gdb-2.8.1
This commit is contained in:
parent
3bf57d2108
commit
bb7592f010
64 changed files with 9841 additions and 5861 deletions
502
gdb/param.h
502
gdb/param.h
|
@ -1,5 +1,6 @@
|
|||
/* Parameters for execution on a Sun, for GDB, the GNU debugger.
|
||||
/* Parameters for execution on a Sun 4, for GDB, the GNU debugger.
|
||||
Copyright (C) 1986, 1987 Free Software Foundation, Inc.
|
||||
Contributed by Michael Tiemann (tiemann@mcc.com)
|
||||
|
||||
GDB is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY. No author or distributor accepts responsibility to anyone
|
||||
|
@ -18,8 +19,8 @@ In other words, go ahead and share GDB, but don't try to stop
|
|||
anyone else from sharing it farther. Help stamp out software hoarding!
|
||||
*/
|
||||
|
||||
#ifndef sun3
|
||||
#define sun3
|
||||
#ifndef sun4
|
||||
#define sun4
|
||||
#endif
|
||||
|
||||
/* Get rid of any system-imposed stack limit if possible. */
|
||||
|
@ -43,21 +44,21 @@ anyone else from sharing it farther. Help stamp out software hoarding!
|
|||
/* Advance PC across any function entry prologue instructions
|
||||
to reach some "real" code. */
|
||||
|
||||
#define SKIP_PROLOGUE(pc) \
|
||||
{ register int op = read_memory_integer (pc, 2); \
|
||||
if (op == 0047126) \
|
||||
pc += 4; /* Skip link #word */ \
|
||||
else if (op == 0044016) \
|
||||
pc += 6; /* Skip link #long */ \
|
||||
}
|
||||
#define SKIP_PROLOGUE(pc) \
|
||||
{ pc = skip_prologue (pc); }
|
||||
|
||||
/* Immediately after a function call, return the saved pc.
|
||||
Can't go through the frames for this because on some machines
|
||||
the new frame is not set up until the new function executes
|
||||
some instructions. */
|
||||
|
||||
#define SAVED_PC_AFTER_CALL(frame) \
|
||||
read_memory_integer (read_register (SP_REGNUM), 4)
|
||||
/* On the Sun 4 under SunOS, the compile will leave a fake insn which
|
||||
encodes the structure size being returned. If we detect such
|
||||
a fake insn, step past it. */
|
||||
|
||||
#define PC_ADJUST(pc) ((read_memory_integer (pc + 8, 4) & 0xfffffe00) == 0 ? pc+12 : pc+8)
|
||||
|
||||
#define SAVED_PC_AFTER_CALL(frame) PC_ADJUST (read_register (RP_REGNUM))
|
||||
|
||||
/* Address of end of stack space. */
|
||||
|
||||
|
@ -67,19 +68,26 @@ read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
|
||||
#define INNER_THAN <
|
||||
|
||||
/* Stack has strict alignment. */
|
||||
|
||||
#define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
|
||||
|
||||
/* Sequence of bytes for breakpoint instruction. */
|
||||
|
||||
#define BREAKPOINT {0x4e, 0x4f}
|
||||
#define BREAKPOINT {0x91, 0xd0, 0x20, 0x01}
|
||||
|
||||
/* Amount PC must be decremented by after a breakpoint.
|
||||
This is often the number of bytes in BREAKPOINT
|
||||
but not always. */
|
||||
|
||||
#define DECR_PC_AFTER_BREAK 2
|
||||
#define DECR_PC_AFTER_BREAK 0
|
||||
|
||||
/* Nonzero if instruction at PC is a return instruction. */
|
||||
/* For SPARC, this is either a "jmpl %o7+8,%g0" or "jmpl %i7+8,%g0".
|
||||
|
||||
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 2) == 0x4e75)
|
||||
Note: this does not work for functions returning structures under SunOS. */
|
||||
#define ABOUT_TO_RETURN(pc) \
|
||||
((read_memory_integer (pc, 4)|0x00040000) == 0x81c7e008)
|
||||
|
||||
/* Return 1 if P points to an invalid floating point value. */
|
||||
|
||||
|
@ -91,17 +99,23 @@ read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
|
||||
/* Number of machine registers */
|
||||
|
||||
#define NUM_REGS 31
|
||||
#define NUM_REGS 72
|
||||
|
||||
/* Initializer for an array of names of registers.
