Generally, glibc dynamic linker should have two ways to deal with ifunc
- one is to handle the IRELATIVE relocations for the non-preemtive ifunc
symbols, the other is to handle the R_RISCV_32/64 and R_RISCV_JUMP_SLOT
relocations with the STT_IFUNC preemtive symbols. No matter which method
is used, both of them should get the resolved ifunc symbols at runtime.
Therefore, linker needs to generate the correct dynamic relocations for
ifunc to make sure the the dynamic linker works well. For now, there are
thirteen relocations are supported for ifunc in GNU ld,
* R_RISCV_CALL and R_RISCV_CALL_PLT:
The RISC-V compiler won't generate R_RISCV_JAL directly to jump to an
ifunc. Besides, we disable the relaxations for the relocation referenced
to ifunc, so just handling the R_RISCV_CALL and R_RISCV_CALL_PLT should be
enough. Linker should generate a .plt entry and a .got.plt entry for it,
and also needs to insert a dynamic IRELATIVE in the .got.plt enrty, or
insert a R_RISCV_JUMP_SLOT when generating shared library.
* R_RISCV_PCREL_HI20 and R_RISCV_PCREL_LO12_I/S:
LA/LLA pattern with local fPIC ifunc symbol, or any non-PIC ifunc symbol.
The PC-relative relocation. The current linker will deal with them in
the same way as R_RISCV_CALL_PLT.
* R_RISCV_GOT_HI20 and R_RISCV_PCREL_LO12_I/S:
LA pattern with global PIC ifunc symbol. Linker should insert a dynamic
IRELATIVE in the .got entry, or insert a R_RISCV_32/64 when generating
shared library.
* R_RISCV_32 and R_RISCV_64:
Store the ifunc symbol into the data section. Linker should insert a
dynamic IRELATIVE in the data section, or insert a R_RISCV_32/64 when
generating shared library.
* R_RISCV_HI20 and R_RISCV_LO12_I/S:
The LUI + ADDI/LW/SW patterns. The absolute access relocation. The
medlow model without the -fPIC compiler option should generate them.
The ld ifunc testsuites "Build pr23169a" and "Build pr23169d" need the
relocations, they are in the ld/testsuite/ld-ifunc/, and need compiler
support.
However, we also made some optimizations with reference to x86,
* If GOT and PLT relocations refer to the same ifunc symbol when generating
pie, then they can actually share a .got entry without creating two entries
to store the same value and relocation.
* If GOT, PLT and DATA relocations refer to the same ifunc symbol when
generating position dependency executable, then linker will fill the address
of .plt entry into the corresponding .got entry and data section, without
insert any dynamic relocations for the GOT and DATA relocations.
For the ifunc testcases, there are three types of them,
1. ifunc-reloc-*: Only check the single type of relocation refers to
ifunc symbol.
* ifunc-reloc-call: R_RISCV_CALL and R_RISCV_CALL_PLT.
* ifunc-reloc-data: R_RISCV_32 and R_RISCV_64.
* ifunc-reloc-got: R_RISCV_GOT_HI20 and R_RISCV_PCREL_LO_I/S.
* ifunc-reloc-pcrel: R_RISCV_PCREL_HI20 and R_RISCV_PCREL_LO_I/S.
2. ifunc-[nonplt|plt]-*: If we don't have PLT relocs, then don't need to
create the PLT and it's .plt entries.
* ifunc-nonplt: Combine R_RISCV_GOT_HI20 and R_RISCV_32/64.
* ifunc-plt: Combine all ifunc relocations.
3. ifunc-seperate-*: If we link the ifunc caller and resolver into the
same module (link the objects), then the results are the same as the
ifunc-reloc-* and ifunc-[noplt|plt]-* testcases. Consider the cases that
the ifunc callers and resolver are in the different modules, that is, we
compile the ifunc resolver to the shared library first, and then link it
with the ifunc callers. The output of ifunc callers should be the same as
the normal STT_FUNC cases, and the shared ifunc resolver should define the
symbols as STT_IFUNC.
The R_RISCV_PCREL_HI20 reloc is special. It should be linked and resolved
locally, so if the ifunc resolver is defined in other modules (other shared
libraries), then the R_RISCV_PCREL_HI20 is unresolvable, and linker should
issue an unresolvable reloc error.
bfd/
* elfnn-riscv.c: Include "objalloc.h" since we need objalloc_alloc.
(riscv_elf_link_hash_table): Add loc_hash_table and loc_hash_memory
for local STT_GNU_IFUNC symbols.
(riscv_elf_got_plt_val): Removed.
(riscv_elf_local_htab_hash, riscv_elf_local_htab_eq): New functions.
Use to compare local hash entries.
(riscv_elf_get_local_sym_hash): New function. Find a hash entry for
local symbol, and create a new one if needed.
(riscv_elf_link_hash_table_free): New function. Destroy an riscv
elf linker hash table.
(riscv_elf_link_hash_table_create): Create hash table for local ifunc.
(riscv_elf_check_relocs): Create a fake global symbol to track the
local ifunc symbol. Add support to check and handle the relocations
reference to ifunc symbols.
(allocate_dynrelocs): Let allocate_ifunc_dynrelocs and
allocate_local_ifunc_dynrelocs to handle the ifunc symbols if they
are defined and referenced in a non-shared object.
