This commit adds a flag to the ptype command in order to print the
offsets and sizes of struct members using the hexadecimal notation. The
'x' flag ensures use of the hexadecimal notation while the 'd' flag
ensures use of the decimal notation. The default is to use decimal
notation.
Before this patch, gdb only uses decimal notation, as pointed out in PR
gdb/22640.
Here is an example of this new behavior with hex output turned on:
(gdb) ptype /ox struct type_print_options
/* offset | size */ type = struct type_print_options {
/* 0x0000: 0x0 | 0x0004 */ unsigned int raw : 1;
/* 0x0000: 0x1 | 0x0004 */ unsigned int print_methods : 1;
/* 0x0000: 0x2 | 0x0004 */ unsigned int print_typedefs : 1;
/* 0x0000: 0x3 | 0x0004 */ unsigned int print_offsets : 1;
/* 0x0000: 0x4 | 0x0004 */ unsigned int print_in_hex : 1;
/* XXX 3-bit hole */
/* XXX 3-byte hole */
/* 0x0004 | 0x0004 */ int print_nested_type_limit;
/* 0x0008 | 0x0008 */ typedef_hash_table *local_typedefs;
/* 0x0010 | 0x0008 */ typedef_hash_table *global_typedefs;
/* 0x0018 | 0x0008 */ ext_lang_type_printers *global_printers;
/* total size (bytes): 32 */
}
This patch also adds the 'set print type hex' and 'show print type hex'
commands in order to set and inspect the default behavior regarding the
use of decimal or hexadecimal notation when printing struct sizes and
offsets.
Tested using on x86_64.
gdb/ChangeLog:
PR gdb/22640
* typeprint.h (struct type_print_options): Add print_in_hex
flag.
(struct print_offset_data): Add print_in_hex flag, add a
constructor accepting a type_print_options* argument.
* typeprint.c (type_print_raw_options, default_ptype_flags): Set
default value for print_in_hex.
(print_offset_data::indentation): Allow more horizontal space.
(print_offset_data::print_offset_data): Add ctor.
(print_offset_data::maybe_print_hole, print_offset_data::update):
Handle the print_in_hex flag.
(whatis_exp): Handle 'x' and 'd' flags.
(print_offsets_and_sizes_in_hex): Declare.
(set_print_offsets_and_sizes_in_hex): Create.
(show_print_offsets_and_sizes_in_hex): Create.
(_initialize_typeprint): Update help message for the ptype
command, register the 'set print type hex' and 'show print type
hex' commands.
* c-typeprint.c (c_print_type, c_type_print_base_struct_union)
(c_type_print_base): Construct the print_offset_data
object using the type_print_optons parameter.
* rust-lang.c (rust_language::print_type): Construct the
print_offset_data object using the type_print_optons parameter.
* NEWS: Mention the new flags of the ptype command.
gdb/doc/ChangeLog:
PR gdb/22640
* gdb.texinfo (Symbols): Describe the 'x' and 'd' flags of the
ptype command, describe 'set print type hex' and 'show print
type hex' commands. Update 'ptype/o' examples.
gdb/testsuite/ChangeLog:
PR gdb/22640
* gdb.base/ptype-offsets.exp: Add tests to verify the behavior
of 'ptype/ox' and 'ptype/od'. Check that 'set print type hex'
changes the default behavior of 'ptype/o'. Update to take into
account new horizontal layout.
* gdb.rust/simple.exp: Update ptype test to check new horizontal
layout.
* gdb.rust/union.exp: Same.
I noticed that when using ptype/o, the "<no data fields>" text that
may be emitted is indented incorrectly. This patch fixes the bug and
adds a new test case.
I also removed a stray backslash from ptype-offsets.exp that I noticed
while writing the test. This seemed too trivial to warrant a separate
patch.
gdb/ChangeLog
2021-04-22 Tom Tromey <tom@tromey.com>
* c-typeprint.c (c_type_print_base_struct_union): Use
print_spaces_filtered_with_print_options.
gdb/testsuite/ChangeLog
2021-04-22 Tom Tromey <tom@tromey.com>
* gdb.base/ptype-offsets.cc (struct empty_member): New.
(main): Use empty_member.
* gdb.base/ptype-offsets.exp: Add new test.
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
After seeing Simon's patch, I thought maybe it was finally time to
remove printfi_filtered and fprintfi_filtered, in favor of using the
"%*s" approach to indenting.
In this patch I took the straightforward approach of always adding a
leading "%*s", even when the format already started with "%s", to
avoid the trickier form of:
printf ("%*s", -indent, string)
Regression tested on x86-64 Fedora 32.
Let me know what you think.
gdb/ChangeLog
2020-12-17 Tom Tromey <tromey@adacore.com>
* gdbtypes.c (print_args, dump_fn_fieldlists, print_cplus_stuff)
(print_gnat_stuff, print_fixed_point_type_info)
(recursive_dump_type): Update.
* go32-nat.c (go32_sysinfo, display_descriptor): Update.
* c-typeprint.c (c_type_print_base_struct_union)
(c_type_print_base_1): Update.
* rust-lang.c (rust_internal_print_type): Update.
* f-typeprint.c (f_language::f_type_print_base): Update.
* utils.h (fprintfi_filtered, printfi_filtered): Remove.
* m2-typeprint.c (m2_record_fields): Update.
* p-typeprint.c (pascal_type_print_base): Update.
* compile/compile-loc2c.c (push, pushf, unary, binary)
(do_compile_dwarf_expr_to_c): Update.
* utils.c (fprintfi_filtered, printfi_filtered): Remove.
Note that the ptype information printed for types described
via pure DWARF debug info is slightly less informative as
the one printed when the information is encoded in the type's
name, via the GNAT encoding. As a result, the output in
the case of DWARF-described fixed point types is slightly
different. In pratice, this is no real loss because the information
not available in DWARF has no bearing on how the type is actually
stored in memory.
gdb/ChangeLog:
* ada-typeprint.c (ada_print_type): Add handing of fixed-point
range types.