|
||||
There should be NUM_REGS strings in this initializer. */
|
||||
|
||||
#define REGISTER_NAMES \
|
||||
{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
|
||||
"a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp", \
|
||||
"ps", "pc", \
|
||||
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
|
||||
"fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags" }
|
||||
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
|
||||
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", \
|
||||
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", \
|
||||
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", \
|
||||
\
|
||||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
||||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
|
||||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
|
||||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
|
||||
\
|
||||
"y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr" };
|
||||
|
||||
/* Register numbers of various important registers.
|
||||
Note that some of these values are "real" register numbers,
|
||||
|
@ -110,40 +124,45 @@ read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
to be actual register numbers as far as the user is concerned
|
||||
but do serve to get the desired values when passed to read_register. */
|
||||
|
||||
#define FP_REGNUM 14 /* Contains address of executing stack frame */
|
||||
#define SP_REGNUM 15 /* Contains address of top of stack */
|
||||
#define PS_REGNUM 16 /* Contains processor status */
|
||||
#define PC_REGNUM 17 /* Contains program counter */
|
||||
#define FP0_REGNUM 18 /* Floating point register 0 */
|
||||
#define FPC_REGNUM 26 /* 68881 control register */
|
||||
#define FP_REGNUM 30 /* Contains address of executing stack frame */
|
||||
#define RP_REGNUM 15 /* Contains return address value, *before* \
|
||||
any windows get switched. */
|
||||
#define SP_REGNUM 14 /* Contains address of top of stack, \
|
||||
which is also the bottom of the frame. */
|
||||
#define Y_REGNUM 64 /* Temp register for multiplication, etc. */
|
||||
#define PS_REGNUM 65 /* Contains processor status */
|
||||
#define PC_REGNUM 68 /* Contains program counter */
|
||||
#define NPC_REGNUM 69 /* Contains next PC */
|
||||
#define FP0_REGNUM 32 /* Floating point register 0 */
|
||||
#define FPS_REGNUM 70 /* Floating point status register */
|
||||
#define CPS_REGNUM 71 /* Coprocessor status register */
|
||||
|
||||
/* Total amount of space needed to store our copies of the machine's
|
||||
register state, the array `registers'. */
|
||||
#define REGISTER_BYTES (16*4+8*12+8+20)
|
||||
#define REGISTER_BYTES (32*4+32*4+8*4)
|
||||
|
||||
/* Index within `registers' of the first byte of the space for
|
||||
register N. */
|
||||
|
||||
#define REGISTER_BYTE(N) \
|
||||
((N) >= FPC_REGNUM ? (((N) - FPC_REGNUM) * 4) + 168 \
|
||||
: (N) >= FP0_REGNUM ? (((N) - FP0_REGNUM) * 12) + 72 \
|
||||
: (N) * 4)
|
||||
/* ?? */
|
||||
#define REGISTER_BYTE(N) ((N)*4)
|
||||
|
||||
/* Number of bytes of storage in the actual machine representation
|
||||
for register N. On the 68000, all regs are 4 bytes
|
||||
except the floating point regs which are 12 bytes. */
|
||||
for register N. */
|
||||
|
||||
#define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 12 : 4)
|
||||
/* On the SPARC, all regs are 4 bytes. */
|
||||
|
||||
#define REGISTER_RAW_SIZE(N) (4)
|
||||
|
||||
/* Number of bytes of storage in the program's representation
|
||||
for register N. On the 68000, all regs are 4 bytes
|
||||
except the floating point regs which are 8-byte doubles. */
|
||||
for register N. */
|
||||
|
||||
#define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 8 : 4)
|
||||
/* On the SPARC, all regs are 4 bytes. */
|
||||
|
||||
#define REGISTER_VIRTUAL_SIZE(N) (4)
|
||||
|
||||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||||
|
||||
#define MAX_REGISTER_RAW_SIZE 12
|
||||
#define MAX_REGISTER_RAW_SIZE 8
|
||||
|
||||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||||
|
||||
|
@ -152,50 +171,44 @@ read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
/* Nonzero if register N requires conversion
|
||||
from raw format to virtual format. */
|
||||
|
||||
#define REGISTER_CONVERTIBLE(N) (((unsigned)(N) - FP0_REGNUM) < 8)
|
||||
#define REGISTER_CONVERTIBLE(N) (0)
|
||||
|
||||
/* Convert data from raw format for register REGNUM
|
||||
to virtual format for register REGNUM. */
|
||||
|
||||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
||||