(allocate_ifunc_dynrelocs): New function. Allocate space in .plt,
.got and associated reloc sections for ifunc dynamic relocs.
(allocate_local_ifunc_dynrelocs): Likewise, but for local ifunc
dynamic relocs.
(riscv_elf_relocate_section): Add support to handle the relocation
referenced to ifunc symbols.
(riscv_elf_size_dynamic_sections): Updated.
(riscv_elf_adjust_dynamic_symbol): Updated.
(riscv_elf_finish_dynamic_symbol): Finish up the ifunc handling,
including fill the PLT and GOT entries for ifunc symbols.
(riscv_elf_finish_local_dynamic_symbol): New function. Called by
riscv_elf_finish_dynamic_symbol to handle the local ifunc symbols.
(_bfd_riscv_relax_section): Don't do the relaxation for ifunc.
* elfxx-riscv.c: Add R_RISCV_IRELATIVE.
* configure.ac: Link elf-ifunc.lo to use the generic ifunc support.
* configure: Regenerated.
include/
* elf/riscv.h: Add R_RISCV_IRELATIVE to 58.
ld/
* emulparams/elf32lriscv-defs.sh: Add IREL_IN_PLT.
* testsuite/ld-ifunc/ifunc.exp: Enable ifunc tests for RISC-V.
* testsuite/ld-riscv-elf/ld-riscv-elf.exp (run_dump_test_ifunc):
New dump test for ifunc. There are two arguments, 'target` and
`output`. The `target` is rv32 or rv64, and the `output` is used
to choose which output you want to test (exe, pie or .so).
* testsuite/ld-riscv-elf/ifunc-reloc-call-01.s: New testcase.
* testsuite/ld-riscv-elf/ifunc-reloc-call-01.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-01-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-01-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-01-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-call-02-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-data-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-got-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-reloc-pcrel-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-nonplt-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-01-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02-exe.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02-pic.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-plt-02-pie.rd: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-resolver.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-caller.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-exe.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-pic.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-pie.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-caller-pcrel.s: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-pcrel-pic.d: Likewise.
* testsuite/ld-riscv-elf/ifunc-seperate-pcrel-pie.d: Likewise.
So, here's my suggestion for making _init .. __etext cover .text +
.rodata (including things like the read-only exception tables) for
elf64mmix. A quick web search gives that __etext (and friends) isn't
well defined, so each target can interpret the "end of text segment"
to their own liking. It seems likely this change is also a better fit
than the default for other ports, at least those with .rodata after
.text in the same segment.
The presence of a separate rodata-segment is optional (and not true
for elf64mmix). This is reflected in the name as SEPARATE_TEXT /
SEPARATE_CODE isn't considered, to keep it simple; each target has to
make sure their settings of variables make sense.
ld:
* scripttempl/elf.sc (ETEXT_LAST_IN_RODATA_SEGMENT): New variable.
* emulparams/elf64mmix.sh (ETEXT_LAST_IN_RODATA_SEGMENT): Define.
* testsuite/ld-mmix/sec-1.d: Adjust.
Since COMMONPAGESIZE is set for other Solaris targets, including x86-64
Solaris, also set COMMONPAGESIZE for i386 Solaris to fix
FAIL: Build pr20995-2.so
FAIL: pr20995-2
PR 25732
* emulparams/elf_i386_ldso.sh (COMMONPAGESIZE): New.
* testsuite/ld-elf/shared.exp:Don't xfail pr20995-2 tests for
Solaris.
On Linux/x86, when -static is passed to gcc, gcc passes it to linker
before all input files suitable for creating static executable. X86
linker will report error for dynamic input objects if -static is passed
at command-line before all input files without --dynamic-linker unless
--no-dynamic-linker is used.
bfd/
PR ld/24920
* elf-linker-x86.h (elf_linker_x86_params): Add
static_before_all_inputs and has_dynamic_linker.
* elfxx-x86.c (_bfd_x86_elf_link_setup_gnu_properties): Report
dynamic input objects if -static is passed at command-line
before all input files without --dynamic-linker unless
--no-dynamic-linker is used.
ld/
PR ld/24920
* emulparams/elf32_x86_64.sh: Use static.sh.
* emulparams/elf_i386.sh: Likewise.
* emulparams/elf_x86_64.sh: Likewise.
* emulparams/static.sh: New file.
* emultempl/elf-x86.em: Include "ldlex.h".
* testsuite/ld-elf/pr24920.err: New file.
* testsuite/ld-elf/linux-x86.exp: Run ld/24920 tests.
PR 25469
bfd * archures.c: Add GBZ80 and Z80N machine values.
* reloc.c: Add BFD_RELOC_Z80_16_BE.
* coff-z80.c: Add support for new reloc.
* coffcode.h: Add support for new machine values.
* cpu-z80.c: Add support for new machine names.
* elf32-z80.c: Add support for new reloc.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
binutils* readelf.c (get_machine_flags): Add support for Z80N machine
number.
gas * config/tc-z80.c: Add -gbz80 command line option to generate code
for the GameBoy Z80. Add support for generating DWARF.
* config/tc-z80.h: Add support for DWARF debug information
generation.
* doc/c-z80.texi: Document new command line option.
* testsuite/gas/z80/gbz80_all.d: New file.
* testsuite/gas/z80/gbz80_all.s: New file.
* testsuite/gas/z80/z80.exp: Run the new tests.
* testsuite/gas/z80/z80n_all.d: New file.
