Remove the `TYPE_FIELD_NAME` and `FIELD_NAME` macros, changing all the
call sites to use field::name directly.
Change-Id: I6900ae4e1ffab1396e24fb3298e94bf123826ca6
I noticed that pointer_type is declared in language.h and defined in
language.c. However, it really has to do with types, so it should
have been in gdbtypes.h all along.
This patch changes it to be a method on struct type. And, I went
through uses of TYPE_IS_REFERENCE and updated many spots to use the
new method as well. (I didn't update ones that were in arch-specific
code, as I couldn't readily test that.)
Python 2 has a bit flag Py_TPFLAGS_HAVE_ITER which can be passed as
part of the tp_flags field when defining a new object type. This flag
is not defined in Python 3 and so we define it to 0 in
python-internal.h (when IS_PY3K is defined).
The meaning of this flag is that the object has the fields tp_iter and
tp_iternext. Note the use of "has" here, the flag says nothing about
the values in those fields, just that the type object has the fields.
In early versions of Python 2 these fields were no part of the
PyTypeObject struct, they were added in version 2.2 (see
https://docs.python.org/release/2.3/api/type-structs.html). And so,
there could be a some code compiled out there which has a PyTypeObject
structure within it that doesn't even have the tp_iter and tp_iternext
fields, attempting to access these fields would be undefined
behaviour.
And so Python added the Py_TPFLAGS_HAVE_ITER flag. If the flag is
present then Python is free to access the tp_iter and tp_iternext
fields.
If we consider GDB then we always assume that the tp_iter and
tp_iternext fields are part of PyTypeObject. If someone was crazy
enough to try and compile GDB against Python 2.1 then we'd get lots of
build errors saying that we were passing too many fields when
initializing PyTypeObject structures. And so, I claim, we can be sure
that GDB will always be compiled with a version of Python that has the
tp_iter and tp_iternext fields in PyTypeObject.
Next we can look at the Py_TPFLAGS_DEFAULT flag. In Python 2, each
time additional fields are added to PyTypeObject a new Py_TPFLAGS_*
flag would be defined to indicate whether those flags are present or
not. And, those new flags would be added to Py_TPFLAGS_DEFAULT. And
so, in the latest version of Python 2 the Py_TPFLAGS_DEFAULT flag
includes Py_TPFLAGS_HAVE_ITER (see
https://docs.python.org/2.7/c-api/typeobj.html).
In GDB we pass Py_TPFLAGS_DEFAULT as part of the tp_flags for all
objects we define.
And so, in this commit, I propose to remove all uses of
Py_TPFLAGS_HAVE_ITER from GDB, it's simply not needed.
There should be no user visible changes after this commit.
GNAT emits encoded type names, but these aren't usually of interest to
users. The Ada language code in gdb hides this oddity -- but the
Python layer does not. This patch changes the Python code to use the
decoded Ada type name, when appropriate.
I looked at decoding Ada type names during construction, as that would
be cleaner. However, the Ada support in gdb relies on the encodings
at various points, so this isn't really doable right now.
2021-06-25 Tom Tromey <tromey@adacore.com>
* python/py-type.c (typy_get_name): Decode an Ada type name.
gdb/testsuite/ChangeLog
2021-06-25 Tom Tromey <tromey@adacore.com>
* gdb.ada/py_range.exp: Add type name test cases.
Delay Python initialisation until gdbpy_finish_initialization.
This is mostly about splitting the existing gdbpy_initialize_*
functions in two, all the calls to register_objfile_data_with_cleanup,
gdbarch_data_register_post_init, etc are moved into new _initialize_*
functions, but everything else is left in the gdbpy_initialize_*
functions.
Then the call to do_start_initialization (in python/python.c) is moved
from the _initialize_python function into gdbpy_finish_initialization.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* python/py-arch.c (_initialize_py_arch): New function.
(gdbpy_initialize_arch): Move code to _initialize_py_arch.
* python/py-block.c (_initialize_py_block): New function.
(gdbpy_initialize_blocks): Move code to _initialize_py_block.
* python/py-inferior.c (_initialize_py_inferior): New function.
(gdbpy_initialize_inferior): Move code to _initialize_py_inferior.
* python/py-objfile.c (_initialize_py_objfile): New function.
(gdbpy_initialize_objfile): Move code to _initialize_py_objfile.
* python/py-progspace.c (_initialize_py_progspace): New function.
(gdbpy_initialize_pspace): Move code to _initialize_py_progspace.
* python/py-registers.c (_initialize_py_registers): New function.
(gdbpy_initialize_registers): Move code to
_initialize_py_registers.
* python/py-symbol.c (_initialize_py_symbol): New function.
(gdbpy_initialize_symbols): Move code to _initialize_py_symbol.
* python/py-symtab.c (_initialize_py_symtab): New function.
(gdbpy_initialize_symtabs): Move code to _initialize_py_symtab.
* python/py-type.c (_initialize_py_type): New function.
(gdbpy_initialize_types): Move code to _initialize_py_type.
* python/py-unwind.c (_initialize_py_unwind): New function.
(gdbpy_initialize_unwind): Move code to _initialize_py_unwind.