{ if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
|
||||
convert_from_68881 ((FROM), (TO)); \
|
||||
else \
|
||||
bcopy ((FROM), (TO), 4); }
|
||||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
||||
{ bcopy ((FROM), (TO), 4); }
|
||||
|
||||
/* Convert data from virtual format for register REGNUM
|
||||
to raw format for register REGNUM. */
|
||||
|
||||
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
||||
{ if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
|
||||
convert_to_68881 ((FROM), (TO)); \
|
||||
else \
|
||||
bcopy ((FROM), (TO), 4); }
|
||||
{ bcopy ((FROM), (TO), 4); }
|
||||
|
||||
/* Return the GDB type object for the "standard" data type
|
||||
of data in register N. */
|
||||
|
||||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||||
(((unsigned)(N) - FP0_REGNUM) < 8 ? builtin_type_double : builtin_type_int)
|
||||
((N) < 32 ? builtin_type_int : (N) < 64 ? builtin_type_float : builtin_type_int)
|
||||
|
||||
/* Extract from an array REGBUF containing the (raw) register state
|
||||
a function return value of type TYPE, and copy that, in virtual format,
|
||||
into VALBUF. */
|
||||
|
||||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||||
bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
|
||||
bcopy ((int *)REGBUF+8, VALBUF, TYPE_LENGTH (TYPE))
|
||||
|
||||
/* Write into appropriate registers a function return value
|
||||
of type TYPE, given in virtual format. */
|
||||
|
||||
/* On sparc, values are returned in register %o0. */
|
||||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||||
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
|
||||
write_register_bytes (REGISTER_BYTE (8), VALBUF, TYPE_LENGTH (TYPE))
|
||||
|
||||
/* Extract from an array REGBUF containing the (raw) register state
|
||||
the address in which a function should return its structure value,
|
||||
as a CORE_ADDR (or an expression that can be used as one). */
|
||||
|
||||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
|
||||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (read_memory_integer (((int *)(REGBUF))[SP_REGNUM]+(16*4), 4))
|
||||
|
||||
/* Enable use of alternate code to read and write registers. */
|
||||
|
||||
|
@ -213,9 +226,17 @@ read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
does not screw up with random garbage at end of file. */
|
||||
|
||||
#define READ_GDB_SYMSEGS
|
||||
|
||||
/* The SPARC processor has register windows. */
|
||||
|
||||
#define HAVE_REGISTER_WINDOWS
|
||||
|
||||
/* Describe the pointer in each stack frame to the previous stack frame
|
||||
(its caller). */
|
||||
#include <machine/reg.h>
|
||||
|
||||
#define GET_RWINDOW_REG(FRAME, REG) \
|
||||
(read_memory_integer (&((struct rwindow *)FRAME)->REG, 4))
|
||||
|
||||
/* FRAME_CHAIN takes a frame's nominal address
|
||||
and produces the frame's chain-pointer.
|
||||
|
@ -227,22 +248,30 @@ read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
it means the given frame is the outermost one and has no caller.
|
||||
In that case, FRAME_CHAIN_COMBINE is not used. */
|
||||
|
||||
/* In the case of the Sun, the frame's nominal address
|
||||
is the address of a 4-byte word containing the calling frame's address. */
|
||||
/* In the case of the Sun 4, the frame-chain's nominal address
|
||||
is held in the frame pointer register.
|
||||
|
||||
#define FRAME_CHAIN(thisframe) (read_memory_integer (thisframe, 4))
|
||||
On the Sun4, the frame (in %fp) is %sp for the previous frame.
|
||||
From the previous frame's %sp, we can find the previous frame's
|
||||
%fp: it is in the save area just above the previous frame's %sp. */
|
||||
|
||||
#define FRAME_CHAIN(thisframe) \
|
||||
GET_RWINDOW_REG (thisframe, rw_in[6])
|
||||
|
||||
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
||||
(chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end))
|
||||
(chain != 0 && (FRAME_SAVED_PC (thisframe, 0) >= first_object_file_end))
|
||||
|
||||
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
||||
|
||||
/* Define other aspects of the stack frame. */
|
||||
|
||||
#define FRAME_SAVED_PC(frame) (read_memory_integer (frame + 4, 4))
|
||||
#define FRAME_SAVED_PC(frame, next_frame) frame_saved_pc (frame, next_frame)
|
||||
|
||||
/* If the argument is on the stack, it will be here. */
|
||||
#define FRAME_ARGS_ADDRESS(fi) (fi.frame)
|
||||
|
||||
#define FRAME_STRUCT_ARGS_ADDRESS(fi) (fi.frame)
|
||||
|
||||
#define FRAME_LOCALS_ADDRESS(fi) (fi.frame)
|
||||
|
||||
/* Set VAL to the number of args passed to frame described by FI.