* testsuite/gas/z80/z80n_all.s: New file.
* testsuite/gas/z80/z80n_reloc.d: New file.
include * coff/internal.h (R_IMM16BE): Define.
* elf/z80.h (EF_Z80_MACH_Z80N): Define.
(R_Z80_16_BE): New reloc.
ld * emulparams/elf32z80.sh: Use z80 emulation.
* emultempl/z80.em: Make generic to both COFF and ELF Z80 emulations.
* emultempl/z80elf.em: Delete.
* testsuite/ld-elf/pr22450.d: Expect to fail for the Z80.
* testsuite/ld-elf/sec64k.exp: Fix Z80 assembly.
* testsuite/ld-unique/pr21529.s: Avoid register name conflict.
* testsuite/ld-unique/unique.s: Likewise.
* testsuite/ld-unique/unique_empty.s: Likewise.
* testsuite/ld-unique/unique_shared.s: Likewise.
* testsuite/ld-unique/unique.d: Updated expected output.
* testsuite/ld-z80/arch_z80n.d: New file.
* testsuite/ld-z80/comb_arch_z80_z80n.d: New file.
* testsuite/ld-z80/labels.s: Add more labels.
* testsuite/ld-z80/relocs.s: Add more reloc tests.
* testsuite/ld-z80/relocs_f_z80n.d: New file
opcodes * z80-dis.c: Add support for GBZ80 opcodes.
PR 25224
bfd * Makefile.am: Add z80-elf target support.
* configure.ac: Likewise.
* targets.c: Likewise.
* config.bfd: Add z80-elf target support and new arches: ez80 and z180.
* elf32-z80.c: New file.
* archures.c: Add new z80 architectures: eZ80 and Z180.
* coffcode.h: Likewise.
* cpu-z80.c: Likewise.
* bfd-in2.h: Likewise plus additional Z80 relocations.
* coff-z80.c: Add new relocations for Z80 target and local label check.
gas * config/tc-z80.c: Add new architectures: Z180 and eZ80. Add support
for assembler code generated by SDCC. Add new relocation types. Add
z80-elf target support.
* config/tc-z80.h: Add z80-elf target support. Enable dollar local
labels. Local labels starts from ".L".
* testsuite/gas/all/fwdexp.d: Fix failure due to symbol conflict.
* testsuite/gas/all/fwdexp.s: Likewise.
* testsuite/gas/z80/suffix.d: Fix failure on ELF target.
* testsuite/gas/z80/z80.exp: Add new tests
* testsuite/gas/z80/dollar.d: New file.
* testsuite/gas/z80/dollar.s: New file.
* testsuite/gas/z80/ez80_adl_all.d: New file.
* testsuite/gas/z80/ez80_adl_all.s: New file.
* testsuite/gas/z80/ez80_adl_suf.d: New file.
* testsuite/gas/z80/ez80_isuf.s: New file.
* testsuite/gas/z80/ez80_z80_all.d: New file.
* testsuite/gas/z80/ez80_z80_all.s: New file.
* testsuite/gas/z80/ez80_z80_suf.d: New file.
* testsuite/gas/z80/r800_extra.d: New file.
* testsuite/gas/z80/r800_extra.s: New file.
* testsuite/gas/z80/r800_ii8.d: New file.
* testsuite/gas/z80/r800_z80_doc.d: New file.
* testsuite/gas/z80/z180.d: New file.
* testsuite/gas/z80/z180.s: New file.
* testsuite/gas/z80/z180_z80_doc.d: New file.
* testsuite/gas/z80/z80_doc.d: New file.
* testsuite/gas/z80/z80_doc.s: New file.
* testsuite/gas/z80/z80_ii8.d: New file.
* testsuite/gas/z80/z80_ii8.s: New file.
* testsuite/gas/z80/z80_in_f_c.d: New file.
* testsuite/gas/z80/z80_in_f_c.s: New file.
* testsuite/gas/z80/z80_op_ii_ld.d: New file.
* testsuite/gas/z80/z80_op_ii_ld.s: New file.
* testsuite/gas/z80/z80_out_c_0.d: New file.
* testsuite/gas/z80/z80_out_c_0.s: New file.
* testsuite/gas/z80/z80_reloc.d: New file.
* testsuite/gas/z80/z80_reloc.s: New file.
* testsuite/gas/z80/z80_sli.d: New file.
* testsuite/gas/z80/z80_sli.s: New file.
ld * Makefile.am: Add new target z80-elf
* configure.tgt: Likewise.
* emultempl/z80.em: Add support for eZ80 and Z180 architectures.
* emulparams/elf32z80.sh: New file.
* emultempl/z80elf.em: Likewise.
* testsuite/ld-z80/arch_ez80_adl.d: Likewise.
* testsuite/ld-z80/arch_ez80_z80.d: Likewise.
* testsuite/ld-z80/arch_r800.d: Likewise.
* testsuite/ld-z80/arch_z180.d: Likewise.
* testsuite/ld-z80/arch_z80.d: Likewise.
* testsuite/ld-z80/comb_arch_ez80_z80.d: Likewise.
* testsuite/ld-z80/comb_arch_z180.d: Likewise.
* testsuite/ld-z80/labels.s: Likewise.
* testsuite/ld-z80/relocs.s: Likewise.
* testsuite/ld-z80/relocs_b_ez80.d: Likewise.