* python/python.c (_initialize_python): Move call to
do_start_initialization to gdbpy_finish_initialization.
(gdbpy_finish_initialization): Add call to
do_start_initialization.
As reported in bug 27757, we get an internal error when doing:
$ cat test.c
struct foo {
int len;
int items[];
};
struct foo *p;
int main() {
return 0;
}
$ gcc test.c -g -O0 -o test
$ ./gdb -q -nx --data-directory=data-directory ./test -ex 'python gdb.parse_and_eval("p").type.target()["items"].type.range()'
Reading symbols from ./test...
/home/simark/src/binutils-gdb/gdb/gdbtypes.h:435: internal-error: LONGEST dynamic_prop::const_val() const: Assertion `m_kind == PROP_CONST' failed.
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n)
This is because the Python code (typy_range) blindly reads the high
bound of the type of `items` as a constant value. Since it is a
flexible array member, it has no high bound, the property is undefined.
Since commit 8c2e4e0689 ("gdb: add accessors to struct dynamic_prop"),
the getters check that you are not getting a property value of the wrong
kind, so this causes a failed assertion.
Fix it by checking if the property is indeed a constant value before
accessing it as such. Otherwise, use 0. This restores the previous GDB
behavior: because the structure was zero-initialized, this is what was
returned before. But now this behavior is explicit and not accidental.
Add a test, gdb.python/flexible-array-member.exp, that is derived from
gdb.base/flexible-array-member.exp. It tests the same things, but
through the Python API. It also specifically tests getting the range
from the various kinds of flexible array member types (AFAIK it wasn't
possible to do the equivalent through the CLI).
gdb/ChangeLog:
PR gdb/27757
* python/py-type.c (typy_range): Check that bounds are constant
before accessing them as such.
* guile/scm-type.c (gdbscm_type_range): Likewise.
gdb/testsuite/ChangeLog:
PR gdb/27757
* gdb.python/flexible-array-member.c: New test.
* gdb.python/flexible-array-member.exp: New test.
* gdb.guile/scm-type.exp (test_range): Add test for flexible
array member.
* gdb.guile/scm-type.c (struct flex_member): New.
(main): Use it.
Change-Id: Ibef92ee5fd871ecb7c791db2a788f203dff2b841
I think this makes the names of the methods clearer, especially for the
arch. The type::arch method (which gets the arch owner, or NULL if the
type is not arch owned) is easily confused with the get_type_arch method
(which returns an arch no matter what). The name "arch_owner" will make
it intuitive that the method returns NULL if the type is not arch-owned.
Also, this frees the type::arch name, so we will be able to morph the
get_type_arch function into the type::arch method.
gdb/ChangeLog:
* gdbtypes.h (struct type) <arch>: Rename to...
<arch_owner>: ... this, update all users.
<objfile>: Rename to...
<objfile_owner>: ... this, update all users.
Change-Id: Ie7c28684c7b565adec05a7619c418c69429bd8c0
Change all users to use the type::objfile method instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_OBJFILE): Remove, change all users to use the
type::objfile method instead.
Change-Id: I6b3f580913fb1fb0cf986b176dba8db68e1fabf9
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
Considering this example:
struct C
{
int func() { return 1; }
} c;
int main()
{
return c.func();
}
Accessing the fields of C::func, when requesting the function by its
type, works:
(gdb) py print(gdb.parse_and_eval('C::func').type.fields()[0].type)
C * const
But when trying to do the same via a class instance, it fails:
(gdb) py print(gdb.parse_and_eval('c')['func'].type.fields()[0].type)
Traceback (most recent call last):
File "<string>", line 1, in <module>
TypeError: Type is not a structure, union, enum, or function type.
Error while executing Python code.
The difference is that in the former the function type is TYPE_CODE_FUNC:
(gdb) py print(gdb.parse_and_eval('C::func').type.code == gdb.TYPE_CODE_FUNC)
True
And in the latter the function type is TYPE_CODE_METHOD:
(gdb) py print(gdb.parse_and_eval('c')['func'].type.code == gdb.TYPE_CODE_METHOD)
True
So this adds the functionality for TYPE_CODE_METHOD as well.
gdb/ChangeLog:
2020-12-18 Hannes Domani <ssbssa@yahoo.de>
* python/py-type.c (typy_get_composite): Add TYPE_CODE_METHOD.
gdb/testsuite/ChangeLog:
2020-12-18 Hannes Domani <ssbssa@yahoo.de>
* gdb.python/py-type.exp: Add tests for TYPE_CODE_METHOD.
Avoid the use of PyInt_FromLong, preferring gdb_py_object_from_longest
instead. I found found another spot that was incorrectly handling
errors (see gdbpy_create_ptid_object) while writing this patch; it is
fixed here.
gdb/ChangeLog
2020-09-15 Tom Tromey <tromey@adacore.com>
* python/python-internal.h (PyInt_FromLong): Remove define.
* python/py-value.c (convert_value_from_python): Use
gdb_py_object_from_longest.
* python/py-type.c (typy_get_code): Use
gdb_py_object_from_longest.
* python/py-symtab.c (salpy_get_line): Use
gdb_py_object_from_longest.