|
||||
|
@ -252,226 +281,213 @@ read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
now that the C compiler delays popping them. */
|
||||
#define FRAME_NUM_ARGS(val,fi) (val = -1)
|
||||
|
||||
#if 0
|
||||
#define FRAME_NUM_ARGS(val, fi) \
|
||||
{ register CORE_ADDR pc = FRAME_SAVED_PC (fi.frame); \
|
||||
register int insn = 0177777 & read_memory_integer (pc, 2); \
|
||||
val = 0; \
|
||||
if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */ \
|
||||
val = read_memory_integer (pc + 2, 2); \
|
||||
else if ((insn & 0170777) == 0050217 /* addql #N, sp */ \
|
||||
|| (insn & 0170777) == 0050117) /* addqw */ \
|
||||
{ val = (insn >> 9) & 7; if (val == 0) val = 8; } \
|
||||
else if (insn == 0157774) /* addal #WW, sp */ \
|
||||
val = read_memory_integer (pc + 2, 4); \
|
||||
val >>= 2; }
|
||||
#endif
|
||||
|
||||
/* Return number of bytes at start of arglist that are not really args. */
|
||||
|
||||
#define FRAME_ARGS_SKIP 8
|
||||
#define FRAME_ARGS_SKIP 68
|
||||
|
||||
/* Put here the code to store, into a struct frame_saved_regs,
|
||||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||||
This includes special registers such as pc and fp saved in special
|
||||
ways in the stack frame. sp is even more special:
|
||||
the address we return for it IS the sp for the next frame. */
|
||||
the address we return for it IS the sp for the next frame.
|
||||
|
||||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||||
On the Sun 4, the only time all registers are saved is when
|
||||
a dummy frame is involved. Otherwise, the only saved registers
|
||||
are the LOCAL and IN registers which are saved as a result
|
||||
of the "save/restore" opcodes. This condition is determined
|
||||
by address rather than by value. */
|
||||
|
||||
#define FRAME_FIND_SAVED_REGS(fi, frame_saved_regs) \
|
||||
{ register int regnum; \
|
||||
register int regmask; \
|
||||
register CORE_ADDR next_addr; \
|
||||
register CORE_ADDR pc; \
|
||||
int nextinsn; \
|
||||
FRAME frame = (fi).frame; \
|
||||
FRAME next_frame = (fi).next_frame; \
|
||||
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
||||
if ((frame_info).pc >= (frame_info).frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 8*12 - 4 \
|
||||
&& (frame_info).pc <= (frame_info).frame) \
|
||||
{ next_addr = (frame_info).frame; \
|
||||
pc = (frame_info).frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 8*12 - 4; }\
|
||||
else \
|
||||
{ pc = get_pc_function_start ((frame_info).pc); \
|
||||
/* Verify we have a link a6 instruction next; \
|
||||
if not we lose. If we win, find the address above the saved \
|
||||
regs using the amount of storage from the link instruction. */\
|
||||
if (044016 == read_memory_integer (pc, 2)) \
|
||||
next_addr = (frame_info).frame + read_memory_integer (pc += 2, 4), pc+=4; \
|
||||
else if (047126 == read_memory_integer (pc, 2)) \
|
||||
next_addr = (frame_info).frame + read_memory_integer (pc += 2, 2), pc+=2; \
|
||||
else goto lose; \
|
||||
/* If have an addal #-n, sp next, adjust next_addr. */ \
|
||||
if ((0177777 & read_memory_integer (pc, 2)) == 0157774) \
|
||||
next_addr += read_memory_integer (pc += 2, 4), pc += 4; \
|
||||
if ((fi).pc >= frame - CALL_DUMMY_LENGTH - 0x140 \
|
||||
&& (fi).pc <= frame) \
|
||||
{ \
|
||||
for (regnum = 0; regnum < 32; regnum++) \