* c-typeprint.c (c_type_print_varspec_prefix)
(c_type_print_varspec_suffix, c_type_print_base_1): Add
TYPE_CODE_FIXED_POINT handling.
* p-typeprint.c (pascal_type_print_varspec_prefix)
(pascal_type_print_varspec_suffix): Likewise.
* typeprint.c (print_type_fixed_point): New function.
* typeprint.h (print_type_fixed_point): Add declaration.
gdb/testsuite/ChangeLog:
* gdb.ada/fixed_points.exp: Add ptype tests.
* gdb.dwarf2/dw2-fixed-point.exp: Likewise.
Remove it, use the `type::instance_flags` method everywhere.
gdb/ChangeLog:
* gdbtypes.h (TYPE_INSTANCE_FLAGS): Remove, replace all uses
with `type::instance_flags`.
Change-Id: I3653108b712e6186529cb0102e2b70247bbcabbe
These methods now take/return a type_instance_flags instead of a raw
integer, so rename them accordingly.
gdb/ChangeLog:
* c-typeprint.c (c_type_print_modifier): Adjust to rename.
* gdbtypes.c (address_space_name_to_int): Rename to ...
(address_space_name_to_type_instance_flags): ... this.
(address_space_int_to_name): Rename to ...
(address_space_type_instance_flags_to_name): ... this.
* gdbtypes.h (address_space_name_to_int): Rename to ...
(address_space_name_to_type_instance_flags): ... this.
(address_space_int_to_name): Rename to ...
(address_space_type_instance_flags_to_name): ... this.
* type-stack.c (type_stack::insert): Adjust to rename.
* type-stack.h (type_stack::insert): Likewise.
Getting the bounds of an array (or string) type is a common operation,
and is currently done through its index type:
my_array_type->index_type ()->bounds ()
I think it would make sense to let the `type::bounds` methods work for
arrays and strings, as a shorthand for this. It's natural that when
asking for the bounds of an array, we get the bounds of the range type
used as its index type. In a way, it's equivalent as the now-removed
TYPE_ARRAY_{LOWER,UPPER}_BOUND_IS_UNDEFINED and
TYPE_ARRAY_{LOWER,UPPER}_BOUND_VALUE, except it returns the
`range_bounds` object. The caller is then responsible for getting the
property it needs in it.
I updated all the spots I could find that could take advantage of this.
Note that this also makes `type::bit_stride` work on array types, since
`type::bit_stride` uses `type::bounds`. `my_array_type->bit_stride ()`
now returns the bit stride of the array's index type. So some spots
are also changed to take advantage of this.
gdb/ChangeLog:
* gdbtypes.h (struct type) <bounds>: Handle array and string
types.
* ada-lang.c (assign_aggregate): Use type::bounds on
array/string type.
* c-typeprint.c (c_type_print_varspec_suffix): Likewise.
* c-varobj.c (c_number_of_children): Likewise.
(c_describe_child): Likewise.
* eval.c (evaluate_subexp_for_sizeof): Likewise.
* f-typeprint.c (f_type_print_varspec_suffix): Likewise.
(f_type_print_base): Likewise.
* f-valprint.c (f77_array_offset_tbl): Likewise.
(f77_get_upperbound): Likewise.
(f77_print_array_1): Likewise.
* guile/scm-type.c (gdbscm_type_range): Likewise.
* m2-typeprint.c (m2_array): Likewise.
(m2_is_long_set_of_type): Likewise.
* m2-valprint.c (get_long_set_bounds): Likewise.
* p-typeprint.c (pascal_type_print_varspec_prefix): Likewise.
* python/py-type.c (typy_range): Likewise.
* rust-lang.c (rust_internal_print_type): Likewise.
* type-stack.c (type_stack::follow_types): Likewise.
* valarith.c (value_subscripted_rvalue): Likewise.
* valops.c (value_cast): Likewise.
Change-Id: I5c0c08930bffe42fd69cb4bfcece28944dd88d1f
Remove the macros, use the getters of `struct dynamic_prop` instead.
gdb/ChangeLog:
* gdbtypes.h (TYPE_LOW_BOUND_KIND,
TYPE_HIGH_BOUND_KIND): Remove. Update all callers
to use dynamic_prop::kind.
Change-Id: Icb1fc761f675bfac934209f8102392504d905c44
Remove the `TYPE_FIELD_TYPE` macro, changing all the call sites to use
`type::field` and `field::type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD_TYPE): Remove. Change all call sites
to use type::field and field::type instead.
Change-Id: Ifda6226a25c811cfd334a756a9fbc5c0afdddff3
Add the `type` and `set_type` methods on `struct field`, in order to
remoremove the `FIELD_TYPE` macro. In this patch, the `FIELD_TYPE`
macro is changed to use `field::type`, so all the call sites that are
useused to set the field's type are changed to use `field::set_type`.
The next patch will remove `FIELD_TYPE` completely.
Note that because of the name clash between the existing field named
`type` and the new method, I renamed the field `m_type`. It is not
private per-se, because we can't make `struct field` a non-POD yet, but
it should be considered private anyway (not accessed outside `struct
field`).
gdb/ChangeLog:
* gdbtypes.h (struct field) <type, set_type>: New methods.
Rename `type` field to...
<m_type>: ... this. Change references throughout to use type or
set_type methods.
(FIELD_TYPE): Use field::type. Change call sites that modify
the field's type to use field::set_type instead.
Change-Id: Ie21f866e3b7f8a51ea49b722d07d272a724459a0
Remove `TYPE_INDEX_TYPE` macro, changing all the call sites to use
`type::index_type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_INDEX_TYPE): Remove. Change all call sites
to use type::index_type instead.
Change-Id: I56715df0bdec89463cda6bd341dac0e01b2faf84
Replace all uses of it by type::field.