* python/py-symbol.c (sympy_get_addr_class, sympy_line): Use
gdb_py_object_from_longest.
* python/py-record.c (recpy_gap_reason_code): Use
gdb_py_object_from_longest.
* python/py-record-btrace.c (recpy_bt_insn_size)
(recpy_bt_func_level, btpy_list_count): Use
gdb_py_object_from_longest.
* python/py-infthread.c (gdbpy_create_ptid_object): Use
gdb_py_object_from_longest. Fix error handling.
* python/py-framefilter.c (bootstrap_python_frame_filters): Use
gdb_py_object_from_longest.
* python/py-frame.c (frapy_type, frapy_unwind_stop_reason): Use
gdb_py_object_from_longest.
* python/py-breakpoint.c (bppy_get_type, bppy_get_number)
(bppy_get_thread, bppy_get_task, bppy_get_hit_count)
(bppy_get_ignore_count): Use gdb_py_object_from_longest.
This changes gdb to avoid PyLong_FromLong, preferring to
gdb_py_object_from_longest instead.
gdb/ChangeLog
2020-09-15 Tom Tromey <tromey@adacore.com>
* python/python.c (gdbpy_parameter_value): Use
gdb_py_object_from_longest.
* python/py-type.c (convert_field, typy_range): Use
gdb_py_object_from_longest.
* python/py-tui.c (gdbpy_tui_width, gdbpy_tui_height): Use
gdb_py_object_from_longest.
* python/py-lazy-string.c (stpy_get_length): Use
gdb_py_object_from_longest.
* python/py-infthread.c (thpy_get_num, thpy_get_global_num): Use
gdb_py_object_from_longest.
* python/py-infevents.c (create_memory_changed_event_object): Use
gdb_py_object_from_longest.
* python/py-inferior.c (infpy_get_num): Use
gdb_py_object_from_longest.
(infpy_get_pid): Likewise.
Change the Python layer to avoid gdb_py_long_from_longest, and remove
the defines.
gdb/ChangeLog
2020-09-15 Tom Tromey <tromey@adacore.com>
* python/python-internal.h (gdb_py_long_from_longest): Remove
defines.
* python/py-value.c (valpy_long): Use gdb_py_object_from_longest.
* python/py-type.c (convert_field, typy_get_sizeof): Use
gdb_py_object_from_longest.
* python/py-record-btrace.c (btpy_list_index): Use
gdb_py_object_from_longest.
Getting the bounds of an array (or string) type is a common operation,
and is currently done through its index type:
my_array_type->index_type ()->bounds ()
I think it would make sense to let the `type::bounds` methods work for
arrays and strings, as a shorthand for this. It's natural that when
asking for the bounds of an array, we get the bounds of the range type
used as its index type. In a way, it's equivalent as the now-removed
TYPE_ARRAY_{LOWER,UPPER}_BOUND_IS_UNDEFINED and
TYPE_ARRAY_{LOWER,UPPER}_BOUND_VALUE, except it returns the
`range_bounds` object. The caller is then responsible for getting the
property it needs in it.
I updated all the spots I could find that could take advantage of this.
Note that this also makes `type::bit_stride` work on array types, since
`type::bit_stride` uses `type::bounds`. `my_array_type->bit_stride ()`
now returns the bit stride of the array's index type. So some spots
are also changed to take advantage of this.
gdb/ChangeLog:
* gdbtypes.h (struct type) <bounds>: Handle array and string
types.
* ada-lang.c (assign_aggregate): Use type::bounds on
array/string type.
* c-typeprint.c (c_type_print_varspec_suffix): Likewise.
* c-varobj.c (c_number_of_children): Likewise.
(c_describe_child): Likewise.
* eval.c (evaluate_subexp_for_sizeof): Likewise.
* f-typeprint.c (f_type_print_varspec_suffix): Likewise.
(f_type_print_base): Likewise.
* f-valprint.c (f77_array_offset_tbl): Likewise.
(f77_get_upperbound): Likewise.
(f77_print_array_1): Likewise.
* guile/scm-type.c (gdbscm_type_range): Likewise.
* m2-typeprint.c (m2_array): Likewise.
(m2_is_long_set_of_type): Likewise.
* m2-valprint.c (get_long_set_bounds): Likewise.
* p-typeprint.c (pascal_type_print_varspec_prefix): Likewise.
* python/py-type.c (typy_range): Likewise.
* rust-lang.c (rust_internal_print_type): Likewise.
* type-stack.c (type_stack::follow_types): Likewise.
* valarith.c (value_subscripted_rvalue): Likewise.
* valops.c (value_cast): Likewise.
Change-Id: I5c0c08930bffe42fd69cb4bfcece28944dd88d1f
Remove the macros, use the getters of `struct dynamic_prop` instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_LOW_BOUND, TYPE_HIGH_BOUND): Remove. Update
all callers to use type::range_bounds followed by
dynamic_prop::{low,high}.
Change-Id: I31beeed65d94d81ac4f999244a8b859e2ee961d1
Remove the `TYPE_FIELD_TYPE` macro, changing all the call sites to use
`type::field` and `field::type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD_TYPE): Remove. Change all call sites
to use type::field and field::type instead.
