This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
Since the expression rewrite, dump_prefix_expression has been
misnamed. This patch cleans this up by removing the function, turning
it into a method on struct expression.
[ Assuming arch i386:x86-64, sizeof (int) == 4,
sizeof (long) == sizeof (long long) == 8. ]
Currently we have (decimal for 0x80000000):
...
(gdb) ptype 2147483648
type = unsigned int
...
According to C language rules, unsigned types cannot be used for decimal
constants, so the type should be long instead (reported in PR16377).
Fix this by making sure the type of 2147483648 is long.
The next interesting case is (decimal for 0x8000000000000000):
...
(gdb) ptype 9223372036854775808
type = unsigned long
...
According to the same rules, unsigned long is incorrect.
Current gcc uses __int128 as type, which is allowed, but we don't have that
available in gdb, so the strict response here would be erroring out with
overflow.
Older gcc without __int128 support, as well as clang use an unsigned type, but with
a warning. Interestingly, clang uses "unsigned long long" while gcc uses
"unsigned long", which seems the better choice.
Given that the compilers allow this as a convience, do the same in gdb
and keep type "unsigned long", and make this explicit in parser and test-case.
Furthermore, make sure we error out on overflow instead of truncating in all
cases.
Tested on x86_64-linux with --enable-targets=all.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=16377
Replace with calls to blockvector::blocks, and the appropriate method
call on the returned array_view.
Change-Id: I04d1f39603e4d4c21c96822421431d9a029d8ddd
Add a getter and a setter for a minimal symbol's type. Remove the
corresponding macro and adjust all callers.
Change-Id: I89900df5ffa5687133fe1a16b2e0d4684e67a77d
symtab::blockvector is a wrapper around compunit_symtab::blockvector.
It is a bit misleadnig, as it gives the impression that a symtab has a
blockvector. Remove it, change all users to fetch the blockvector
through the compunit instead.
Change-Id: Ibd062cd7926112a60d52899dff9224591cbdeebf
This refactors the gdb expression completion code to make it easier to
add more types of completers.
In the old approach, just two kinds of completers were supported:
field names for some sub-expression, or tag names (like "enum
something"). The data for each kind was combined in single structure,
"expr_completion_state", and handled explicitly by
complete_expression.
In the new approach, the parser state just holds an object that is
responsible for implementing completion. This way, new completion
types can be added by subclassing this base object.
The structop completer is moved into structop_base_operation, and new
objects are defined for use by the completion code. This moves much
of the logic of expression completion out of completer.c as well.
Now that filtered and unfiltered output can be treated identically, we
can unify the printf family of functions. This is done under the name
"gdb_printf". Most of this patch was written by script.
Now that filtered and unfiltered output can be treated identically, we
can unify the vprintf family of functions: vprintf_filtered,
vprintf_unfiltered, vfprintf_filtered and vfprintf_unfiltered. (For
the gdb_stdout variants, recall that only printf_unfiltered gets truly
unfiltered output at this point.) This removes one such function and
renames the remaining two to "gdb_vprintf". All callers are updated.
Much of this patch was written by script.
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
This adds a new make_unique_xstrndup function, which is the "n"
analogue of make_unique_xstrdup. It also updates a couple existing
places to use this function.
This changes var_msym_value_operation to use a bound_minimal_symbol
rather than separate minsym and objfile parameters. The main benefit
of this is removing the possibly-confusing check_objfile overload for
a plain minimal symbol.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* parse.c (parser_state::push_symbol, parser_state::push_dollar):
Update.
* p-exp.y (variable): Update.
* go-exp.y (variable): Update.
* expprint.c (dump_for_expression): Use bound_minimal_symbol.
Remove overload for objfile.
* expop.h (eval_op_var_msym_value): Use bound_minimal_symbol
parameter.
(check_objfile): Likewise.
(dump_for_expression): Likewise. Remove overload for objfile.
(class var_msym_value_operation): Use bound_minimal_symbol.
* eval.c (eval_op_var_msym_value): Use bound_minimal_symbol
parameter.
(var_msym_value_operation::evaluate_for_address)
(var_msym_value_operation::evaluate_for_sizeof)
(var_msym_value_operation::evaluate_for_cast): Update.
* d-exp.y (PrimaryExpression): Update.
* c-exp.y (variable): Update.
* ax-gdb.c (var_msym_value_operation::do_generate_ax): Update.
* ada-lang.c (ada_var_msym_value_operation::evaluate_for_cast):
Update.
