types.c.
(HFILES_NO_SRCDIR): Add gcc-cp-plugin.h.
* c-lang.c (cplus_language_defn): Set C++ compile functions.
* c-lang.h (cplus_get_compile_context, cplus_compute_program):
Declare.
* compile/compile-c-support.c: Include compile-cplus.h.
(load_libcompile): Templatize.
(get_compile_context): "New" function.
(c_get_compile_context): Use get_compile_context.
(cplus_get_compile_context): New function.
(cplus_push_user_expression, cplus_pop_user_expression)
(cplus_add_code_header, cplus_add_input, cplus_compile_program)
(cplus_compute_program): Define new structs/functions.
* compile/compile-cplus-symmbols.c: New file.
* compile/compile-cplus-types.c: New file.
* compile/compile-cplus.h: New file.
* compile/compile-internal.h (debug_compile_oracle, GCC_TYPE_NONE):
Declare.
* compile/compile-object-load.c (get_out_value_type): Use
strncmp_iw when comparing symbol names.
(compile_object_load): Add mst_bss and mst_data.
* compile/compile.c (_initialize_compile): Remove
-Wno-implicit-function-declaration from `compile_args'.
* compile/gcc-cp-plugin.h: New file.
* NEWS: Mention C++ compile support and new debug options.
gdb/testsuite/ChangeLog:
* gdb.compile/compile-cplus-anonymous.cc: New file.
* gdb.compile/compile-cplus-anonymous.exp: New file.
* gdb.compile/compile-cplus-array-decay.cc: New file.
* gdb.compile/compile-cplus-array-decay.exp: New file.
* gdb.compile/compile-cplus-inherit.cc: New file.
* gdb.compile/compile-cplus-inherit.exp: New file.
* gdb.compile/compile-cplus-member.cc: New file.
* gdb.compile/compile-cplus-member.exp: New file.
* gdb.compile/compile-cplus-method.cc: New file.
* gdb.compile/compile-cplus-method.exp: New file.
* gdb.compile/compile-cplus-mod.c: "New" file.
* gdb.compile/compile-cplus-namespace.cc: New file.
* gdb.compile/compile-cplus-namespace.exp: New file.
* gdb.compile/compile-cplus-nested.cc: New file.
* gdb.compile/compile-cplus-nested.exp: New file.
* gdb.compile/compile-cplus-print.c: "New" file.
* gdb.compile/compile-cplus-print.exp: "New" file.
* gdb.compile/compile-cplus-virtual.cc: New file.
* gdb.compile/compile-cplus-virtual.exp: New file.
* gdb.compile/compile-cplus.c: "New" file.
* gdb.compile/compile-cplus.exp: "New" file.
* lib/compile-support.exp: New file.
doc/ChangeLog:
* gdb.texinfo (Compiling and injecting code in GDB): Document
set/show "compile-oracle" and "compile-cplus-types" commands.
This is more preparation bits for multi-target support.
In a multi-target scenario, we need to address the case of different
processes/threads running on different targets that happen to have the
same PID/PTID. E.g., we can have both process 123 in target 1, and
process 123 in target 2, while they're in reality different processes
running on different machines. Or maybe we've loaded multiple
instances of the same core file. Etc.
To address this, in my WIP multi-target branch, threads and processes
are uniquely identified by the (process_stratum target_ops *, ptid_t)
and (process_stratum target_ops *, pid) tuples respectively. I.e.,
each process_stratum instance has its own thread/process number space.
As you can imagine, that requires passing around target_ops * pointers
in a number of functions where we're currently passing only a ptid_t
or an int. E.g., when we look up a thread_info object by ptid_t in
find_thread_ptid, the ptid_t alone isn't sufficient.
In many cases though, we already have the thread_info or inferior
pointer handy, but we "lose" it somewhere along the call stack, only
to look it up again by ptid_t/pid. Since thread_info or inferior
objects know their parent target, if we pass around thread_info or
inferior pointers when possible, we avoid having to add extra
target_ops parameters to many functions, and also, we eliminate a
number of by ptid_t/int lookups.
So that's what this patch does. In a bit more detail:
- Changes a number of functions and methods to take a thread_info or
inferior pointer instead of a ptid_t or int parameter.
- Changes a number of structure fields from ptid_t/int to inferior or
thread_info pointers.
- Uses the inferior_thread() function whenever possible instead of
inferior_ptid.
- Uses thread_info pointers directly when possible instead of the
is_running/is_stopped etc. routines that require a lookup.
- A number of functions are eliminated along the way, such as:
int valid_gdb_inferior_id (int num);
int pid_to_gdb_inferior_id (int pid);
int gdb_inferior_id_to_pid (int num);
int in_inferior_list (int pid);
- A few structures and places hold a thread_info pointer across
inferior execution, so now they take a strong reference to the
(refcounted) thread_info object to avoid the thread_info pointer
getting stale. This is done in enable_thread_stack_temporaries and
in the infcall.c code.
- Related, there's a spot in infcall.c where using a RAII object to
handle the refcount would be handy, so a gdb::ref_ptr specialization
for thread_info is added (thread_info_ref, in gdbthread.h), along
with a gdb_ref_ptr policy that works for all refcounted_object types
(in common/refcounted-object.h).
gdb/ChangeLog:
2018-06-21 Pedro Alves <palves@redhat.com>
* ada-lang.h (ada_get_task_number): Take a thread_info pointer
instead of a ptid_t. All callers adjusted.
* ada-tasks.c (ada_get_task_number): Likewise. All callers
adjusted.
(print_ada_task_info, display_current_task_id, task_command_1):
Adjust.
* breakpoint.c (watchpoint_in_thread_scope): Adjust to use
inferior_thread.
(breakpoint_kind): Adjust.
(remove_breakpoints_pid): Rename to ...