* testsuite/ld-z80/relocs_b_z80.d: Likewise.
* testsuite/ld-z80/relocs_f_z80.d: Likewise.
* testsuite/ld-z80/z80.exp: Likewise.
opcodes * z80-dis.c: Add support for eZ80 and Z80 instructions.
I think it is past time to remove CR16C support. CR16C was added in
2004, and only for ld. gas and binutils support is lacking, and there
have been no commits to bfd/elf32-cr16c.c other than warning fixes or
global maintainers making changes to all targets. I see no maintainer
listed for CR16C, and no commits from anyone at NSC supporting the
target. Furthermore, at the time the CR16 support was added in 2007,
config.sub was changed upstream to no longer recognise cr16c as a
valid cpu. That means the CR16C ld support is only available as a
secondary target by configuring with, for example,
--enable-targets=all or --enable-targets=cr16c-unknown-elf. No
testing of the CR16C target is possible.
include/
* elf/cr16c.h: Delete.
bfd/
* cpu-cr16c.c: Delete.
* elf32-cr16c.c: Delete.
* Makefile.am,
* archures.c,
* config.bfd,
* configure.ac,
* reloc.c,
* targets.c: Remove cr16c support.
* Makefile.in,
* bfd-in2.h,
* configure,
* libbfd.h,
* po/SRC-POTFILES.in: Regenerate.
ld/
* emulparams/elf32cr16c.sh: Delete.
* scripttempl/elf32cr16c.sc: Delete.
* Makefile.am,
* configure.tgt: Remove cr16c support.
* NEWS: Mention removal of cr16c.
* Makefile.in,
* po/BLD-POTFILES.in: Regenerate.
A target that sets EMBEDDED non-empty is one that doesn't want to put
the ELF file header or program header in a memory image. Likely the
target isn't interested in supporting dynamically loaded executables,
shared libraries, or PIEs, because loaders for such binaries generally
require program headers to be present. This isn't 100% true though.
The target might be one where the loader accesses the file system in
order to retrieve headers.
Also, note that not all "shared libraries" require gcc -shared or the
shared library support in the linker. I believe one implementation of
shared libraries on uclinux is like this.
So, this patch removes GENERATE_SHLIB_SCRIPT and GENERATE_PIE_SCRIPT
in most emulparams files where EMBEDDED is set, restoring the shared
lib and pie support in emulparams files that unset EMBEDDED after
including a file where the support is removed.
Exceptions to the general rule that EMBEDDED disables shared libs are:
arm*-*-symbianelf*, where the OS wants shared library support
without ELF program headers in the image, and
sh*-*-uclinux*, where I've left things as they were, ie. both
EMBEDDED and GENERATE_SHLIB_SCRIPT because I'm unsure as to the
shared library scheme.
* emulparams/aarch64elf.sh (GENERATE_SHLIB_SCRIPT),
(GENERATE_PIE_SCRIPT): Don't set.
* emulparams/aarch64elf32.sh (GENERATE_SHLIB_SCRIPT),
(GENERATE_PIE_SCRIPT): Don't set.
* emulparams/arcelf.sh (GENERATE_SHLIB_SCRIPT): Don't set.
* emulparams/armelf.sh (GENERATE_SHLIB_SCRIPT),
(GENERATE_PIE_SCRIPT): Don't set.
* emulparams/armelf_fbsd.sh (GENERATE_SHLIB_SCRIPT): Set.
* emulparams/armelf_nbsd.sh (GENERATE_SHLIB_SCRIPT),
(GENERATE_PIE_SCRIPT): Set.
* emulparams/armelf_vxworks.sh (GENERATE_SHLIB_SCRIPT): Set.
* emulparams/armsymbian.sh (GENERATE_SHLIB_SCRIPT): Set.
* emulparams/elf32bfin.sh (GENERATE_SHLIB_SCRIPT): Don't set.
* emulparams/elf32microblaze.sh (GENERATE_SHLIB_SCRIPT): Don't set.
* emulparams/score3_elf.sh (GENERATE_SHLIB_SCRIPT): Don't set.
* emulparams/shelf.sh (GENERATE_SHLIB_SCRIPT): Don't set.
* emulparams/shelf_nbsd.sh (GENERATE_SHLIB_SCRIPT),
(GENERATE_PIE_SCRIPT): Set.
* emulparams/shelf_uclinux.sh (GENERATE_SHLIB_SCRIPT): Set.
No real changes here, just making it that much easier to find targets
that set EMBEDDED to a non-empty string.
* emulparams/elf32bfinfd.sh: Unset EMBEDDED rather assigning as empty.
* emulparams/elf32frvfd.sh: Likewise.
* emulparams/elf32lm32fd.sh: Likewise.
* emulparams/i386lynx.sh: Likewise.
This implements padding of orphan executable sections for PowerPC.
Of course, the simple implementation of bfd_arch_ppc_nop_fill and
removing the NOP definition didn't work, with powerpc64 hitting a
testsuite failure linking to S-records. That's because the srec
target is BFD_ENDIAN_UNKNOWN so the test of bfd_big_endian (abfd) in
default_data_link_order therefore returned false, resulting in a
little-endian nop pattern. The rest of the patch fixes that problem
by adding a new field to bfd_link_info that can be used to determine
actual endianness on targets like srec.
PR 13616
include/
* bfdlink.h (struct bfd_link_info <big_endian>): New field.
bfd/
* cpu-powerpc.c (bfd_arch_ppc_nop_fill): New function, use it
for all ppc arch info.