Change-Id: Ifda6226a25c811cfd334a756a9fbc5c0afdddff3
Remove `TYPE_INDEX_TYPE` macro, changing all the call sites to use
`type::index_type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_INDEX_TYPE): Remove. Change all call sites
to use type::index_type instead.
Change-Id: I56715df0bdec89463cda6bd341dac0e01b2faf84
Replace all uses of it by type::field.
Note that since type::field returns a reference to the field, some spots
are used to assign the whole field structure. See ctfread.c, function
attach_fields_to_type, for example. This is the same as was happening
with the macro, so I don't think it's a problem, but if anybody sees a
really nicer way to do this, now could be a good time to implement it.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD): Remove. Replace all uses with
type::field.
Remove `TYPE_NFIELDS`, changing all the call sites to use
`type::num_fields` directly. This is quite a big diff, but this was
mostly done using sed and coccinelle. A few call sites were done by
hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NFIELDS): Remove. Change all cal sites to use
type::num_fields instead.
Change-Id: Ib73be4c36f9e770e0f729bac3b5257d7cb2f9591
Remove `TYPE_NAME`, changing all the call sites to use `type::name`
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NAME): Remove. Change all cal sites to use
type::name instead.
Remove TYPE_CODE, changing all the call sites to use type::code
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use
type::code instead.
This changes the gdb Python API to add support for dynamic types. In
particular, this adds an attribute to gdb.Type, and updates some
attributes to reflect dynamic sizes and field offsets.
There's still no way to get the dynamic type from one of its concrete
instances. This could perhaps be added if needed.
gdb/ChangeLog
2020-04-24 Tom Tromey <tromey@adacore.com>
PR python/23662:
* python/py-type.c (convert_field): Handle
FIELD_LOC_KIND_DWARF_BLOCK.
(typy_get_sizeof): Handle TYPE_HAS_DYNAMIC_LENGTH.
(typy_get_dynamic): Nw function.
(type_object_getset): Add "dynamic".
* NEWS: Add entry.
gdb/doc/ChangeLog
2020-04-24 Tom Tromey <tromey@adacore.com>
PR python/23662:
* python.texi (Types In Python): Document new features.
gdb/testsuite/ChangeLog
2020-04-24 Tom Tromey <tromey@adacore.com>
PR python/23662:
* gdb.ada/variant.exp: Add Python checks.
* gdb.rust/simple.exp: Add dynamic type checks.
valgrind reports leaks in many python tests, such as:
==17162== VALGRIND_GDB_ERROR_BEGIN
==17162== 8,208 (5,472 direct, 2,736 indirect) bytes in 57 blocks are definitely lost in loss record 7,551 of 7,679
==17162== at 0x4835753: malloc (vg_replace_malloc.c:307)
==17162== by 0x6EAFD1: _PyObject_New (object.c:279)
==17162== by 0x4720E6: blpy_iter(_object*) (py-block.c:92)
==17162== by 0x698772: PyObject_GetIter (abstract.c:2577)
==17162== by 0x2343BE: _PyEval_EvalFrameDefault (ceval.c:3159)
==17162== by 0x22E9E2: function_code_fastcall (call.c:283)
==17162== by 0x2340A8: _PyObject_Vectorcall (abstract.h:127)
==17162== by 0x2340A8: call_function (ceval.c:4987)
==17162== by 0x2340A8: _PyEval_EvalFrameDefault (ceval.c:3486)
==17162== by 0x22E9E2: function_code_fastcall (call.c:283)
==17162== by 0x82172B: _PyObject_Vectorcall (abstract.h:127)
==17162== by 0x82172B: method_vectorcall (classobject.c:67)
==17162== by 0x6AF474: _PyObject_Vectorcall (abstract.h:127)
==17162== by 0x6AF474: _PyObject_CallNoArg (abstract.h:153)
==17162== by 0x6AF474: _PyObject_CallFunctionVa (call.c:914)
==17162== by 0x6B0673: callmethod (call.c:1010)
==17162== by 0x6B0673: _PyObject_CallMethod_SizeT (call.c:1103)
==17162== by 0x477DFE: gdb_PyObject_CallMethod<> (python-internal.h:182)
==17162== by 0x477DFE: get_py_iter_from_func(_object*, char const*) (py-framefilter.c:272)
==17162== by 0x4791B4: py_print_args (py-framefilter.c:706)
==17162== by 0x4791B4: py_print_frame(_object*, enum_flags<frame_filter_flag>, ext_lang_frame_args, ui_out*, int, htab*) (py-framefilter.c:960)
==17162== by 0x47A130: gdbpy_apply_frame_filter(extension_language_defn const*, frame_info*, enum_flags<frame_filter_flag>, ext_lang_frame_args, ui_out*, int, int) (py-framefilter.c:1236)
==17162== by 0x369C39: apply_ext_lang_frame_filter(frame_info*, enum_flags<frame_filter_flag>, ext_lang_frame_args, ui_out*, int, int) (extension.c:563)
==17162== by 0x4EC9C9: backtrace_command_1 (stack.c:2031)
==17162== by 0x4EC9C9: backtrace_command(char const*, int) (stack.c:2183)
...