(remove_breakpoints_inf): ... this. Adjust to take an inferior
pointer. All callers adjusted.
(bpstat_clear_actions): Use inferior_thread.
(get_bpstat_thread): New.
(bpstat_do_actions): Use it.
(bpstat_check_breakpoint_conditions, bpstat_stop_status): Adjust
to take a thread_info pointer. All callers adjusted.
(set_longjmp_breakpoint_for_call_dummy, set_momentary_breakpoint)
(breakpoint_re_set_thread): Use inferior_thread.
* breakpoint.h (struct inferior): Forward declare.
(bpstat_stop_status): Update.
(remove_breakpoints_pid): Delete.
(remove_breakpoints_inf): New.
* bsd-uthread.c (bsd_uthread_target::wait)
(bsd_uthread_target::update_thread_list): Use find_thread_ptid.
* btrace.c (btrace_add_pc, btrace_enable, btrace_fetch)
(maint_btrace_packet_history_cmd)
(maint_btrace_clear_packet_history_cmd): Adjust.
(maint_btrace_clear_cmd, maint_info_btrace_cmd): Adjust to use
inferior_thread.
* cli/cli-interp.c: Include "inferior.h".
* common/refcounted-object.h (struct
refcounted_object_ref_policy): New.
* compile/compile-object-load.c: Include gdbthread.h.
(store_regs): Use inferior_thread.
* corelow.c (core_target::close): Use current_inferior.
(core_target_open): Adjust to use first_thread_of_inferior and use
the current inferior.
* ctf.c (ctf_target::close): Adjust to use current_inferior.
* dummy-frame.c (dummy_frame_id) <ptid>: Delete, replaced by ...
<thread>: ... this new field. All references adjusted.
(dummy_frame_pop, dummy_frame_discard, register_dummy_frame_dtor):
Take a thread_info pointer instead of a ptid_t.
* dummy-frame.h (dummy_frame_push, dummy_frame_pop)
(dummy_frame_discard, register_dummy_frame_dtor): Take a
thread_info pointer instead of a ptid_t.
* elfread.c: Include "inferior.h".
(elf_gnu_ifunc_resolver_stop, elf_gnu_ifunc_resolver_return_stop):
Use inferior_thread.
* eval.c (evaluate_subexp): Likewise.
* frame.c (frame_pop, has_stack_frames, find_frame_sal): Use
inferior_thread.
* gdb_proc_service.h (struct thread_info): Forward declare.
(struct ps_prochandle) <ptid>: Delete, replaced by ...
<thread>: ... this new field. All references adjusted.
* gdbarch.h, gdbarch.c: Regenerate.
* gdbarch.sh (get_syscall_number): Replace 'ptid' parameter with a
'thread' parameter. All implementations and callers adjusted.
* gdbthread.h (thread_info) <set_running>: New method.
(delete_thread, delete_thread_silent): Take a thread_info pointer
instead of a ptid.
(global_thread_id_to_ptid, ptid_to_global_thread_id): Delete.
(first_thread_of_process): Delete, replaced by ...
(first_thread_of_inferior): ... this new function. All callers
adjusted.
(any_live_thread_of_process): Delete, replaced by ...
(any_live_thread_of_inferior): ... this new function. All callers
adjusted.
(switch_to_thread, switch_to_no_thread): Declare.
(is_executing): Delete.
(enable_thread_stack_temporaries): Update comment.
<enable_thread_stack_temporaries>: Take a thread_info pointer
instead of a ptid_t. Incref the thread.
<~enable_thread_stack_temporaries>: Decref the thread.
<m_ptid>: Delete
<m_thr>: New.
(thread_stack_temporaries_enabled_p, push_thread_stack_temporary)
(get_last_thread_stack_temporary)
(value_in_thread_stack_temporaries, can_access_registers_thread):
Take a thread_info pointer instead of a ptid_t. All callers
adjusted.
* infcall.c (get_call_return_value): Use inferior_thread.
(run_inferior_call): Work with thread pointers instead of ptid_t.
(call_function_by_hand_dummy): Work with thread pointers instead
of ptid_t. Use thread_info_ref.
* infcmd.c (proceed_thread_callback): Access thread's state
directly.
(ensure_valid_thread, ensure_not_running): Use inferior_thread,
access thread's state directly.
(continue_command): Use inferior_thread.
(info_program_command): Use find_thread_ptid and access thread
state directly.
(proceed_after_attach_callback): Use thread state directly.
(notice_new_inferior): Take a thread_info pointer instead of a
ptid_t. All callers adjusted.
(exit_inferior): Take an inferior pointer instead of a pid. All
callers adjusted.
(exit_inferior_silent): New.
(detach_inferior): Delete.
(valid_gdb_inferior_id, pid_to_gdb_inferior_id)
(gdb_inferior_id_to_pid, in_inferior_list): Delete.
(detach_inferior_command, kill_inferior_command): Use
find_inferior_id instead of valid_gdb_inferior_id and
gdb_inferior_id_to_pid.
(inferior_command): Use inferior and thread pointers.
* inferior.h (struct thread_info): Forward declare.
(notice_new_inferior): Take a thread_info pointer instead of a
ptid_t. All callers adjusted.
(detach_inferior): Delete declaration.
(exit_inferior, exit_inferior_silent): Take an inferior pointer
instead of a pid. All callers adjusted.
(gdb_inferior_id_to_pid, pid_to_gdb_inferior_id, in_inferior_list)
(valid_gdb_inferior_id): Delete.
* infrun.c (follow_fork_inferior, proceed_after_vfork_done)
(handle_vfork_child_exec_or_exit, follow_exec): Adjust.
(struct displaced_step_inferior_state) <pid>: Delete, replaced by
...
<inf>: ... this new field.
<step_ptid>: Delete, replaced by ...
<step_thread>: ... this new field.
(get_displaced_stepping_state): Take an inferior pointer instead
of a pid. All callers adjusted.