|
||||
(frame_saved_regs).regs[regnum+FP0_REGNUM] = frame + regnum * 4 - 0x80;\
|
||||
for (regnum = 1; regnum < 8; regnum++) \
|
||||
(frame_saved_regs).regs[regnum] = frame + regnum * 4 - 0xa0; \
|
||||
for (regnum = 0; regnum < 8; regnum++) \
|
||||
(frame_saved_regs).regs[regnum+24] = frame + regnum * 4 - 0xc0; \
|
||||
for (regnum = 0; regnum < 8; regnum++) \
|
||||
(frame_saved_regs).regs[regnum+64] = frame + regnum * 4 - 0xe0; \
|
||||
frame = (fi).next_frame ? \
|
||||
(fi).next_frame : read_register (SP_REGNUM); \
|
||||
} \
|
||||
/* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ \
|
||||
regmask = read_memory_integer (pc + 2, 2); \
|
||||
/* But before that can come an fmovem. Check for it. */ \
|
||||
nextinsn = 0xffff & read_memory_integer (pc, 2); \
|
||||
if (0xf227 == nextinsn \
|
||||
&& (regmask & 0xff00) == 0xe000) \
|
||||
{ pc += 4; /* Regmask's low bit is for register fp7, the first pushed */ \
|
||||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
|
||||
if (regmask & 1) \
|
||||
(frame_saved_regs).regs[regnum] = (next_addr -= 12); \
|
||||
regmask = read_memory_integer (pc + 2, 2); } \
|
||||
if (0044327 == read_memory_integer (pc, 2)) \
|
||||
{ pc += 4; /* Regmask's low bit is for register 0, the first written */ \
|
||||
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) \
|
||||
if (regmask & 1) \
|
||||
(frame_saved_regs).regs[regnum] = (next_addr += 4) - 4; } \
|
||||
else if (0044347 == read_memory_integer (pc, 2)) \
|
||||
{ pc += 4; /* Regmask's low bit is for register 15, the first pushed */ \
|
||||
for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) \
|
||||
if (regmask & 1) \
|
||||
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
||||
else if (0x2f00 == 0xfff0 & read_memory_integer (pc, 2)) \
|
||||
{ regnum = 0xf & read_memory_integer (pc, 2); pc += 2; \
|
||||
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
||||
/* fmovemx to index of sp may follow. */ \
|
||||
regmask = read_memory_integer (pc + 2, 2); \
|
||||
nextinsn = 0xffff & read_memory_integer (pc, 2); \
|
||||
if (0xf236 == nextinsn \
|
||||
&& (regmask & 0xff00) == 0xf000) \
|
||||
{ pc += 10; /* Regmask's low bit is for register fp0, the first written */ \
|
||||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
|
||||
if (regmask & 1) \
|
||||
(frame_saved_regs).regs[regnum] = (next_addr += 12) - 12; \
|
||||
regmask = read_memory_integer (pc + 2, 2); } \
|
||||
/* clrw -(sp); movw ccr,-(sp) may follow. */ \
|
||||
if (0x426742e7 == read_memory_integer (pc, 4)) \
|
||||
(frame_saved_regs).regs[PS_REGNUM] = (next_addr -= 4); \
|
||||
lose: ; \
|
||||
(frame_saved_regs).regs[SP_REGNUM] = (frame_info).frame + 8; \
|
||||
(frame_saved_regs).regs[FP_REGNUM] = (frame_info).frame; \
|
||||
(frame_saved_regs).regs[PC_REGNUM] = (frame_info).frame + 4; \
|
||||
else \
|
||||
{ \
|
||||
for (regnum = 0; regnum < 16; regnum++) \
|
||||
(frame_saved_regs).regs[regnum+16] = frame + regnum * 4; \
|
||||
} \
|
||||
if (next_frame == 0) next_frame = read_register (SP_REGNUM); \
|
||||
for (regnum = 0; regnum < 8; regnum++) \
|
||||
(frame_saved_regs).regs[regnum+8] = next_frame + regnum * 4; \
|
||||
(frame_saved_regs).regs[FP_REGNUM] = frame + 14*4; \
|
||||
(frame_saved_regs).regs[SP_REGNUM] = frame; \
|
||||
(frame_saved_regs).regs[PC_REGNUM] = frame + 15*4; \