Most of the leaks in python tests are due to the fact that many
PyObject xxxxx_dealloc functions are missing the line to free self
or obj such as:
Py_TYPE (self)->tp_free (self);
or
Py_TYPE (obj)->tp_free (obj);
With this patch, the number of python tests leaking decreases from 52 to 12.
gdb/ChangeLog
2019-11-18 Philippe Waroquiers <philippe.waroquiers@skynet.be>
* python/py-block.c (blpy_dealloc): Call tp_free.
(blpy_block_syms_dealloc): Likewise.
* python/py-finishbreakpoint.c (bpfinishpy_dealloc): Likewise.
* python/py-inferior.c (infpy_dealloc): Likewise.
* python/py-lazy-string.c (stpy_dealloc): Likewise.
* python/py-linetable.c (ltpy_iterator_dealloc): Likewise.
* python/py-symbol.c (sympy_dealloc): Likewise.
* python/py-symtab.c (stpy_dealloc): Likewise.
* python/py-type.c (typy_iterator_dealloc): Likewise.
dwarf2read.c will create stub types for Ada "Taft Amendment" types.
These stub types can currently be exposed to Python code, where they
show up as TYPE_CODE_VOID types (but that, mysteriously, can sometimes
be used in other ways).
While it's possible to work with such types by using strip_typedefs,
this seemed unpleasant to me. This patch takes another approach
instead, which is to try not to expose stub types to Python users.
gdb/ChangeLog
2019-09-26 Tom Tromey <tromey@adacore.com>
* python/py-type.c (type_to_type_object): Call check_typedef
for stub types.
gdb/testsuite/ChangeLog
2019-09-26 Tom Tromey <tromey@adacore.com>
* gdb.ada/py_taft.exp: New file.
* gdb.ada/py_taft/main.adb: New file.
* gdb.ada/py_taft/pkg.adb: New file.
* gdb.ada/py_taft/pkg.ads: New file.
This allows users of the Python API to find the objfile where a type
was defined.
gdb/ChangeLog:
gdb/ChangeLog
2019-06-04 Christian Biesinger <cbiesinger@google.com>
Add objfile property to gdb.Type.
* gdb/NEWS: Mention Python API addition.
* gdb/python/py-type.c (typy_get_objfile): New method.
gdb/doc/ChangeLog
2019-06-04 Christian Biesinger <cbiesinger@google.com>
* gdb/doc/python.texi: Document new gdb.Type.objfile property.
gdb/testsuite/ChangeLog
2019-06-04 Christian Biesinger <cbiesinger@google.com>
* gdb/testsuite/gdb.python/py-type.exp: Test for new
gdb.Type.objfile property.
This rewrites gdb's TRY/CATCH to plain C++ try/catch. The patch was
largely written by script, though one change (to a comment in
common-exceptions.h) was reverted by hand.
gdb/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* xml-support.c: Use C++ exception handling.
* x86-linux-nat.c: Use C++ exception handling.
* windows-nat.c: Use C++ exception handling.
* varobj.c: Use C++ exception handling.
* value.c: Use C++ exception handling.
* valprint.c: Use C++ exception handling.
* valops.c: Use C++ exception handling.
* unittests/parse-connection-spec-selftests.c: Use C++ exception
handling.
* unittests/cli-utils-selftests.c: Use C++ exception handling.
* typeprint.c: Use C++ exception handling.
* tui/tui.c: Use C++ exception handling.
* tracefile-tfile.c: Use C++ exception handling.
* top.c: Use C++ exception handling.
* thread.c: Use C++ exception handling.
* target.c: Use C++ exception handling.
* symmisc.c: Use C++ exception handling.
* symfile-mem.c: Use C++ exception handling.
* stack.c: Use C++ exception handling.
* sparc64-linux-tdep.c: Use C++ exception handling.
* solib.c: Use C++ exception handling.
* solib-svr4.c: Use C++ exception handling.
* solib-spu.c: Use C++ exception handling.
* solib-frv.c: Use C++ exception handling.
* solib-dsbt.c: Use C++ exception handling.
* selftest-arch.c: Use C++ exception handling.
* s390-tdep.c: Use C++ exception handling.
* rust-lang.c: Use C++ exception handling.
* rust-exp.y: Use C++ exception handling.
* rs6000-tdep.c: Use C++ exception handling.
* rs6000-aix-tdep.c: Use C++ exception handling.
* riscv-tdep.c: Use C++ exception handling.
* remote.c: Use C++ exception handling.
* remote-fileio.c: Use C++ exception handling.
* record-full.c: Use C++ exception handling.
* record-btrace.c: Use C++ exception handling.
* python/python.c: Use C++ exception handling.
* python/py-value.c: Use C++ exception handling.
* python/py-utils.c: Use C++ exception handling.
* python/py-unwind.c: Use C++ exception handling.
* python/py-type.c: Use C++ exception handling.
* python/py-symbol.c: Use C++ exception handling.
* python/py-record.c: Use C++ exception handling.
* python/py-record-btrace.c: Use C++ exception handling.
* python/py-progspace.c: Use C++ exception handling.