(displaced_step_in_progress_any_inferior): Adjust.
(displaced_step_in_progress_thread): Take a thread pointer instead
of a ptid_t. All callers adjusted.
(displaced_step_in_progress, add_displaced_stepping_state): Take
an inferior pointer instead of a pid. All callers adjusted.
(get_displaced_step_closure_by_addr): Adjust.
(remove_displaced_stepping_state): Take an inferior pointer
instead of a pid. All callers adjusted.
(displaced_step_prepare_throw, displaced_step_prepare)
(displaced_step_fixup): Take a thread pointer instead of a ptid_t.
All callers adjusted.
(start_step_over): Adjust.
(infrun_thread_ptid_changed): Remove bit updating ptids in the
displaced step queue.
(do_target_resume): Adjust.
(fetch_inferior_event): Use inferior_thread.
(context_switch, get_inferior_stop_soon): Take an
execution_control_state pointer instead of a ptid_t. All callers
adjusted.
(switch_to_thread_cleanup): Delete.
(stop_all_threads): Use scoped_restore_current_thread.
* inline-frame.c: Include "gdbthread.h".
(inline_state) <inline_state>: Take a thread pointer instead of a
ptid_t. All callers adjusted.
<ptid>: Delete, replaced by ...
<thread>: ... this new field.
(find_inline_frame_state): Take a thread pointer instead of a
ptid_t. All callers adjusted.
(skip_inline_frames, step_into_inline_frame)
(inline_skipped_frames, inline_skipped_symbol): Take a thread
pointer instead of a ptid_t. All callers adjusted.
* inline-frame.h (skip_inline_frames, step_into_inline_frame)
(inline_skipped_frames, inline_skipped_symbol): Likewise.
* linux-fork.c (delete_checkpoint_command): Adjust to use thread
pointers directly.
* linux-nat.c (get_detach_signal): Likewise.
* linux-thread-db.c (thread_from_lwp): New 'stopped' parameter.
(thread_db_notice_clone): Adjust.
(thread_db_find_new_threads_silently)
(thread_db_find_new_threads_2, thread_db_find_new_threads_1): Take
a thread pointer instead of a ptid_t. All callers adjusted.
* mi/mi-cmd-var.c: Include "inferior.h".
(mi_cmd_var_update_iter): Update to use thread pointers.
* mi/mi-interp.c (mi_new_thread): Update to use the thread's
inferior directly.
(mi_output_running_pid, mi_inferior_count): Delete, bits factored
out to ...
(mi_output_running): ... this new function.
(mi_on_resume_1): Adjust to use it.
(mi_user_selected_context_changed): Adjust to use inferior_thread.
* mi/mi-main.c (proceed_thread): Adjust to use thread pointers
directly.
(interrupt_thread_callback): : Adjust to use thread and inferior
pointers.
* proc-service.c: Include "gdbthread.h".
(ps_pglobal_lookup): Adjust to use the thread's inferior directly.
* progspace-and-thread.c: Include "inferior.h".
* progspace.c: Include "inferior.h".
* python/py-exitedevent.c (create_exited_event_object): Adjust to
hold a reference to an inferior_object.
* python/py-finishbreakpoint.c (bpfinishpy_init): Adjust to use
inferior_thread.
* python/py-inferior.c (struct inferior_object): Give the type a
tag name instead of a typedef.
(python_on_normal_stop): No need to check if the current thread is
listed.
(inferior_to_inferior_object): Change return type to
inferior_object. All callers adjusted.
(find_thread_object): Delete, bits factored out to ...
(thread_to_thread_object): ... this new function.
* python/py-infthread.c (create_thread_object): Use
inferior_to_inferior_object.
(thpy_is_stopped): Use thread pointer directly.
(gdbpy_selected_thread): Use inferior_thread.
* python/py-record-btrace.c (btpy_list_object) <ptid>: Delete
field, replaced with ...
<thread>: ... this new field. All users adjusted.
(btpy_insn_or_gap_new): Drop const.
(btpy_list_new): Take a thread pointer instead of a ptid_t. All
callers adjusted.
* python/py-record.c: Include "gdbthread.h".
(recpy_insn_new, recpy_func_new): Take a thread pointer instead of
a ptid_t. All callers adjusted.
(gdbpy_current_recording): Use inferior_thread.
* python/py-record.h (recpy_record_object) <ptid>: Delete
field, replaced with ...
<thread>: ... this new field. All users adjusted.
(recpy_element_object) <ptid>: Delete
field, replaced with ...
<thread>: ... this new field. All users adjusted.
(recpy_insn_new, recpy_func_new): Take a thread pointer instead of
a ptid_t. All callers adjusted.
* python/py-threadevent.c: Include "gdbthread.h".
(get_event_thread): Use thread_to_thread_object.
* python/python-internal.h (struct inferior_object): Forward
declare.
(find_thread_object, find_inferior_object): Delete declarations.
(thread_to_thread_object, inferior_to_inferior_object): New
declarations.
* record-btrace.c: Include "inferior.h".
(require_btrace_thread): Use inferior_thread.
(record_btrace_frame_sniffer)
(record_btrace_tailcall_frame_sniffer): Use inferior_thread.
(get_thread_current_frame): Use scoped_restore_current_thread and
switch_to_thread.
(get_thread_current_frame): Use thread pointer directly.
(record_btrace_replay_at_breakpoint): Use thread's inferior
pointer directly.
* record-full.c: Include "inferior.h".
* regcache.c: Include "gdbthread.h".
(get_thread_arch_regcache): Use the inferior's address space
directly.
(get_thread_regcache, registers_changed_thread): New.
* regcache.h (get_thread_regcache(thread_info *thread)): New
overload.
(registers_changed_thread): New.
(remote_target) <remote_detach_1>: Swap order of parameters.