* linker.c (default_data_link_order): Pass info->big_endian to
arch_info->fill function.
ld/
* emulparams/elf64lppc.sh (NOP): Don't define.
* emulparams/elf64ppc.sh (NOP): Don't define.
* ldwrite.c (build_link_order): Use link_info.big_endian. Move
code determining endian to use for data_statement to..
* ldemul.c (after_open_default): ..here. Set link_info.big_endian.
This patch is a reimplementation of [1] which was submitted in 2015 by
Neil Schellenberger. Copyright issue was sorted out [2] last year.
It proposed a new section (.gnu.xhash) and related dynamic tag
(DT_GNU_XHASH). The new section would be virtually identical to the
existing .gnu.hash except for the translation table (xlat) which would
contain correct MIPS .dynsym indexes corresponding to the hashvals in
chains. This is because MIPS ABI imposes a different ordering on the
dynsyms than the one expected by the .gnu.hash section. Another addition
would be a leading word (ngnusyms) which would contain the number of
entries in the translation table.
In this patch, the new section name and dynamic tag are changed to
reflect the fact that the section should be treated as MIPS-specific
(.MIPS.xhash and DT_MIPS_XHASH).
This patch addresses the alignment issue as reported in [3], which is
caused by the leading word added to the .MIPS.xhash section. Leading word
is removed in this patch, and the number of entries in the translation
table is now calculated using DT_MIPS_SYMTABNO dynamic tag (this is
addressed by the corresponding glibc patch).
Suggestions on coding style in [4] were taken into account. Existing
GNU hash testcase was covered, and another one was added in the MIPS
part of the testsuite.
The other major change is reserving MIPS ABI version 5 for .MIPS.xhash,
marking the need of support for .MIPS.xhash in the dynamic linker (again,
addressed in the corresponding glibc patch). This is something which I
am not sure of, especially after reading [5]. I am confused on whether
this ABI version is reserved for IFUNC, or it can be used for this
purpose.
Already mentioned glibc patch is submitted at:
https://sourceware.org/ml/libc-alpha/2019-06/msg00456.html
[1] https://sourceware.org/ml/binutils/2015-10/msg00057.html
[2] https://sourceware.org/ml/binutils/2018-03/msg00025.html
[3] https://sourceware.org/ml/binutils/2016-01/msg00006.html
[4] https://sourceware.org/ml/binutils/2016-02/msg00097.html
[5] https://sourceware.org/ml/libc-alpha/2016-12/msg00853.html
ld * emulparams/elf32bmip.sh: Add .MIPS.xhash section.
* emulparams/elf32bmipn32-defs.sh: Add .MIPS.xhash section.
* emulparams/elf64bmip-defs.sh: Add .MIPS.xhash section.
* emultempl/mipself.em: Remove mips_after_parse function.
* testsuite/ld-elf/hash.d: Update comment.
* testsuite/ld-mips-elf/hash1.d: New test.
* testsuite/ld-mips-elf/hash1.s: Ditto.
* testsuite/ld-mips-elf/hash1a.d: Remove.
* testsuite/ld-mips-elf/hash1b.d: Ditto.
* testsuite/ld-mips-elf/hash1c.d: Ditto
* testsuite/ld-mips-elf/hash2.d: New test.
* testsuite/ld-mips-elf/mips-elf.exp: New tests.
* testsuite/ld-mips-elf/start.s: New test.
bfd * elf-bfd.h (struct elf_backend_data): New members.
* elflink.c (_bfd_elf_link_create_dynamic_sections): Create
.gnu.hash section if necessary.
(struct collect_gnu_hash_codes): New member.
(elf_gnu_hash_process_symidx): New function name.
(elf_renumber_gnu_hash_syms): Ignore local and undefined
symbols. Record xlat location for every symbol which should have
a .MIPS.xhash entry.
(bfd_elf_size_dynamic_sections): Add DT_GNU_HASH dynamic tag to
dynamic section if necessary.
(GNU_HASH_SECTION_NAME): New define.
(bfd_elf_size_dynsym_hash_dynstr): Get .MIPS.xhash section.
Update the section size info.
* elfxx-mips.c (struct mips_elf_hash_sort_data): New members.
(struct mips_elf_link_hash_entry): New member.
(mips_elf_link_hash_newfunc): Initialize .MIPS.xhash translation
table location.
(mips_elf_sort_hash_table): Initialize the pointer to the
.MIPS.xhash section.
(mips_elf_sort_hash_table_f): Populate the .MIPS.xhash
translation table entry with the symbol dynindx.
(_bfd_mips_elf_section_from_shdr): Add SHT_MIPS_XHASH.
(_bfd_mips_elf_fake_sections): Initialize .MIPS.xhash section
info.
(_bfd_mips_elf_create_dynamic_sections): Create .MIPS.xhash
section.
(_bfd_mips_elf_size_dynamic_sections): Add DT_MIPS_XHASH tag to
dynamic section.
(_bfd_mips_elf_finish_synamic_sections): Add DT_MIPS_XHASH.
(_bfd_mips_elf_final_write_processing): Set .MIPS.xhash section
sh_link info.
(_bfd_mips_elf_get_target_dtag): Get DT_MIPS_XHASH tag.
(MIPS_LIBC_ABI_XHASH): New ABI version enum value.
