"Unambiguous" is is in particular taking as reference the assembler,
which also accepts certain insns - despite them allowing for varying
operand size, and hence in principle being ambiguous - without any
suffix. For example, from the very beginning of the life of x86-64 I had
trouble understanding why a plain and simple RET had to be printed as
RETQ. In case someone really used the 16-bit form, RETW disambiguates
the two quite fine.
Since the addr32 (0x67) prefix zero-extends the lower 32 bits address to
64 bits, change disassembler to zero-extend the lower 32 bits displacement
to 64 bits when there is no base nor index registers.
gas/
PR gas/26237
* testsuite/gas/i386/addr32.s: Add tests for 32-bit wrapped around
address.
* testsuite/gas/i386/x86-64-addr32.s: Likewise.
* testsuite/gas/i386/addr32.d: Updated.
* testsuite/gas/i386/x86-64-addr32-intel.d: Likewise.
* testsuite/gas/i386/x86-64-addr32.d: Likewise.
* testsuite/gas/i386/ilp32/x86-64-addr32-intel.d: Likewise.
* testsuite/gas/i386/ilp32/x86-64-addr32.d: Likewise.
opcodes/
PR gas/26237
* i386-dis.c (OP_E_memory): Without base nor index registers,
32-bit displacement to 64 bits.
%db<n> is an AT&T invention; the Intel documentation and MASM have only
ever specified DRn (in line with CRn and TRn). (In principle gas also
shouldn't accept the names in Intel mode, but at least for now I've kept
things as they are. Perhaps as a first step this should just be warned
about.)
The only valid (embedded or explicit) prefix being the data size one
(which is a fairly common pattern), avoid going through prefix_table[].
Instead extend the "required prefix" logic to also handle PREFIX_DATA
alone in a table entry, now used to identify this case. This requires
moving the (adjusted) ->prefix_requirement logic ahead of the printing
of stray prefixes, as the latter needs to observe the new setting of
PREFIX_DATA in used_prefixes.
Also add PREFIX_OPCODE on related entries when previously there was
mistakenly no decode step through prefix_table[].
The operands don't allow disambiguating the insn in 64-bit mode, and
hence suffixes need to be emitted not just in AT&T mode. Achieve this
by re-using %LQ while dropping PCMPESTR_Fixup().
MOVBE_Fixup() is entirely redundant with the S macro already used on the
mnemonics, leading to double suffixes in suffix-always mode. Drop the
function.
Just like other insns with GPR operands, CRC32 with only register
operands should not get a suffix added unless in suffix-always mode.
Do away with CRC32_Fixup() altogether, using other more generic logic
instead.
Unlike for non-zero values passed to USED_REX(), where rex_used gets
updated only when the respective bit was actually set in the encoding,
zero getting passed in is not further guarded, yet such a (potentially
"empty") REX prefix takes effect only when there are registers numbered
4 and up.
There's only a very limited set of modes that this function gets invoked
with - avoid it being more generic than it needs to be. This may, down
the road, allow actually doing away with the function altogether.
This eliminates a first improperly used "USED_REX (0)".
Various of the test expectations get adjusted later in this and a
subsequent series, so in order to avoid having to adjust more instances
than necessary fold respective test ILP32 expectations with their main
64-bit counterparts where they're identical anyway.
When encoding a 32-bit offset, there is no need to sign-extend it to 64
bits since only the lower 32 bits are used.
* config/tc-i386.c (offset_in_range): Remove 32-bit sign
extension.
git commit af2b318648 introduced a number of XPASSes. This removes
them. (It also introduces a FAIL on ft32-elf but the comment in the
.d file didn't adequately explain why the failure should be expected.)
* testsuite/gas/elf/dwarf2-7.d: Remove most xfails.
* testsuite/gas/elf/dwarf2-12.d: Likewise.
* testsuite/gas/elf/dwarf2-13.d: Likewise.
* testsuite/gas/elf/dwarf2-14.d: Likewise.