(remote_add_thread): <remote_add_thread>: Return the new thread.
(get_remote_thread_info(ptid_t)): New overload.
(remote_target::remote_notice_new_inferior): Use thread pointers
directly.
(remote_target::process_initial_stop_replies): Use
thread_info::set_running.
(remote_target::remote_detach_1, remote_target::detach)
(extended_remote_target::detach): Adjust.
* stack.c (frame_show_address): Use inferior_thread.
* target-debug.h (target_debug_print_thread_info_pp): New.
* target-delegates.c: Regenerate.
* target.c (default_thread_address_space): Delete.
(memory_xfer_partial_1): Use current_inferior.
(target_detach): Use current_inferior.
(target_thread_address_space): Delete.
(generic_mourn_inferior): Use current_inferior.
* target.h (struct target_ops) <thread_address_space>: Delete.
(target_thread_address_space): Delete.
* thread.c (init_thread_list): Use ALL_THREADS_SAFE. Use thread
pointers directly.
(delete_thread_1, delete_thread, delete_thread_silent): Take a
thread pointer instead of a ptid_t. Adjust all callers.
(ptid_to_global_thread_id, global_thread_id_to_ptid): Delete.
(first_thread_of_process): Delete, replaced by ...
(first_thread_of_inferior): ... this new function. All callers
adjusted.
(any_thread_of_process): Rename to ...
(any_thread_of_inferior): ... this, and take an inferior pointer.
(any_live_thread_of_process): Rename to ...
(any_live_thread_of_inferior): ... this, and take an inferior
pointer.
(thread_stack_temporaries_enabled_p, push_thread_stack_temporary)
(value_in_thread_stack_temporaries)
(get_last_thread_stack_temporary): Take a thread pointer instead
of a ptid_t. Adjust all callers.
(thread_info::set_running): New.
(validate_registers_access): Use inferior_thread.
(can_access_registers_ptid): Rename to ...
(can_access_registers_thread): ... this, and take a thread
pointer.
(print_thread_info_1): Adjust to compare thread pointers instead
of ptids.
(switch_to_no_thread, switch_to_thread): Make extern.
(scoped_restore_current_thread::~scoped_restore_current_thread):
Use m_thread pointer directly.
(scoped_restore_current_thread::scoped_restore_current_thread):
Use inferior_thread.
(thread_command): Use thread pointer directly.
(thread_num_make_value_helper): Use inferior_thread.
* top.c (execute_command): Use inferior_thread.
* tui/tui-interp.c: Include "inferior.h".
* varobj.c (varobj_create): Use inferior_thread.
(value_of_root_1): Use find_thread_global_id instead of
global_thread_id_to_ptid.
At <https://sourceware.org/ml/gdb-patches/2017-12/msg00298.html>, Joel
wrote:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following code which first declares a tagged type (the
equivalent of a class in Ada), and then a procedure which takes a
pointer (access) to this type's 'Class.
package Pck is
type Top_T is tagged record
N : Integer := 1;
end record;
procedure Inspect (Obj: access Top_T'Class);
end Pck;
Putting a breakpoint in that procedure and then running to it triggers
an internal error:
(gdb) break inspect
(gdb) continue
Breakpoint 1, pck.inspect (obj=0x63e010
/[...]/gdb/stack.c:621: internal-error: void print_frame_args(symbol*, frame_info*, int, ui_file*): Assertion `nsym != NULL' failed.
What's special about this subprogram is that it takes an access to
what we call a 'Class type, and for implementation reasons, the
compiler adds an extra argument named "objL". If you are curious why,
it allows the compiler for perform dynamic accessibility checks that
are mandated by the language.
If we look at the location where we get the internal error (in
stack.c), we find that we are looping over the symbol of each
parameter, and for each parameter, we do:
/* We have to look up the symbol because arguments can have
two entries (one a parameter, one a local) and the one we
want is the local, which lookup_symbol will find for us.
[...]
nsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym),
b, VAR_DOMAIN, NULL).symbol;
gdb_assert (nsym != NULL);
The lookup_symbol goes through the lookup structure, which means the
symbol's linkage name ("objL") gets transformed into a
lookup_name_info object (in block_lookup_symbol), before it gets fed
to the block symbol dictionary iterators. This, in turn, triggers the
symbol matching by comparing the "lookup" name which, for Ada, means
among other things, lowercasing the given name to "objl". It is this
transformation that causes the lookup find no matches, and therefore
trip this assertion.
Going back to the "offending" call to lookup_symbol in stack.c, what
we are trying to do, here, is do a lookup by linkage name. So, I
think what we mean to be doing is a completely literal symbol lookup,
so maybe not even strcmp_iw, but actually just plain strcmp???
In the past, in practice, you could get that effect by doing a lookup
using the C language. But that doesn't work, because we still end up
somehow using Ada's lookup_name routine which transforms "objL".
So, ideally, as I hinted before, I think what we need is a way to
perform a literal lookup so that searches by linkage names like the
above can be performed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This commit fixes the problem by implementing something similar to
Joel's literal idea, but with some important differences.
I considered adding a symbol_name_match_type::LINKAGE and supporting
searching by linkage name for any language, but the problem with that
is that the dictionaries only work with SYMBOL_SEARCH_NAME, because
that's what is used for hashing. We'd need separate dictionaries for
hashed linkage names.
So with the current symbol tables infrastructure, it's not literal
linkage names that we want to pass down, but instead literal _search_
names (SYMBOL_SEARCH_NAME, etc.).
However, psymbols have no overload/function parameter info in C++, so
a straight strcmp doesn't work properly for C++ name matching.
So what we do is be a little less aggressive then and add a new
symbol_name_match_type::SEARCH_SYMBOL instead that takes as input a
non-user-input search symbol, and then we skip any decoding/demangling
steps and make:
- Ada treat that as a verbatim match,
- other languages treat it as symbol_name_match_type::FULL.