Note that since type::field returns a reference to the field, some spots
are used to assign the whole field structure. See ctfread.c, function
attach_fields_to_type, for example. This is the same as was happening
with the macro, so I don't think it's a problem, but if anybody sees a
really nicer way to do this, now could be a good time to implement it.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD): Remove. Replace all uses with
type::field.
Remove all uses of the `TYPE_FIELDS` macro. Replace them with either:
1) type::fields, to obtain a pointer to the fields array (same as
TYPE_FIELDS yields)
2) type::field, a new convenience method that obtains a reference to one
of the type's field by index. It is meant to replace
TYPE_FIELDS (type)[idx]
with
type->field (idx)
gdb/ChangeLog:
* gdbtypes.h (struct type) <field>: New method.
(TYPE_FIELDS): Remove, replace all uses with either type::fields
or type::field.
Change-Id: I49fba10114417deb502060c6156aa5f7fc62462f
Remove `TYPE_NFIELDS`, changing all the call sites to use
`type::num_fields` directly. This is quite a big diff, but this was
mostly done using sed and coccinelle. A few call sites were done by
hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NFIELDS): Remove. Change all cal sites to use
type::num_fields instead.
Change-Id: Ib73be4c36f9e770e0f729bac3b5257d7cb2f9591
Remove `TYPE_NAME`, changing all the call sites to use `type::name`
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NAME): Remove. Change all cal sites to use
type::name instead.
Remove TYPE_CODE, changing all the call sites to use type::code
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use
type::code instead.
I noticed that cp_canonicalize_string and friends copy a
unique_xmalloc_ptr to a std::string. However, this copy isn't
genuinely needed anywhere, and it serves to slow down DWARF psymbol
reading.
This patch removes the copy and updates the callers to adapt.
This speeds up the reader from 1.906 seconds (mean of 10 runs, of gdb
on a copy of itself) to 1.888 seconds (mean of 10 runs, on the same
copy as the first trial).
gdb/ChangeLog
2020-05-08 Tom Tromey <tom@tromey.com>
* symtab.h (class demangle_result_storage) <set_malloc_ptr>: New
overload.
<swap_string, m_string>: Remove.
* symtab.c (demangle_for_lookup, completion_list_add_symbol):
Update.
* stabsread.c (define_symbol, read_type): Update.
* linespec.c (find_linespec_symbols): Update.
* gnu-v3-abi.c (gnuv3_get_typeid): Update.
* dwarf2/read.c (dwarf2_canonicalize_name): Update.
* dbxread.c (read_dbx_symtab): Update.
* cp-support.h (cp_canonicalize_string_full)
(cp_canonicalize_string, cp_canonicalize_string_no_typedefs):
Return unique_xmalloc_ptr.
* cp-support.c (inspect_type): Update.
(cp_canonicalize_string_full): Return unique_xmalloc_ptr.
(cp_canonicalize_string_no_typedefs, cp_canonicalize_string):
Likewise.
* c-typeprint.c (print_name_maybe_canonical): Update.
* break-catch-throw.c (check_status_exception_catchpoint):
Update.
A user noticed that "watch -location" would fail with a "restrict"
pointer. The issue here is that if the DWARF mentions "restrict", gdb
will put this into the type name -- but then the C parser will not be
able to parse this type.
This patch adds support for "restrict" and "_Atomic" to the C parser.
C++ doesn't have "restrict", but does have some GCC extensions. The
type printer is changed to handle this difference as well, so that
watch expressions will work properly.
gdb/ChangeLog
2020-03-14 Tom Tromey <tom@tromey.com>
* c-typeprint.c (cp_type_print_method_args): Print "__restrict__"
for C++.
(c_type_print_modifier): Likewise. Add "language" parameter.
(c_type_print_varspec_prefix, c_type_print_base_struct_union)
(c_type_print_base_1): Update.
* type-stack.h (enum type_pieces) <tp_atomic, tp_restrict>: New
constants.
* type-stack.c (type_stack::insert): Handle tp_atomic and
tp_restrict.
(type_stack::follow_type_instance_flags): Likewise.
(type_stack::follow_types): Likewise. Merge type-following code.
* c-exp.y (RESTRICT, ATOMIC): New tokens.
(space_identifier, cv_with_space_id)
(const_or_volatile_or_space_identifier_noopt)
(const_or_volatile_or_space_identifier): Remove.
(single_qualifier, qualifier_seq_noopt, qualifier_seq): New
rules.
(ptr_operator, typebase): Update.
(enum token_flag) <FLAG_C>: New constant.
(ident_tokens): Add "restrict", "__restrict__", "__restrict", and
"_Atomic".
(lex_one_token): Handle FLAG_C.
gdb/testsuite/ChangeLog
2020-03-14 Tom Tromey <tom@tromey.com>
* gdb.base/cvexpr.exp: Add test for _Atomic and restrict.
This changes gdb to use the "variable" style when printing field
names. I've added new tests for C and Rust, but not other languages.
I chose "variable" because that seemed most straightforward. However,
another option would be to introduce a new "field" style. Similarly,
this patch uses the variable style for enumerator constants -- but
again, a new style could be used if that's preferred.
gdb/ChangeLog
2020-02-22 Tom Tromey <tom@tromey.com>
* valprint.c (generic_val_print_enum_1)
(val_print_type_code_flags): Style member names.
* rust-lang.c (val_print_struct, rust_print_enum)
(rust_print_struct_def, rust_internal_print_type): Style member
names.
* p-valprint.c (pascal_object_print_value_fields): Style member
names. Only call fprintf_symbol_filtered for static members.
* m2-typeprint.c (m2_record_fields, m2_enum): Style member names.
* f-valprint.c (f_val_print): Style member names.
* f-typeprint.c (f_type_print_base): Style member names.
* cp-valprint.c (cp_print_value_fields): Style member names. Only
call fprintf_symbol_filtered for static members.