* python/py-prettyprint.c: Use C++ exception handling.
* python/py-param.c: Use C++ exception handling.
* python/py-objfile.c: Use C++ exception handling.
* python/py-linetable.c: Use C++ exception handling.
* python/py-lazy-string.c: Use C++ exception handling.
* python/py-infthread.c: Use C++ exception handling.
* python/py-inferior.c: Use C++ exception handling.
* python/py-gdb-readline.c: Use C++ exception handling.
* python/py-framefilter.c: Use C++ exception handling.
* python/py-frame.c: Use C++ exception handling.
* python/py-finishbreakpoint.c: Use C++ exception handling.
* python/py-cmd.c: Use C++ exception handling.
* python/py-breakpoint.c: Use C++ exception handling.
* python/py-arch.c: Use C++ exception handling.
* printcmd.c: Use C++ exception handling.
* ppc-linux-tdep.c: Use C++ exception handling.
* parse.c: Use C++ exception handling.
* p-valprint.c: Use C++ exception handling.
* objc-lang.c: Use C++ exception handling.
* mi/mi-main.c: Use C++ exception handling.
* mi/mi-interp.c: Use C++ exception handling.
* mi/mi-cmd-stack.c: Use C++ exception handling.
* mi/mi-cmd-break.c: Use C++ exception handling.
* main.c: Use C++ exception handling.
* linux-thread-db.c: Use C++ exception handling.
* linux-tdep.c: Use C++ exception handling.
* linux-nat.c: Use C++ exception handling.
* linux-fork.c: Use C++ exception handling.
* linespec.c: Use C++ exception handling.
* language.c: Use C++ exception handling.
* jit.c: Use C++ exception handling.
* infrun.c: Use C++ exception handling.
* infcmd.c: Use C++ exception handling.
* infcall.c: Use C++ exception handling.
* inf-loop.c: Use C++ exception handling.
* i386-tdep.c: Use C++ exception handling.
* i386-linux-tdep.c: Use C++ exception handling.
* guile/scm-value.c: Use C++ exception handling.
* guile/scm-type.c: Use C++ exception handling.
* guile/scm-symtab.c: Use C++ exception handling.
* guile/scm-symbol.c: Use C++ exception handling.
* guile/scm-pretty-print.c: Use C++ exception handling.
* guile/scm-ports.c: Use C++ exception handling.
* guile/scm-param.c: Use C++ exception handling.
* guile/scm-math.c: Use C++ exception handling.
* guile/scm-lazy-string.c: Use C++ exception handling.
* guile/scm-frame.c: Use C++ exception handling.
* guile/scm-disasm.c: Use C++ exception handling.
* guile/scm-cmd.c: Use C++ exception handling.
* guile/scm-breakpoint.c: Use C++ exception handling.
* guile/scm-block.c: Use C++ exception handling.
* guile/guile-internal.h: Use C++ exception handling.
* gnu-v3-abi.c: Use C++ exception handling.
* gdbtypes.c: Use C++ exception handling.
* frame.c: Use C++ exception handling.
* frame-unwind.c: Use C++ exception handling.
* fbsd-tdep.c: Use C++ exception handling.
* f-valprint.c: Use C++ exception handling.
* exec.c: Use C++ exception handling.
* event-top.c: Use C++ exception handling.
* event-loop.c: Use C++ exception handling.
* eval.c: Use C++ exception handling.
* dwarf2read.c: Use C++ exception handling.
* dwarf2loc.c: Use C++ exception handling.
* dwarf2-frame.c: Use C++ exception handling.
* dwarf2-frame-tailcall.c: Use C++ exception handling.
* dwarf-index-write.c: Use C++ exception handling.
* dwarf-index-cache.c: Use C++ exception handling.
* dtrace-probe.c: Use C++ exception handling.
* disasm-selftests.c: Use C++ exception handling.
* darwin-nat.c: Use C++ exception handling.
* cp-valprint.c: Use C++ exception handling.
* cp-support.c: Use C++ exception handling.
* cp-abi.c: Use C++ exception handling.
* corelow.c: Use C++ exception handling.
* completer.c: Use C++ exception handling.
* compile/compile-object-run.c: Use C++ exception handling.
* compile/compile-object-load.c: Use C++ exception handling.
* compile/compile-cplus-symbols.c: Use C++ exception handling.
* compile/compile-c-symbols.c: Use C++ exception handling.
* common/selftest.c: Use C++ exception handling.
* common/new-op.c: Use C++ exception handling.
* cli/cli-script.c: Use C++ exception handling.
* cli/cli-interp.c: Use C++ exception handling.
* cli/cli-cmds.c: Use C++ exception handling.
* c-varobj.c: Use C++ exception handling.
* btrace.c: Use C++ exception handling.
* breakpoint.c: Use C++ exception handling.
* break-catch-throw.c: Use C++ exception handling.
* arch-utils.c: Use C++ exception handling.
* amd64-tdep.c: Use C++ exception handling.
* ada-valprint.c: Use C++ exception handling.
* ada-typeprint.c: Use C++ exception handling.
* ada-lang.c: Use C++ exception handling.
* aarch64-tdep.c: Use C++ exception handling.
gdb/gdbserver/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* server.c: Use C++ exception handling.
* linux-low.c: Use C++ exception handling.
* gdbreplay.c: Use C++ exception handling.
py-ref.h can really only be included from a specific spot in
python-internal.h. The other includes are not useful, and cause
compilation errors if the includes are ever sorted. So, remove these
includes.
Arguably, py-ref.h should simply not be a separate header.
gdb/ChangeLog
2019-01-22 Tom Tromey <tom@tromey.com>
* python/py-arch.c: Do not include py-ref.h.
* python/py-bpevent.c: Do not include py-ref.h.
* python/py-cmd.c: Do not include py-ref.h.
* python/py-continueevent.c: Do not include py-ref.h.
* python/py-event.h: Do not include py-ref.h.
* python/py-evtregistry.c: Do not include py-ref.h.
* python/py-finishbreakpoint.c: Do not include py-ref.h.
* python/py-frame.c: Do not include py-ref.h.
* python/py-framefilter.c: Do not include py-ref.h.
* python/py-function.c: Do not include py-ref.h.
* python/py-infevents.c: Do not include py-ref.h.
* python/py-linetable.c: Do not include py-ref.h.
* python/py-objfile.c: Do not include py-ref.h.
* python/py-param.c: Do not include py-ref.h.
* python/py-prettyprint.c: Do not include py-ref.h.
* python/py-progspace.c: Do not include py-ref.h.
* python/py-symbol.c: Do not include py-ref.h.
* python/py-symtab.c: Do not include py-ref.h.
* python/py-type.c: Do not include py-ref.h.
* python/py-unwind.c: Do not include py-ref.h.
* python/py-utils.c: Do not include py-ref.h.
* python/py-value.c: Do not include py-ref.h.
* python/py-varobj.c: Do not include py-ref.h.
* python/py-xmethods.c: Do not include py-ref.h.
* python/python.c: Do not include py-ref.h.
* varobj.c: Do not include py-ref.h.
This improves the reference counting in py-type.c by using gdbpy_ref
and gdbpy_ref::new_reference in more places.
gdb/ChangeLog
2019-01-03 Tom Tromey <tom@tromey.com>
* python/py-type.c (convert_field): Use new_reference. Return
gdbpy_ref.
(make_fielditem): Return gdbpy_ref.
(typy_fields): Update.
(typy_getitem): Update.
(field_name): Return gdbpy_ref. Use new_reference.
(typy_iterator_iternext): Update.
This changes some more place in the Python code to use gdbpy_ref
rather than explicit reference counting. While doing this I found a
latent bug in typy_fields_items -- it was not checking for errors in
one spot. I also changed valpy_dealloc to use Py_XDECREF rather than
an explicit "if".
gdb/ChangeLog
2019-01-03 Tom Tromey <tom@tromey.com>
* python/py-value.c (valpy_dealloc): Use Py_XDECREF.
* python/py-type.c (typy_fields_items): Use gdbpy_ref.
* python/py-progspace.c (pspy_set_printers): Use gdbpy_ref.
(pspy_set_frame_filters, pspy_set_frame_unwinders)
(pspy_set_type_printers): Likewise.
* python/py-function.c (fnpy_init): Use gdbpy_ref.
* python/py-cmd.c (cmdpy_init): Use gdbpy_ref.
* python/py-objfile.c (objfpy_set_printers): Use gdbpy_ref.
(objfpy_set_frame_filters, objfpy_set_frame_unwinders)
(objfpy_set_type_printers): Likewise.
This fixes a few minor style issues I found in gdb/python: some
unnecessary casts, the removal of an unnecessary local variable, and
one instance of incorrect formatting.
Tested by rebuilding and re-running gdb.python.
gdb/ChangeLog
2019-01-02 Tom Tromey <tom@tromey.com>
* python/py-inferior.c (gdbpy_initialize_inferior): Fix
indentation.
* python/py-frame.c (frapy_older): Remove cast.
(frapy_newer): Likewise.
* python/py-breakpoint.c (local_setattro): Remove cast.
* python/py-arch.c (archpy_name): Remove local variable.
* python/py-type.c (gdbpy_lookup_type): Remove cast.
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
typy_template_argument did not check if the template argument was
non-negative. A negative value could cause a gdb crash.
2018-09-23 Tom Tromey <tom@tromey.com>
PR python/17284:
* python/py-type.c (typy_template_argument): Check for negative
argument number.
gdb/testsuite/ChangeLog
2018-09-23 Tom Tromey <tom@tromey.com>
PR python/17284:
* gdb.python/py-template.exp (test_template_arg): Add test for
negative template argument number.
This removes a static buffer from cp-name-parser.y by replacing the
fixed-sized buffer with a std::string out parameter.
gdb/ChangeLog
2018-06-01 Tom Tromey <tom@tromey.com>
* python/py-type.c (typy_legacy_template_argument): Update.
* cp-support.h (cp_demangled_name_to_comp): Update.
* cp-name-parser.y (cp_demangled_name_to_comp): Change errmsg
parameter to be a "std::string *".
(main): Update.
TYPE_TAG_NAME has been an occasional source of confusion and bugs. It
seems to me that it is only useful for C and C++ -- but even there,
not so much, because at least with DWARF there doesn't seem to be any
way to wind up with a type where the name and the tag name are both
non-NULL and different.
So, this patch removes TYPE_TAG_NAME entirely. This should save a
little memory, but more importantly, it simplifies this part of gdb.
A few minor test suite adjustments were needed. In some situations
the new code does not yield identical output to the old code.
gdb/ChangeLog
2018-06-01 Tom Tromey <tom@tromey.com>
* valops.c (enum_constant_from_type, value_namespace_elt)
(value_maybe_namespace_elt): Update.
* valarith.c (find_size_for_pointer_math): Update.
* target-descriptions.c (make_gdb_type): Update.
* symmisc.c (print_symbol): Update.
* stabsread.c (define_symbol, read_type)
(complain_about_struct_wipeout, add_undefined_type)
(cleanup_undefined_types_1): Update.
* rust-lang.c (rust_tuple_type_p, rust_slice_type_p)
(rust_range_type_p, val_print_struct, rust_print_struct_def)
(rust_internal_print_type, rust_composite_type)
(rust_evaluate_funcall, rust_evaluate_subexp)
(rust_inclusive_range_type_p): Update.
* python/py-type.c (typy_get_tag): Update.
* p-typeprint.c (pascal_type_print_base): Update.
* mdebugread.c (parse_symbol, parse_type): Update.
* m2-typeprint.c (m2_long_set, m2_record_fields, m2_enum):
Update.
* guile/scm-type.c (gdbscm_type_tag): Update.
* go-lang.c (sixg_string_p): Update.
* gnu-v3-abi.c (build_gdb_vtable_type, build_std_type_info_type):
Update.
* gdbtypes.h (struct main_type) <tag_name>: Remove.
(TYPE_TAG_NAME): Remove.
* gdbtypes.c (type_name_no_tag): Simplify.
(check_typedef, check_types_equal, recursive_dump_type)
(copy_type_recursive, arch_composite_type): Update.
* f-typeprint.c (f_type_print_base): Update. Print "Type" prefix
in summary mode when needed.
* eval.c (evaluate_funcall): Update.
* dwarf2read.c (fixup_go_packaging, read_structure_type)
(process_structure_scope, read_enumeration_type)
(read_namespace_type, read_module_type, determine_prefix): Update.
* cp-support.c (inspect_type): Update.
* coffread.c (process_coff_symbol, decode_base_type): Update.
* c-varobj.c (c_is_path_expr_parent): Update.
* c-typeprint.c (c_type_print_base_struct_union): Update.
(c_type_print_base_1): Update. Print struct/class/union/enum in
summary when using C language.
* ax-gdb.c (gen_struct_ref, gen_namespace_elt)
(gen_maybe_namespace_elt): Update.
* ada-lang.c (ada_type_name): Simplify.
(empty_record, ada_template_to_fixed_record_type_1)
(template_to_static_fixed_type)
(to_record_with_fixed_variant_part, ada_check_typedef): Update.
gdb/testsuite/ChangeLog
2018-06-01 Tom Tromey <tom@tromey.com>
* gdb.xml/tdesc-regs.exp (load_description): Update expected
results.
* gdb.dwarf2/method-ptr.exp: Set language to C++.
* gdb.dwarf2/member-ptr-forwardref.exp: Set language to C++.
* gdb.cp/typeid.exp (do_typeid_tests): Update type_re.
* gdb.base/maint.exp (maint_pass_if): Update.
This removes a VEC from type.c, by using std::vector.
While doing this I also took the opportunity to change
types_deeply_equal to return bool. This caught some weird code in
typy_richcompare, now fixed.
And, since I was changing types_deeply_equal, it seemed like a good
idea to also change types_equal, so this patch includes that as well.
Tested by the buildbot.
ChangeLog
2018-05-29 Tom Tromey <tom@tromey.com>
* python/py-type.c (typy_richcompare): Update.
* guile/scm-type.c (tyscm_equal_p_type_smob): Update.
* gdbtypes.h (types_deeply_equal): Return bool.
(types_equal): Likewise.
* gdbtypes.c (type_equality_entry_d): Remove typedef. Don't
declare VEC.
(check_types_equal): Change worklist to std::vector. Return
bool.
(struct type_equality_entry): Add constructor.
(compare_maybe_null_strings): Return bool.
(check_types_worklist): Return bool. Change worklist to
std::vector.
(types_deeply_equal): Use std::vector.
(types_equal): Return bool.
(compare_maybe_null_strings): Simplify.
This adds an "alignof" attribute to gdb.Type in the Python API.
2018-04-30 Tom Tromey <tom@tromey.com>
* NEWS: Mention Type.align.
* python/py-type.c (typy_get_alignof): New function.
(type_object_getset): Add "alignof".
2018-04-30 Tom Tromey <tom@tromey.com>
* python.texi (Types In Python): Document Type.align.
2018-04-30 Tom Tromey <tom@tromey.com>
* gdb.python/py-type.exp: Check align attribute.
* gdb.python/py-type.c: New "aligncheck" global.