2002-11-19 Andrew Cagney <ac131313@redhat.com>

* frame.h (FRAME_FP): Delete macro.
	(get_frame_base): New function declaration.
	* frame.c (get_frame_base): New function.
	(get_frame_id): Use ->frame.
	(frame_find_by_id): Rewrite to use get_frame_id.
	* blockframe.c: Use get_frame_base instead of FRAME_FP.
	* cris-tdep.c, d10v-tdep.c, findvar.c, h8500-tdep.c: Ditto.
	* hppa-tdep.c, i386-tdep.c, infcmd.c, infrun.c: Ditto.
	* m68hc11-tdep.c, m68k-tdep.c, mcore-tdep.c, mips-tdep.c: Ditto.
	* mn10200-tdep.c, mn10300-tdep.c, rs6000-tdep.c: Ditto.
	* sh-tdep.c, sparc-tdep.c, stack.c, tracepoint.c: Ditto.
	* v850-tdep.c, valops.c, z8k-tdep.c: Ditto.
This commit is contained in:
Andrew Cagney 2002-11-24 19:48:13 +00:00
parent e5d2af146b
commit c193f6ac9c
25 changed files with 128 additions and 73 deletions

View file

@ -85,6 +85,49 @@ extern struct frame_info *frame_find_by_id (struct frame_id id);
this frame. */
extern CORE_ADDR get_frame_pc (struct frame_info *);
/* Return the frame address from FI. Except in the machine-dependent
*FRAME* macros, a frame address has no defined meaning other than
as a magic cookie which identifies a frame over calls to the
inferior (um, SEE NOTE BELOW). The only known exception is
inferior.h (PC_IN_CALL_DUMMY) [ON_STACK]; see comments there. You
cannot assume that a frame address contains enough information to
reconstruct the frame; if you want more than just to identify the
frame (e.g. be able to fetch variables relative to that frame),
then save the whole struct frame_info (and the next struct
frame_info, since the latter is used for fetching variables on some
machines) (um, again SEE NOTE BELOW).
NOTE: cagney/2002-11-18: Actually, the frame address isn't
sufficient for identifying a frame, and the counter examples are
wrong!
Code that needs to (re)identify a frame must use get_frame_id() and
frame_find_by_id() (and in the future, a frame_compare() function
instead of INNER_THAN()). Two reasons: an architecture (e.g.,
ia64) can have more than one frame address (due to multiple stack
pointers) (frame ID is going to be expanded to accomodate this);
successive frameless function calls can only be differientated by
comparing both the frame's base and the frame's enclosing function
(frame_find_by_id() is going to be modified to perform this test).
The generic dummy frame version of PC_IN_CALL_DUMMY() is able to
identify a dummy frame using only the PC value. So the frame
address is not needed. In fact, most PC_IN_CALL_DUMMY() calls now
pass zero as the frame/sp values as the caller knows that those
values won't be used. Once all architectures are using generic
dummy frames, PC_IN_CALL_DUMMY() can drop the sp/frame parameters.
When it comes to finding a dummy frame, the next frame's frame ID
(with out duing an unwind) can be used (ok, could if it wasn't for
the need to change the way the PPC defined frame base in a strange
way).
Modern architectures should be using something like dwarf2's
location expression to describe where a variable lives. Such
expressions specify their own debug info centric frame address.
Consequently, a generic frame address is pretty meaningless. */
extern CORE_ADDR get_frame_base (struct frame_info *);
/* Return the per-frame unique identifer. Can be used to relocate a
frame after a frame cache flush (and other similar operations). */
extern void get_frame_id (struct frame_info *fi, struct frame_id *id);
@ -235,9 +278,10 @@ struct frame_saved_regs
struct frame_info
{
/* Nominal address of the frame described. See comments at FRAME_FP
about what this means outside the *FRAME* macros; in the *FRAME*
macros, it can mean whatever makes most sense for this machine. */
/* Nominal address of the frame described. See comments at
get_frame_base() about what this means outside the *FRAME*
macros; in the *FRAME* macros, it can mean whatever makes most
sense for this machine. */
CORE_ADDR frame;
/* Address at which execution is occurring in this frame.
@ -334,20 +378,6 @@ enum print_what
extern void *frame_obstack_alloc (unsigned long size);
extern void frame_saved_regs_zalloc (struct frame_info *);
/* Return the frame address from FI. Except in the machine-dependent
*FRAME* macros, a frame address has no defined meaning other than
as a magic cookie which identifies a frame over calls to the
inferior. The only known exception is inferior.h
(PC_IN_CALL_DUMMY) [ON_STACK]; see comments there. You cannot
assume that a frame address contains enough information to
reconstruct the frame; if you want more than just to identify the
frame (e.g. be able to fetch variables relative to that frame),
then save the whole struct frame_info (and the next struct
frame_info, since the latter is used for fetching variables on some
machines). */
#define FRAME_FP(fi) ((fi)->frame)
/* Define a default FRAME_CHAIN_VALID, in the form that is suitable for most
targets. If FRAME_CHAIN_VALID returns zero it means that the given frame
is the outermost one and has no caller.