(cp_print_class_member): Style member names.
* c-typeprint.c (c_print_type_1, c_type_print_base_1): Style
member names.
* ada-valprint.c (ada_print_scalar): Style enum names.
(ada_val_print_enum): Likewise.
* ada-typeprint.c (print_enum_type): Style enum names.
gdb/testsuite/ChangeLog
2020-02-22 Tom Tromey <tom@tromey.com>
* gdb.rust/rust-style.rs: New file.
* gdb.rust/rust-style.exp: New file.
* gdb.base/style.exp: Test structure printing.
* gdb.base/style.c (struct some_struct): New type.
(enum etype): New type.
(struct_value): New global.
Change-Id: I070e1293c6cc830c9ea916af8243410aa384e944
When calling the language la_print_typedef method, don't include a
newline at the end, instead print the newline from the users of
la_print_typedef.
This change will be useful in a later commit when the output from
la_print_typedef will be placed into an MI output field, in which case
the trailing newline is not required.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-typeprint.c (ada_print_typedef): Don't print newline at the
end.
* c-typeprint.c (c_print_typedef): Likewise.
* f-typeprint.c (f_print_typedef): Likewise.
* m2-typeprint.c (m2_print_typedef): Likewise.
* p-typeprint.c (pascal_print_typedef): Likewise.
* rust-lang.c (rust_print_typedef): Likewise.
* symtab.c (print_symbol_info): Print a newline after calling
typedef_print.
Change-Id: I6e697ea1ec0eadaa31aefaea959b2055188d680d
This introduces a new "metadata" style and changes many places in gdb
to use it. The idea here is to let the user distinguish gdb output
from output that (conceptually at least) comes directly from the
inferior. The newly-styled category includes text that gdb
traditionally surrounds in "<...>", like "<unavailable>".
I only added a single test for this. In many cases this output is
difficult to test. Also, while developing this errors in the
implementation of the new printf formats showed up as regressions.
gdb/ChangeLog
2019-10-01 Tom Tromey <tom@tromey.com>
* p-lang.c (pascal_printstr): Use metadata style.
* value.c (show_convenience): Use metadata style.
* valprint.c (valprint_check_validity, val_print_optimized_out)
(val_print_not_saved, val_print_unavailable)
(val_print_invalid_address, generic_val_print, val_print)
(value_check_printable, val_print_array_elements): Use metadata
style.
* ui-out.h (class ui_out) <field_fmt>: New overload.
<do_field_fmt>: Add style parameter.
* ui-out.c (ui_out::field_fmt): New overload.
* typeprint.c (type_print_unknown_return_type)
(val_print_not_allocated, val_print_not_associated): Use metadata
style.
* tui/tui-out.h (class tui_ui_out) <do_field_fmt>: Add style
parameter.
* tui/tui-out.c (tui_ui_out::do_field_fmt): Update.
* tracepoint.c (tvariables_info_1): Use metadata style.
* stack.c (print_frame_arg, print_frame_info, print_frame)
(info_frame_command_core): Use metadata style.
* skip.c (info_skip_command): Use metadata style.
* rust-lang.c (rust_print_enum): Use metadata style.
* python/py-prettyprint.c (print_stack_unless_memory_error): Use
metadata style.
* python/py-framefilter.c (py_print_single_arg): Use metadata
style.
* printcmd.c (do_one_display, print_variable_and_value): Use
metadata style.
* p-valprint.c (pascal_val_print)
(pascal_object_print_value_fields): Use metadata style.
* p-typeprint.c (pascal_type_print_base): Use metadata style.
* mi/mi-out.h (class mi_ui_out) <do_field_fmt>: Add style
parameter.
* mi/mi-out.c (mi_ui_out::do_field_fmt): Update.
* m2-valprint.c (m2_print_long_set): Use metadata style.
* m2-typeprint.c (m2_print_type): Use metadata style.
* infcmd.c (print_return_value_1): Use metadata style.
* gnu-v3-abi.c (print_one_vtable): Use metadata style.
* f-valprint.c (info_common_command_for_block): Use metadata
style.
* f-typeprint.c (f_type_print_base): Use metadata style.
* expprint.c (print_subexp_standard): Use metadata style.
* cp-valprint.c (cp_print_value_fields): Use metadata style.
* cli/cli-style.h (class cli_style_option): Add constructor.
(metadata_style): Declare.
* cli/cli-style.c (metadata_style): New global.
(_initialize_cli_style): Register metadata style.
* cli-out.h (class cli_ui_out) <do_field_fmt>: Add style
parameter.
* cli-out.c (cli_ui_out::do_field_fmt): Update.
* c-typeprint.c (c_type_print_base_struct_union)
(c_type_print_base_1): Use metadata style.
* breakpoint.c (watchpoint_value_print)
(print_one_breakpoint_location): Use metadata style.
* break-catch-syscall.c (print_one_catch_syscall): Use metadata
style.
* break-catch-sig.c (signal_catchpoint_print_one): Use metadata
style.
* ada-valprint.c (val_print_packed_array_elements, printstr)
(print_field_values, ada_val_print_ref, ada_val_print): Use
metadata style.
* ada-typeprint.c (print_array_type, ada_print_type): Use metadata
style.
* ada-tasks.c (print_ada_task_info, info_task): Use metadata
style.
* ada-lang.c (user_select_syms): Use metadata style.
gdb/testsuite/ChangeLog
2019-10-01 Tom Tromey <tom@tromey.com>
* lib/gdb-utils.exp (style): Handle "metadata" argument.
* gdb.base/style.exp: Add metadata style test.
Currently each language has a la_print_typedef method, this is only
used for the "info types" command.
The documentation for "info types" says:
Print a brief description of all types whose names match the regular
expression @var{regexp} (or all types in your program, if you supply
no argument).