* ada-exp.y (write_var_or_type): Update.
This inlines the expr_builder constructor and release method. These
are straightforward, so this seemed simpler.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* parser-defs.h (struct expr_builder) <expr_builder>: Inline.
<release>: Inline.
* parse.c (expr_builder::expr_builder, expr_builder::release):
Remove.
The struct expression constructor no longer does any real work, so
this inlines it. The default destructor can also be used now as well.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* parse.c (expression::expression, expression::~expression):
Remove.
* expression.h (struct expression): Inline constructor. Remove
destructor.
This adds several operation-related methods to parser_state. These
methods make it more convenient to change the parsers to be
operation-based.
Because byacc has poor support for C++, a stack of operations is added
to parser_state. A parser can push operations, then later pop them
for combination into new operations. This approach avoids the memory
leaks that would result if raw pointers were used in the parsers, at
the cost of parser productions not being type-safe (they can't
indicate that they return an operation).
This also introduces analogs of some write_exp functions, like
write_exp_string_vector, write_dollar_variable, and
write_exp_symbol_reference.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* parser-defs.h (struct parser_state) <push, push_new,
push_c_string, push_symbol, push_dollar, pop, pop_vector, wrap,
wrap2>: New methods.
<m_operations>: New member.
* parse.c (parser_state::push_c_string)
(parser_state::push_symbol, parser_state::push_dollar): New
methods.
This patch adds the necessary support for field name completion for
expressions using class operation.
This patch takes an approach similar to what is done today. It might
be good, in the future, to change completion to be a method on the
base class, to enable context-sensitive completion in more areas.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* parser-defs.h (struct expr_completion_state) <expout_last_op>:
New member.
(struct parser_state) <mark_struct_expression>: New method.
* parse.c (parser_state::mark_struct_expression): Update assert.
(parser_state::mark_struct_expression): New method.
(parser_state::mark_completion_tag): Update assert.
(parse_expression_for_completion): Handle expout_last_op.
This adds an expr::operation_up to struct expression, and then
modifies various parts of GDB to use this member when it is non-null.
The list of such spots was a bit surprising to me, and found only
after writing most of the code and then noticing what no longer
compiled.
In a few spots, new accessor methods are added to operation
subclasses, so that code that dissects an expression will work with
the new scheme.
After this change, code that constructs an expression can be switched
to the new form without breaking.
gdb/ChangeLog
2021-03-08 Tom Tromey <tom@tromey.com>
* ada-exp.h (class ada_var_value_operation) <get_symbol>: Remove;
now in superclass.
* value.h (fetch_subexp_value): Add "op" parameter.
* value.c (init_if_undefined_command): Update.
* tracepoint.c (validate_actionline, encode_actions_1): Update.
* stap-probe.c (stap_probe::compile_to_ax): Update.
* printcmd.c (set_command): Update.
* ppc-linux-nat.c (ppc_linux_nat_target::check_condition):
Update.
* parser-defs.h (struct expr_builder) <set_operation>: New
method.
* parse.c (parse_exp_in_context, exp_uses_objfile): Update.
* expression.h (struct expression) <first_opcode>: Update.
<op>: New member.
* expprint.c (dump_raw_expression, dump_prefix_expression):
Update.
* expop.h (class var_value_operation) <get_symbol>: New method.
(class register_operation) <get_name>: New method.
(class equal_operation): No longer a typedef, now a subclass.
(class unop_memval_operation) <get_type>: New method.
(class assign_operation) <get_lhs>: New method.
(class unop_cast_operation) <get_type>: New method.
* eval.c (evaluate_expression, evaluate_type)
(evaluate_subexpression_type): Update.
(fetch_subexp_value): Add "op" parameter.
(parse_and_eval_type): Update.
* dtrace-probe.c (dtrace_probe::compile_to_ax): Update.
* breakpoint.c (update_watchpoint, watchpoint_check)
(watchpoint_exp_is_const, watch_command_1): Update.
* ax-gdb.c (gen_trace_for_expr, gen_eval_for_expr, gen_printf):
Update.
Luis pointed out that an earlier patch of mine caused two regressions
in gdb.fortran. This patch fixes the problem.
Regression tested on x86-64 Fedora 32.
gdb/ChangeLog
2021-02-11 Tom Tromey <tromey@adacore.com>
PR gdb/27383:
* parse.c (write_exp_symbol_reference): Write sym.block.