Extract extended states from operand types in instruction template. Set
xstate_zmm for master register move.
* config/tc-i386.c (_i386_insn): Remove has_regmmx, has_regxmm,
has_regymm, has_regzmm and has_regtmm. Add xstate.
(md_assemble): Set i.xstate from operand types in instruction
template.
(build_modrm_byte): Updated.
(output_insn): Check i.xstate.
* testsuite/gas/i386/i386.exp: Run property-6 and
x86-64-property-6.
* testsuite/gas/i386/property-6.d: New file.
* testsuite/gas/i386/property-6.s: Updated.
* testsuite/gas/i386/x86-64-property-6.d: Likewise.
Since VEX/EVEX vector instructions will always update the full YMM/ZMM
registers, set YMM/ZMM features for VEX/EVEX vector instructions.
* config/tc-i386.c (output_insn): Set YMM/ZMM features for
VEX/EVEX vector instructions.
* testsuite/gas/i386/property-4.d: New file.
* testsuite/gas/i386/property-4.s: Likewise.
* testsuite/gas/i386/property-5.d: Likewise.
* testsuite/gas/i386/property-5.s: Likewise.
* testsuite/gas/i386/x86-64-property-4.d: Likewise.
* testsuite/gas/i386/x86-64-property-5.d: Likewise.
Just like other VEX-encoded scalar insns do.
Besides a testcase for this behavior also introduce one to verify that
XOP scalar insns don't honor -mavxscalar=256, as they don't ignore
XOP.L.
Just like their AVX counterparts do for VEX.L.
At this occasion also make EVEX.W have the same effect as VEX.W on the
printing of VPINSR{B,W}'s operands, bringing them also in sync with
VPEXTR{B,W}.
There's only a single user, that that one can do fine with the
alternative, as the "Vex" aspect of the other operand kind is meaningful
only on 3-operand insns.
While doing this I noticed that I didn't need to do the same adjustment
in the EVEX tables, and voilà - there was a bug, which gets fixed at the
same time (see the testsuite changes).
We check register-only source operand to decide if two source operands of
VEX encoded instructions should be swapped. But source operands in AMX
instructions with two source operands swapped are all register-only
operand. Add SwapSources to indicate two source operands should be
swapped.
gas/
* config/tc-i386.c (build_modrm_byte): Check vexswapsources to
swap two source operands.
opcodes/
* i386-gen.c (opcode_modifiers): Add VexSwapSources.
* i386-opc.h (VexSwapSources): New.
(i386_opcode_modifier): Add vexswapsources.
* i386-opc.tbl: Add VexSwapSources to BMI2 and BMI instructions
with two source operands swapped.
* i386-tbl.h: Regenerated.
This patch fixes a segfault which occurs when the AArch64 backend parses
a symbol operand that begins with a register name and ends with a
unicode byte (byte value > 127).
For example, the following input causes the crash:
x0é: udf x0é
gas/ChangeLog:
2020-07-02 Alex Coplan <alex.coplan@arm.com>
* config/tc-aarch64.c (reg_name_p): Fix cast so that we don't
segfault on negative chars.
* testsuite/gas/aarch64/reglike-label-unicode-segv.d: New test.
* testsuite/gas/aarch64/reglike-label-unicode-segv.s: Input.
The xc16x md_apply_fix code is just so broken that in my opinion the
target should never have been accepted, and from a quick look at
commit logs for the target it appears that no one has ever contributed
fixes for anything. This target has just been a 14 year burden on
global binutils and cgen maintainers. That's not how free software is
supposed to work.
bfd/
* config.bfd: Obsolete xc16x.
gas/
* config/tc-xc16x.c (md_apply_fix): Add FIXME.