This also fixes the new '"maint check-psymtabs" for Ada' testcase for
me (gdb.ada/maint_with_ada.exp). I've not removed the kfail yet
because Joel still sees that testcase failing with this patch.
That'll be fixed in follow up patches.
gdb/ChangeLog:
2018-01-05 Pedro Alves <palves@redhat.com>
PR gdb/22670
* ada-lang.c (literal_symbol_name_matcher): New function.
(ada_get_symbol_name_matcher): Use it for
symbol_name_match_type::SEARCH_NAME.
* block.c (block_lookup_symbol): New parameter 'match_type'. Pass
it down instead of assuming symbol_name_match_type::FULL.
* block.h (block_lookup_symbol): New parameter 'match_type'.
* c-valprint.c (print_unpacked_pointer): Use
lookup_symbol_search_name instead of lookup_symbol.
* compile/compile-object-load.c (get_out_value_type): Pass down
symbol_name_match_type::SEARCH_NAME.
* cp-namespace.c (cp_basic_lookup_symbol): Pass down
symbol_name_match_type::FULL.
* cp-support.c (cp_get_symbol_name_matcher): Handle
symbol_name_match_type::SEARCH_NAME.
* infrun.c (insert_exception_resume_breakpoint): Use
lookup_symbol_search_name.
* p-valprint.c (pascal_val_print): Use lookup_symbol_search_name.
* psymtab.c (maintenance_check_psymtabs): Use
symbol_name_match_type::SEARCH_NAME and SYMBOL_SEARCH_NAME.
* stack.c (print_frame_args): Use lookup_symbol_search_name and
SYMBOL_SEARCH_NAME.
* symtab.c (lookup_local_symbol): Don't demangle the lookup name
if symbol_name_match_type::SEARCH_NAME.
(lookup_symbol_in_language): Pass down
symbol_name_match_type::FULL.
(lookup_symbol_search_name): New.
(lookup_language_this): Pass down
symbol_name_match_type::SEARCH_NAME.
(lookup_symbol_aux, lookup_local_symbol): New parameter
'match_type'. Pass it down.
* symtab.h (symbol_name_match_type::SEARCH_NAME): New enumerator.
(lookup_symbol_search_name): New declaration.
(lookup_symbol_in_block): New 'match_type' parameter.
gdb/testsuite/ChangeLog:
2018-01-05 Joel Brobecker <brobecker@adacore.com>
PR gdb/22670
* gdb.ada/access_tagged_param.exp: New file.
* gdb.ada/access_tagged_param/foo.adb: New file.
This removes a cleanup from link_callbacks_einfo by using std::string.
gdb/ChangeLog
2017-11-04 Tom Tromey <tom@tromey.com>
* compile/compile-object-load.c (link_callbacks_einfo): Use
std::string.
This patch changes most sites calling tilde_expand to use
gdb::unique_xmalloc_ptr, rather than a cleanup. It also changes
scan_expression_with_cleanup to return a unique pointer, because the
patch was already touching code in that area.
Regression tested on the buildbot.
ChangeLog
2017-08-05 Tom Tromey <tom@tromey.com>
* compile/compile-object-load.c (compile_object_load): Use
gdb::unique_xmalloc_ptr.
* cli/cli-dump.c (scan_filename): Rename from
scan_filename_with_cleanup. Change return type.
(scan_expression): Rename from scan_expression_with_cleanup.
Change return type.
(dump_memory_to_file, dump_value_to_file, restore_command):
Use gdb::unique_xmalloc_ptr. Update.
* cli/cli-cmds.c (find_and_open_script): Use
gdb::unique_xmalloc_ptr.
* tracefile-tfile.c (tfile_open): Use gdb::unique_xmalloc_ptr.
* symmisc.c (maintenance_print_symbols)
(maintenance_print_msymbols): Use gdb::unique_xmalloc_ptr.
* symfile.c (symfile_bfd_open, generic_load)
(add_symbol_file_command, remove_symbol_file_command): Use
gdb::unique_xmalloc_ptr.
* source.c (openp): Use gdb::unique_xmalloc_ptr.
* psymtab.c (maintenance_print_psymbols): Use
gdb::unique_xmalloc_ptr.
* corelow.c (core_open): Use gdb::unique_xmalloc_ptr.
* breakpoint.c (save_breakpoints): Use gdb::unique_xmalloc_ptr.
* solib.c (solib_map_sections): Use gdb::unique_xmalloc_ptr.
(reload_shared_libraries_1): Likewise.
This introduces a new specialization of gdb::ref_ptr that can be used
to manage BFD reference counts. Then it changes most places in gdb to
use this new class, rather than explicit reference-counting or
cleanups. This patch removes make_cleanup_bfd_unref.
If you look you will see a couple of spots using "release" where a use
of gdb_bfd_ref_ptr would be cleaner. These will be fixed in the next
patch.
I think this patch fixes some latent bugs. For example, it seems to
me that previously objfpy_add_separate_debug_file leaked a BFD.
I'm not 100% certain that the macho_symfile_read_all_oso change is
correct. The existing code here is hard for me to follow. One goal
of this sort of automated reference counting, though, is to make it
more difficult to make logic errors; so hopefully the code is clear
now.
2017-01-10 Tom Tromey <tom@tromey.com>
* windows-tdep.c (windows_xfer_shared_library): Update.
* windows-nat.c (windows_make_so): Update.
* utils.h (make_cleanup_bfd_unref): Remove.
* utils.c (do_bfd_close_cleanup, make_cleanup_bfd_unref): Remove.
* symfile.h (symfile_bfd_open)
(find_separate_debug_file_in_section): Return gdb_bfd_ref_ptr.
* symfile.c (read_symbols, symbol_file_add)
(separate_debug_file_exists): Update.