I noticed that several parsers shared the same code to write a symbol
reference to an expression. This patch factors this code out into a
new function.
Regression tested on x86-64 Fedora 32.
gdb/ChangeLog
2021-02-05 Tom Tromey <tom@tromey.com>
* parser-defs.h (write_exp_symbol_reference): Declare.
* parse.c (write_exp_symbol_reference): New function.
* p-exp.y (variable): Use write_exp_symbol_reference.
* m2-exp.y (variable): Use write_exp_symbol_reference.
* f-exp.y (variable): Use write_exp_symbol_reference.
* d-exp.y (PrimaryExpression): Use write_exp_symbol_reference.
* c-exp.y (variable): Use write_exp_symbol_reference.
I think this makes the names of the methods clearer, especially for the
arch. The type::arch method (which gets the arch owner, or NULL if the
type is not arch owned) is easily confused with the get_type_arch method
(which returns an arch no matter what). The name "arch_owner" will make
it intuitive that the method returns NULL if the type is not arch-owned.
Also, this frees the type::arch name, so we will be able to morph the
get_type_arch function into the type::arch method.
gdb/ChangeLog:
* gdbtypes.h (struct type) <arch>: Rename to...
<arch_owner>: ... this, update all users.
<objfile>: Rename to...
<objfile_owner>: ... this, update all users.
Change-Id: Ie7c28684c7b565adec05a7619c418c69429bd8c0
Change all users to use the type::objfile method instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_OBJFILE): Remove, change all users to use the
type::objfile method instead.
Change-Id: I6b3f580913fb1fb0cf986b176dba8db68e1fabf9
An earlier patch pointed out that nothing in GDB sets void_context_p
when parsing an expression. This patch fixes this omission.
"print" and "call" differ in that the former will print a value that
has void type, while the latter will not. AdaCore has had a patch for
a long time that uses this distinction to help with overload
resolution. In particular, in a "call" context, a procedure will be
chosen, while in a "print" context, a zero-argument function will be
chosen instead.
Regression tested on x86-64 Fedora 32.
gdb/ChangeLog
2021-01-08 Tom Tromey <tromey@adacore.com>
* parse.c (parse_expression): Add void_context_p parameter. Use
parse_exp_in_context.
* printcmd.c (print_command_1): Change voidprint to bool. Pass to
parse_expression.
(print_command, call_command): Update.
* expression.h (parse_expression): Add void_context_p parameter.
gdb/testsuite/ChangeLog
2021-01-08 Tom Tromey <tromey@adacore.com>
* gdb.ada/voidctx/pck.adb: New file.
* gdb.ada/voidctx/pck.ads: New file.
* gdb.ada/voidctx/voidctx.adb: New file.
* gdb.ada/voidctx.exp: New file.
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
In the expression rewrite, Ada type resolution will be done at parse
time rather than in a post-parse pass. At this point,
language_defn::post_parser will be removed. However, for this to
work, the information available to post_parser must be made available
during the actual parse.
This patch refactors this code slightly to make this possible. In
particular, "void_context_p" is passed to the parser_state
constructor, and the parser state is then passed to the post_parser
method.
gdb/ChangeLog
2020-12-16 Tom Tromey <tom@tromey.com>
* rust-exp.y (rust_lex_tests): Update.
* parser-defs.h (parser_state): Add void_p parameter.
<void_context_p>: New member.
* parse.c (parse_exp_in_context): Update.
* language.h (language_defn::post_parser): Remove void_context_p,
completing, tracker parameters. Add parser state.
* ada-lang.c (ada_language::post_parser): Update.
This patch changes void_context_p to bool, as a prerequisite to the
change to post_parser that I submitted here:
https://sourceware.org/pipermail/gdb-patches/2020-December/174080.html
Tested by rebuilding.
Note that nothing in-tree passes true here. I don't know why this is,
but there is a use of this internally in AdaCore's tree. I will try
to submit that patch, if it is needed. (And if not, I will come back
around and remove this.)
gdb/ChangeLog
2020-12-16 Tom Tromey <tom@tromey.com>
* parse.c (parse_exp_1, parse_expression_for_completion): Update.
(parse_exp_in_context): Change void_context_p to bool.
* language.h (struct language_defn) <post_parser>: Change
void_context_p to bool.
* ada-lang.c (class ada_language) <post_parser>: Update.