(_bfd_mips_post_process_headers): Mark the ABI version as
MIPS_LIBC_ABI_XHASH if there exists a .MIPS.xhash section,
but not a .hash section.
(_bfd_mips_elf_record_xhash_symbol): New function. Record a
position in the translation table, associated with the hash
entry.
* elfxx-mips.h (literal_reloc_p): Define
elf_backend_record_xhash_symbol backend hook.
* elfxx-target.h: Initialize elf_backend_record_xhash_symbol
backend hook.
include * elf/mips.h (SHT_GNU_XHASH): New define.
(DT_GNU_XHASH): New define.
binutils * readelf.c (get_mips_dynamic_type): Return MIPS_XHASH dynamic type.
(get_mips_section_type_name): Return MI{S_XHASH name string.
(dynamic_section_mips_val): Initialize the .MIPS.xhash dynamic
info.
(process_symbol_table): Initialize the .MIPS.xhash section
pointer. Adjust the readelf output to support the new section.
(process_object): Set the .MIPS.xhash dynamic info to zero.
This patch makes the elf64bpf emulation to use it's own linker script,
based on elf.sc. At the moment, the only change is that the BPF
executable doesn't define an entry symbol (BPF programs feature
several entry points scattered in several sections.)
This is a step towards the goal of generating proper ELF executables
that would be loaded by the kernel's libbpf. We are not there yet:
BPF "programs" should still be linked with -r.
This change removes a warning while linking executables, decreases the
number of unsupported tests in the target from 47 to 29, and increases
the number of expected passes from 104 to 145.
Regtested in x86_64 for all targets.
No regressions.
ld/ChangeLog:
2019-08-07 Jose E. Marchesi <jose.marchesi@oracle.com>
* scripttempl/elf64bpf.sc: Adapted from elf.sc.
* emulparams/elf64bpf.sh (SCRIPT_NAME): Use elf64bpf.
(EMBEDDED): Define.
* testsuite/ld-bpf/call-1.d: Do not expect a warning regarding an
undefined entry symbol.
* testsuite/ld-bpf/jump-1.d: Likewise.
* testsuite/ld-undefined/undefined.exp: Do not pass '-e entry' to
ld in BPF targets, and do not expect line number information.
* testsuite/ld-srec/srec.exp (run_srec_test): xfail s-record tests
in BPF targets.
This changes s12z to use generic.em and genelf.em, which is more
suited to targets that use the generic linker hash table. A tweak or
two to some testsuite predicates then gives a clean testsuite result
on the target.
PR 24596
binutils/
* testsuite/lib/binutils-common.exp (supports_gnu_unique): Add
s12z to targets not supporting this feature.
ld/
* emulparams/m9s12zelf.sh (TEMPLATE_NAME): Set to generic.
(EXTRA_EM_FILE): Define to genelf.
* testsuite/lib/ld-lib.exp (uses_genelf): Add s12z.
This patch adds support to the linker for the Linux eBPF architecture.
A minimal testsuite is included.
ld/ChangeLog:
2019-05-23 Jose E. Marchesi <jose.marchesi@oracle.com>
* Makefile.am (ALL_64_EMULATION_SOURCES): Add eelf64bpf.c.
* Makefile.in (prefix): Regenerate.
* configure.tgt (targ_extra_ofiles): Add case for bpf-*-* targets.
* emulparams/elf64bpf.sh: New file.
* testsuite/lib/ld-lib.exp (check_gc_sections_available): Add
bpf-*-* to the list of targets not supporting gc-sections.
* testsuite/ld-bpf/bar.s: New file.
* testsuite/ld-bpf/jump-1.d: Likewise.
* testsuite/ld-bpf/foo.s: Likewise.
* testsuite/ld-bpf/call-1.d: Likewise.
* testsuite/ld-bpf/bpf.exp: Likewise.
* testsuite/ld-bpf/baz.s: Likewise.
In looking at the csky-elf vs. csky-linux differences, the first thing
I compared was csky_elf.sh and cskyelf_linux.sh. Those files are
mostly the same but besides the real differences, annoyingly have some
lines ordered differently. It's better in such cases to have one file
source the other, making differences plain. This patch does that for
csky and microblaze, removes an unused variable defined in a few
places, and fixes ld makefile dependencies.
* Makefile.am (eskyelf.c, eskyelf_linux.c): Depend on cskyelf.em.
(ecskyelf_linux.c): Depend on cskyelf.sh.
(eelf32microblazeel.c): Depend on elf32microblaze.sh.
* Makefile.in: Regenerate.
* emulparams/cskyelf.sh: Comment regarding cskelf_linux.sh.
(PAGE_SIZE): Don't define.
* emulparams/cskyelf_linux.sh: Source sckyelf.sh, leaving just
the differing variable defs/undefs.
* emulparams/elf32mcore.sh (PAGE_SIZE): Don't define.
* emulparams/elf32microblaze.sh: Comment re. elf32microblazeel.sh.
(OUTPUT_FORMAT): Use BIG_OUTPUT_FORMAT.
(PAGE_SIZE): Don't define.
* emulparams/elf32microblazeel.sh: Source elf32microblaze.sh,
leaving just the differing OUTPUT_FORMAT.
A number of the fails are due to ld supporting the creation of shared
libraries but not allowing linking against them without using an
option like -Bdynamic.