(symfile_bfd_open): Return gdb_bfd_ref_ptr.
(generic_load, reread_symbols): Update.
* symfile-mem.c (symbol_file_add_from_memory): Update.
* spu-linux-nat.c (spu_bfd_open): Return gdb_bfd_ref_ptr.
(spu_symbol_file_add_from_memory): Update.
* solist.h (struct target_so_ops) <bfd_open>: Return
gdb_bfd_ref_ptr.
(solib_bfd_fopen, solib_bfd_open): Return gdb_bfd_ref_ptr.
* solib.c (solib_bfd_fopen, solib_bfd_open): Return
gdb_bfd_ref_ptr.
(solib_map_sections, reload_shared_libraries_1): Update.
* solib-svr4.c (enable_break): Update.
* solib-spu.c (spu_bfd_fopen): Return gdb_bfd_ref_ptr.
* solib-frv.c (enable_break2): Update.
* solib-dsbt.c (enable_break): Update.
* solib-darwin.c (gdb_bfd_mach_o_fat_extract): Return
gdb_bfd_ref_ptr.
(darwin_solib_get_all_image_info_addr_at_init): Update.
(darwin_bfd_open): Return gdb_bfd_ref_ptr.
* solib-aix.c (solib_aix_bfd_open): Return gdb_bfd_ref_ptr.
* record-full.c (record_full_save): Update.
* python/py-objfile.c (objfpy_add_separate_debug_file): Update.
* procfs.c (insert_dbx_link_bpt_in_file): Update.
* minidebug.c (find_separate_debug_file_in_section): Return
gdb_bfd_ref_ptr.
* machoread.c (macho_add_oso_symfile): Change abfd to
gdb_bfd_ref_ptr.
(macho_symfile_read_all_oso): Update.
(macho_check_dsym): Return gdb_bfd_ref_ptr.
(macho_symfile_read): Update.
* jit.c (bfd_open_from_target_memory): Return gdb_bfd_ref_ptr.
(jit_bfd_try_read_symtab): Update.
* gdb_bfd.h (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr)
(gdb_bfd_openw, gdb_bfd_openr_iovec)
(gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return
gdb_bfd_ref_ptr.
(gdb_bfd_ref_policy): New struct.
(gdb_bfd_ref_ptr): New typedef.
* gdb_bfd.c (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr)
(gdb_bfd_openw, gdb_bfd_openr_iovec)
(gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return
gdb_bfd_ref_ptr.
* gcore.h (create_gcore_bfd): Return gdb_bfd_ref_ptr.
* gcore.c (create_gcore_bfd): Return gdb_bfd_ref_ptr.
(gcore_command): Update.
* exec.c (exec_file_attach): Update.
* elfread.c (elf_symfile_read): Update.
* dwarf2read.c (dwarf2_get_dwz_file): Update.
(try_open_dwop_file, open_dwo_file): Return gdb_bfd_ref_ptr.
(open_and_init_dwo_file): Update.
(open_dwp_file): Return gdb_bfd_ref_ptr.
(open_and_init_dwp_file): Update.
* corelow.c (core_open): Update.
* compile/compile-object-load.c (compile_object_load): Update.
* common/gdb_ref_ptr.h (ref_ptr::operator->): New operator.
* coffread.c (coff_symfile_read): Update.
* cli/cli-dump.c (bfd_openr_or_error, bfd_openw_or_error): Return
gdb_bfd_ref_ptr. Rename.
(dump_bfd_file, restore_command): Update.
* build-id.h (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr.
* build-id.c (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr.
(find_separate_debug_file_by_buildid): Update.
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
Using ui_file_as_string would imply changing a few prototypes to pass
around source and object file names as std::string. Instead of that,
wrap those two in a new class. This ends up eliminating a small
wrinkle: get_new_file_names and compile_object_load have swapped
parameters. The former takes "source, objfile", while the latter
takes "objfile, source".
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* c-lang.h (c_compute_program): Now returns std::string.
* compile/compile-internal.h (class compile_file_names): New
class.
* compile/compile-object-load.c (compile_object_load): Replace
object_file and source_file parameters with a compile_file_names
parameter. Adjust.
* compile-object-load.h: Include "compile-internal.h".
(compile_object_load): Replace object_file and source_file
parameters with a compile_file_names parameter.
* compile/compile-c-support.c (c_compute_program): Now returns a
std::string. Use ui_file_as_string.
* compile/compile.c (get_new_file_names): Remove parameters and
return a compile_file_names instead.
(compile_to_object): Now returns a compile_file_names. Use
ui_file_as_string.
(eval_compile_command): Use compile_file_names.
* language.h (struct language_defn) <la_compute_program>: Now
returns std::string.
As Pedro suggested on gdb-patches@ (see
https://sourceware.org/ml/gdb-patches/2015-05/msg00714.html), this
change makes symbol lookup functions return a structure that includes
both the symbol found and the block in which it was found. This makes
it possible to get rid of the block_found global variable and thus makes
block hunting explicit.
gdb/
* ada-exp.y (write_object_renaming): Replace struct
ada_symbol_info with struct block_symbol. Update field
references accordingly.
(block_lookup, select_possible_type_sym): Likewise.
(find_primitive_type): Likewise. Also update call to
ada_lookup_symbol to extract the symbol itself.
(write_var_or_type, write_name_assoc): Likewise.
* ada-lang.h (struct ada_symbol_info): Remove.
(ada_lookup_symbol_list): Replace struct ada_symbol_info with
struct block_symbol.
(ada_lookup_encoded_symbol, user_select_syms): Likewise.
(ada_lookup_symbol): Return struct block_symbol instead of a
mere symbol.
* ada-lang.c (defns_collected): Replace struct ada_symbol_info
with struct block_symbol.