In another series I'm working on, it is necessary to manage
"struct expression" with new and delete. Because the patch is
straightforward and could be extracted, I've done so here.
gdb/ChangeLog
2020-12-01 Tom Tromey <tom@tromey.com>
* parse.c (expr_builder::expr_builder): Initialize expout.
(expr_builder::release): Use expression::resize.
(expression::expression, expression::~expression)
(expression::resize): New methods.
(write_exp_elt): Use expression::resize.
(prefixify_expression): Update.
(increase_expout_size): Use expression::resize.
* expression.h (struct expression): Add constructor, destructor.
<resize>: New method.
(expression_up): Change type.
enum exp_opcode is created from all the .def files, but then each
language is required to implement its own op_name function to turn an
enum value to a string. This seemed over-complicated to me, and this
patch removes the per-language functions in favor of simply using the
.def names for all languages. Note that op_name is only used for
dumping expressions, which is a maintainer/debug feature.
Furthermore, I don't think there was any case where the .def name and
the string name differed.
gdb/ChangeLog
2020-11-30 Tom Tromey <tom@tromey.com>
* rust-lang.c (rust_op_name): Remove.
(exp_descriptor_rust): Update.
* parser-defs.h (op_name_standard): Don't declare.
(struct exp_descriptor) <op_name>: Remove.
* parse.c (exp_descriptor_standard): Update.
* opencl-lang.c (exp_descriptor_opencl): Update.
* m2-lang.c (m2_language::exp_descriptor_modula2): Update.
* f-lang.c (op_name_f): Remove.
(f_language::exp_descriptor_tab): Update.
* expression.h (op_name): Update.
* expprint.c (op_name): Rewrite.
(op_name_standard): Remove.
(dump_raw_expression, dump_subexp): Update.
* c-lang.c (exp_descriptor_c): Update.
* ax-gdb.c (gen_expr): Update.
* ada-lang.c (ada_op_name): Remove.
(ada_exp_descriptor): Update.
Moves the f_language class from f-lang.c into f-lang.h. The benefit
of this is that functions declared in other f-*.c files can become
member functions without having to go through a level of indirection.
Some additional support functions have now become private member
functions of the f_language class, these are mostly functions that
then called some other function that was itself a member of the
language_defn class hierarchy.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* f-exp.y (f_parse): Rename to...
(f_language::parser): ...this.
* f-lang.c (f_get_encoding): Rename to...
(f_language::get_encoding): ...this.
(f_op_print_tab): Rename to...
(f_language::op_print_tab): ...this.
(exp_descriptor_f): Rename to...
(f_language::exp_descriptor_tab): ...this.
(class f_language): Moved to f-lang.h.
(f_language::language_arch_info): New function, moved out of class
declaration.
(f_language::search_name_hash): Likewise.
(f_language::lookup_symbol_nonlocal): Likewise.
(f_language::get_symbol_name_matcher_inner): Likewise.
* f-lang.h: Add 'valprint.h' include.
(class f_language): Moved here from f-lang.c.
* f-typeprint.c (f_type_print_args): Delete commented out
declaration.
(f_print_typedef): Rename to...
(f_language::print_typedef): ...this.
(f_print_type): Rename to...
(f_language::print_type): ...this.
(f_type_print_varspec_prefix): Delete declaration and rename to...
(f_language::f_type_print_varspec_prefix): ...this.
(f_type_print_varspec_suffix): Delete declaration and rename to...
(f_language::f_type_print_varspec_suffix): ...this.
(f_type_print_base): Delete declaration and rename to...
(f_language::f_type_print_base): ...this.
* f-valprint.c (f_value_print_inner): Rename to...
(f_language::value_print_inner): ...this.
* parse.c: Delete 'f-lang.h' include.
With this commit GDB now understands the syntax of Fortran array
strides, a user can type an expression including an array stride, but
they will only get an error informing them that array strides are not
supported.
This alone is an improvement on what we had before in GDB, better to
give the user a helpful message that a particular feature is not
supported than to just claim a syntax error.
Before:
(gdb) p array (1:10:2, 2:10:2)
A syntax error in expression, near `:2, 2:10:2)'.
Now:
(gdb) p array (1:10:2, 2:10:2)
Fortran array strides are not currently supported
Later commits will allow GDB to handle array strides correctly.
gdb/ChangeLog:
* expprint.c (dump_subexp_body_standard): Print RANGE_HAS_STRIDE.
* expression.h (enum range_type): Add RANGE_HAS_STRIDE.
* f-exp.y (arglist): Allow for a series of subranges.
(subrange): Add cases for subranges with strides.