The unprivileged CSR should be controlled by other specific specs rather
than the privileged spec. For example, the debug CSR should be controlled
by the debug spec, and the float CSR should be controlled by the float
spec. User may use assembler options to choose what the debug and other
specs they want, or may encode the versions of specs into the architecture
string directly. Since we haven't decided which one is better, we set the
defined and aborted versions of unprivileged CSR to PRIV_SPEC_CLASS_NONE
in the include/opcode/riscv-opc.h, to tell assembler don't check priv spec
versions for them. However, these PRIV_SPEC_CLASS_NONE will be changed
to FLOAT_SPEC_CLASS_* and DEBUG_SPEC_CLASS_* in the future.
gas/
* config/tc-riscv.c (riscv_csr_class_check): Removed. Move the
checking into riscv_csr_address.
(riscv_csr_version_check): Likewise.
(riscv_csr_address): New function. Return the suitable CSR address
after checking the ISA dependency and versions. Issue warnings if
we find any conflict and -mcsr-check is set. CSR_CLASS_F and
CSR_CLASS_DEBUG are unprivileged CSR for now, so don't check the
priv spec versions for them.
(reg_csr_lookup_internal): Call riscv_csr_address to find the
suitable CSR address.
* testsuite/gas/riscv/priv-reg-fail-fext.d: Remove -mpriv-spec=1.11.
* testsuite/gas/riscv/priv-reg-fail-read-only-01.d: Likewise.
* testsuite/gas/riscv/priv-reg-fail-rv32-only.d: Likewise.
* testsuite/gas/riscv/priv-reg-fail-fext.l: We don't care the
priv spec warnings here. These warnings are added by accident.
Remove them and only focus on the ISA dependency warnings.
* testsuite/gas/riscv/priv-reg-fail-rv32-only.l: Likewise.
* testsuite/gas/riscv/priv-reg-fail-read-only-01.l: Likewise.
* testsuite/gas/riscv/priv-reg-fail-version-1p9.l: Updated since
dscratch0 and dscratch1 are regarded as the unprivileged CSR rather
than the privileged ones.
* testsuite/gas/riscv/priv-reg-fail-version-1p9p1.l: Likewise.
* testsuite/gas/riscv/priv-reg-fail-version-1p10.l: Likewise.
* testsuite/gas/riscv/priv-reg-fail-version-1p11.l: Likewise.
* testsuite/gas/riscv/priv-reg.s: Likewise. Add missing debug CSR.
* testsuite/gas/riscv/priv-reg-version-1p9.d: Likewise.
* testsuite/gas/riscv/priv-reg-version-1p9p1.d: Likewise.
* testsuite/gas/riscv/priv-reg-version-1p10.d: Likewise.
* testsuite/gas/riscv/priv-reg-version-1p11.d: Likewise.
* testsuite/gas/riscv/csr-dw-regnums.d: Likewise.
* testsuite/gas/riscv/csr-dw-regnums.s: Likewise.
include/
* opcode/riscv-opc.h: Support the unprivileged CSR. The versions
of the unprivileged CSR should be PRIV_SPEC_CLASS_NONE for now.
* opcode/riscv.h (enum riscv_csr_class): Add CSR_CLASS_DEBUG.
opcodes/
* riscv-dis.c (print_insn_args, case 'E'): Updated. Let the
unprivileged CSR can also be initialized.
Finally; sorry for the delay. There were a few false starts, where I
misinterpreted the error-messages and the comment that Alan added:
it's not the fix size that's too large (and the frag too small), it's
stating the wrong size of what will be "fixed up" - that of the actual
target value, not the size of the field that needs to be adjusted.
Comments added for clarity.
Test-suite committed separately.
gas:
PR gas/25331
* config/tc-mmix.c (md_assemble) <fixup for
BFD_RELOC_MMIX_BASE_PLUS_OFFSET>: This fixup affects 1 byte, not 8.
Also, set its fx_no_overflow.
(md_convert_frag) <case ENCODE_RELAX (STATE_PUSHJSTUB, STATE_ZERO)>:
Similarly this fixup affects 4 bytes, not 8 and needs its
fx_no_overflow set.