|
||||
}
|
||||
|
||||
/* Things needed for making the inferior call functions. */
|
||||
|
||||
/* Push an empty stack frame, to record the current PC, etc. */
|
||||
|
||||
/* NOTE: to be perfectly correct, we will probably have to restore the
|
||||
IN registers (which were the OUT registers of the calling frame). */
|
||||
|
||||
#define PUSH_DUMMY_FRAME \
|
||||
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
|
||||
{ extern char registers[]; \
|
||||
register int regnum; \
|
||||
char raw_buffer[12]; \
|
||||
sp = push_word (sp, read_register (PC_REGNUM)); \
|
||||
sp = push_word (sp, read_register (FP_REGNUM)); \
|
||||
write_register (FP_REGNUM, sp); \
|
||||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
|
||||
{ read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); \
|
||||
sp = push_bytes (sp, raw_buffer, 12); } \
|
||||
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
||||
sp = push_word (sp, read_register (regnum)); \
|
||||
sp = push_word (sp, read_register (PS_REGNUM)); \
|
||||
write_register (SP_REGNUM, sp); }
|
||||
CORE_ADDR fp = read_register (FP_REGNUM); \
|
||||
CORE_ADDR pc = read_register (PC_REGNUM); \
|
||||
void do_save_insn (); \
|
||||
supply_register (RP_REGNUM, &pc); \
|
||||
do_save_insn (0x140); \
|
||||
fp = read_register (FP_REGNUM); \
|
||||
write_memory (fp - 0x80, ®isters[REGISTER_BYTE (FP0_REGNUM)], 32 * 4); \
|
||||
write_memory (fp - 0xa0, ®isters[REGISTER_BYTE (0)], 8 * 4); \
|
||||
write_memory (fp - 0xc0, ®isters[REGISTER_BYTE (24)], 8 * 4); \
|
||||
write_memory (fp - 0xe0, ®isters[REGISTER_BYTE (64)], 8 * 4); \
|
||||
}
|
||||
|
||||
/* Discard from the stack the innermost frame,
|
||||
restoring all saved registers. */
|
||||
|
||||
#define POP_FRAME \
|
||||
{ register CORE_ADDR fp = read_register (FP_REGNUM); \
|
||||
register int regnum; \
|
||||
struct frame_saved_regs fsr; \
|
||||
struct frame_info fi; \
|
||||
char raw_buffer[12]; \
|
||||
fi = get_frame_info (fp); \
|
||||
get_frame_saved_regs (&fi, &fsr); \
|
||||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
|
||||
if (fsr.regs[regnum]) \
|
||||
{ read_memory (fsr.regs[regnum], raw_buffer, 12); \
|
||||
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); }\
|
||||
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
||||
if (fsr.regs[regnum]) \
|
||||
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
|
||||
if (fsr.regs[PS_REGNUM]) \
|
||||
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
|
||||
write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
|
||||
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
|
||||
write_register (SP_REGNUM, fp + 8); \
|
||||
set_current_frame (read_register (FP_REGNUM)); }
|
||||
{ register CORE_ADDR fp = read_register (FP_REGNUM); \
|
||||
register int regnum; \
|
||||
struct frame_saved_regs fsr; \
|
||||
struct frame_info fi; \
|
||||
char raw_buffer_fp[REGISTER_BYTES]; \
|
||||
char raw_buffer_globals[REGISTER_BYTES]; \
|
||||
char raw_buffer_outs[REGISTER_BYTES]; \
|
||||
char raw_buffer_xx[REGISTER_BYTES]; \
|
||||
void do_restore_insn (); \
|
||||
fi = get_frame_info (fp); \
|
||||
get_frame_saved_regs (&fi, &fsr); \
|
||||
if (fsr.regs[FP0_REGNUM]) \
|
||||
read_memory (fsr.regs[FP0_REGNUM], raw_buffer_fp, 32 * 4); \
|
||||
if (fsr.regs[1]) \
|