* f-lang.c (value_f90_subarray): Catch use of array strides and
throw an error.
* parse.c (operator_length_standard): Handle RANGE_HAS_STRIDE.
gdb/testsuite/ChangeLog:
* gdb.fortran/array-slices.exp: Add a new test.
To avoid confusion with other parts of GDB relating to types and
ranges, rename this enum to make it clearer that it is a set of
individual flags rather than an enumeration of different types of
range.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* expprint.c (print_subexp_standard): Change enum range_type to
range_flag and rename variables to match.
(dump_subexp_body_standard): Likewise.
* expression.h (enum range_type): Rename to...
(enum range_flag): ...this.
(range_types): Rename to...
(range_flags): ...this.
* f-lang.c (value_f90_subarray): Change enum range_type to
range_flag and rename variables to match.
* parse.c (operator_length_standard): Likewise.
* rust-exp.y (rust_parser::convert_ast_to_expression): Change enum
range_type to range_flag.
* rust-lang.c (rust_evaluate_funcall): Likewise.
(rust_range): Likewise.
(rust_compute_range): Likewise.
(rust_subscript): Likewise.
The expression range_type enum represents the following ideas:
- Lower bound is set to default,
- Upper bound is set to default,
- Upper bound is exclusive.
There are currently 6 entries in the enum to represent the combination
of all those ideas.
In a future commit I'd like to add stride information to the range,
this could in theory appear with any of the existing enum entries, so
this would take us to 12 enum entries.
This feels like its getting a little out of hand, so in this commit I
switch the range_type enum over to being a flags style enum. There's
one entry to represent no flags being set, then 3 flags to represent
the 3 ideas above. Adding stride information will require adding only
one more enum flag.
I've then gone through and updated the code to handle this change.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* expprint.c (print_subexp_standard): Update to reflect changes to
enum range_type.
(dump_subexp_body_standard): Likewise.
* expression.h (enum range_type): Convert to a bit field enum, and
make the enum unsigned.
* f-exp.y (subrange): Update to reflect changes to enum
range_type.
* f-lang.c (value_f90_subarray): Likewise.
* parse.c (operator_length_standard): Likewise.
* rust-exp.y (rust_parser::convert_ast_to_expression): Likewise.
* rust-lang.c (rust_range): Likewise.
(rust_compute_range): Likewise.
(rust_subscript): Likewise.
The Fortran specific OP_F77_UNDETERMINED_ARGLIST is currently handled
in the generic expression handling code. There's no reason why this
should be the case, so this commit moves handling of this into Fortran
specific files.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* eval.c: Remove 'f-lang.h' include.
(value_f90_subarray): Moved to f-lang.c.
(eval_call): Renamed to...
(evaluate_subexp_do_call): ...this, is no longer static, header
comment moved into header file.
(evaluate_funcall): Update call to eval_call.
(skip_undetermined_arglist): Moved to f-lang.c.
(fortran_value_subarray): Likewise.
(evaluate_subexp_standard): OP_F77_UNDETERMINED_ARGLIST handling
moved to evaluate_subexp_f.
(calc_f77_array_dims): Moved to f-lang.c
* expprint.c (print_subexp_funcall): New function.
(print_subexp_standard): OP_F77_UNDETERMINED_ARGLIST handling
moved to print_subexp_f, OP_FUNCALL uses new function.
(dump_subexp_body_funcall): New function.
(dump_subexp_body_standard): OP_F77_UNDETERMINED_ARGLIST handling
moved to dump_subexp_f, OP_FUNCALL uses new function.
* expression.h (evaluate_subexp_do_call): Declare.
* f-lang.c (value_f90_subarray): Moved from eval.c.
(skip_undetermined_arglist): Likewise.
(calc_f77_array_dims): Likewise.
(fortran_value_subarray): Likewise.
(evaluate_subexp_f): Add OP_F77_UNDETERMINED_ARGLIST support.
(operator_length_f): Likewise.
(print_subexp_f): Likewise.
(dump_subexp_body_f): Likewise.
* fortran-operator.def (OP_F77_UNDETERMINED_ARGLIST): Move
declaration of this operation to here.
* parse.c (operator_length_standard): OP_F77_UNDETERMINED_ARGLIST
support moved to operator_length_f.
* parser-defs.h (dump_subexp_body_funcall): Declare.
(print_subexp_funcall): Declare.
* std-operator.def (OP_F77_UNDETERMINED_ARGLIST): Moved to
fortran-operator.def.