However, if we consider this C code:
typedef struct {
int a;
} my_type;
Then currently with "info types" this will be printed like this:
3: typedef struct {
int a;
} my_type;
I see two problems with this, first the indentation is clearly broken,
second, if the struct contained more fields then it feels like the
actual type names could easily get lost in the noise.
Given that "info types" is about discovering type names, I think there
is an argument to be made that we should focus on giving _only_ the
briefest summary for "info types", and if the user wants to know more
they can take the type name and plug it into "ptype". As such, I
propose that a better output would be:
3: typedef struct {...} my_type;
The user understands that there is a type called `my_type`, and that
it's an alias for an anonymous structure type.
The change to achieve this turns out to be pretty simple, but only
effects languages that make use of c_print_typedef, which are C, C++,
asm, minimal, d, go, objc, and opencl. Other languages will for now
do whatever they used to do.
The patch to change how anonymous structs are displayed also changes
the display of anonymous enums, consider this code sample:
typedef enum {
AA, BB, CC
} anon_enum_t;
This used to be displayed like this:
3: typedef enum {AA, BB, CC} anon_enum_t;
Which will quickly become cluttered for enums with a large number of
values. The modified output looks like this:
3: typedef enum {...} anon_enum_t;
Again, the user can always make use of ptype if they want to see the
details of the anon_enum_t type.
It is worth pointing out that this change (to use {...}) only effects
anonymous structs and enums, named types don't change with this patch,
consider this code:
struct struct_t {
int i;
};
enum enum_t {
AA, BB, CC
};
The output from 'info types' remains unchanged, like this:
4: enum enum_t;
1: struct struct_t;
An additional area of interest is how C++ handles anonymous types used
within a typedef; enums are handled basically inline with how C
handles them, but structs (and classes) are slightly different. The
behaviour before the patch is different, and is unchanged by this
patch. Consider this code compiled for C++:
typedef struct {
int i;
} struct_t;
Both before and after this patch, this is show by 'info types' as:
3: typedef struct_t struct_t;
Unions are displayed similarly to structs in both C and C++, the
handling of anonymous unions changes for C in the same way that
it changes for anonymous structs.
I did look at ada, as this is the only language to actually have some
tests for "info types", however, as I understand it ada doesn't really
support typedefs, however, by forcing the language we can see what ada
would print. So, if we 'set language ada', then originally we printed
this:
3: record
a: int;
end record
Again the indentation is clearly broken, but we also have no mention
of the type name at all, which is odd, but understandable given the
lack of typedefs. If I make a similar change as I'm proposing for C,
then we now get this output:
3: record ... end record
Which is even less informative I think. However, the original output
_is_ tested for in gdb.ada/info_auto_lang.exp, and its not clear to me
if the change is a good one or not, so for now I have left this out.
gdb/ChangeLog:
* c-typeprint.c (c_print_typedef): Pass -1 instead of 0 to
type_print.
gdb/testsuite/ChangeLog:
* gdb.ada/info_auto_lang.exp: Update expected results.
* gdb.base/info-types.c: Add additional types to check.
* gdb.base/info-types.exp: Update expected results.
Note that ada-typeprint.c print_func_type is called with
types representing functions and is also called to print
a function NAME together with its type. In such a case, the function
name will be printed using function name style.
Similarly, c_print_type_1 is called to print a type, optionally
with the name of an object of this type in the VARSTRING arg.
So, c_print_type_1 uses function name style to print varstring
when the type code indicates that c_print_type_1 TYPE is some
'real code'.
gdb/ChangeLog
2019-02-12 Philippe Waroquiers <philippe.waroquiers@skynet.be>
* ada-typeprint.c (print_func_type): Print function name
style to print function name.
* c-typeprint.c (c_print_type_1): Likewise.
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
This patch fixes a failure that happens when a structure has a static
member whose type is the same as itself. From the bug report:
Example code:
struct A
{
static A Empty;
int a;
};
int main(void) {
A a;
return 0;
}
Output:
(gdb) ptype/o A
/* offset | size */ type = struct A {
static struct A {
static struct A {
static struct A {
static struct A {
static struct A {
static struct A {
... # infinite loop
The problem here is that GDB is not taking into account the fact that
static members inside a class/struct are not stored in the
class/struct, and therefore they should not be accounted for during
the display of the offsets/sizes. The fix is simple: we just check if
the field we're dealing with (on
c-typeprint.c:c_type_print_base_struct_union) is static, and if it is
then we don't iterate over it.
This patch also adds a new test for this case, and doesn't introduce
any regressions. I believe it is important enough to be included in
the 8.2 branch.
OK?
gdb/ChangeLog:
2018-07-11 Sergio Durigan Junior <sergiodj@redhat.com>
PR c++/23373
* c-typeprint.c (c_type_print_base_struct_union): Don't print
offsets/sizes for static members of a class/struct.
gdb/testsuite/ChangeLog:
2018-07-11 Sergio Durigan Junior <sergiodj@redhat.com>
PR c++/23373
* gdb.base/ptype-offsets.cc (struct static_member): New
struct.
(main) <stmember>: New variable.
* gdb.base/ptype-offsets.exp: Add test for printing a struct
with a static member in it.
This moves the hole-printing support code for ptype/o from
c-typeprint.c to be methods on print_offset_data. This allows the
code to be used from non-C languages.
gdb/ChangeLog
2018-06-26 Tom Tromey <tom@tromey.com>
* typeprint.h (struct print_offset_data) <update, finish,
maybe_print_hole>: New methods.
<indentation>: New constant.
* typeprint.c (print_offset_data::indentation): Define.
(print_offset_data::maybe_print_hole, print_offset_data::update)
(print_offset_data::finish): Move from c-typeprint.c and rename.
* c-typeprint.c (OFFSET_SPC_LEN): Remove.
(print_spaces_filtered_with_print_options): Update.
(c_print_type_union_field_offset, maybe_print_hole)
(c_print_type_struct_field_offset): Move to typeprint.c and
rename.
(c_type_print_base_struct_union): Update.