(resolve_subexp, ada_resolve_function, sort_choices,
user_select_syms, is_nonfunction, add_defn_to_vec,
num_defns_collected, defns_collected,
symbols_are_identical_enums, remove_extra_symbols,
remove_irrelevant_renamings, add_lookup_symbol_list_worker,
ada_lookup_symbol_list, ada_iterate_over_symbols,
ada_lookup_encoded_symbol, get_var_value): Likewise.
(ada_lookup_symbol): Return a block_symbol instead of a mere
symbol. Replace struct ada_symbol_info with struct
block_symbol.
(ada_lookup_symbol_nonlocal): Likewise.
(standard_lookup): Make block passing explicit through
lookup_symbol_in_language.
* ada-tasks.c (get_tcb_types_info): Update the calls to
lookup_symbol_in_language to extract the mere symbol out of the
returned value.
(ada_tasks_inferior_data_sniffer): Likewise.
* ax-gdb.c (gen_static_field): Likewise for the call to
lookup_symbol.
(gen_maybe_namespace_elt): Deal with struct symbol_in_block from
lookup functions.
(gen_expr): Likewise.
* c-exp.y: Likewise. Remove uses of block_found.
(lex_one_token, classify_inner_name, c_print_token): Likewise.
(classify_name): Likewise. Rename the "sym" local variable to
"bsym".
* c-valprint.c (print_unpacked_pointer): Likewise.
* compile/compile-c-symbols.c (convert_symbol_sym): Promote the
"sym" parameter from struct symbol * to struct block_symbol.
Use it to remove uses of block_found. Deal with struct
symbol_in_block from lookup functions.
(gcc_convert_symbol): Likewise. Update the call to
convert_symbol_sym.
* compile/compile-object-load.c (compile_object_load): Deal with
struct symbol_in_block from lookup functions.
* cp-namespace.c (cp_lookup_nested_symbol_1,
cp_lookup_nested_symbol, cp_lookup_bare_symbol,
cp_search_static_and_baseclasses,
cp_lookup_symbol_in_namespace, cp_lookup_symbol_via_imports,
cp_lookup_symbol_imports_or_template,
cp_lookup_symbol_via_all_imports, cp_lookup_symbol_namespace,
lookup_namespace_scope, cp_lookup_nonlocal,
find_symbol_in_baseclass): Return struct symbol_in_block instead
of mere symbols and deal with struct symbol_in_block from lookup
functions.
* cp-support.c (inspect_type, replace_typedefs,
cp_lookup_rtti_type): Deal with struct symbol_in_block from
lookup functions.
* cp-support.h (cp_lookup_symbol_nonlocal,
cp_lookup_symbol_from_namespace,
cp_lookup_symbol_imports_or_template, cp_lookup_nested_symbol):
Return struct symbol_in_block instead of mere symbols.
* d-exp.y (d_type_from_name, d_module_from_name, push_variable,
push_module_name):
Deal with struct symbol_in_block from lookup functions. Remove
uses of block_found.
* eval.c (evaluate_subexp_standard): Update call to
cp_lookup_symbol_namespace.
* f-exp.y: Deal with struct symbol_in_block from lookup
functions. Remove uses of block_found.
(yylex): Likewise.
* gdbtypes.c (lookup_typename, lookup_struct, lookup_union,
lookup_enum, lookup_template_type, check_typedef): Deal with
struct symbol_in_block from lookup functions.
* guile/scm-frame.c (gdbscm_frame_read_var): Likewise.
* guile/scm-symbol.c (gdbscm_lookup_symbol): Likewise.
(gdbscm_lookup_global_symbol): Likewise.
* gnu-v3-abi.c (gnuv3_get_typeid_type): Likewise.
* go-exp.y: Likewise. Remove uses of block_found.
(package_name_p, classify_packaged_name, classify_name):
Likewise.
* infrun.c (insert_exception_resume_breakpoint): Likewise.
* jv-exp.y (push_variable): Likewise.
* jv-lang.c (java_lookup_class, get_java_object_type): Likewise.
* language.c (language_bool_type): Likewise.
* language.h (struct language_defn): Update
la_lookup_symbol_nonlocal to return a struct symbol_in_block
rather than a mere symbol.
* linespec.c (find_label_symbols): Deal with struct
symbol_in_block from lookup functions.
* m2-exp.y: Likewise. Remove uses of block_found.
(yylex): Likewise.
* mi/mi-cmd-stack.c (list_args_or_locals): Likewise.
* objc-lang.c (lookup_struct_typedef, find_imps): Likewise.
* p-exp.y: Likewise. Remove uses of block_found.
(yylex): Likewise.
* p-valprint.c (pascal_val_print): Likewise.
* parse.c (write_dollar_variable): Likewise. Remove uses of
block_found.
* parser-defs.h (struct symtoken): Turn the SYM field into a
struct symbol_in_block.
* printcmd.c (address_info): Deal with struct symbol_in_block
from lookup functions.
* python/py-frame.c (frapy_read_var): Likewise.
* python/py-symbol.c (gdbpy_lookup_symbol,
gdbpy_lookup_global_symbol): Likewise.
* skip.c (skip_function_command): Likewise.
* solib-darwin.c (darwin_lookup_lib_symbol): Return a struct
symbol_in_block instead of a mere symbol.
* solib-spu.c (spu_lookup_lib_symbol): Likewise.
* solib-svr4.c (elf_lookup_lib_symbol): Likewise.
* solib.c (solib_global_lookup): Likewise.
* solist.h (solib_global_lookup): Likewise.
(struct target_so_ops): Update lookup_lib_global_symbol to
return a struct symbol_in_block rather than a mere symbol.
* source.c (select_source_symtab): Deal with struct
symbol_in_block from lookup functions.
* stack.c (print_frame_args, iterate_over_block_arg_vars):
Likewise.
* symfile.c (set_initial_language): Likewise.
* symtab.c (SYMBOL_LOOKUP_FAILED): Turn into a struct
symbol_in_block.