||||
read_memory (fsr.regs[1], raw_buffer_globals, 7 * 4); \
|
||||
if (fsr.regs[24]) \
|
||||
read_memory (fsr.regs[24], raw_buffer_outs, 8 * 4); \
|
||||
if (fsr.regs[64]) \
|
||||
read_memory (fsr.regs[64], raw_buffer_xx, 8 * 4); \
|
||||
do_restore_insn (fsr.regs); \
|
||||
if (fsr.regs[FP0_REGNUM]) \
|
||||
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer_fp, 32 * 4); \
|
||||
if (fsr.regs[1]) \
|
||||
write_register_bytes (REGISTER_BYTE (1), raw_buffer_globals, 7 * 4);\
|
||||
if (fsr.regs[24]) \
|
||||
write_register_bytes (REGISTER_BYTE (8), raw_buffer_outs, 8 * 4); \
|
||||
if (fsr.regs[64]) \
|
||||
write_register_bytes (REGISTER_BYTE (64), raw_buffer_xx, 8 * 4); \
|
||||
set_current_frame (read_register (FP_REGNUM)); \
|
||||
}
|
||||
|
||||
/* This sequence of words is the instructions
|
||||
fmovem 0xff,-(sp)
|
||||
moveml 0xfffc,-(sp)
|
||||
clrw -(sp)
|
||||
movew ccr,-(sp)
|
||||
|
||||
save %sp,-0x140,%sp
|
||||
std %f30,[%fp-0x08]
|
||||
std %f28,[%fp-0x10]
|
||||
std %f26,[%fp-0x18]
|
||||
std %f24,[%fp-0x20]
|
||||
std %f22,[%fp-0x28]
|
||||
std %f20,[%fp-0x30]
|
||||
std %f18,[%fp-0x38]
|
||||
std %f16,[%fp-0x40]
|
||||
std %f14,[%fp-0x48]
|
||||
std %f12,[%fp-0x50]
|
||||
std %f10,[%fp-0x58]
|
||||
std %f8,[%fp-0x60]
|
||||
std %f6,[%fp-0x68]
|
||||
std %f4,[%fp-0x70]
|
||||
std %f2,[%fp-0x78]
|
||||
std %f0,[%fp-0x80]
|
||||
std %g6,[%fp-0x88]
|
||||
std %g4,[%fp-0x90]
|
||||
std %g2,[%fp-0x98]
|
||||
std %g0,[%fp-0xa0]
|
||||
std %i6,[%fp-0xa8]
|
||||
std %i4,[%fp-0xb0]
|
||||
std %i2,[%fp-0xb8]
|
||||
std %i0,[%fp-0xc0]
|
||||
nop ! stcsr [%fp-0xc4]
|
||||
nop ! stfsr [%fp-0xc8]
|
||||
nop ! wr %npc,[%fp-0xcc]
|
||||
nop ! wr %pc,[%fp-0xd0]
|
||||
rd %tbr,%o0
|
||||
st %o0,[%fp-0xd4]
|
||||
rd %wim,%o1
|
||||
st %o0,[%fp-0xd8]
|
||||
rd %psr,%o0
|
||||
st %o0,[%fp-0xdc]
|
||||
rd %y,%o0
|
||||
st %o0,[%fp-0xe0]
|
||||
|
||||
/..* The arguments are pushed at this point by GDB;
|
||||
no code is needed in the dummy for this.
|
||||
The CALL_DUMMY_START_OFFSET gives the position of
|
||||
the following jsr instruction. *../
|
||||
jsr @#32323232
|
||||
addl #69696969,sp
|
||||
trap #15
|
||||
nop
|
||||
Note this is 28 bytes.
|
||||
We actually start executing at the jsr, since the pushing of the
|
||||
registers is done by PUSH_DUMMY_FRAME. If this were real code,
|
||||
the arguments for the function called by the jsr would be pushed
|
||||
between the moveml and the jsr, and we could allow it to execute through.
|
||||
But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
|
||||
and we cannot allow the moveml to push the registers again lest they be
|
||||
taken for the arguments. */
|
||||
the following call instruction. *../
|
||||
|
||||
#define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e4f4e71}
|
||||
ld [%sp+0x58],%o5
|
||||
ld [%sp+0x44],%o4
|
||||
ld [%sp+0x50],%o3
|
||||
ld [%sp+0x4c],%o2
|
||||
ld [%sp+0x48],%o1
|
||||
call 0x34343434
|
||||
ld [%sp+0x44],%o0
|
||||
nop
|
||||
ta 1
|
||||
nop
|
||||
|
||||
#define CALL_DUMMY_LENGTH 28
|
||||
note that this is 192 bytes, which is a multiple of 8 (not only 4) bytes.
|
||||
note that the `call' insn is a relative, not an absolute call.
|
||||
note that the `nop' at the end is needed to keep the trap from
|
||||
clobbering things (if NPC pointed to garbage instead).