TYPE_TAG_NAME has been an occasional source of confusion and bugs. It
seems to me that it is only useful for C and C++ -- but even there,
not so much, because at least with DWARF there doesn't seem to be any
way to wind up with a type where the name and the tag name are both
non-NULL and different.
So, this patch removes TYPE_TAG_NAME entirely. This should save a
little memory, but more importantly, it simplifies this part of gdb.
A few minor test suite adjustments were needed. In some situations
the new code does not yield identical output to the old code.
gdb/ChangeLog
2018-06-01 Tom Tromey <tom@tromey.com>
* valops.c (enum_constant_from_type, value_namespace_elt)
(value_maybe_namespace_elt): Update.
* valarith.c (find_size_for_pointer_math): Update.
* target-descriptions.c (make_gdb_type): Update.
* symmisc.c (print_symbol): Update.
* stabsread.c (define_symbol, read_type)
(complain_about_struct_wipeout, add_undefined_type)
(cleanup_undefined_types_1): Update.
* rust-lang.c (rust_tuple_type_p, rust_slice_type_p)
(rust_range_type_p, val_print_struct, rust_print_struct_def)
(rust_internal_print_type, rust_composite_type)
(rust_evaluate_funcall, rust_evaluate_subexp)
(rust_inclusive_range_type_p): Update.
* python/py-type.c (typy_get_tag): Update.
* p-typeprint.c (pascal_type_print_base): Update.
* mdebugread.c (parse_symbol, parse_type): Update.
* m2-typeprint.c (m2_long_set, m2_record_fields, m2_enum):
Update.
* guile/scm-type.c (gdbscm_type_tag): Update.
* go-lang.c (sixg_string_p): Update.
* gnu-v3-abi.c (build_gdb_vtable_type, build_std_type_info_type):
Update.
* gdbtypes.h (struct main_type) <tag_name>: Remove.
(TYPE_TAG_NAME): Remove.
* gdbtypes.c (type_name_no_tag): Simplify.
(check_typedef, check_types_equal, recursive_dump_type)
(copy_type_recursive, arch_composite_type): Update.
* f-typeprint.c (f_type_print_base): Update. Print "Type" prefix
in summary mode when needed.
* eval.c (evaluate_funcall): Update.
* dwarf2read.c (fixup_go_packaging, read_structure_type)
(process_structure_scope, read_enumeration_type)
(read_namespace_type, read_module_type, determine_prefix): Update.
* cp-support.c (inspect_type): Update.
* coffread.c (process_coff_symbol, decode_base_type): Update.
* c-varobj.c (c_is_path_expr_parent): Update.
* c-typeprint.c (c_type_print_base_struct_union): Update.
(c_type_print_base_1): Update. Print struct/class/union/enum in
summary when using C language.
* ax-gdb.c (gen_struct_ref, gen_namespace_elt)
(gen_maybe_namespace_elt): Update.
* ada-lang.c (ada_type_name): Simplify.
(empty_record, ada_template_to_fixed_record_type_1)
(template_to_static_fixed_type)
(to_record_with_fixed_variant_part, ada_check_typedef): Update.
gdb/testsuite/ChangeLog
2018-06-01 Tom Tromey <tom@tromey.com>
* gdb.xml/tdesc-regs.exp (load_description): Update expected
results.
* gdb.dwarf2/method-ptr.exp: Set language to C++.
* gdb.dwarf2/member-ptr-forwardref.exp: Set language to C++.
* gdb.cp/typeid.exp (do_typeid_tests): Update type_re.
* gdb.base/maint.exp (maint_pass_if): Update.
Currently dwarf2read.c will pass the CU's language to
c_type_print_args -- but this doesn't affect all aspects of type
printing, because some code in c-typeprint.c refers to
current_language.
This patch threads the language through more of the type printing
code, adding an overload to c_type_print. Some uses of
current_language remain, but now they are only in top-level functions.
gdb/ChangeLog
2018-06-01 Tom Tromey <tom@tromey.com>
* dwarf2read.c (dwarf2_compute_name): Pass CU's language to
c_print_type.
* c-typeprint.c (c_print_type_1): Add "language" parameter.
(c_print_type): Update.
(c_print_type): New overload.
(c_type_print_varspec_prefix, c_type_print_args)
(c_type_print_varspec_suffix, c_print_type_no_offsets)
(c_type_print_base_struct_union, c_type_print_base_1)
(cp_type_print_method_args): Add "language" parameter.
(c_type_print_base): Update.
* c-lang.h (c_print_type): Add new overload.
I noticed that c_type_print_varspec_suffix is only called from
c-typeprint.c, so this patch makes it "static".
gdb/ChangeLog
2018-06-01 Tom Tromey <tom@tromey.com>
* typeprint.h (c_type_print_varspec_suffix): Don't declare.
* c-typeprint.c (c_type_print_varspec_suffix): Now static.
I was recently using ptype/o to look at the layout of some objects in
gdb. I noticed that trailing padding was not shown -- but I wanted to
be able to look at that, too.
This patch changes ptype/o to also print trailing holes.
Tested on x86-64 Fedora 26.
gdb/ChangeLog
2018-05-18 Tom Tromey <tom@tromey.com>
* c-typeprint.c (maybe_print_hole): New function.
(c_print_type_struct_field_offset): Update.
(c_type_print_base_struct_union): Call maybe_print_hole.
gdb/testsuite/ChangeLog
2018-05-18 Tom Tromey <tom@tromey.com>
* gdb.base/ptype-offsets.exp: Update.
This changes the typedef_hash_table structure to be a C++ class. It
adds constructors and destructors and changes some functions to be
methods of the class. Then it changes the various users of this class
to adapt. This allows for the removal of some cleanups.
Regression tested by the buildbot.
gdb/ChangeLog
2018-03-27 Tom Tromey <tom@tromey.com>
* typeprint.h (struct type_print_options) <local_typedefs,
global_typedefs>: Remove "struct" keyword.
(class typedef_hash_table): New class.
(recursively_update_typedef_hash, add_template_parameters)
(create_typedef_hash, free_typedef_hash, copy_typedef_hash)
(find_typedef_in_hash): Don't declare.
* typeprint.c (struct typedef_hash_table): Move to typeprint.h.
(typedef_hash_table::recursively_update): Rename from
recursively_update_typedef_hash. Now a member.
(typedef_hash_table::add_template_parameters): Rename from
add_template_parameters. Now a member.
(typedef_hash_table::typedef_hash_table): Now a constructor;
rename from create_typedef_hash.
(typedef_hash_table::~typedef_hash_table): Now a destructor;
rename from free_typedef_hash.
(do_free_typedef_hash, make_cleanup_free_typedef_hash)
(do_free_global_table): Remove.
(typedef_hash_table::typedef_hash_table): New constructor; renamed
from copy_type_recursive.
(create_global_typedef_table): Remove.
(typedef_hash_table::find_global_typedef): Now a member of
typedef_hash_table.
(typedef_hash_table::find_typedef): Rename from
find_typedef_in_hash; now a member.
(whatis_exp): Update.
* extension.h (struct ext_lang_type_printers): Add constructor and
destructor.
(start_ext_lang_type_printers, free_ext_lang_type_printers): Don't
declare.
* extension.c (ext_lang_type_printers::ext_lang_type_printers):
Now a constructor; rename from start_ext_lang_type_printers.
(ext_lang_type_printers): Now a destructor; rename from
free_ext_lang_type_printers.
* c-typeprint.c (find_typedef_for_canonicalize, c_print_type_1):
Update.
(c_type_print_base_struct_union): Update. Remove cleanups.
This commit implements the pahole-like '/o' option for 'ptype', which
prints the offsets and sizes of struct fields, reporting whenever
there is a hole found.
The output is heavily based on pahole(1), with a few modifications
here and there to adjust it to our reality. Here's an example:
/* offset | size */ type = struct wer : public tuv {
public:
/* 32 | 24 */ struct tyu {
/* 32:31 | 4 */ int a1 : 1;
/* 32:28 | 4 */ int a2 : 3;
/* 32: 5 | 4 */ int a3 : 23;
/* 35: 3 | 1 */ char a4 : 2;
/* XXX 3-bit hole */
/* XXX 4-byte hole */
/* 40 | 8 */ int64_t a5;
/* 48:27 | 4 */ int a6 : 5;
/* 48:56 | 8 */ int64_t a7 : 3;
/* total size (bytes): 24 */
} a1;
/* total size (bytes): 56 */
}
A big part of this patch handles the formatting logic of 'ptype',
which is a bit messy. The code to handle bitfield offsets, however,
took some time to craft. My thanks to Pedro Alves for figuring things
out and pointing me to the right direction, as well as coming up with
a way to inspect the layout of structs with bitfields (see testcase
for comments).
After many discussions both on IRC and at the mailing list, I tried to
implement printing vtables and inherited classes. Unfortunately the
code grew too complex and there were still a few corner cases failing
so I had to drop the attempt. This should be implemented in a future
patch.
This patch is the start of a long-term work I'll do to flush the local
patches we carry for Fedora GDB. In this specific case, I'm aiming at
upstreaming the feature implemented by the 'pahole.py' script that is
shipped with Fedora GDB:
<https://src.fedoraproject.org/rpms/gdb/blob/master/f/gdb-archer.patch#_311>
This has been regression-tested on the BuildBot. There's a new
testcase for it, along with an update to the documentation. I also
thought it was worth mentioning this feature in the NEWS file.
gdb/ChangeLog:
2017-12-15 Sergio Durigan Junior <sergiodj@redhat.com>
Pedro Alves <palves@redhat.com>
PR cli/16224
* NEWS (Changes since GDB 8.0): Mention new '/o' flag.
* c-typeprint.c (OFFSET_SPC_LEN): New define.
(c_type_print_varspec_prefix): New argument 'struct
print_offset_data *'.
(c_type_print_base_1): New function and prototype.
(c_print_type_1): New function, with code from 'c_print_type'.
(c_print_type): Use 'c_print_type_1'.
(c_type_print_varspec_prefix): New argument 'struct
print_offset_data *'. Use it. Call 'c_type_print_base_1'
instead of 'c_print_type_base'.
(print_spaces_filtered_with_print_options): New function.
(output_access_specifier): Take new argument FLAGS. Modify
function to call 'print_spaces_filtered_with_print_options'.
(c_print_type_vtable_offset_marker): New function.
(c_print_type_union_field_offset): New function.
(c_print_type_struct_field_offset): New function.
(c_print_type_no_offsets): New function.
(c_type_print_base_struct_union): New argument 'struct
print_offset_data *'. Print offsets and sizes for
struct/union/class fields.
* typeprint.c (const struct type_print_options
type_print_raw_options): Initialize 'print_offsets'.
(static struct type_print_options default_ptype_flags):
Likewise.
(struct print_offset_data print_offset_default_data): New
variable.
(whatis_exp): Handle '/o' option.
(_initialize_typeprint): Add '/o' flag to ptype's help.
* typeprint.h (struct print_offset_data): New struct.
(struct type_print_options) <print_offsets>: New field.
gdb/testsuite/ChangeLog:
2017-12-15 Sergio Durigan Junior <sergiodj@redhat.com>
PR cli/16224
* gdb.base/ptype-offsets.cc: New file.
* gdb.base/ptype-offsets.exp: New file.
gdb/doc/ChangeLog:
2017-12-15 Sergio Durigan Junior <sergiodj@redhat.com>
PR cli/16224
* gdb.texinfo (ptype): Add documentation for new flag '/o'.
While doing the 'ptype /o' work, I noticed that 'c_type_print_base'
was very long, with a big amount of code just to handle the case of
TYPE_CODE_{STRUCT,UNION}. This made working with the function a bit
difficult, specially because of the level of indentation.
This commit moves this part of the code to their own functions. Now
we have a 'c_type_print_base_struct_union' with most of the code, and
also 'need_access_label_p', which is a subset of the code that was
also a good candidate for having its own function.
gdb/ChangeLog:
2017-12-15 Sergio Durigan Junior <sergiodj@redhat.com>
* c-typeprint.c (need_access_label_p): New function.
(c_type_print_base_struct_union): New function.
(c_type_print_base): Move code to handle
TYPE_CODE_{STRUCT,UNION} to the functions mentioned above.
GDB currently does not track types defined in classes. Consider:
class A
{
public:
class B
{
public:
class C { };
};
};
(gdb) ptype A
type = class A {
<no data fields>
}
This patch changes this behavior so that GDB records these nested types
and displays them to the user when he has set the (new) "print type"
option "nested-type-limit."
Example:
(gdb) set print type nested-type-limit 1
(gdb) ptype A
type = class A {
<no data fields>
class A::B {
<no data fields>
};
}
(gdb) set print type nested-type-limit 2
type = class A {
<no data fields>
class A::B {
<no data fields>
class A::B::C {
<no data fields>
};
};
}
By default, the code maintains the status quo, that is, it will not print
any nested type definitions at all.
Testing is carried out via cp_ptype_class which required quite a bit of
modification to permit recursive calling (for the nested types). This
was most easily facilitated by turning the ptype command output into a
queue. Upshot: the test suite now has stack and queue data structures that
may be used by test writers.
gdb/ChangeLog
* NEWS (New commands): Mention set/show print type nested-type-limit.
* c-typeprint.c (c_type_print_base): Print out nested types.
* dwarf2read.c (struct typedef_field_list): Rename to ...
(struct decl_field_list): ... this. Change all uses.
(struct field_info) <nested_types_list, nested_types_list_count>:
New fields.
(add_partial_symbol): Look for nested type definitions in C++, too.
(dwarf2_add_typedef): Rename to ...
(dwarf2_add_type_defn): ... this.
(type_can_define_types): New function.
Update assertion to use type_can_define_types.
Permit NULL for a field's name.
(process_structure_scope): Handle child DIEs of types that can
define types.
Copy the list of nested types into the type struct.
* gdbtypes.h (struct typedef_field): Rename to ...
(struct decl_field): ... this. Change all uses.
[is_protected, is_private]: New fields.
(struct cplus_struct_type) <nested_types, nested_types_count>: New
fields.
(TYPE_NESTED_TYPES_ARRAY, TYPE_NESTED_TYPES_FIELD)
(TYPE_NESTED_TYPES_FIELD_NAME, TYPE_NESTED_TYPES_FIELD_TYPE)
(TYPE_NESTED_TYPES_COUNT, TYPE_NESTED_TYPES_FIELD_PROTECTED)
(TYPE_NESTED_TYPES_FIELD_PRIVATE): New macros.
* typeprint.c (type_print_raw_options, default_ptype_flags): Add
default value for print_nested_type_limit.
(print_nested_type_limit): New static variable.
(set_print_type_nested_types, show_print_type_nested_types): New
functions.
(_initialize_typeprint): Register new commands for set/show
`print-nested-type-limit'.
* typeprint.h (struct type_print_options) [print_nested_type_limit]:
New field.
gdb/testsuite/ChangeLog
* gdb.cp/nested-types.cc: New file.
* gdb.cp/nested-types.exp: New file.
* lib/cp-support.exp: Load data-structures.exp library.
(debug_cp_test_ptype_class): New global.
(cp_ptype_class_verbose, next_line): New procedures.
(cp_test_ptype_class): Add and document new parameter `recursive_qid'.
Add and document new return value.
Switch the list of lines to a queue.
Add support for new `type' key for nested type definitions.
Add debugging/troubleshooting messages.
* lib/data-structures.exp: New file.
gdb/doc/ChangeLog
* gdb.texinfo (Symbols): Document "set print type nested-type-limit"
and "show print type nested-type-limit".
This changes c_type_print_base to use unique_xmalloc_ptr, removing a
cleanup.
gdb/ChangeLog
2017-11-04 Tom Tromey <tom@tromey.com>
* c-typeprint.c (c_type_print_base): Use gdb::unique_xmalloc_ptr.
We currently do not record access information for typedefs defined inside
classes. Consider:
struct foo
{
typedef int PUBLIC;
private:
typedef int PRIVATE;
PRIVATE b;
};
(gdb) ptype foo
type = struct foo {
private:
PRIVATE b;
typedef int PRIVATE;
typedef int PUBLIC;
}
This patch fixes this:
(gdb) ptype foo
type = struct foo {
private:
PRIVATE b;
typedef int PRIVATE;
public:
typedef int PUBLIC;
}
gdb/ChangeLog:
* c-typeprint.c (enum access_specifier): Moved here from
c_type_print_base.
(output_access_specifier): New function.
(c_type_print_base): Consider typedefs when assessing
whether access labels are needed.
Use output_access_specifier as needed.
Output access specifier for typedefs, if needed.
* dwarf2read.c (dwarf2_add_typedef): Record DW_AT_accessibility.
* gdbtypes.h (struct typedef_field) <is_protected, is_private>: New
fields.
(TYPE_TYPEDEF_FIELD_PROTECTED, TYPE_TYPEDEF_FIELD_PRIVATE): New
accessor macros.
gdb/testsuite/ChangeLog:
* gdb.cp/classes.cc (class_with_typedefs, class_with_public_typedef)
(class_with_protected_typedef, class_with_private_typedef)
(struct_with_public_typedef, struct_with_protected_typedef)
(struct_with_private_typedef): New classes/structs.
* gdb.cp/classes.exp (test_ptype_class_objects): Add tests for
typedefs and access specifiers.