Convert language_data::la_exp_desc member variable to a virtual
method language_defn::expression_ops. The change of names brings this
method more into line with the existing varobj_ops method, that also
returns a table of function pointers.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-lang.c (ada_language_data): Remove la_exp_desc initializer.
(ada_language::expression_ops): New member function.
* c-lang.c (c_language_data): Remove la_exp_desc initializer.
(c_language::expression_ops): New member function.
(cplus_language_data): Remove la_exp_desc initializer.
(cplus_language::expression_ops): New member function.
(asm_language_data): Remove la_exp_desc initializer.
(asm_language::expression_ops): New member function.
(minimal_language_data): Remove la_exp_desc initializer.
(minimal_language::expression_ops): New member function.
* d-lang.c (d_language_data): Remove la_exp_desc initializer.
(d_language::expression_ops): New member function.
* eval.c (evaluate_subexp): Update call to expression_ops.
* expprint.c (print_subexp): Likewise.
(op_name): Likewise.
(dump_subexp_body): Likewise.
* f-lang.c (f_language_data): Remove la_exp_desc initializer.
(f_language::expression_ops): New member function.
* go-lang.c (go_language_data): Remove la_exp_desc initializer.
(go_language::expression_ops): New member function.
* language.c (language_defn::expression_ops): New function.
(unknown_language_data): Remove la_exp_desc initializer.
(auto_language_data): Likewise.
* language.h (language_data): Remove la_exp_desc field.
(language_defn::expression_ops): Declare new member function.
* m2-lang.c (m2_language_data): Remove la_exp_desc initializer.
(m2_language::expression_ops): New member function.
* objc-lang.c (objc_language_data): Remove la_exp_desc
initializer.
* opencl-lang.c (opencl_language_data): Remove la_exp_desc
initializer.
(opencl_language::expression_ops): New member function.
* p-lang.c (pascal_language_data): Remove la_exp_desc initializer.
* parse.c (operator_length): Update call to expression_ops.
(exp_iterate): Likewise.
* rust-lang.c (rust_language_data): Remove la_exp_desc
initializer.
(ruse_language::expression_ops): New member function.
This commit changes the language_data::la_parser function pointer
member variable into a member function of language_defn.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-lang.c (parse): Rename to ada_language::parser.
(ada_language_data): Delete la_parser initializer.
(ada_language::parser): New member function, implementation from
parse.
* c-lang.c (c_language_data): Delete la_parser initializer.
(cplus_language_data): Likewise.
(asm_language_data): Likewise.
(minimal_language_data): Likewise.
* d-lang.c (d_language_data): Likewise.
(d_language::parser): New member function.
* f-lang.c (f_language_data): Delete la_parser initializer.
(f_language::parser): New member function.
* go-lang.c (go_language_data): Delete la_parser initializer.
(go_language::parser): New member function.
* language.c (unk_lang_parser): Delete.
(language_defn::parser): Define new member function.
(unknown_language_data): Delete la_parser initializer.
(unknown_language::parser): New member function.
(auto_language_data): Delete la_parser initializer.
(auto_language::parser): New member function.
* language.h (language_data): Delete la_parser field.
(language_defn::parser): Declare new member function.
* m2-lang.c (m2_language_data): Delete la_parser initializer.
(m2_language::parser): New member function.
* objc-lang.c (objc_language_data): Delete la_parser initializer.
* opencl-lang.c (opencl_language_data): Likewise.
* p-lang.c (pascal_language_data): Likewise.
(pascal_language::parser): New member function.
* parse.c (parse_exp_in_context): Update call to parser.
* rust-lang.c (rust_language_data): Delete la_parser initializer.
(rust_language::parser): New member function.
lookup_objfile_from_block mostly duplicates the functionality of
block_objfile, but in a less efficient way. This patch removes this
function and changes the callers to use block_objfile instead.
Tested by the buildbot.
gdb/ChangeLog
2020-05-15 Tom Tromey <tom@tromey.com>
* symtab.c (lookup_language_this, lookup_symbol_aux): Use
block_objfile.
(lookup_objfile_from_block): Remove.
(lookup_symbol_in_block, lookup_symbol_in_static_block)
(lookup_global_symbol): Use block_objfile.
* symtab.h (lookup_objfile_from_block): Don't declare.
* printcmd.c (clear_dangling_display_expressions): Use
block_objfile.
* parse.c (operator_check_standard): Use block_objfile.