(SYMBOL_LOOKUP_FAILED_P): New predicate as a macro.
(struct symbol_cache_slot): Turn the FOUND field into a struct
symbol_in_block.
(block_found): Remove.
(eq_symbol_entry): Update to deal with struct symbol_in_block in
cache slots.
(symbol_cache_lookup): Return a struct symbol_in_block rather
than a mere symbol.
(symbol_cache_mark_found): Add a BLOCK parameter to fill
appropriately the cache slots. Update callers.
(symbol_cache_dump): Update cache slots handling to the type
change.
(lookup_symbol_in_language, lookup_symbol, lookup_language_this,
lookup_symbol_aux, lookup_local_symbol,
lookup_symbol_in_objfile, lookup_global_symbol_from_objfile,
lookup_symbol_in_objfile_symtabs,
lookup_symbol_in_objfile_from_linkage_name,
lookup_symbol_via_quick_fns, basic_lookup_symbol_nonlocal,
lookup_symbol_in_static_block, lookup_static_symbol,
lookup_global_symbol):
Return a struct symbol_in_block rather than a mere symbol. Deal
with struct symbol_in_block from other lookup functions. Remove
uses of block_found.
(lookup_symbol_in_block): Remove uses of block_found.
(struct global_sym_lookup_data): Turn the RESULT field into a
struct symbol_in_block.
(lookup_symbol_global_iterator_cb): Update references to the
RESULT field.
(search_symbols): Deal with struct symbol_in_block from lookup
functions.
* symtab.h (struct symbol_in_block): New structure.
(block_found): Remove.
(lookup_symbol_in_language, lookup_symbol,
basic_lookup_symbol_nonlocal, lookup_symbol_in_static_block,
looku_static_symbol, lookup_global_symbol,
lookup_symbol_in_block, lookup_language_this,
lookup_global_symbol_from_objfile): Return a struct
symbol_in_block rather than just a mere symbol. Update comments
to remove mentions of block_found.
* valops.c (find_function_in_inferior,
value_struct_elt_for_reference, value_maybe_namespace_elt,
value_of_this): Deal with struct symbol_in_block from lookup
functions.
* value.c (value_static_field, value_fn_field): Likewise.
It was found that from
(gdb) set debug compile 1
(gdb) compile code 1
[...]
allocated 0x7f bytes at 0x7ffff7ff9000 prot 5
allocated 0x38 bytes at 0x7ffff7ff8000 prot 1
lookup undefined ELF symbol "_GLOBAL_OFFSET_TABLE_"
allocated 0x10 bytes at 0x7ffff7ff7000 for registers
(gdb) _
the message 'lookup undefined ELF symbol' looks as an error to people,
including to myself once.
Change it to:
allocated 0x7f bytes at 0x7ffff7ff9000 prot 5
allocated 0x38 bytes at 0x7ffff7ff8000 prot 1
ELF symbol "_GLOBAL_OFFSET_TABLE_" relocated to zero
allocated 0x10 bytes at 0x7ffff7ff7000 for registers
(gdb) _
gdb/ChangeLog
2015-07-02 Jan Kratochvil <jan.kratochvil@redhat.com>
* compile/compile-object-load.c (compile_object_load): Replace debug
message "lookup undefined ELF symbol" by 3 more specific messages.
Currently inferior memory is allocated by inferior mmap() but it is never
deallocated; despite the injected objfile incl. its symbols is freed. This was
intentional so that one can do for example:
inferior:
char *str = "foo";
GDB:
(gdb) compile code str = "bar";
I believe later patches will be needed to introduce full control over keeping
vs. discarding the injected module as being discussed in:
compile: objfiles lifetime UI
https://sourceware.org/ml/gdb/2015-04/msg00051.html
Message-ID: <20150429135735.GA16974@host1.jankratochvil.net>
https://sourceware.org/ml/gdb/2015-05/msg00007.html
As decided by Phil it is better not to leak inferior pages as users can
workaround the issue above for example by:
(gdb) compile code str = strdup ("bar");
I have checked that in fact gdb/doc/ (written by Phil) already expects the
injected code will be unmapped so that does not need to be changed:
compile code int ff = 5; p = &ff;
In this example, @code{p} would point to @code{ff} when the
@code{compile} command is executing the source code provided to it.
However, as variables in the (example) program persist with their
assigned values, the variable @code{p} would point to an invalid
location when the command exists.
gdb/ChangeLog
2015-04-28 Jan Kratochvil <jan.kratochvil@redhat.com>
* arch-utils.c (default_infcall_munmap): New.
* arch-utils.h (default_infcall_munmap): New declaration.
* compile/compile-object-load.c (struct munmap_list, munmap_list_add)
(munmap_list_free, munmap_listp_free_cleanup): New.
(struct setup_sections_data): Add field munmap_list_headp.
(setup_sections): Call munmap_list_add.
(compile_object_load): New variable munmap_list_head, initialize
setup_sections_data.munmap_list_headp, return munmap_list_head.
* compile/compile-object-load.h (struct munmap_list): New declaration.
(struct compile_module): Add field munmap_list_head.
(munmap_list_free): New declaration.
* compile/compile-object-run.c (struct do_module_cleanup): Add field
munmap_list_head.
(do_module_cleanup): Call munmap_list_free.
(compile_object_run): Pass munmap_list_head to do_module_cleanup.
* gdbarch.c: Regenerate.
* gdbarch.h: Regenerate.
* gdbarch.sh (infcall_munmap): New.
* linux-tdep.c (linux_infcall_munmap): New.
(linux_init_abi): Install it.
gdb/testsuite/ChangeLog
2015-04-28 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.compile/compile.exp (keep jit in memory): Rename to ...
(do not keep jit in memory): ... this.
(expect 5): Change it to ...
(expect no 5): ... this.