FAIL: Symbol export class test (final shared object)
FAIL: PROVIDE_HIDDEN test 4
FAIL: PROVIDE_HIDDEN test 6
FAIL: PROVIDE_HIDDEN test 10
FAIL: PROVIDE_HIDDEN test 12
FAIL: Build pr22471b.so
FAIL: Build pr22649-2b.so
FAIL: Build pr22649-2d.so
FAIL: PR ld/20828 dynamic symbols with section GC (plain)
FAIL: PR ld/20828 dynamic symbols with section GC (version script)
FAIL: PR ld/20828 dynamic symbols with section GC (versioned)
FAIL: PR ld/21233 dynamic symbols with section GC (--undefined)
FAIL: PR ld/21233 dynamic symbols with section GC (--require-defined)
FAIL: PR ld/21233 dynamic symbols with section GC (EXTERN)
FAIL: Build pr22150
FAIL: PR ld/14170
FAIL: Link using broken linker script
FAIL: pr17068 link --as-needed lib in group
FAIL: ld-gc/pr20022
* emulparams/elf32lm32fd.sh (DYNAMIC_LINK): Undef.
This patch series is a new binutils port for C-SKY processors, including support for both the V1 and V2 processor variants. V1 is derived from the MCore architecture while V2 is substantially different, with mixed 16- and 32-bit instructions, a larger register set, a different (but overlapping) ABI, etc. There is support for bare-metal ELF targets and Linux with both glibc and uClibc.
This code is being contributed jointly by C-SKY Microsystems and Mentor Graphics. C-SKY is responsible for the technical content and has proposed Lifang Xia and Yunhai Shang as port maintainers. (Note that C-SKY does have a corporate copyright assignment on file with the FSF.) Mentor Graphics' role has been cleaning up the code, adding documentation and additional test cases, etc, to address issues we anticipated reviewers would complain about.
bfd * Makefile.am (ALL_MACHINES, ALL_MACHINES_CFILES): Add C-SKY.
(BFD32_BACKENDS, BFD_BACKENDS_CFILES): Likewise.
* Makefile.in: Regenerated.
* archures.c (enum bfd_architecture): Add bfd_arch_csky and
related bfd_mach defines.
(bfd_csky_arch): Declare.
(bfd_archures_list): Add C-SKY.
* bfd-in.h (elf32_csky_build_stubs): Declare.
(elf32_csky_size_stubs): Declare.
(elf32_csky_next_input_section: Declare.
(elf32_csky_setup_section_lists): Declare.
* bfd-in2.h: Regenerated.
* config.bfd: Add C-SKY.
* configure.ac: Likewise.
* configure: Regenerated.
* cpu-csky.c: New file.
* elf-bfd.h (enum elf_target_id): Add C-SKY.
* elf32-csky.c: New file.
* libbfd.h: Regenerated.
* reloc.c: Add C-SKY relocations.
* targets.c (csky_elf32_be_vec, csky_elf32_le_vec): Declare.
(_bfd_target_vector): Add C-SKY target vector entries.
binutils* readelf.c: Include elf/csky.h.
(guess_is_rela): Handle EM_CSKY.
(dump_relocations): Likewise.
(get_machine_name): Likewise.
(is_32bit_abs_reloc): Likewise.
include * dis-asm.h (csky_symbol_is_valid): Declare.
* opcode/csky.h: New file.
opcodes * Makefile.am (TARGET_LIBOPCODES_CFILES): Add csky-dis.c.
* Makefile.in: Regenerated.
* configure.ac: Add C-SKY.
* configure: Regenerated.
* csky-dis.c: New file.
* csky-opc.h: New file.
* disassemble.c (ARCH_csky): Define.
(disassembler, disassemble_init_for_target): Add case for ARCH_csky.
* disassemble.h (print_insn_csky, csky_get_disassembler): Declare.
gas * Makefile.am (TARGET_CPU_CFILES): Add entry for C-SKY.
(TARGET_CPU_HFILES, TARGET_ENV_HFILES): Likewise.
* Makefile.in: Regenerated.
* config/tc-csky.c: New file.
* config/tc-csky.h: New file.
* config/te-csky_abiv1.h: New file.
* config/te-csky_abiv1_linux.h: New file.
* config/te-csky_abiv2.h: New file.
* config/te-csky_abiv2_linux.h: New file.
* configure.tgt: Add C-SKY.
* doc/Makefile.am (CPU_DOCS): Add entry for C-SKY.
* doc/Makefile.in: Regenerated.
* doc/all.texi: Set CSKY feature.
* doc/as.texi (Overview): Add C-SKY options.
(Machine Dependencies): Likewise.
* doc/c-csky.texi: New file.
* testsuite/gas/csky/*: New test cases.
ld * Makefile.am (ALL_EMULATION_SOURCES): Add C-SKY emulations.
(ecskyelf.c, ecskyelf_linux.c): New rules.
* Makefile.in: Regenerated.
* configure.tgt: Add C-SKY.
* emulparams/cskyelf.sh: New file.
* emulparams/cskyelf_linux.sh: New file.
* emultempl/cskyelf.em: New file.
* gen-doc.texi: Add C-SKY.
* ld.texi: Likewise.
(Options specific to C-SKY targets): New section.
* testsuite/ld-csky/*: New tests.
Currently on S/390 the .got.plt always comes first which prevents the
GNU_RELRO segment from being extended across the non-plt GOT entries.
Just swapping both unfortunately is not that simple since our ABI
requires the _GLOBAL_OFFSET_TABLE_ symbol to point to the very
beginning of the entire GOT. Of the 3 magic GOT entries the first is
accessed via got pointer while second and third are being accessed via
DT_PLTGOT. In order to keep them together we make DT_PLTGOT to point
to the .got instead of .got.plt. However, this violates an assumption
in the dynamic linker prelink undo code about the GOTPLT entries
starting at DT_PLTGOT + 3. We got rid of this requirement with a
Glibc patch already in version 2.24:
https://sourceware.org/ml/libc-alpha/2016-06/msg01302.html
So the S/390 relro GOT layout will look like this with this patch:
+----------------------------------+
|got[0]: DYNAMIC | <--- _GLOBAL_OFFSET_TABLE_ == DT_PLTGOT .got
|got[1]: link_map parm |
|got[2]: &_dl_runtime_resolve |
+----------------------------------+
| | non-plt GOT entries
| |
| |
+----------------------------------+
| | <--- .gotplt, PLT GOT entries
| |
| |
| |
+----------------------------------+
The patch detects the current layout in size_dynamic_section in order
to deal also with linker scripts not generated by this ld version.
With partial relro enabled we pick a linker script where .got and
.got.plt are swapped which then triggers the rest of the logic.
ld/ChangeLog:
2018-07-18 Andreas Krebbel <krebbel@linux.ibm.com>
* emulparams/elf64_s390.sh: Define GENERATE_RELRO_SCRIPT and
SEPARATE_GOTPLT.
* testsuite/ld-s390/gotreloc_64-relro-1.dd: New test.
* testsuite/ld-s390/gotreloc_64-norelro-1.dd: Renamed from ...
* testsuite/ld-s390/gotreloc_64-1.dd: ... this.
* testsuite/ld-s390/s390.exp: Split the GOT testcase into two.
bfd/ChangeLog:
2018-07-18 Andreas Krebbel <krebbel@linux.ibm.com>
* elf-s390-common.c (s390_gotplt_after_got_p): New function.
(s390_got_pointer): New function.
(s390_got_offset): New function.
(s390_gotplt_offset): New function.
* elf64-s390.c (allocate_dynrelocs): Adjust comment.
(elf_s390_size_dynamic_sections): Move space for magic GOT entries
from .got.plt to .got if necessary and pick the right location for
_GLOBAL_OFFSET_TABLE_.
(elf_s390_relocate_section): Use the wrapper functions from
elf-s390-common.c to deal with both possible layouts (either .got
or .got.plt first).
(elf_s390_finish_dynamic_sections): Likewise.
(elf_s390_finish_dynamic_symbol): Make the location of the GOT
magic entries conditional.
elf32-xgate.c contains many functions that are only stubs and
elf32-xgate.h contains unused declarations. While this might be
reasonable for the initial commit of a port with subsequent work
fleshing out the stubs, xgate has only had two minor target specific
patches since the initial commit over six years ago. The rest of the
changes have been general maintenance work applied to all ELF targets,
and some of this work could have been avoided if the stubs hadn't been
there. So this patch removes all the stubs.
I've kept the functionality of the old elf32_xgate_add_symbol_hook,
implemented in elf32_xgate_backend_symbol_processing. Presumably,
that's to set the symbol st_target_internal flag for use in
elf32-m68hc1x.c:elf32_m68hc11_relocate_section.
The empty elf32_xgate_relocate_section meant that xgate had no linker.
Or at least, no linker relocation processing. Deleting the
elf_backend_relocate_section define means the target will now use the
generic linker reloc processing. How good that is will depend on the
accuracy of the reloc howtos..
I haven't updated the ld testsuite to xfail tests expected to fail
for generic elf targets.
bfd/
* elf32-xgate.h: Delete.
* elf32-xgate.c: Delete unnecessary forward declarations, add two
that are now needed.
(xgate_elf_bfd_link_hash_table_create)
(xgate_elf_bfd_link_hash_table_free)
(xgate_elf_set_mach_from_flags, struct xgate_scan_param)
(stub_hash_newfunc, elf32_xgate_add_symbol_hook)
(elf32_xgate_setup_section_lists, elf32_xgate_size_stubs)
(elf32_xgate_build_stubs, elf32_xgate_check_relocs)
(elf32_xgate_relocate_section, _bfd_xgate_elf_set_private_flags)
(elf32_xgate_post_process_headers): Delete.
(elf32_xgate_backend_symbol_processing): New function.
(xgate_elf_ignore_reloc, xgate_elf_special_reloc)
(_bfd_xgate_elf_print_private_bfd_data): Make static.
(ELF_TARGET_ID, elf_info_to_howto, elf_backend_check_relocs)
(elf_backend_relocate_section, elf_backend_object_p)
(elf_backend_final_write_processing, elf_backend_can_gc_sections)
(elf_backend_post_process_headers, elf_backend_add_symbol_hook)
(bfd_elf32_bfd_link_hash_table_create)
(bfd_elf32_bfd_set_private_flags)
(xgate_stub_hash_lookup): Don't define.
(elf_backend_symbol_processing): Define.
* elf-bfd.h (elf_target_id): Delete XGATE_ELF_DATA.
ld/
* emulparams/xgateelf.sh (TEMPLATE_NAME) Set to generic.
(EXTRA_EM_FILE): Set to genelf.