* config/tc-mmix.h (TC_FX_SIZE_SLACK): Don't define.
To support Intel AMX instructions with 8-bit immediate opcode extension,
but without operands:
tilerelease, 0, 0x49, 0xc0, 1, CpuAMX_TILE|Cpu64, Vex|VexOpcode=1|No_bSuf|No_wSuf|No_lSuf|No_sSuf|No_qSuf|No_ldSuf|ImmExt, { 0 }
process ImmExt without operands.
* config/tc-i386.c (md_assemble): Process ImmExt without
operands.
Rename VecSIB to SIB to support Intel Advanced Matrix Extensions which
introduces instructions with a mandatory SIB byte which isn't a vector
SIB (VSIB).
gas/
* config/tc-i386.c (check_VecOperands): Replace vecsib with sib.
Replace VecSIB128, VecSIB256 and VecSIB512 with VECSIB128,
VECSIB256 and VECSIB512, respectively.
(build_modrm_byte): Replace vecsib with sib.
opcodes/
* i386-gen.c (opcode_modifiers): Replace VecSIB with SIB.
(VecSIB128): Renamed to ...
(VECSIB128): This.
(VecSIB256): Renamed to ...
(VECSIB256): This.
(VecSIB512): Renamed to ...
(VECSIB512): This.
(VecSIB): Renamed to ...
(SIB): This.
(i386_opcode_modifier): Replace vecsib with sib.
* i386-opc.tbl (VexSIB128): New.
(VecSIB256): Likewise.
(VecSIB512): Likewise.
Replace VecSIB=1, VecSIB=2 and VecSIB=3 with VexSIB128, VecSIB256
and VecSIB512, respectively.
Multiple -M options can be specified in any order. Therefore stright
assignment to fields affected needs to be avoided, such that earlier
options' effects won't be discarded. This was in particular a problem
for -Msuffix followed by certain of the other sub-options.
While updating documentation, take the liberty and also drop the
redundant mentioning of being able to comma-separate multiple options.
This patch adds GNU attribute support to m68k and utilises it to tag the
floating-point calling convention used (hard-float or soft-float). It enables
the linker to ensure linked objects use a consistent floating-point ABI and
allows tools like GDB to infer the ABI used from the ELF file. It is based on
similar work done for PowerPC.
bfd/
* elf32-m68k.c (m68k_elf_merge_obj_attributes): New function.
(elf32_m68k_merge_private_bfd_data): Merge GNU attributes.
binutils/
* readelf.c (display_m68k_gnu_attribute): New function.
(process_arch_specific): Call display_m68k_gnu_attribute for EM_68K.
gas/
* config/tc-m68k.c (m68k_elf_gnu_attribute): New function.
(md_pseudo_table): Handle "gnu_attribute".
* doc/as.texi: Document GNU attribute for M68K.
include/
* elf/m68k.h: Add enum for GNU object attribute with floating point
tag name and values.
ld/
* testsuite/ld-m68k/attr-gnu-4-0.s: New file.
* testsuite/ld-m68k/attr-gnu-4-1.s: Likewise.
* testsuite/ld-m68k/attr-gnu-4-2.s: Likewise.
* testsuite/ld-m68k/attr-gnu-4-00.d: Likewise.
* testsuite/ld-m68k/attr-gnu-4-01.d: Likewise.
* testsuite/ld-m68k/attr-gnu-4-02.d: Likewise.
* testsuite/ld-m68k/attr-gnu-4-10.d: Likewise.
* testsuite/ld-m68k/attr-gnu-4-11.d: Likewise.
* testsuite/ld-m68k/attr-gnu-4-12.d: Likewise.
* testsuite/ld-m68k/attr-gnu-4-20.d: Likewise.
* testsuite/ld-m68k/attr-gnu-4-21.d: Likewise.
* testsuite/ld-m68k/attr-gnu-4-22.d: Likewise.
* testsuite/ld-m68k/m68k.exp: Run the new tests.