|
||||
|
||||
#define CALL_DUMMY_START_OFFSET 12
|
||||
We actually start executing at the `sethi', since the pushing of the
|
||||
registers (as arguments) is done by PUSH_DUMMY_FRAME. If this were
|
||||
real code, the arguments for the function called by the CALL would be
|
||||
pushed between the list of ST insns and the CALL, and we could allow
|
||||
it to execute through. But the arguments have to be pushed by GDB
|
||||
after the PUSH_DUMMY_FRAME is done, and we cannot allow these ST
|
||||
insns to be performed again, lest the registers saved be taken for
|
||||
arguments. */
|
||||
|
||||
#define CALL_DUMMY { 0x9de3bee0, 0xfd3fbff8, 0xf93fbff0, 0xf53fbfe8, \
|
||||
0xf13fbfe0, 0xed3fbfd8, 0xe93fbfd0, 0xe53fbfc8, \
|
||||
0xe13fbfc0, 0xdd3fbfb8, 0xd93fbfb0, 0xd53fbfa8, \
|
||||
0xd13fbfa0, 0xcd3fbf98, 0xc93fbf90, 0xc53fbf88, \
|
||||
0xc13fbf80, 0xcc3fbf78, 0xc83fbf70, 0xc43fbf68, \
|
||||
0xc03fbf60, 0xfc3fbf58, 0xf83fbf50, 0xf43fbf48, \
|
||||
0xf03fbf40, 0x01000000, 0x01000000, 0x01000000, \
|
||||
0x01000000, 0x91580000, 0xd027bf50, 0x93500000, \
|
||||
0xd027bf4c, 0x91480000, 0xd027bf48, 0x91400000, \
|
||||
0xd027bf44, 0xda03a058, 0xd803a044, 0xd603a050, \
|
||||
0xd403a04c, 0xd203a048, 0x40000000, 0xd003a044, \
|
||||
0x01000000, 0x91d02001, 0x01000000, 0x01000000}
|
||||
|
||||
#define CALL_DUMMY_LENGTH 192
|
||||
|
||||
#define CALL_DUMMY_START_OFFSET 148
|
||||
|
||||
#define CALL_DUMMY_STACK_ADJUST 68
|
||||
|
||||
/* Insert the specified number of args and function address
|
||||
into a call sequence of the above form stored at DUMMYNAME. */
|
||||
|
||||
#define FIX_CALL_DUMMY(dummyname, fun, nargs) \
|
||||
{ *(int *)((char *) dummyname + 20) = nargs * 4; \
|
||||
*(int *)((char *) dummyname + 14) = fun; }
|
||||
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \
|
||||
{ \
|
||||
*(int *)((char *) dummyname+168) = (0x40000000|((fun-(pc+168))>>2)); \
|
||||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT || TYPE_CODE (type) == TYPE_CODE_UNION) \
|
||||
*(int *)((char *) dummyname+176) = (TYPE_LENGTH (type) & 0x1fff); \
|
||||
}
|
||||
|
||||
/* Interface definitions for kernel debugger KDB. */
|
||||
/* Sparc has no reliable single step ptrace call */
|
||||
|
||||
/* Map machine fault codes into signal numbers.
|
||||
First subtract 0, divide by 4, then index in a table.
|
||||
Faults for which the entry in this table is 0
|
||||
are not handled by KDB; the program's own trap handler
|
||||
gets to handle then. */
|
||||
#define NO_SINGLE_STEP 1
|
||||
|
||||
#define FAULT_CODE_ORIGIN 0
|
||||
#define FAULT_CODE_UNITS 4
|
||||
#define FAULT_TABLE \
|
||||
{ 0, 0, 0, 0, SIGTRAP, 0, 0, 0, \
|
||||
0, SIGTRAP, 0, 0, 0, 0, 0, SIGKILL, \
|
||||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||||
SIGILL }
|
||||
|
||||
/* Start running with a stack stretching from BEG to END.
|
||||
BEG and END should be symbols meaningful to the assembler.
|
||||
This is used only for kdb. */
|
||||
|
||||
#define INIT_STACK(beg, end) \
|
||||
{ asm (".globl end"); \
|
||||
asm ("movel #end, sp"); \
|
||||
asm ("movel #0,a6"); }
|
||||
|
||||
/* Push the frame pointer register on the stack. */
|
||||
#define PUSH_FRAME_PTR \
|
||||
asm ("movel a6,sp@-");
|
||||
|
||||
/* Copy the top-of-stack to the frame pointer register. */
|
||||
#define POP_FRAME_PTR \
|
||||
asm ("movl sp@,a6");
|
||||
|
||||
/* After KDB is entered by a fault, push all registers
|
||||
that GDB thinks about (all NUM_REGS of them),
|
||||
so that they appear in order of ascending GDB register number.
|
||||
The fault code will be on the stack beyond the last register. */
|
||||
|
||||
#define PUSH_REGISTERS \
|
||||
{ asm ("clrw -(sp)"); \
|
||||
asm ("pea sp@(10)"); \
|
||||
asm ("movem #0xfffe,sp@-"); }
|
||||
|
||||
/* Assuming the registers (including processor status) have been
|
||||
pushed on the stack in order of ascending GDB register number,
|
||||
restore them and return to the address in the saved PC register. */
|
||||
|
||||
#define POP_REGISTERS \
|
||||
{ asm ("subil #8,sp@(28)"); \
|
||||
asm ("movem sp@,#0xffff"); \
|
||||
asm ("rte"); }
|
||||
/* KDB stuff flushed for now. */
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue